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Analytical and numerical expressions for the number of atomic configurations

contained in a supershell
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CEA, DAM, DIF, F-91297 Arpajon, France

Michel Poirier
Université Paris-Saclay, CEA, CNRS, LIDYL, F-91191 Gif-sur-Yvette, France

(Dated: Friday 10th July, 2020)

We present three explicit formulas for the number of electronic configurations in an atom, i.e. the
number of ways to distribute Q electrons in N subshells of respective degeneracies g1, g2, ..., gN .
The new expressions are obtained using the generating-function formalism. The first one contains
sums involving multinomial coefficients. The second one relies on the idea of gathering subshells
having the same degeneracy. A third one also collects subshells with the same degeneracy and
leads to the definition of a two-variable generating function, allowing the derivation of recursion
relations. All these formulas can be expressed as summations of products of binomial coefficients.
Concerning the distribution of population on N distinct subshells of a given degeneracy g, analytical
expressions for the first moments of this distribution are given. The general case of subshells with
any degeneracy is analyzed through the computation of cumulants. A fairly simple expression
for the cumulants at any order is provided, as well as the cumulant generating function. Using
Gram-Charlier expansion, simple approximations of the analyzed distribution in terms of a normal
distribution multiplied by a sum of Hermite polynomials are given. These Gram-Charlier expansions
are tested at various orders and for various examples of supershells. When few terms are kept they
are shown to provide simple and efficient approximations of the distribution, even for moderate
values of the number of subshells, though such expansions diverge when higher order terms are
accounted for. The Edgeworth expansion has also been tested. Its accuracy is equivalent to the
Gram-Charlier accuracy when few terms are kept, but it is much more rapidly divergent when the
truncation order increases. While this analysis is illustrated by examples in atomic supershells it
also applies to more general combinatorial problems such as fermion distributions.

PACS numbers: 02.50.Cw, 32.70.Cs, 31.90.+s

I. INTRODUCTION

The knowledge of the number of atomic configurations (i.e. the number of possible ways to distribute Q electrons
in N subshells of respective degeneracies g1, g2, ..., gN ) is important for the computation of atomic structure and
spectra [1–6] and is a fundamental problem of statistical physics [7–10]. However, it is a difficult combinatorial problem
(belonging to the class of the so-called “bounded partitions” [11–13]) and the number of electronic configurations is
usually evaluated numerically by direct multiple summations requiring the computation of nested-loops. A few years
ago, efficient double recursion relations, on the number of electrons and the number of orbitals, were published [14–
16]. However, we could not find in the literature an analytical expression valid in any case. For this reason, in this
paper we develop various analytical and numerical methods providing this number of configurations. As part of the
above quoted bibliography suggests, the present analysis is not limited to the number of configurations obtained by
distributing Q electrons in a list of subshells, but deals with more general combinatorial questions related, e.g., to
fermion statistics.
The generating function for the number of configurations is introduced in section II, along with some of its inter-

esting properties. The first expressions involving multinomial coefficients is presented in section III, and the second
expression, obtained by partitioning the subshells into iso-degeneracy groups, is derived in section IV. Focusing on
the case of susbshells with the same degeneracy, a two-variable generating function allows us to obtain several recur-
rence relations (section V) and to compute moments at any order (section VI). Furthermore, the cumulants of this
distribution as well as the cumulant generating function are obtained analytically in section VII. The availability of
these cumulants allows us to derive simple approximations for this number of configurations using a Gram-Charlier
and Edgeworth expansion in sections VIII and IX respectively. Concluding remarks are finally given.
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II. GENERATING FUNCTION OF THE PROBLEM

We have to find the number of integer solutions of Q = q1 + q2 + q3 + ... with the restrictions : 0 ≤ q1 ≤ g1, ...,
0 ≤ qN ≤ gN . Such constraints can be efficiently accounted for using generating functions[17, 18]. This number of
solutions being denoted C (Q,N), we define the generating function with

G(x,N) =

∞
∑

Q=0

xQC (Q,N) (1a)

=

∞
∑

Q=0

xQ
∑

{q1,q2,··· ,qN}

δQ,q1+q2+···+qN θ (g1 − q1) · · · θ (gN − qN ) , (1b)

where δ represents Kronecker symbol and θ the Heaviside function. One gets

G (x,Q) =
∑

{qi}

xq1+q2+···+qN θ (g1 − q1) · · · θ (gN − qN ) . (2)

Since the quantities qi are independent, one has

G (x,Q) =

g1
∑

q1=0

xq1 · · ·
gN
∑

qN=0

xqN , (3)

i.e.,

G(x,N) =

N
∏

i=1

[

1− xgi+1

1− x

]

=
1

(1− x)N

N
∏

i=1

(

1− xgi+1
)

, (4)

with

1

(1− x)N
=

∞
∑

i=0

(

N − 1 + i

N − 1

)

xi. (5)

If all the orbitals had the same degeneracy, we would have

N
∏

i=1

(

1− xg+1
)

=
(

1− xg+1
)N

=

N
∑

k=0

(−1)k
(

N

k

)

xk(g+1) (6)

and, combining Eqs. (5) and (6)

C(Q,N) =

⌊N/(g+1)⌋
∑

k=0

(

N

k

)

(−1)k
(

N − 1 +Q− k(g + 1)

N − 1

)

, (7)

where ⌊x⌋ denotes the integer part of x. However, since all the orbitals do not in general have the same degeneracy,
the problem is more complicated. Indeed, let us take the example of four orbitals with degeneracy g1, g2, g3, g4. In
the present case, this generating function involves the product

4
∏

i=1

(

1− xgi+1
)

=1− xg1+1 − xg2+1 − xg3+1 − xg4+1 + xg1+g2+2 + xg1+g3+2 + xg1+g4+2

+ xg2+g3+2 + xg2+g4+2 + xg3+g4+2 − xg1+g2+g3+3 − xg1+g2+g4+3

− xg1+g3+g4+3 − xg2+g3+g4+3 + xg1+g2+g3+g4+4,

(8)
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which can be expressed in terms of the so-called symmetric functions [19, 20]. Knowing the generating function, one
can now write C(Q,N) as a contour integral

C (Q,N) =
1

2iπ

∮

dz

zQ+1
G (z,N) (9a)

=
1

2iπ

∮

dz

zQ+1

N
∏

i=1

[

1− zgi+1

1− z

]

. (9b)

Assuming that the number of electronsQ and the number of orbitalsN are large, one finds (following the asymptotics
of partitions of Hardy-Ramanujan [11])

C(Q,N) =
1

2iπ

∮

dz

z
eSN,Q(z), (10)

with

SN,Q(z) =

N
∑

i=1

ln

(

1− zgi+1

1− z

)

−Q ln z, (11)

and one has to find z0 such that
dSN,Q

dz

∣

∣

∣

z0
= 0. However, it is difficult to find some large quantities in the present

case. Therefore, we usually make the calculation using a recursion relation [21]

C (Q,N) =

Q
∑

i=0

C(Q− i, N − 1)θ(gN − i)

=

min(Q,gN )
∑

i=0

C(Q− i, N − 1), (12)

where gN is the last-orbital degeneracy. The recurrence is initialized by C (Q, 0) = δQ,0.
One may note that, in a different context, formula (7) has been used by Crance (see Appendix in Ref. [22]) to

calculate the proportion of neutral atoms in a statistical description of multiple ionization.

III. FIRST EXACT EXPRESSION INVOLVING MULTINOMIAL COEFFICIENT

The number of atomic configurations of Q electrons in N subshells is related to the generating function G(x,N) by

C (Q,N) =
1

Q!

∂Q

∂xQ
G(x,N)

∣

∣

∣

∣

x=0

. (13)

The recursion relation (12) can be obtained from this relation. Using the Leibniz rule for the derivative of a product
of two functions, we obtain

C (Q,N) =
1

Q!

Q
∑

i=0

(

Q

i

)

∂i

∂xi

1

(1− x)N

∣

∣

∣

∣

∣

x=0

∂Q−i

∂xQ−i

N
∏

i=1

(

1− xgi+1
)

∣

∣

∣

∣

∣

x=0

. (14)

We have

∂i

∂xi

1

(1 − x)N

∣

∣

∣

∣

x=0

= i!

(

i+N − 1

i

)

(15)
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and

∂Q−i

∂xQ−i

N
∏

i=1

(

1− xgi+1
)

∣

∣

∣

∣

∣

x=0

=
∑

~α/
∑

N
j=1

αj=Q−i

(Q− i)!

α1!α2!α3!...αN !

N
∏

j=1

∂αj

∂xαj

(

1− xgj+1
)∣

∣

x=0
, (16)

where ~α = (α1, α2, · · · , αN). The quantity

(

Q− i

α1, α2 · · · , αN

)

=
(Q − i)!

α1!α2! · · ·αN !
(17)

is the multinomial coefficient. It can be expressed in numerous ways, including a product of binomial coefficients

(

Q− i

α1, α2 · · · , αN

)

= δQ−i,α1+···αN

(

α1

α1

)(

α1 + α2

α1

)

· · ·
(

Q− i

αN

)

. (18)

We have also, if αj 6= 0

∂αj

∂xαj

(

1− xgj+1
)∣

∣

x=0
= −(gj + 1)!× δαj ,gj+1 (19)

and we get finally

C(Q,N) =
1

Q!

Q
∑

i=0

i!

(

Q

i

)(

i+N − 1

i

)

∑

~α/
∑

N
j=1

αj=Q−i

(Q− i)!

α1!α2!...αN !

N
∏

j=1

(

δαj ,0 − (gj + 1)!δαj ,gj+1

)

, (20)

which can also be put in the form

C(Q,N) =

Q
∑

i=0

(

i+N − 1

i

)

∑

~α/
∑

N
j=1

αj=Q−i

1

α1!α2!...αN !

N
∏

j=1

(

δαj ,0 − (gj + 1)!δαj ,gj+1

)

, (21)

which is the first main result of the present work.

IV. SECOND EXACT EXPRESSION: GROUPING THE SUPERSHELLS OF THE SAME

DEGENERACY

Let us consider the case where n1 orbitals have the same degeneracy g1 and n2 orbitals have the same degeneracy
g2, with N = n1 + n2. For instance (2p3p4p)4 and (3d4d)6 correspond to g1=6, g2=10, n1=4 and n2=6, i.e. N=10.
The generating function can be put in the form:

G(x,N) =

(

1− xg1+1

1− x

)n1
(

1− xg2+1

1− x

)n2

. (22)

Using Leibniz formula for the derivative of a product of two functions, we get

C (Q,N) =
1

Q!

Q
∑

i=0

(

Q

i

)

∂i

∂xi

1

(1− x)n1+n2

∣

∣

∣

∣

∣

x=0

× ∂Q−i

∂xQ−i

[

(

1− xg1+1
)n1

(

1− xg2+1
)n2

]∣

∣

∣

x=0
. (23)

We still have
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∂i

∂xi

1

(1− x)n1+n2

∣

∣

∣

∣

x=0

= i!

(

i+ n1 + n2 − 1

i

)

(24)

and since

(

1− xg1+1
)n1

=

n1
∑

i1=0

(−1)i1
(

n1

i1

)

xi1(g1+1), (25)

one can write

∂Q−i

∂xQ−i

[

(

1− xg1+1
)n1
(

1− xg2+1
)n2

]

∣

∣

∣

∣

x=0

=

n1
∑

i1=0

n2
∑

i2=0

(−1)i1+i2

(

n1

i1

)(

n2

i2

)

× [i1 (g1 + 1) + i2 (g2 + 1)−Q+ i+ 1] [i1 (g1 + 1) + i2 (g2 + 1)−Q+ i+ 2] · · ·
× [i1 (g1 + 1) + i2 (g2 + 1)− 2] [i1 (g1 + 1) + i2 (g2 + 1)− 1]

× [i1 (g1 + 1) + i2 (g2 + 1)] ×xi1(g1+1)+i2(g2+1)−Q+i
∣

∣

∣

x=0
.

(26)

The only non-zero value on the right-hand side corresponds to i = Q− i1 (g1 + 1)− i2 (g2 + 1) and we finally get

C (Q,N) =

n1
∑

i1=0

n2
∑

i2=0

(−1)i1+i2

(

n1

i1

)(

n2

i2

)(

n1 + n2 − 1 +Q− i1 (g1 + 1)− i2 (g2 + 1)

n1 + n2 − 1

)

. (27)

If we generalize and gather the n1 subshells of degeneracy g1, the n2 subshells of degeneracy g2, ..., the ns subshells
of degeneracy gs (with therefore n1 + n2 + · · ·ns = N), we obtain

C (Q,N) =

n1
∑

i1=0

n2
∑

i2=0

· · ·
ns
∑

is=0

(−1)i1+i2+···ns

(

n1

i1

)(

n2

i2

)

· · ·
(

ns

is

)

×
(

n1 + · · ·+ ns − 1 +Q − i1 (g1 + 1)− i2 (g2 + 1)− · · · − is (gs + 1)

n1 + · · ·+ ns − 1

)

,

(28)

which is the second main result of the present work.

V. RECURRENCE RELATIONS ON THE NUMBER OF SUBSHELLS WITH SAME DEGENERACY

The equation (28) is rather compact and adapted to numerical computation. However one may note that it
contains terms of alternating signs. It is possible to derive an alternate formula containing only positive terms. Let us
note N (N1, · · ·Nt; g1, · · · gt;Q) the number of configurations of Q electrons distributed within N1 distinct subshells of
degeneracy g1,. . .Nt subshells of degeneracy gt. For instance considering the non relativistic configurations constructed
on the 1s 2s 2p 3s 3p 3d subshells , one has t = 3, N1 = 3, g1 = 2, N2 = 2, g2 = 6, and N3 = 1, g3 = 10. It is clear
that the evaluation of this number can be reduced to the evaluation of the number of the configurations of a given
degeneracy S (g;N ;Q) which is the number of configurations with Q electrons distributed on N subshells of the same
degeneracy g. The numbers N and S are connected through the discrete convolution formula

N (N1, · · ·Nt; g1, · · · gt;Q) =
∑

p1

· · ·
∑

pt

δp1+···+pt,QS (g1;N1; p1) · · ·S (gt;Nt; pt). (29)

In this section we will focus on the computation of the S (g;N ;Q) numbers. Let us consider for instance the case
g = 4. To each configuration corresponds a 5-uple (n0, n1, n2, n3, n4) of numbers of subshells with population from
0 to 4 respectively. Obviously two configurations with distinct 5-uples are different. Conversely, there are several
distinct configurations for a given set (n0, n1, n2, n3, n4), that can be straightforwardly numbered. One has

(

N
n4

)

ways
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to choose the subshell(s) with 4 electrons, then
(

N−n4

n3

)

ways to choose the remaining subshell(s) with 3 electrons, etc.
Therefore the total number of configurations writes

S (g;N ;Q)|g=4 =
∑

(

N

n4

)(

N − n4

n3

)(

N − n3 − n4

n2

)(

N − n2 − n3 − n4

n1

)(

N − n1 − n2 − n3 − n4

n0

)

(30a)

where the summation is performed on all (n0, n1, n2, n3, n4) verifying

N =n0 + n1 + n2 + n3 + n4 (30b)

Q =n1 + 2n2 + 3n3 + 4n4. (30c)

The product of binomial coefficients in the above sum simplifies, and one gets in the general case,

S (g;N ;Q) =
∑

n0,n1···ng

δn0+···+ng,Nδn1+···+gng ,Q
N !

n0!n1! · · ·ng!
(31a)

which, introducing the multinomial coefficient (17), writes

S (g;N ;Q) =
∑

n0,n1···ng

C

(

N

n0, n1, · · ·ng

)

(31b)

where the multiple sum is constrained by the double condition C

N =n0 + n1 + · · ·+ ng (31c)

Q =n1 + 2n2 + · · ·+ gng. (31d)

This equation, in conjunction with (29), provides a third expression for the total number of configurations. Let us
now consider the generating function

G (g; z,X) =

∞
∑

n0=0

zn0

n0!

∞
∑

n1=0

zn1Xn1

n1!

∞
∑

n2=0

zn2X2n2

n2!
· · ·

∞
∑

ng=0

zngXgng

ng!
(32a)

= exp(z + zX + zX2 · · ·+ zXg) (32b)

= exp

(

z
1−Xg+1

1−X

)

. (32c)

Comparing the above expansion with the value (31a) one checks that

G (g; z,X) =
∞
∑

Q=0

∞
∑

N=0

S (g;N ;Q)
zN

N !
XQ. (33)

Therefore one may express the number of configurations as the partial derivative

S (g;N ;Q) =
1

Q!

∂N+Q

∂zN∂XQ
G (g; z,X)

∣

∣

∣

∣

z=0,X=0

. (34)

The above expansion allows us to derive various properties. Using the form (32c) one easily verifies that

G (g; z,X) = G (g; zXg, 1/X) (35)

which implies

S (g;N ;Q) = S (g;N ; gN −Q). (36)

Recursion relations can be obtained by deriving the generating function (32c) with respect to z or X . Writing the
ratio (1−Xg+1)/(1−X) (resp. its derivative) as the polynomial 1+X + · · ·+Xg (resp. 1 + 2X + · · ·+ gXg−1), one
gets two identities. First, using derivation versus z and identifying terms in zNXQ one has

S (g;N + 1;Q) =

min(g,Q)
∑

j=0

S (g;N ;Q− j). (37)
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Then, using derivation versus X , assuming Q > 0, one obtains

S (g;N + 1;Q) =
N + 1

Q

min(g,Q)
∑

j=1

jS (g;N ;Q− j). (38)

In a similar way, dealing with (1 − Xg+1)/(1 − X) or its derivative as a rational fraction one first gets by deriving
with respect to z

1−Xg+1

1−X
exp

(

z
1−Xg+1

1−X

)

=
1−Xg+1

1−X

∑

N,Q

S (g;N ;Q)
zN

N !
XQ (39a)

=
∑

N,Q

S (g;N ;Q)
zN−1

(N − 1)!
XQ (39b)

and after multiplying the right-hand sides of these subequations by (1−X) and identifying the factor of zNXQ, one
has

S (g;N + 1;Q)− S (g;N + 1;Q− 1) = S (g;N ;Q)− S (g;N ;Q− g − 1). (39c)

Then after deriving the generating function G with respect to X and multiplying both sides by (1 −X)2,

z
[

1− (g + 1)Xg + gXg+1
]

∑

NQ

S (g;N ;Q)
zN

N !
XQ = (1−X)2

∑

NQ

QS (g;N ;Q)
zN

N !
XQ−1 (40a)

and term-by-term identification leads to the recurrence relation

(Q+ 1)S (g;N + 1;Q+ 1)− 2QS (g;N + 1;Q) + (Q− 1)S (g;N + 1;Q− 1)

= (N + 1)
(

S (g;N ;Q)− (g + 1)S (g;N ;Q− g) + gS (g;N ;Q− g − 1)
)

. (40b)

The first recurrence (37) has been mentioned previously (12). If the S (g;N ;Q) numbers are written in a Pascal-like
triangle where lines are indexed by N and columns by Q, this equation implies that any number in the array is equal
to the sum of the numbers located on the row above at the g + 1 positions ending at the current column — ignoring
elements with negative column indices. In the special case g = 1 this rule reverts to the usual triangle rule so that

S (1;N ;Q) =

(

N

Q

)

. (41)

Of course this relation could also have been obtained by a direct argument. Noting that the generating function (33)
verifies

G (g; z,X) = G (g − 1; z,X) exp(zXg) (42)

one obtains an additional recurrence relation on the degeneracy g. This equation may be written, with the above
definitions

∑

NQ

S (g;N ;Q)
zN

N !
XQ = S (g − 1;N ;Q)

∑

j

zjXjg

j!
(43)

and identifying the terms in zNXQ on both sides one gets

S (g;N ;Q) =
∑

j

(

N

j

)

S (g − 1;N − j;Q− jg) (44)

the minimum index j being max(0, Q−(g−1)N) so that one hasQ−jg ≤ (g−1)(N−j), and the maximum index j being
min(N, ⌊Q/g⌋). With the initial value (41), this relation may be used to get all S (g;N ;Q). Because of the symmetry
property (36), for a given number of subshellsN the evaluation needs only to be done for 0 ≤ Q ≤ pmax = ⌊(gN+1)/2⌋.
For low Q values, the sum (44) contains very few terms since one must have Q− jg ≥ 0. For Q = pmax, the maximum
index j is only ⌊(N + 1)/2⌋.
Up to our knowledge, the recurrence relations (38, 39c,40b,44) have not been published previously. Using a batch

of test values (mostly in the g = 6 case) we have checked that the various recurrences obtained here are numerically
correct. Moreover, at variance with the relations derived in the previous sections, the sums in the right-hand side of
(37,38) involve only positive terms and therefore cannot give rise to a loss of accuracy or instability after repeated
use of the recurrence.
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VI. ANALYSIS OF THE DISTRIBUTION OF POPULATIONS AMONG N DISTINCT SUBSHELLS

WITH THE SAME DEGENERACY USING MOMENTS CALCULATION

The formulas given in the preceding sections, and mostly those involving recurrence relations, provide a very fast
method to get a large set of S (g;N ;Q) values. As mentioned before, if g = 1 the distribution of S as a function
of Q is binomial. A very efficient characterization of such distributions lies in the analysis of moments defined, for a
given degeneracy g and subshell number N , as

M (g;N ; k) =

gN
∑

Q=0

Qk
S (g;N ;Q). (45)

The moment analysis is, in particular, crucial in the study of unresolved transition arrays as proven by Bauche et al

[6]. It allows to give a simple and often accurate description of such arrays through the definition of a small number
of such moments.
We have been able to derive analytically or numerically the corresponding formulas for the moments. Indeed, it

has been mentioned in several works [23–25] that, in some cases, the knowledge of the moments up to the second
(variance) is far from sufficient to describe distributions significantly different from the normal distribution. This is
why a certain effort is devoted here to moments up to a quite large order.
First one easily finds that

M (g;N ; 0) = (g + 1)N (46)

since this is the total number of configurations with any number of electrons distributed overN subshells of degeneracy
g. As mentioned in Eq. (36) the S (g;N ;Q) distribution is symmetric with respect to its median value gN/2, and
this provides immediately the next moment

M (g;N ; 1) =
1

2
gN(g + 1)N . (47)

The generating function (33) also allows us to derive expressions for moments at any order in a closed form.
Explicitly, one has for the k-th order derivative with respect to X

∂kG (g; z;X)

∂Xk
=

∞
∑

Q=0

∞
∑

n=0

(Q)kS (g;n;Q)
zn

n!
XQ−k. (48)

where, for integer n,

(A)n = A(A− 1)...(A− n+ 1) (49)

is the so-called descending factorial. Evaluating this quantity for X = 1 provides the successive moments of the S

distribution. Indeed, one easily checks using the analytical form (32b)

∂k

∂Xk
exp (z(1 +X + · · ·+Xg))

∣

∣

∣

∣

X=1

=

∞
∑

z=0

zN

N !
M (g;N ; k) (50a)

with

M (g;N ; k) =

gN
∑

Q=0

(Q)kS (g;N ;Q). (50b)

Therefore the modified moments M appear as the (N + k)-th partial derivative

M (g;N ; k) =
∂N+k

∂Xk∂zN
exp (z(1 +X + · · ·+Xg))

∣

∣

∣

∣

X=1,z=0

(50c)

=
∂k

∂Xk

[

(1 +X + · · ·+Xg)N exp
(

z(1 +X + · · ·+Xg)
)]

∣

∣

∣

∣

X=1,z=0

. (50d)
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For instance, in the case k = 0, one gets immediately (g + 1)N as mentioned above (46). The various moments (45)
can be easily related to the sums obtained above (50d) since one has

xn =
n
∑

j=0

{

n
j

}

(x)j (51)

the coefficients on the right-hand side being the Stirling numbers of the second kind ([26]) and (x)j the descending
factorials (49). These numbers can be easily generated from the recurrence [27]

{

n+ 1
m

}

= m

{

n
m

}

+

{

n
m− 1

}

with, by convention,

{

0
0

}

= 1,

{

n
0

}

= 0 if n > 0. (52)

Furthermore, the Arbogast-Faà di Bruno’s formula allows us to write [26, 27]

∂kS(X)N

∂Xk
=

∑

n1,n2,··· ,nk

δk,n1+2n2···+knk
P(k;n1, n2 · · · , nk)S

(1)(X)n1S(2)(X)n2 · · ·S(k)(X)nk(N)dS(X)N−d (53)

where

d = n1 + n2 + · · ·+ nk (54)

and where P(k;n1, n2 · · · , nk) is the number of partitions of k distinct objects with n1 groups containing 1 element,
n2 groups containing 2 elements,. . .nk groups containing k elements. The number P is given by Eq. (A4) of Appendix
A. In order to close the computation, one needs to substitute 1+X+ · · ·+Xg to S(X) in the derivative formula (53)
and therefore to compute the partial derivative

Tj =
∂j

∂Xj
(1 +X + · · ·Xg)

∣

∣

∣

∣

X=1

. (55)

This can be easily performed by explicitly deriving the first values

T0 = g + 1,T1 =
1

2
g(g + 1),T2 =

1

3
(g − 1)g(g + 1), (56)

from which one infers the general form

Tr =
1

r + 1

(g + 1)!

(g − r)!
= r!

(

g + 1

r + 1

)

. (57)

The proof of the above alleged expression can be established by a simple recurrence on the index g.
The average over the distribution S (g;N ;Q) of any function of Q X (Q) is defined as

〈X (Q)〉 =
∑

Q

X (Q)S (g;N ;Q)/
∑

Q

S (g;N ;Q) =
∑

Q

X (Q)S (g;N ;Q)/(g + 1)N . (58)

Collecting formulas (50c,53,57, 58,A4), and noting that the factor S(X)N−d in Eq. (53) may be written as

S(X)N−d = (g + 1)N−n1−n2···−nk , (59)

one gets finally the average value of the descending factorials (Q)k,

〈(Q)k〉 =
M (g;N ; k)

(g + 1)N

∑

n1···nk

δj,n1+2n2+···knk
k!

∏k
q=1 nq!(q!)nq

(N)n1+n2···+nk

k
∏

r=1

[

1

r + 1

g!

(g − r)!

]nr

(60)

and the normalized moments, using the sum (51),

M (g;N ; k)/(g + 1)N =

k
∑

j=0

{

k
j

}

∑

n1···nj

δj,n1+2n2+···jnj
j!

∏j
q=1 nq!(q!)nq

(N)n1+n2···+nj

j
∏

r=1

[

1

r + 1

g!

(g − r)!

]nr

. (61)
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Using the second form for T as written in Eq. (57) one may also write the somewhat simpler result

〈(Q)k〉 /(g + 1)N =
∑

n1···nk

δk,n1+2n2+···knk

k!
∏k

q=1 nq!

(N)d
(g + 1)d

k
∏

r=1

(

g + 1

r + 1

)nr

(62)

with d is the sum of the nj indices (54).
The moments with k ≤ 8 have been explicitly obtained and are listed in table I. The formulas have been obtained

using Mathematica software, though the lowest moments may be easily derived by using the explicit form (61). We
have checked that, in spite of the multiple nested loops on indices nj in the expression (60), the analytical expressions
for moments up to k = 10 can be obtained at a very low computational cost. Indeed, considering for instance the
4-th order moment, the nested loop on nj indices only contains four terms, namely (n1 = 4), (n1 = 2, n2 = 1), (n1 =
1, n3 = 1), (n4 = 1), where all the unmentioned nj are 0. From the above expression one may also notice that each of
these normalized moments is given by a polynomial form

M (g;N ; k)/(g + 1)N =

k
∑

p=1

k
∑

q=1

cpq(g;N ; k)gpN q. (63)

To get moments for large k values, it may be easier to use such formula instead of (61). One first computes numerically
a series of moments for various g and N values using the previously mentioned recurrence relation, and one then solves
the linear system (63) to obtain the cpq.

k Non-centred moment

2
1

4
g2N2 +

1

12
g(g + 2)N

3
1

8
g3N3 +

1

8
g2(g + 2)N2

4
1

16
g4N4 +

1

8
g3(g + 2)N3 +

1

48
g2(g + 2)2N2

−

1

120
g(g + 2)(g2 + 2g + 2)N

5
1

32
g5N5 +

5

48
g4(g + 2)N4 +

5

96
g3(g + 2)2N3

−

1

48
g2(g + 2)(g2 + 2g + 2)N2

6
1

64
g6N6 +

5

64
g5(g + 2)N5 +

5

64
g4(g + 2)2N4

−

1

576
g3(g + 2)(13g2 + 16g + 16)N3

−

1

96
g2(g + 2)2(g2 + 2g + 2)N2 +

1

252
g(g + 2)(g2 + g + 1)(g2 + 3g + 3)N

7
1

128
g7N7 +

7

128
g6(g + 2)N6 +

35

384
g5(g + 2)2N5

−

7

1152
g4(g + 2)(g2 − 8g − 8)N4

−

7

192
g3(g + 2)2(g2 + 2g + 2)N3 +

1

72
g2(g + 2)(g2 + g + 1)(g2 + 3g + 3)N2

8
1

256
g8N8 +

7

192
g7(g + 2)N7 +

35

384
g6(g + 2)2N6 +

7

288
g5(g + 2)(g2 + 7g + 7)N5

−

7

6912
g4(g + 2)2(67g2 + 124g + 124)N4 +

1

576
g3(g + 2)(9g4 + 22g3 + 14g2 − 16g − 8)N3

+
1

8640
g2(g + 2)2(101g4 + 404g3 + 728g2 + 648g + 324)N2

−

1

240
g(g + 2)(g2 + 2g + 2)(g4 + 4g3 + 6g2 + 4g + 2)N

TABLE I. Normalized non-centered moments M (g;N ; k)/(g + 1)N of the distribution S (g;N ;Q).

The normalized centred moments are defined as

Mc(g;N ; k) =

gN
∑

Q=0

(Q− gN/2)k S (g;N ;Q)/(g + 1)N . (64)
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Because of the symmetry property (36), these moments cancel if k is odd. Using the above equation and the general
expression (61) one obtains moments with a somewhat simpler form than the non-centred moments. Namely one has

Mc(g;N ; 2) =
1

12
g(g + 2)N =

D2

12
N (65a)

Mc(g;N ; 4) =
1

48
g2(g + 2)2N2 − 1

120
g(g + 2)(g2 + 2g + 2)N =

D2
2

48
N2 − D4

120
N (65b)

Mc(g;N ; 6) =
5

576
g3(g + 2)3N3 − 1

96
g2(g + 2)2(g2 + 2g + 2)N2 +

1

252
g(g + 2)(g2 + g + 1)(g2 + 3g + 3)N

=
5D3

2

576
N3 − D2D4

96
N2 +

D6

252
N (65c)

Mc(g;N ; 8) =
35

6912
g4(g + 2)4N4 − 7

576
g3(g + 2)3(g2 + 2g + 2)N3

+
1

8640
g2(g + 2)2(101g4 + 404g3 + 728g2 + 648g + 324)N2

− 1

240
g(g + 2)(g2 + 2g + 2)(g4 + 4g3 + 6g2 + 4g + 2)N

=
35D4

2

6912
N4 − 7D2

2D4

576
N3 +

D2D6

108
N2 +

7D2
4

2880
N2 − D8

240
N. (65d)

where we have defined, for the sake of simplification,

Dk = (g + 1)k − 1. (65e)

The first centred moment of this list is the variance

σ2 =
1

12
g(g + 2)N (66)

and the second one is related to the excess kurtosis, given by [28]

κ4/σ
4 = Mc(g;N ; 4)/σ4 − 3 = −6(g2 + 2g + 2)

5g(g + 2)N
(67)

which would be zero for a normal distribution. As one will verify below, the excess kurtosis can be significantly
different from 0, especially for large g and moderate N . This negative value means that such distributions, named
platykurtic, are flatter than the normal distribution. Conversely, for a given g,one has limN→∞ κ4/σ

4 = 0 in agreement
with the central limit theorem.

VII. CUMULANT ANALYSIS

The previous considerations are useful to characterize the S population distribution, e.g., by comparing it to a
normal distribution. They can be used to compute Gram-Charlier approximations (by truncating this series at various
orders). However they suffer from two limitations. The first one is that the expressions for the moments increase
in complexity with the order k. The second one is that they do not apply when several subshells with different
degeneracies g are present in the supershell.
To circumvent these limitations, one must resort to the cumulant formalism. The global distribution is given by

the discrete convolution formula (29). While the normalized centred moments cannot in the general case be expressed
as the sum of the (gj , nj) moments (65), the additivity holds for the cumulants.
The generating function for the cumulants is defined as [28]

K (t) =

∞
∑

n=1

κn
tk

n!
(68a)

= log (〈exp(tQ)〉) . (68b)

Considering first the case of N distinct subshells with the same degeneracy g, the above average value 〈exp(tQ)〉 can
be easily computed. Using the well-known property arising from the convolution relation (12)

S (g;N1 +N2;Q) =
∑

j

S (g;N1; j)S (g;N2;Q− j) (69)
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one has for the Laplace-transformed expression for any natural integers N1, N2

∑

Q

S (g;N1 +N2;Q)eQt =
∑

Q,j

S (g;N1; j)e
jt

S (g;N2;Q− j)e(Q−j)t (70a)

=





∑

j

S (g;N1; j)e
jt





(

∑

k

S (g;N2; k)e
kt

)

(70b)

and by repeated application of the convolution formula

∑

Q

S (g;N ;Q)eQt =





∑

j

S (g; 1; j)ejt





N

. (71)

The sum raised to the N -th power is evaluated straightforwardly. Using the N = 1 value

S (g; 1;Q) = θ(g −Q) (72)

which comes directly from the definition of S , one gets

∑

j

S (g; 1; j)ejt = 1 + et + · · ·+ egt =
eht − 1

et − 1
= exp

(

gt

2

)

sinh(ht/2)

sinh(t/2)
(73)

where h = g + 1. Using the normalization relation (46), one obtains the average value for the case with N distinct
subshells with the same degeneracy

〈

eQt
〉

=
∑

Q

S (g;N ;Q)eQt

/

∑

Q

S (g;N ;Q) = eNgt/2

(

sinh(ht/2)

h sinh(t/2)

)N

(74)

and considering the centred variable Q− 〈Q〉 one has, since 〈Q〉 = gN/2,

〈

e(Q−〈Q〉)t
〉

=

(

sinh(ht/2)

h sinh(t/2)

)N

. (75)

Let us note that the above relations are formally equivalent to the ones providing the partition function of a quantum
magnetic momentum interacting with a magnetic field in the theory of paramagnetism. In order to get the cumulants
one must according to the definition (68b), compute the k-th derivative of the generating function

K (t) = N log

(

sinh(ht/2)

h sinh(t/2)

)

. (76)

These derivatives may be obtained by various methods. Let us now consider the Taylor series

K(t) = N

∞
∑

k=1

B2k

2k

h2k − 1

(2k)!
t2k (77a)

= N (G (ht)− G (t)) (77b)

where Bj are the Bernoulli numbers and where

G (X) =

∞
∑

k=1

B2k

2k

X2k

(2k)!
. (77c)

One gets, using a well known property of the Bernoulli numbers,

G (X) =

∫ X

0

du

u

∞
∑

k=1

B2k
u2k

(2k)!
=

∫ X

0

du

u

(

1

2
coth

(u

2

)

− 1

u

)

= log

(

2

X
sinh

(

X

2

))

. (77d)
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Inserting formula (77d) in the above expression (77b) for the cumulant generating function, and comparing the
analytical expressions (76,77b), one readily obtains

K (t) = K(t). (78)

From the expansion (68a) one obtains directly the even-order cumulants

κ2k = N
B2k

2k

(

(g + 1)2k − 1
)

(79)

in the case of a unique g value. Because of the definition (68b), when subshells of various g are involved, the average
value

〈

eQt
〉

is simply the product of the average on each subshell, the global K (t) is the sum of the individual
generating functions, and the 2k-th derivative provides the cumulant

κ2k =
B2k

2k

∑

j

Nj

(

(gj + 1)2k − 1
)

(80)

for the most general supershell.
Assuming µj are centred moments, then κ1 cancels, and the general relation giving moments as function of cumulants

is [28]

µn =
∑

a2··· ,an

2a2···+nan=n

P(n; a2 · · · , an)κa2

2 · · ·κan
n (81)

where the coefficient P is defined in Appendix A. Since in the present case, all odd-order moments (or cumulants)
cancel, one may limit the index sets to even-order sets a2, a4 · · ·a2k with n = 2k. As an example, defining

Ck =

t
∑

j=1

(hk
j − 1)Nj with hj = gj + 1, (82)

one gets new expressions for the first centred moments

µ2 =
C2

12
(83a)

µ4 =
C2

2

48
− C4

120
(83b)

µ6 =
5C3

2

576
− C2C4

96
+

C6

252
(83c)

µ8 =
35C4

2

6912
− 7C4C

2
2

576
+

C6C2

108
+

7C2
4

2880
− C8

240
(83d)

µ10 =
35C5

2

9216
− 35C4C

3
2

2304
+

5C6C
2
2

288
+

7C2
4C2

768
− C8C2

64
− C4C6

144
+

C10

132
(83e)

µ12 =
385C6

2

110592
− 385C4C

4
2

18432
+

55C6C
3
2

1728
+

77C2
4C

2
2

3072
− 11C8C

2
2

256
− 11C4C6C2

288

+
C10C2

24
− 77C3

4

23040
+

11C2
6

1512
+

11C4C8

640
− 691C12

32760
(83f)

which are more general than the previous ones (65) since they apply to the case where several distinct gj are present.

VIII. ANALYSIS OF POPULATION DISTRIBUTION WITH A GRAM-CHARLIER EXPANSION

According to statistical treatises, any distribution such as (29) may be approximated by a Gram-Charlier expansion,
which is defined as (see Sec. 6.17 in Ref.[28])

FGC(Q) =
G

(2π)1/2σ
exp

[

− (Q− 〈Q〉)2
2σ2

]



1 +
∑

k≥1

ckHek

(

Q− 〈Q〉
σ

)



 (84)
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where the Hen is the Chebyshev-Hermite polynomial [28]

Hek(X) = k!

⌊k/2⌋
∑

m=0

(−1)mXk−2m

2mm!(k − 2m)!
(85)

and ⌊x⌋ is the integer part of x. The Gram-Charlier coefficients ck are related to the centred moments µk through
the relation

ck =

⌊k/2⌋
∑

j=0

(−1)jµk−2j/σ
k−2j

2jj!(k − 2j)!
(86)

and from this definition the coefficients c1 and c2 cancel. For a symmetric distribution as the one considered here,
all the odd-order terms ck cancel too. In the present case, the coefficient G in Eq.(84) is given by the normalization
condition

G =

∫ ∞

−∞

dQ FGC(Q) =
∏

j

Njgj
∑

Q=0

S (gj ;Nj ;Q) =
∏

j

(gj + 1)Nj , (87)

the average value is 〈Q〉 = ∑

j(gjNj)/2 and the variance is σ2 = 1
12

∑

j gj(gj + 2)Nj . As shown by Eq. (B11a) of
Appendix B, one may also express the Gram-Charlier coefficients as a function of the cumulants.

A. Single-degeneracy case

We first consider here the case where only one degeneracy g is present. In Eq. (84), one chooses 〈Q〉 = gN/2 and σ
given by (66). Using the general relation between ck coefficients and cumulants (B11a) and the cumulant value (79)
one gets

c4 = − h2 + 1

20(h2 − 1)N
(88a)

c6 =
h6 − 1

105(h2 − 1)3N2
(88b)

c8 = − (h2 + 1)
[

12(h4 + 1)− 7(h4 − 1)N
]

5600(h2 − 1)3N3
(88c)

c10 =
12(h10 − 1)− 11(h4 − 1)(h6 − 1)N

23100(h2 − 1)5N4
(88d)

where we have again introduced h = g + 1. It is remarkable that ck coefficients with k as high as 10 keep a quite
tractable formulation. These formulas allow us to build a fast analytical approximation for S , either as a normal
distribution, or as a Gram-Charlier series.
Using the above relations (84,88) we have compared the exact distribution S (g;N ;Q) with Gram-Charlier ex-

pansions for several (g,N) pairs on the whole Q = 0 − g.N range of populations. Examples are given in Figs. 1
and 2 for g = 2 and g = 10 respectively. In each figure, cases N = 2, 5, and 10 have been studied. One observes
that even the normal distribution, i.e., formula (84) with all ck canceled, provides a reasonable approximation of the
S (g;N ;Q) value. Looking in more detail, in the wings of the distribution, the inclusion of at least the 2nd-order
correction c4He4(X) in the Gram-Charlier expansion significantly improves the quality of the approximation. As
mentioned above, the evaluation of such correction using the expression (88a) is straightforward. One may notice a
visible, though moderate, discrepancy in the case N = 2, whatever the g value. This may be easily understood by
computing directly the S (g;N = 2;Q) value. Using the recursion relations (12) and the initial value (72) one may
check that S (g;N ;Q) expressed versus Q are piecewise polynomials of degree N − 1, with a unique definition on
intervals of length g. Namely, one obtains

S (g; 2;Q) = g + 1− |Q− g| (89)

S (g; 3;Q) =











1
2 (Q+ 1)(Q+ 2) if 0 ≤ Q ≤ g
1
2 (g + 1)(g + 2)− (Q − g)(Q− 2g) if g ≤ Q ≤ 2g
1
2 (Q− 3g − 1)(Q − 3g − 2) if 2g ≤ Q ≤ 3g

. (90)
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FIG. 1. Comparison of the exact population distribution in N subshells of degeneracy g = 2 with Gram-Charlier expansions
at various orders. The Gram-Charlier expansion is plotted as a continuous function of the total population Q. In this figure,
“order p” means that moments up to k = 2p have been included in the expansion.

Obviously, it quite difficult to approximate the triangle-shaped function (89) with a normal distribution. The ap-
proximations at the various orders Gram-Charlier of S (2; 2;Q) are given in table II. It turns out that the maximum
discrepancy is about 10 %. For Q = 0, the discrepancy decreases with the expansion order, while for Q = 1, 2 the
first order is better than the next four orders. An optimum is reached at sixth order, and for higher orders the overall
agreement deteriorates, with some oscillations. Finally, above 18th order, we have checked that the Gram-Charlier
expansion clearly diverges. These considerations concern the convergence analysis of the Gram-Charlier expansion
more than the computational interest of this series, since for the lowest N values, as seen in the above mentioned
examples, simple piecewise polynomial expressions are available.

Q Exact Order 1 Order 2 Order 3 Order 4 Order 5 Order 6 Order 7 Order 8

0 1 0.694 0.824 0.852 0.855 0.904 0.991 1.070 1.114

1 2 2.137 2.200 2.277 2.264 2.155 2.002 1.861 1.769

2 3 3.109 2.818 2.660 2.679 2.818 3.003 3.174 3.294

TABLE II. Number of configurations as a function of the population Q for N = 2 subshells of degeneracy g = 2: exact values
and Gram-Charlier approximations. Order one is the normal distribution, order 2 includes the kurtosis contribution, etc.

As seen in figure 2 dealing with a greater g value, while the Gram-Charlier expansion at 2nd order (with the excess
kurtosis accounted for) is quite acceptable in most of the Q = 0 to gN range, discrepancies are clearly visible for
Q . (gN)1/2, Q & gN − (gN)1/2. For such population values, the number of configurations S is usually orders of
magnitude below its peak value (g+1)N/(2πσ2)1/2, however one may be interested in approximations uniformly valid
whatever Q. In this case it appears that the inclusion of more terms in the Gram-Charlier expansion improves its
accuracy in the wings. Though this behavior is clear on subfigure 2(c), we did not try to get a quantitative estimate
of the Gram-Charlier order which provides a uniform approximation for the S (g = 10;N = 10;Q) values.
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FIG. 2. Comparison of the exact population distribution in N subshells of degeneracy g = 10 with Gram-Charlier expansions
at various orders.

B. Multiple-degeneracy case

Using the general expression (B11a) of the Gram-Charlier coefficients, and the cumulant value (80), one easily gets
the first terms of the expansion

c4 = − C4

20C2
2

(91a)

c6 =
C6

105C3
2

(91b)

c8 =
7C2

4 − 12C8

5600C4
2

(91c)

c10 =
12C10 − 11C4C6

23100C5
2

(91d)

which generalize the Eqs. (88) in the multi-degeneracy case. Such a procedure has been used first to analyze the
population distribution in the case t = 2, g1 = 2, N1 = 2, g2 = 6, N2 = 2, labeled s[2]p[2] for short. The Gram-Charlier
analysis is presented in figure 3(a). We note that, even though the number of subshells is small (4), the Gram-Charlier
expansion with the first correction c4 (orange curve and triangles) provides a fair approximation of the exact number.
Moreover the Gram-Charlier formula, of statistical nature, would perform even better for more complex configurations
with a greater number of subshells.

As a second example the Gram-Charlier approximation for the more complex supershell s[3]p[2]d[1] (for instance
1s2s2p3s3p3d) is analyzed on figure 3(b). One checks that Gram-Charlier at second order (k = 4) is in fair agreement
with the exact data. The 3rd order (k = 6) improves again the agreement, with no significant gain at 4th order
(k = 8). The higher-order expansions k = 12, 16 bring an improved agreement with the exact value, especially for the
smallest and largest Q values.

As a rule one may check that the accuracy of the Gram-Charlier expansion globally increases with the order, though
some oscillations are noticed. As an example, in figure 4 we have plotted the difference between the Gram-Charlier
approximation (84) truncated at various orders and the exact number of configurations. In this particular case, a
good compromise between the quality of the expansion and the computational cost is reached for k = 10, i.e., with
five terms in the sum. As shown below, a more complete numerical analysis involving higher orders demonstrates
that the Gram-Charlier series is indeed divergent.
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FIG. 3. Comparison of the exact population distribution with Gram-Charlier expansions at various orders for the super-
shell s[2]p[2] (two subshells s and two subshells p, for instance 2s2p3s3p) (a), and for the supershell s[3]p[2]d[1] (for instance
1s2s2p3s3p3d) (b).

IX. ANALYSIS OF POPULATION DISTRIBUTION USING EDGEWORTH EXPANSION

It has been mentioned that some distributions get a better representation in terms of Edgeworth series rather than
of Gram-Charlier series [29]. Another interest of the Edgeworth expansion is that it is directly expressed in terms
of cumulants rather than of centred moments. The Edgeworth series is an expansion versus powers of the standard
deviation σ, defined as

E(Q) = G
exp(−x2/2)√

2πσ







1 +

∞
∑

s=1

σs
∑

{km}

Hes+2r(x)

s
∏

m=1

1

km!

(

Sm+2

(m+ 2)!

)km







(92a)

with Sn = κn/σ
2n−2, r = k1 + k2 + · · · ks (92b)

x being the reduced variable

x = (Q − 〈Q〉)/σ (92c)

and where the index {km} refer to all s-uple indices verifying

k1 + 2k2 + · · ·+ sks = s. (92d)

As for Gram-Charlier expansion, this series involves only even s orders. The sum over s is replaced by a finite sum
up to some strunc, which is chosen as discussed below.
In order to compare Edgeworth and Gram-Charlier expansions we have plotted in figure 5 the average deviation

∆app(strunc) =





Qmax
∑

Q=0

(Napp(Q; strunc)−Nexact(Q))2 /(Qmax + 1)





1/2

(93)

for the 1s2s2p3s3p3d supershell as a function of strunc. In the above formula Qmax is the maximum occupation number
of the supershell

∑

i giNi, 28 in the present case, Napp(Q; strunc) is the approximate number of configurations with
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FIG. 4. Difference between the number of configurations obtained with the Gram-Charlier expansion truncated at various
orders and the exact value for the supershell 1s2s2p3s3p3d. The k = 2 curve corresponds to the normal distribution, k = 4
is the Gram-Charlier series involving up to the He4 polynomial or second-order approximation, etc. Though exact values are
only defined for integer populations Q, lines are drawn as a visual guide.

occupation Q computed with Gram-Charlier (84) or Edgeworth (92a) truncated series. A truncation order strunc = 2
corresponds to the normal distribution, the truncation strunc = 4 corresponds to terms involving the Chebyshev-
Hermite polynomialHe4(X), etc. On this graph, it appears that both expansions provide an acceptable representation
of the number of configurations for the low values of strunc. Truncating the expansion at strunc = 10, i.e., keeping four
correction terms to the normal distribution, provides the best approximation in case of Edgeworth series. In this case,

the relative error
[

∑Qmax

Q=0 (Napp(Q; strunc)/Nexact(Q)− 1)2 /(Qmax + 1)
]1/2

≃ 0.4 for Edgeworth expansion, while the

absolute deviation plotted on figure 5 is 2.74. This apparently poor agreement is due to the large error in the Q = 0
approximate value : NEdgeworth(Q = 0; strunc = 10) ≃ −0.519 while Nexact(Q = 0) = 1. However large values around
Qmax/2 are better represented : indeed one has NEdgeworth(Q = 14; strunc = 10) ≃ 1221.79, Nexact(Q = 14) = 1217.
The general behavior is quite different for strunc above 10: while Gram-Charlier accuracy still improves with strunc,
the Edgeworth-expansion accuracy deteriorates rapidly. As seen on the graph, for very large values (strunc > 56), the
Gram-Charlier expansion also diverges rapidly. This behavior has been mentioned previously [29], but our conclusion
is that Gram-Charlier expansion provides here a better approximation than Edgeworth expansion. Our conclusion
is also at variance with the observation by de Kock et al [30] who claim that Edgeworth series strongly outperforms
Gram-Charlier series. In our opinion this difference comes from the fact that we are dealing here with a discrete

distribution, defined only for integer values, and that this distribution is not an analytical function of Q but a
piecewise polynomial.

As one may check, e.g., on the above mentioned expressions for the excess kurtosis, the departure from the normal
distribution decreases when the number Ns of subshells of a given degeneracy gs increases. This is illustrated by
figure 6 where we have plotted the standard deviation ∆app(strunc) as a function of the truncation index strunc for the
Gram-Charlier and Edgeworth distributions relative to s[5] — e.g., 1s2s3s4s5s — corresponding to g = 2, N = 5 and
to s[10] (g = 2, N = 10) supershells. For moderate values of the index strunc, the Edgeworth series is indeed a better
approximation than the Gram-Charlier series, and presents a conspicuous plateau at ∆Edgeworth ≃ 0.88 for N = 5
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FIG. 5. Standard mean deviation
[

∑Qmax

Q=0
(Napp(Q; strunc)−Nexact(Q))2 /(Qmax + 1)

]1/2

for the number of configurations Q

computed exactly or using expansions truncated at various orders strunc. Configurations are generated from the 1s2s2p3s3p3d
supershell and approximations are those obtained from Gram-Charlier and Edgeworth series. Only even strunc values are
plotted since odd-order terms in the expansions vanish.

and ∆Edgeworth ≃ 0.054 for N = 10. Then for strunc = 60 in the former case and strunc = 104 in the latter case, the
Edgeworth approximation begins to diverge strongly from the exact expression. It must be noted that the Edgeworth
expansion with 4 or 5 terms performs very well in both cases, since the plateau is then reached. Conversely, the
divergence of the Gram-Charlier series is observed for strunc > 82 and strunc > 116 for N = 5 and N = 10 respectively.

X. CONCLUSION

We found three explicit formulas for the number of atomic configurations. Although the best way to compute such
a quantity remains probably the double recurrence on the numbers of electrons and orbitals, the new expressions may
be of interest in order to get new relations for the number of atomic configurations, using the numerous properties,
identities and sum rules for binomial and multinomial coefficients. Using a two-variable generating function, we have
derived several recurrence relations, not published before up to our knowledge. Using the same generating function,
the moments of the distribution have received an analytical expression. It allowed us to provide explicit expressions
for moments up to the twelfth, though higher-order moments could be obtained too. The case of multiple value for
the subshell degeneracy has been addressed using the cumulant formalism. We have shown that the cumulants receive
a very simple expression whatever the order. This allowed us to obtain centred moments explicitly for k up to 12. A
Gram-Charlier analysis has shown that an expansion with two terms is in acceptable if not fair agreement with the
exact number of configurations, though the series is not convergent. We have found that the Edgeworth expansion
provides an equivalent accuracy if few terms are kept, though it diverges much more rapidly than the Gram-Charlier
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FIG. 6. Comparison of the exact number of configurations with the Gram-Charlier and Edgeworth expansions at various orders
for the supershell s[5] (e.g., 1s2s3s4s5s, subfigure 6(a)) and supershell s[10] (subfigure 6(b)). See figure 5 for details.

series.

Appendix A: Numbering the partitions defined by subset populations

The purpose of this appendix is to enumerate the partitions of n distinct objects knowing that there are n1 subsets
of population 1, n2 subsets of population 2, . . .nk subsets of population k. In the main text one has n = k though
this constraint is not required for the present derivation. Conversely one must have

n = n1 + 2n2 + · · · knk. (A1)

The generation of these partitions may be done in k + 1 steps. In the first step, one selects the n1 elements in
single-element subsets, the 2n2 elements in twofold subsets, up to the knk elements in the subsets of population nk.
The number of possibilities at this step is

p0 =

(

n

n1

)(

n− n1

2n2

)

. . .

(

n− n1 · · · − (k − 2)nk−2

(k − 1)nk−1

)(

n− n1 · · · − (k − 1)nk−1

knk

)

=
n!

∏k
j=1(jnj)!

. (A2)

At the next k steps one must choose, for any j from 1 to k, how to partition jnj objects in nj subsets. This operation
is performed by first selecting j objects among jnj , then j more objects among j(nj − 1), i.e., repeating the selection
process nj − 1 times. When this multiple selection is completed, one gets nj ! identical solutions, since the order of
the subsets is not significant. Therefore the number of possibilities at step j is

pj =
1

nj !

(

jnj

j

)(

(j − 1)nj

j

)

· · ·
(

2j

j

)(

j

j

)

=
1

nj !

(jnj)!

(j!)nj
. (A3)
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Multiplying p0 given by Eq. (A2) by the product of pj ’s provided by Eq. (A3) one gets the desired number of
partitions

P(n;n1, n2 · · · , nk) =
n!

∏k
j=1 nj !(j!)nj

. (A4)

Appendix B: Coefficients of the Gram-Charlier expansion as a function of the cumulants

The generating function of the cumulants is defined as

K (t) =

∞
∑

n=1

κn
tn

n!
= log (〈exp(tQ)〉) . (B1)

In the case of the Gram-Charlier expansion the integral 〈exp(tQ)〉 is easily obtained as

eK (t) = 〈exp(tQ)〉 =
∫

dQ
exp(tQ−Q2/2σ2)√

2πσ2

[

1 +
∑

n>2

cnHen(Q/σ)

]

. (B2)

Using the Rodrigues formula for Hen(X) and repeated integration by parts one easily gets

∫ +∞

−∞

dQ etQ−X2/2σ2

Hen(Q/σ) = (σt)n exp(σ2t2/2) (B3)

from which one has the average over Gram-Charlier distribution

〈exp(tQ)〉 =
∫ +∞

−∞

dQ etQ−X2/2σ2

[

1 +
∑

n>2

cnHen(Q/σ)

]

= eσ
2t2/2

[

1 +
∑

n>2

(σt)ncn

]

. (B4)

The exponential of the generating function of cumulants is, for any centred distribution (i.e., such as κ1 = 0),

eK (t) = exp

(

∞
∑

n=1

κn
tn

n!

)

= eκ2t
2/2 exp

(

∞
∑

n=3

κn
tn

n!

)

. (B5)

Identifying this expression with the average (B4), one writes

1 +
∑

n≥3

(σt)ncn = exp

(

∞
∑

n=3

κn
tn

n!

)

= exp

(

∞
∑

n=1

xn
tn

n!

)

=

∞
∑

m=0

1

m!

(

∞
∑

n=1

xn
tn

n!

)m

(B6a)

where we have defined

x1 = 0, x2 = 0, xn = κn if n ≥ 3. (B6b)

The mth power in the sum (B6a) may be computed with the identity (see section 24.1.2 in Ref. [27])

(

∞
∑

n=1

xn
tn

n!

)m

= m!

∞
∑

n=m

tn

n!

∑

a1,a2,···an

P(n; a1, a2 · · · , an) xa1

1 xa2

2 · · ·xan
n (B7a)

with the above definition (A4) of the partition number P, and where integer indices a1, a2, · · · an are constrained by

a1 + a2 + · · ·+ an = m (B7b)

a1 + 2a2 + · · ·+ nan = n. (B7c)

Identifying terms in tn in Eqs. (B6a, B7a), one has

σncn =
1

n!

∑

m≤n

∑

a1,a2,···an

P(n; a1, a2 · · · , an) xa1

1 xa2

2 · · ·xan
n (B8)
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where the sum on ai follows the constraints (B7). One will note that, since the ai are nonnegative, one has

m = a1 + a2 + · · ·+ an ≤ a1 + 2a2 + · · ·+ nan = n, (B9)

therefore in the multiple sum (B8) one may ignore the sum over m, since this index is only intended to collect terms
in the sum. One has then

σncn =
1

n!

∑

a1,a2,···an

P(n; a1, a2 · · · , an) xa1

1 xa2

2 · · ·xan
n (B10)

where only the second constraint (B7c) has been kept. Accounting for xi definitions (B6b), one notes that only terms
with a1 = 0, a2 = 0 contribute and one gets the Gram-Charlier-series coefficient

cn =
1

σnn!

∑

a3,···an

3a3+···+nan=n

P(n; 0, 0, a3 · · · , an) κa3

3 · · ·κan
n (B11a)

=
∑

a3,···an

3a3+···+nan=n

1

a3!

( κ3

3!σ3

)a3

· · · 1

an!

( κn

n!σn

)an

. (B11b)
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