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Radiative heat transfer (RHT) and radiative thermal energy (RTE) for two-dimensional (2D) nanoparticle en-
sembles are investigated in the framework of many-body radiative heat transfer theory. We consider nanoparticles
made of different materials: metals (Ag), polar dielectrics (SiC), or insulator-metallic phase-change materials
(VO2). We start by investigating the RHT between two parallel 2D finite-size square-lattice nanoparticle
ensembles, with particular attention to many-body interactions (MBI) effects. We fix the particle radius (a)
as the smallest length scale, and we describe the electromagnetic scattering from particles within the dipole
approximation. Depending on the minimal distance between the in-plane particles (the lattice spacing p for
periodic systems), on the separation d between the two lattice and on the thermal wavelength λT = h̄c/kBT ,
we systematically analyze the different physical regimes characterizing the RHT. Four regimes are identified,
rarefied regime, dense regime, non-MBI regime, and MBI regime, respectively. When p � λT , a multiple
scattering of the electromagnetic field inside the systems gives rise to a MBI regime. MBI effects manifest
themselves in different ways, depending on the separation d: (a) If d > λT , due to the pure intra-ensemble MBI
inside each 2D ensemble, the total heat conductance is less affected, and the thermal conductance spectrum
manifests a single peak which is nonetheless shifted with respect to the one typical of two isolated nanoparticles.
(b) If d < λT , there is a strong simultaneous intra-ensemble and inter-ensemble MBI. In this regime there is a
direct quantitative effect on the heat conductance, in addition to a qualitative effect on the thermal conductance
spectrum, which now manifests a new second peak. As for the RTE, to correctly describe the radiation emitted
by metallic nanoparticles, we derive an expression of the Poynting vector including also magnetic contribution,
in addition to the electric one. By analyzing both periodic and nonperiodic ensembles, we show that the RTE
emitted by a single 2D nanoparticle ensemble is sensitive to the particle distribution. As instance, we see that
the RTE emitted by 2D concentric-ring-configuration ensemble has an inhibition feature near the center of the
ensemble.

DOI: 10.1103/PhysRevB.102.024203

I. INTRODUCTION

Near-field radiative heat transfer (NFRHT) has recently
attracted much attention for both fundamental and applicative
reasons. When the separation distance between two objects
is comparable to or less than the thermal wavelength λT =
h̄c/kBT , near-field (evanescent waves) effect plays a dominant
role in determining the net radiative heat exchange. The fluc-
tuational electrodynamics theory developed by Rytov et al.
[1] is the basic theoretical framework to analyze NFRHT.
NFRHT between two planar surfaces [2–8], two isolated
nanoparticles [9–11], two spheres [12], one dipole and surface
[13], two nanoparticles above a substrate [14–17], and be-
tween two nanoparticles separated by a multilayer plate [18]
were investigated theoretically recently in such framework.
The theory has been set in a general framework, and it is
now possible to calculate the NFRHT between two or many
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bodies of arbitrary shape and dielectric permittivity using a
general scattering matrix method [19,20], which was then
applied to the many-body system with planar geometry [21].
On the experimental side, the radiative heat flux between two
objects (e.g., two plates [22–26], one plate, and one sphere
or tip [27–29]) has been experimentally proven to be several
orders of magnitude larger than the Planck’s black-body limit
due to evanescent wave tunneling.

In this paper we consider the radiative heat transfer
(RHT) between ensembles of nanoparticles. NFRHT in dense
nanoparticle systems is difficult to determine due to the com-
plex many-body interaction [30,31]. In a dense nanoparticle
system, nanoparticles lie in the near field of each other, which
leads to the significant multiple scattering of the thermally
excited evanescent wave, hence, the many-body interaction
(MBI) will play a key role, and the two-body framework
cannot be directly applied. To analyze NFRHT in systems
composed of many nanoparticles, many theoretical frame-
works have been developed, e.g., the many-body radiative
heat transfer theory [32,33], scattering matrix method [19,20],
trace formulas method [34,35], and the quasianalytic solution
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[36] based on the framework proposed to investigate NFRHT
between two spheres [12].

For NFRHT in the three-dimensional (3D) nanoparticle
system, some important progress has been reported recently.
The MBI can not only enhance, but also inhibit, and even have
nearly no effect on the radiative heat flux between dielectric
many-particle systems [32,37], metallic many-nanoparticle
clusters [38] and core-shell nanoparticle assemblies [39], as
well as the one-dimensional (1D) nanoparticle chains [40]. By
investigating NFRHT in the dense particle system from the
point of view of continuum medium, the heat superdiffusion
was found in the plasmonic nanostructure networks due to
NFRHT based on the fractional diffusion theory [30]. Then,
a similar heat superdiffusion was found in the periodically
arranged planar SiC plates [41]. Recently, a new method
was developed to calculate the diffusive radiative thermal
conductivity of arbitrary collections of nanoparticles [42],
which is an important progress relative to the kinetic method
used to calculate the effective radiative thermal conductivity
of 1D nanoparticle chain [43–45]. Also, the radiative thermal
energy (RTE) emitted in the near field by a set of interacting
nanoparticles has been the object of investigations, and has
been recently predicted to focus the field in spots that are
much smaller than those obtained with a single thermal source
[46].

For NFRHT in the two-dimensional (2D) nanoparticle
ensembles, some interesting phenomena have been reported.
On the one hand, the inter-ensemble NFRHT between the 2D
nanoparticle ensembles has been investigated in the extreme
near field. The NFRHT between two gold nanoparticle array
layers with 1-nm separation layer edge to layer edge was
reported [47], where the multipole contribution to NFRHT
should be considered. An interesting oscillatorylike feature of
the NFRHT with translation of one array along its extending
direction was observed. On the other hand, the investigation
on intra-ensemble NFRHT in the 2D fractal nanoparticle
ensembles also have been reported and the spatial distribution
of nanoparticles in a 2D nanoparticle ensemble was demon-
strated to play a key role in determining the radiative heat
flux [48].

As for the RHT and radiative thermal energy for the 2D
nanoparticle ensembles, there are several important aspects
still needing investigation. Indeed, the way in which the MBI
manifests itself in the total thermal conductance and in the
thermal conductance spectrum has not been investigated. A
study of the combined effects coming from different 2D
geometrical arrangements (periodic, nonperiodic, concentric
rings) and dielectric properties (metals, polar dielectrics,
metal-insulator phase-change materials) of the nanoparticle
ensembles is missing. We address these points in this pa-
per, where the RHT between 2D nanoparticle ensembles is
investigated by means of many-body radiative heat transfer
theory [32], further extended to metallic system in the coupled
electric and magnetic dipole (CEMD) approach [33]. We also
study, for these systems, the RTE.

This work is organized as follows. In Sec. II, the CEMD
approach is presented in brief, together with the expression for
the RHT and thermal conductance. Concerning the RTE, the
expression of the Poynting vector is derived for the general
case where also magnetic dipoles are present, in addition to

FIG. 1. Schematic of the 2D finite-size square-lattice nanopar-
ticle ensembles. RHT between the upper nanoparticle ensemble
(U, at temperature T ) and the lower nanoparticle ensemble (L, at
temperature T + δT ) is investigated. Nanoparticle radius is a. The
separation distance between the ensemble L and U center to center
is d . dt is the translation distance of the ensemble U relative to the
ensemble L. Periodicity of the periodically distributed nanoparticle
ensemble is p. N is the number of nanoparticles in each ensemble.

electric ones. This extension of the existing Poynting vector
expression allows to describe the thermal emission from both
dielectric and metallic nanoparticles. In addition, the physical
model of the 2D nanoparticle ensemble and optical properties
of the materials used in this work are also given. In Sec. III,
asymptotic regimes of RHT between 2D finite-size square-
lattice nanoparticle ensembles are summarized, as well as the
simplified formulas for the thermal conductance in different
regimes. In Sec. IV, RHT between 2D periodic nanoparticle
ensembles are analyzed, with particular attention devoted to
MBI effects. The effects of metal-insulator phase change of
the nanoparticles and of the lateral translation of the two
parallel 2D ensembles are also analyzed. In Sec. V, RTE
emitted by the single 2D nanoparticle ensemble is analyzed, as
a function of the particle distribution (e.g., periodic, random,
and concentric-ring configurations) and dielectric properties.
A study of the relative weight of the magnetic dipole and
electric dipole contributions to RTE is also conducted.

II. THEORETICAL MODELS

In this section, we describe the physical systems, the the-
oretical models for the RHT and RTE, and finally the optical
properties of the materials we use.

A. Physical systems: 2D nanoparticle ensembles

In this paper we will investigate RHT between 2D nanopar-
ticle ensembles by studying radiative thermal conductance
between two parallel 2D finite-size square-lattice nanoparticle
ensembles (Sec. IV) and RTE emitted by a single 2D periodic
and nonperiodic nanoparticle ensemble (Sec. V). We will
hence introduce two physical systems, respectively.

Concerning the RHT, we will focus on parallel 2D finite-
size square-lattice nanoparticle ensembles, as shown in Fig. 1.

The radiative thermal conductance between the lower en-
semble (L, at temperature T + δT ) and upper ensemble (U, at
temperature T ) is calculated with various separation distance
d center to center. In general, each ensemble is composed of

024203-2



RADIATIVE HEAT TRANSFER AND RADIATIVE THERMAL … PHYSICAL REVIEW B 102, 024203 (2020)

(a) Periodically distributed
particle ensemble

(b) Randomly distributed particle
ensemble

(c) Concentric ring configuration particle
ensemble

FIG. 2. Three kinds of nanoparticle distribution: (a) periodi-
cally distributed particle ensemble; (b) randomly distributed particle
ensemble; and (c) concentric-ring-configuration particle ensemble.
N = 400, a = 20 nm.

N = 400 nanoparticles. The nanoparticle radius is a. When
needed, we will evaluate the energy density and Poynting
vector along the yellow line shown in the Fig. 1. When
investigating the effect of translation of particle ensemble on
RHT, the lower ensemble is fixed and the upper ensemble is
translated along the translation direction. The origin of the
Cartesian coordinate system is fixed at the center of an edge of
the lower ensemble and the particle ensemble is periodically
distributed 20 × 20 nanoparticles ensemble. The periodicity
p is the separation distance between two neighboring particles
center to center in the line parallel to the edge of the ensemble.

When we discuss the RTE emitted by the single nanopar-
ticle ensemble (Sec. V), we will refer to the physical systems
of Fig. 2, where three different kinds of 2D nanoparticle dis-
tributions are considered: (a) periodic ensemble, (b) random
ensemble, and (c) concentric-ring configuration. The origin
of the Cartesian coordinate system is set at the center of the
ensemble. We will consider N = 400 nanoparticles of radius
a = 20 nm.

B. Radiative heat transfer and thermal conductance
between nanoparticle ensembles

Let us start considering two particles. In the framework of
the CEMD approach, the power absorbed by the ith particle
and radiated by jth particle is written in the Landauer formal-
ism [32,33,38]

ϕ j→i = 3
∫ +∞

0

dω

2π
�(ω, Tj )Ti, j (ω), (1)

where ω is electromagnetic field angular frequency, �(ω, Tj )
is the mean energy of the harmonic Planck’s oscillator, and
Ti, j (ω) is the transmission coefficient between the jth and ith
particles, given by [33,38]
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Here, parameters χE = αE − ik3

6π
|αE |2 and χH = αH −

ik3

6π
|αH |2 are introduced [10], αE and αH are electric and

magnetic dipole polarizabilities, k is the wave vector in
vacuum, Gντ

i j (ν, τ = E or M) is the Green’s function for the
many-particle system considering the many-body interaction,
which is the solution of Eq. (A5) in the Appendix. The net
power exchanged between these two nanoparticles (radiative
heat flux) is

ϕ j↔i = ϕ j→i − ϕi→ j

= 3
∫ +∞

0

dω

2π
[�(ω, Tj ) − �(ω, Ti )]Ti, j (ω), (3)

which allows to define the thermal conductance (G) between
the particle i and j as [37,38]

Gi j = lim
δT →0

ϕ j↔i

Tj − Ti
, (4)

where δT = Tj − Ti is the temperature difference between the
two particles. Let us now consider finite-size square-lattice
nanoparticle ensembles L and U, as shown in Fig. 1. We
can define the radiative heat flux between the two particle
ensembles as

ϕ =
∑
i∈U

∑
j∈L

ϕ j↔i, (5)

where nanoparticle i and j belong to the upper nanoparti-
cle ensemble (U) and the lower nanoparticle ensemble (L),
respectively. The total thermal conductance (G) between the
ensemble U and ensemble L with a separation is a function
of many parameters (e.g., temperature T , separation d , and
lattice spacing p, etc.), which is defined as follows:

G(p, d ) = lim
δT →0

ϕ

δT
=

∑
i∈U

∑
j∈L

Gi j . (6)

The total thermal conductance G(p, d ) between the two en-
sembles is the sum of the thermal conductances Gi j of all
possible nanoparticle pairs, where one nanoparticle is from
the ensemble L and the other one is from the ensemble
U. The total thermal conductance can also be expressed as
the frequency integral of the spectral thermal conductance
Gω(p, d ): G(p, d ) = ∫ +∞

0 Gω(p, d ) dω.

C. Radiative thermal energy emitted by the
single nanoparticle ensemble

The radiative thermal energy at position r emitted by the
particle ensemble can be evaluated by the Poynting vector,
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which is defined as follows [46,49]:

〈S(r)〉 = 2
∫ +∞

0
〈S(r, ω)〉 dω

2π
, (7)

where the spectral Poynting vector 〈S(r, ω)〉 yields

〈S(r, ω)〉 = Re
〈
E(r, ω) × H∗(r, ω)

〉
, (8)

where electric and magnetic field radiated by the fluctuating
electric dipole (p f ) and magnetic dipole (m f ) yield

E(r, ω) = μ0ω
2

N∑
i=1

GEE (r, ri )p
f
i + μ0ωk

N∑
i=1

GEM (r, ri )m
f
i ,

(9)

H(r, ω) = kω

N∑
i=1

GME (r, ri )p
f
i + k2

N∑
i=1

GMM (r, ri )m
f
i ,

(10)

where μ0 is the vacuum permeability, N is the number of
particles. Gντ (r, ri ) (ν, τ = E or M) is the Green’s function
connecting the field point r and the source point ri in the
particle system considering MBI, which is the solution of
Eq. (A9) with the help of Eqs. (A8) and (A10) in the Ap-
pendix. Substituting Eqs. (9) and (10) into Eq. (8), the spectral
Poynting vector can be rearranged as

〈S(r, ω)〉 = Re〈E(r, ω) × H∗(r, ω)〉
= Re{〈x(EyH∗

z − EzH
∗
y ) + y(EzH

∗
x − ExH∗

z )

+ z(ExH∗
y − EyH∗

x )〉}

=
N∑

i=1

3∑
n=1

3∑
m=1

Re
{
μ0ω

3k
[
x
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GEE

yn GME∗
zm −GEE

zn GME∗
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)
+ y

(
GEE

zn GME∗
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xn GME∗
zm

)
+ z

(
GEE

xn GME∗
ym − GEE

yn GME∗
xm

)]〈
pf

i,n pf ∗
i,m

〉
+ μ0ωk3

[
x
(
GEM

yn GMM∗
zm − GEM

zn GMM∗
ym

)
+ y

(
GEM

zn GMM∗
xm − GEM

xn GMM∗
zm

)
+ z

(
GEM

xn GMM∗
ym −GEM

yn GMM∗
xm

)]〈
m f

i,nm f ∗
i,m

〉}
, (11)

where subscripts m and n are polarization direction index,
x, y, and z are the unit vectors of x, y, and z axes in the
given Cartesian coordinate system. Gντ

μ1μ2
[μ1 = x, y, z; μ2 =

(m or n) = 1, 2, 3 and ν, τ = E , M] is the element of the
3 × 3 Green’s function Gντ (r, ri ) (ν, τ = E or M), which is
the solution of Eq. (A9) with the help of Eqs. (A8) and (A10)
in the Appendix. The fluctuation dissipation theorem yields
[32,33,38] 〈

pf
i,n pf ∗

i,m

〉 = 2
ε0

ω
Im(χE )�(ω, T )δnm, (12)

〈
m f

i,nm f ∗
i,m

〉 = 2

μ0ω
Im(χH )�(ω, T )δnm. (13)

Finally, the spectral Poynting vector of Eq. (11) can be rewrit-
ten as follows:

〈S(r, ω)〉 = 2
N∑

i=1

Re(k3 S�(ω, T (ri ))), (14)

where S is defined as follows:

S =
3∑

n=m=1

[
x
(
GEE

yn GME∗
zm − GEE

zn GME∗
ym

)
+ y

(
GEE

zn GME∗
xm − GEE

xn GME∗
zm

)
+ z

(
GEE

xn GME∗
ym − GEE

yn GME∗
xm

)]
Im(χE )

+
3∑

n=m=1

[
x
(
GEM
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zm − GEM

zn GMM∗
ym

)
+ y

(
GEM

zn GMM∗
xm − GEM

xn GMM∗
zm

)
+ z

(
GEM

xn GMM∗
ym − GEM

yn GMM∗
xm

)]
Im(χH ). (15)

The Poynting vector emitted by the fluctuating electric and
magnetic dipoles can be obtained by Eqs. (14) and (15), which
is an extension of the recent work [46] to take the magnetic
dipole contribution into consideration and is applicable for not
only dielectric, but also metallic nanoparticle ensembles.

D. Dielectric function and polarizability of nanoparticle

Three different materials are used in this work, metal-
lic Ag, dielectric SiC, and phase-change VO2, respectively.
The dielectric functions of Ag and SiC are described by
the Drude model ε(ω) = 1 − ω2

p/(ω2 + iγω) with parame-
ters ωp = 1.37 × 1016 rad s−1 and γ = 2.732 × 1013 rad s−1

[50] and the Drude-Lorentz model ε(ω) = ε∞(ω2 − ω2
l +

iγω)/(ω2 − ω2
t + iγω) with parameters ε∞ = 6.7, ωl =

1.827 × 1014 rad s−1, ωt = 1.495 × 1014 rad s−1, and γ =
0.9 × 1012 rad s−1 [51], respectively. The VO2 is a kind of
phase-change material, which undergoes an insulator-metal
transition around 341 K (phase transition temperature). Below
341 K, VO2 is a uniaxial anisotropic insulator, of which the
dielectric function can be described by a tensor as follows:⎛

⎝ε‖ 0 0
0 ε⊥ 0
0 0 ε⊥

⎞
⎠, (16)

where ε⊥ and ε‖ are ordinary and extraordinary dielectric
function component relative to the optic axis of uniaxial
insulating VO2, respectively. Both ordinary and extraordinary
dielectric function can be described by the Lorentz model as
follows:

ε(ω) = ε∞ +
NL∑

k=1

Skω
2
k

ω2
k − iγkω − ω2

, (17)

where Sk , ωk , and γk are phonon strength, phonon frequency,
and damping coefficient of the kth phonon mode. NL is the
number of phonon modes. All the necessary parameters for
both ε⊥ and ε‖ can be found in the Ref. [52]. Above 341 K,
VO2 is an isotropic metal, of which the dielectric function can
be described by a Drude model as follows [52]:

ε(ω) = ε∞
ω2

p

ω2 − iωγ
, (18)

where ε∞ = 9, ωp = 1.51 × 1015 rad s−1, and γ = 1.88 ×
1015 rad s−1.
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TABLE I. Asymptotic regimes of RHT between 2D finite-size square-lattice nanoparticle ensembles.

d � p d ≈ p d  p
Geometric conditions
Thermal conditions λT � d d � λT � p p � λT λT � {d, p} {d, p} � λT λT � p p � λT � d d � λT

Many-body Intra-Ensemble no no yes no yes no yes yes
interaction (MBI) Inter-Ensemble no no yes no yes no no yes
Near-field Intra-Ensemble no no yes no yes no yes yes
effect (NFE) Inter-Ensemble no yes yes no yes no no yes
Regime; formulas for G(p, d ) Rarefied regime: Eq. (22) Eq. (24) Eq. (6) Dense regime: Eq. (23) Eq. (6)

For a nanoparticle composed of an isotropic material (e.g.,
metallic Ag and dielectric SiC), the electric and magnetic
dipole polarizabilities are given as follows [9]:

αE = 4πa3 ε − 1

ε + 2
, (19)

where ε is the relative permittivity and

αH = 2π

15
a3

(
ωa

c

)2

(ε − 1). (20)

The polarizability of Ag and SiC nanoparticle can be found in
our previous work [33,38,40].

However, for the anisotropic insulator-phase VO2 nanopar-
ticle below the transition temperature, a well-established so-
lution is applied to the polarizability of anisotropic spherical
nanoparticle in two steps: first calculate polarizability for
nanoparticle using ε⊥ and ε‖ separately, and then add up the
results according to the 1 \ 3 − 2 \ 3 rule [53]:

αν = 2
3αν (ε⊥) + 1

3αν (ε‖), (21)

where ν = E or H . The electric and magnetic polarizabilities
for both insulator-phase and metallic-phase VO2 nanoparticles
are shown in Fig. 3. In order to compare the resonance
frequency to the characteristic thermal frequency, the spectral
radiance of the blackbody at room temperature is also added in
Fig. 3(b) for reference. There is a mismatch between the char-
acteristic thermal frequency and the polarizability resonance
frequency of metallic VO2 nanoparticle. A similar mismatch
between characteristic thermal frequency and polarizability
resonance frequency of Ag nanoparticle as that of metallic
VO2 nanoparticle can also be observed [40].

III. RADIATIVE HEAT TRANSFER BETWEEN 2D
FINITE-SIZE PERIODIC SQUARE-LATTICE

NANOPARTICLE ENSEMBLES: ASYMPTOTIC REGIMES

In this section we discuss the main asymptotic regimes
of the RHT between 2D periodic finite-size square-lattice
nanoparticle ensembles. In general, we have four length scales
in this problem. Three of them are geometric length scales: the
lattice spacing p, the separation d between the 2D systems,
and the nanoparticle radius a. The fourth is a thermal length
scale: the characteristic thermal wavelength λT . In this work,
we keep fixed the value of a = 20 nm, and set all the three
other length scales much larger than a. We will see (Sec. IV B)
that a fifth additional length scale, related to emergence of
multiple scattering of the electromagnetic between the two
nanoparticles of a pair, will naturally emerge in this problem.

According to combinations of the geometric length scales
{p, d}, three kinds of 2D finite-size square-lattice nanoparticle
ensembles can be clarified, which are shown in Fig. 4.

The MBI effects and near-field effects (NFE) on RHT are
significantly dependent on the combination of {p, d, λT }, and
different asymptotic regimes can be identified, as listed in the

(a) Insulator VO2

(b) metallic VO2

FIG. 3. The electric and magnetic polarizabilities for both the
(a) insulator-phase VO2 nanoparticle and (b) metallic-phase VO2

nanoparticle. Nanoparticle radius a is 20 nm. For insulator VO2

particle, the “1 \ 3 − 2 \ 3” rule is applied to calculate the polariz-
ability with the help of ε‖ and ε⊥ [53]. The spectral radiance of the
blackbody at room temperature is also added for reference.
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FIG. 4. Depending on the relative values of {p, d}, three kinds of
2D finite-size square-lattice nanoparticle ensembles are possible: (a)
d � p, (b) d ≈ p, and (c) d  p.

Table I and qualitatively shown in the regime map Fig. 5. Four
asymptotic regimes are introduced, MBI regime, non-MBI
regime, rarefied regime, and dense regime, respectively. The
terms intra-ensemble and inter-ensemble mean MBI effect
and near-field effect inside the single nanoparticle ensemble
and between the two nanoparticle ensembles, respectively. In
the table, “yes” and “no” mean strong and negligible MBI
effect and NFE, respectively.

As can be seen from the Table I, the conditions for the MBI
effects are more strict than than for the near-field effects. Once
the geometric lengths for the 2D nanoparticle ensembles have
been determined, we can easily know from Table I if there
are MBI effects and NFE or not. There are no MBI effects
and NFE on RHT under the thermal conditions listed in the
columns 1, 4, and 6. According to the thermal conditions listed
in the rest columns 2, 3, 5, 7, and 8, we can determine that
near-field effects exist. While MBI effects only exist under
the thermal conditions listed in the columns 3, 5, 7, and 8. For
the condition in column 2, the inter-ensemble NFE exists and
none of MBI effects exist. Physically, the MBI effect is one
kind of near-field effect. MBI effects not always exist where
the near-field effects exist.

It is worthwhile to mention that Eq. (6) is the most general
formula for the thermal conductance suitable for all condi-
tions. Under certain conditions, we can efficiently simplify the
calculation of the thermal conductance between nanoparticle
ensembles by using the following simplified equations [i.e.,
(22), (23)] and Eqs. (24), which have been summarized in
Table I for convenience.

A. Rarefied regime

In this regime, each ensemble behaves like a gas body
when considering heat exchange between the 2D nanoparticle
ensembles. RHT between the two 2D nanoparticle ensembles
in this regime is dominant by the nanoparticles in proximity.
The general formula (6) for the thermal conductance G(p, d )

FIG. 5. Asymptotic regime map of RHT between 2D finite-size
square-lattice nanoparticle ensembles. Combined with Table I, four
asymptotic regimes are identified, MBI regime, non-MBI regime,
rarefied regime, and dense regime, respectively.

between the nanoparticle ensembles in this regime can be
simplified as follows:

G(p, d ) = N × G2np(d ), (22)

where G(p, d ) is the radiative thermal conductance between
the two nanoparticle ensembles with the separation d and
lattice spacing p, N is the number of nanoparticles in each
ensemble, G2np(d ) is the thermal conductance between two
isolated nanoparticles with the separation d , which can be cal-
culated easily by Eq. (4). The thermal conductance between
ensembles composed of a lot of nanoparticles can be easily
obtained by the simplified equation (22) rather than by the
general formula (6).

B. Dense regime

In this regime, each ensemble behaves like a solid-dense
body when considering heat exchange between two 2D
nanoparticle ensembles. Nanoparticles in each ensemble are
indistinguishable and have nearly the same contribution to
thermal radiation with each other. In this regime, the general
formula (6) for the thermal conductance G(p, d ) between two
nanoparticle ensembles can be simplified as follows:

G(p, d ) = N2 × G2np(d ). (23)

As compared to Eq. (22) used for the rarefied regime, in the
dense regime thermal conductance between two finite-size
square-lattice nanoparticle ensembles in Eq. (23) is N2 ×
G2np(d ) rather than N × G2np(d ). The thermal conductance
between ensembles composed of a lot of nanoparticles can be
easily obtained by the simplified equation (23) of the general
formula (6).
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C. Non-MBI regime

In this regime, many-body interaction effects on RHT are
negligible. Hence, the thermal conductance G(p, d ) between
two ensembles is the simple pairwise sum of the thermal
conductance for all possible N2 pairs and, being purely ad-
ditive, it neglects all possible MBI effects. Indeed, G(p, d ) is
defined as

G(p, d ) =
N2∑

pairwise

Gpair, (24)

where Gpair is the thermal conductance between the two parti-
cles of an isolated pair (one particle in L and the another in U)
calculated using Eq. (4) and assuming the pair as completely
isolated (i.e., all the other 2N − 2 particles are absent).

D. MBI regime

In this regime, due to the complex many-body interaction,
the simplified equation (24) of the general formula (6) for the
thermal conductance in the non-MBI regime cannot be used
anymore. The thermal conductance must be calculated using
Eq. (6) with the help of the exact transmission coefficient of
Eq. (2) since no approximation is possible.

Until now, we have clearly identified four asymp-
totic regimes of RHT between 2D finite-size square-lattice
nanoparticle ensembles in total: rarefied regime, dense regime,
non-MBI regime, and MBI regime, respectively. As can been
seen in Fig. 5 and Table I, the MBI regime covers a part of the
dense regime and the rest part of the dense regime is covered
by the non-MBI regime. Figure 5 combined with Table I can
be easily applied to determine the regime of RHT between 2D
finite-size square-lattice nanoparticle ensembles.

In columns 1, 2, 4, and 6, there is no MBI effect corre-
sponding to the non-MBI regime and the thermal conduc-
tance can be calculated directly by the simplified equation
(24) rather than the general formula (6) treating all possible
nanoparticle pairs as they were isolated in vacuum without any
influence by other nanoparticles. The simple equation (22) can
be easily applied to obtain the thermal conductance under such
conditions listed in the columns 1, 2, and 3 corresponding to
the rarefied regime. Columns 1 and 2 belong to both rarefield
regime and non-MBI regime, therefore, simplification of the
calculation for the thermal conductance can go further by
using Eq. (22) as compared to that by Eq. (24) simplified from
the general formula (6). Condition in the column 6 belongs to
both non-MBI regime and dense regime, where the efficient
Eq. (23) can be applied to simplify the calculation of the
thermal conductance as compared to the simplified equation
(24) for the non-MBI regime.

It is also worthwhile to mention that there are some other
length scales that might influence the thermal behavior.

(a) The size of the ensemble. When the size of the en-
semble is large enough, the boundary effect on radiative heat
transfer is negligible and finite ensemble of such large size
starts mimic the infinite ensemble. The effect of the size
of ensembles will be discussed at the end of the following
Sec. IV A in brief.

(b) The resonance wavelength of the nanoparticles.

(c) The length at which the contribution of the electric
dipoles and magnetic dipoles to the radiative heat transfer is
comparable. Since the inhibition and enhancement of the elec-
tric dipole contribution and magnetic contribution to NFRHT
might occur at different length scales. The total thermal con-
ductance is the result of the competition between the electric
and magnetic dipoles.

IV. RADIATIVE HEAT TRANSFER BETWEEN 2D
FINITE-SIZE SQUARE-LATTICE NANOPARTICLE

ENSEMBLES: NUMERICAL RESULTS

In this section, we numerically investigate the RHT be-
tween 2D finite-size square-lattice nanoparticle ensembles.
Several materials have been considered, e.g., metallic Ag,
dielectric SiC, and phase-change material VO2. Regimes of
RHT between 2D finite-size square-lattice nanoparticle en-
sembles under given conditions are identified numerically.
Effect of the many-body interaction on the RHT between 2D
finite-size square-lattice nanoparticle ensembles is analyzed
as focus. In addition, effects of the phase change of material
and lateral translation of the two parallel 2D ensembles on
RHT are analyzed. Particle radius (a) is 20 nm. The separation
distance between any two particles center to center in the
particle ensemble is larger than 3a, which makes the dipole
approximation valid [32,33,46].

A. Regime of RHT between 2D finite-size
square-lattice nanoparticle ensembles

First of all, in order to investigate the regime of RHT
between 2D finite-size square-lattice nanoparticle ensembles,
we give a general description of the dependence of the scaled
thermal conductance [G(p, d )/N] on the parameters p and
d , as shown in Fig. 6. Here we define the parameter Δ =
p
d , and we set T = 300 K, N = 400, and p = 60 nm, 160
nm, 320 nm, 500 nm, 3 μm, 7 μm, 10 μm, and 20 μm,
respectively. Lines corresponding to d = 0.44 μm, d = λT ,
d = 20.04 μm, and power law (∼d−2 and ∼d−6) are added
for reference. G(p, d )/N ∼ d calculated by Eqs. (22) and
(23) are also added for reference. The thermal conductance
G(p, d )/N corresponding to Δ = 1 (d = p) is also added for
reference.

As shown in Fig. 6, when d � λT and Δ  1 (p  d),
the thermal conductance G(p, d )/N follows the same power
law d−6 as that calculated by Eq. (22). When d  λT and
Δ � 1 (p � d), the thermal conductance G(p, d )/N follows
the same power law d−2 as that calculated by Eq. (23). For
a fixed separation d , the thermal conductance increases with
the decreasing lattice spacing p. The nanoparticles inside each
ensemble move from the far field to the near field of its
nearby nanoparticles when p decreases from 20 μm to 60
nm. The near-field effect accounts for the increasing thermal
conductance with decreasing p. As can be seen in Fig. 6,
Eqs. (22) and (23) give the lower and upper limits for the
thermal conductance, respectively.

Then, based on the general description of the thermal
conductance as shown in Fig. 6, in order to numerically figure
out the regime of RHT, a new parameter ψ (p, d ) is defined as
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FIG. 6. The scaled thermal conductance [G(p, d )/N] between
2D finite-size square-lattice nanoparticle ensembles as a function
of separation distance d . We define Δ = p

d , and set T = 300 K,
a = 20 nm, N = 400, and p = 60 nm, 160 nm, 320 nm, 500 nm,
3 μm, 7 μm, 10 μm, and 20 μm, respectively. Fitting lines of
d = 0.44 μm, d = λT , d = 20.04 μm, and power law (∼d−2 and
∼d−6) are added for reference. G(p, d )/N calculated by Eqs. (22)
and (23) as functions of d are also added for reference. The thermal
conductance G(p, d )/N corresponding to Δ = 1 (d = p) is also
added for reference. The data points used in the analysis on the
thermal conductance spectrum in Fig. 12 are marked for reference.
Two regimes (rarefied regime and dense regime) are circled out in
blue.

follows:

ψ (p, d ) = G(p, d )

GS (p, d )
, (25)

where G(p, d ) is the thermal conductance calculated by the
general formula (6), GS (p, d ) is the thermal conductance cal-
culated by the simplified formulas of the general formula (6),
i.e., Eqs. (22), (23), and (24). The data points corresponding
to the rarefied regime and dense regime have been circled out
in blue in Fig. 6.

1. Rarefied regime

In order to identify the rarefied regime, the parameter
ψ (p, d ) defined by Eq. (25) is applied, where GS (p, d ) is
calculated by the simplified equation (22). We calculate the
thermal conductance GS (p, d ) in the considered domain (p, d)
and give the contour of ψ (p, d ) in Fig. 7. In the contour,
the rarefied regime is corresponding to the region, where
ψ (p, d ) ≈ 1. Under conditions that T = 300 K and a = 20
nm, the region corresponding to the rarefied regime is clearly
identified in Fig. 7. In this region, the thermal conductance
can be easily calculated by the simplified equation (22) of the
general formula (6).

FIG. 7. Contour of ψ (p, d ) calculated with the help of Eq. (22).
The rarefied regime is corresponding to the domain, where
ψ (p, d ) ≈ 1. T = 300 K, a = 20 nm. N = 400.

2. Dense regime

In order to identify the dense regime clearly, the thermal
conductance GS (p, d ) calculated by Eq. (23) is applied to
calculate ψ (p, d ) in the considered domain (p, d ) and the
contour of ψ (p, d ) is shown in Fig. 8. In the contour, the dense
regime is corresponding to the region, where ψ (p, d ) ≈ 1. In
this region, the thermal conductance between two ensembles
composed of many nanoparticles can be easily calculated by
the simplified equation (23) of the general formula (6).

In addition to the numerical identification for the rarefied
regime and dense regime under the considered parameters for
the ensembles, the effect of size of lattice on the RHT is also
analyzed in both near field and far field. The spectral thermal

FIG. 8. Contour of ψ (p, d ) calculated with the help of Eq. (23).
The dense regime is corresponding to the domain, where ψ (p, d ) ≈
1. T = 300 K, a = 20 nm. N = 400.
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FIG. 9. The spectral thermal conductance Gω between SiC 2D
finite-size square-lattice nanoparticle ensembles is scaled by the
number of nanoparticles in each ensemble N . Two cases are con-
sidered: (a) separation d = 20 μm + 2a between the two ensembles
center to center for the far-field case, two cases have been considered,
Δ = 0.016 and 12.5, respectively. and (b) separation d = 40 nm
+ 2a for the near-field case, Δ = 0.75 and 6.25. The thermal
conductance spectrum between two nanoparticles separated by the
same separation d as that of the 2D ensemble is also added, which is
the case N = 1 in (a) and (b). The polarizability resonance frequency
of the single SiC nanoparticle is added for reference, shown as
ωres = 1.756 × 1014 rad s−1.

conductance between two SiC 2D finite-size square-lattice
nanoparticle ensembles separated by two different distances
d scaled by the amount of nanoparticles in each ensemble N
is shown in Figs. 9(a) and 9(b). The separation between the
two 2D nanoparticle ensembles center to center are d = 20
μm + 2a (far-field case) and 40 nm + 2a (near-field case),
respectively. The thermal conductance spectrum between two
isolated nanoparticles is also added for reference. The amount
of nanoparticles in the 2D ensemble varies from case to case.

The thermal conductance spectrum converges with increasing
the number of nanoparticles in the 2D ensemble. An en-
semble composed of 400 nanoparticles is sufficient to mimic
the infinite 2D nanoparticle ensemble when considering heat
exchange between the 2D ensembles. As can be seen in
Figs. 9(a) and 9(b), thermal conductance Gω(p, d )/N reduces
to that of two isolated nanoparticles when Δ  1 (p  d) in
both near field and far field, which is corresponding to the
rarefied regime.

B. Effect of many-body interaction on RHT between 2D
finite-size square-lattice nanoparticle ensembles

Due to multiple scattering in the ensemble composed of
many particles, the many-body interaction has complex effect
on RHT. Previous work focused on many-body interaction
in particle system with different spatial arrangement (three-
nanoparticle system [32,54,55], 1D chain of nanoparticles
[40], 2D fractal nanoparticle ensemble [48], clusters com-
posed of hundreds of nanoparticles [37,38], and nanoparticles
with a substrate [14,15]), which can not only enhance but
also can inhibit NFRHT, and even have negligible effect on
NFRHT. Here in this section, we focused on 2D square-
lattice nanoparticle ensembles. Both quantitative and qualita-
tive analyses on the many-body effect on NFRHT between 2D
finite-size square-lattice nanoparticle ensemble are conducted.

The ψ (p, d ) defined by Eq. (25) is applied to evaluate the
many-body interaction quantitatively, where G(p, d ) is the
thermal conductance between nanoparticle ensembles with
the many-body interaction calculated by the general formula
(6) and GS (p, d ) is the thermal conductance between nanopar-
ticle ensembles without the many-body interaction calculated
by the simplified pairwise summation formula (24). Here, the
ratio ψ (p, d ) reflects the presence of MBI effects, and its
numerical evaluation is shown in Fig. 10 (the parameters are
listed in the caption of the figure). When ψ (p, d ) ≈ 1 (yel-
low region), the MBI is negligible. When ψ (p, d ) < 1 (blue
region), the MBI inhibits the RHT. When ψ (p, d ) > 1 (red
region), the MBI enhances the RHT. The oblique blue-dashed
line corresponds to p = d . Lines for p = λT and d = λT are
added. The two red-dashed lines delimitate the rarefied regime
and dense regime regions, already discussed in Sec. IV A.

By looking at the value of ψ (p, d ), two main regions can be
identified, and separated with a black-bold-dashed horizontal
line p ≈ 150 nm in Fig. 10: (1) the non-MBI regime (yellow
region) corresponding to ψ (p, d ) ≈ 1 is essentially above that
line, and (2) the MBI regime (blue/red regions) corresponding
to ψ (p, d ) �= 1 is below that line. The MBI regime only occu-
pies a small part of the whole domain, where p � λT . The
rest large domain is corresponding to the non-MBI regime,
where MBI effects on RHT can be neglected safely and
Eq. (24) is an excellent, time-saving, approximation of Eq. (6).
If we focus on the MBI regime (p � λT ), we see that for
d < λT the MBI significantly inhibits the RHT, and ψ (p, d )
reaches the minimum value ψ (p, d ) ≈ 0.4. For the region
d > λT , on the contrary, MBI enhances the RHT, and ψ (p, d )
reaches its maximum value ψ (p, d ) ≈ 1.4. This enhancement
effect is modest if compared to what happens between two
nanoparticles due to the insertion of a third nanoparticle [32].
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FIG. 10. Contour of the ratio ψ (p, d ) for 2D SiC finite-size
square-lattice nanoparticle ensembles as a function of d and p. The
black-bold-dashed lines are the borderlines for the MBI regime. The
oblique blue-dashed line corresponds to p = d . Lines for p = λT

and d = λT are added. a = 20 nm, T = 300 300 K, N = 400. The
two red-dashed lines delimitate the rarefied regime and dense regime
regions, already discussed in Sec. IV A.

In the MBI sector there is a transition region around d = λT ,
where ψ (p, d ) ≈ 1.

In Fig. 10, the horizontal line distinguishing the MBI
regime from the non-MBI regime is at p ≈ 150 nm. We try
now to understand the origin of this length scale. Let us start
by investigating the multiple scattering occurring between the
two nanoparticles of a single isolated pair. To this purpose,
in Fig. 11 we show the ratio of G2np to G0,2np as a function
of the separation h, where G2np is the complete thermal
conductance between the two nanoparticles calculated using
Eq. (4), while G0,2np is the thermal conductance neglecting the
multiple scattering between the nanoparticles. The expression
for G0,2np can be easily obtained from Eqs. (3) and (4) with the
help of the transmission coefficient in vacuum [see Eq. (30) of
[38]], which yields
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where Gντ
0,i j (ν, τ = E or M) is the Green function in the free

space, of which the explicit expression is given in Eqs. (A1)–
(A3). In Fig. 11 the ratio G2np/G0,2np calculated for SiC
nanoparticles (radius a = 20 nm, T = 300 K) shows that
scattering effects are relevant only for separations h < L,
where L ≈ 150 nm is now a new length scale. When L < h <

λT ≈ 7 μm, the system is in the near field, while the multiple
scattering is not relevant. We also note that the interaction
between the two nanoparticles always inhibits the thermal
conductance. We hence observe that the length scale L, setting
the occurrence of multiple scattering inside an isolated pair, is

FIG. 11. The ratio of the thermal conductance between two SiC
nanoparticles with considering interaction between the two nanopar-
ticles G2np by Eq. (4) to that without interaction between the two
nanoparticles G0,2np as a function of separation h. a = 20 nm, T =
300 K. The lines corresponding to h = 150 nm and h = λT are added
for reference.

compatible with the value p ≈ 150 nm setting the transition
between non-MBI and MBI regions in Fig. 10. From the
same figure, we see that L only affects the lattice spacing p,
while has no signatures on the separation d between the 2D
planes. Hence, we deduce that the necessary condition to have
MBI is the multiple scattering between the particles of the
same plane. We also stress that the (less restrictive) near-field
condition between in-plane particles (p < λT ) is not sufficient
to have MBI, and a multiple scattering (i.e., p < L) is needed.
Provided p < L, the MBI can also be present when the two
2D systems are in the far field (d > λT ). It is also remarkable
that if d < L but λT > p > L, we have multiple scattering
between the particles of the opposite planes, but we do not
have MBI.

In order to better understand the different enhancing and
inhibiting MBI effects observed in Fig. 10, we consider below
two cases for which we specifically analyze the spectral
thermal conductance Gω(p, d ) as shown in Fig. 12: (a) d >

λT (d = 20 μm + 2a, MBI effect enhances RHT) and (b) d <

λT (d = 400 nm + 2a, MBI effect inhibits RHT).

1. Case 1: MBI enhances the RHT {p � λT } ∩ {d > λT }
In this case, corresponding to the red region of Fig. 10,

the MBI effect enhances the RHT. When two ensembles are
separated by a large distance (far-field case, e.g., d = 20
μm + 2a > λT ), the thermal conductance spectrum has only
one peak as can be seen in Fig. 12(a) and the ratio ψ (p, d ) is
near to but larger than 1. The maximum ψ (p, d ) in this case
approximately equals to 1.4. The value of the thermal conduc-
tance is less affected due to the weak intra-ensemble MBI ef-
fects inside each ensemble in this case 1. The frequency corre-
sponding with the peak of the thermal conductance spectrum
shows a blueshift behavior with the increasing Δ. In addition,
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FIG. 12. The spectral thermal conductance Gω between two SiC
particle ensembles with various Δ = p

d . Here N = 400, a = 20 nm,
T = 300 K. Two cases are considered: (a) separation d = 20 μm +
2a between the two particle ensembles center to center for the far-
field case, Gω is scaled by the number of nanoparticles from one
ensemble N , and (b) separation d = 400 nm + 2a for the near-field
case, the Gω is scaled by the number N of nanoparticles in each
ensemble.

the peak value of the spectral thermal conductance increases
slightly with the decreasing Δ, which is corresponding to
the slightly increasing thermal conductance with decreasing
p at a fixed d (= 20.04 μm) observed in Fig. 6. In the case
1, the inter-ensemble MBI between the two ensembles is
weak and can be neglected safely. However, the many-body
interaction inside each of the ensembles (intra-ensemble MBI)
is strong due to that nanoparticles from the same ensemble
lie in the near field of each other. Therefore, the decreasing
pure intra-ensemble MBI may account for the blueshift of the
peak frequency of the thermal conductance spectrum, when
increasing periodicity p.

In addition, in the far-field case, the peak frequency of
thermal conductance spectrum between 2D periodic ensem-
bles approaches to the polarizability resonance frequency of
the single particle (shown as ωres = 1.756 × 1014 rad s−1 in
Fig. 12), which satisfies Re[ε(ω)] + 2 = 0. The spectral
thermal conductance between two particle ensembles is the
sum of the spectral thermal conductance of all nanoparticle
couples, as can be seen from Eq. (6). The nanoparticle ensem-
ble goes more dilute as Δ increases. Therefore, intra-ensemble
MBI goes weaker with increasing Δ. Hence, the thermal
conductance spectrum Gω(p, d )/N between 2D ensembles is
similar to that between two isolated nanoparticles, where the
intra-ensemble many-body interaction is negligible.

2. Case 2: MBI inhibits the RHT {p � λT } ∩ {d < λT }
In this case, corresponding to the blue region of Fig. 10, the

MBI effect inhibits the RHT. When two ensembles are sepa-
rated by a small distance (near-field case, e.g., d = 400 nm
+ 2a < λT ), the thermal conductance spectrum is shown in
Fig. 12(b). The ratio ψ (p, d ) < 1 and MBI effect significantly
inhibit the thermal conductance. The peak value of the thermal
conductance spectrum increases heavily with decreasing Δ,
which also corresponds to that the scaled thermal conductance
increases greatly with decreasing Δ at a small d (0.44 μm)
observed in Fig. 6. In the case 2, only one peak of the thermal
conductance spectrum can be observed for Δ � 0.273, where
intra-ensemble and inter-ensemble MBI effects are weak.
For Δ = 0.136 and 0.182, two spectral thermal conductance
peaks can be observed, where the intra-ensemble and inter-
ensemble MBI effects are strong. The coexisted strong intra-
ensemble and inter-ensemble MBI effects may account for the
two peaks of the thermal conductance spectrum between 2D
finite-size square-lattice nanoparticle ensembles.

An interesting question is if the phenomenon that thermal
conductance spectrum between 2D nanoparticle ensembles in
case 2 has two peaks is dependent on the particle distribution
or not. Thermal conductance spectrum between 2D nanopar-
ticle ensembles with three different kinds of the particle
distribution is shown in Fig. 13: (a) periodic 2D ensemble
(Δ = 0.182), (b) random 2D ensemble, and (c) concentric-
ring-configuration 2D ensemble. Two peaks of the thermal
conductance spectrum can be observed for all the three cases,
which is independent on the particle distribution. That is to
say, the two peaks of thermal conductance spectrum between
2D nanoparticle ensembles with a small separation are due
to the many-body interaction and independent on the particle
distribution.

It is also worthwhile to mention that the MBI is signifi-
cantly dependent on the materials. We take the dielectric SiC
as an example to analyze the NFRHT in Secs. IV A and
IV B. In addition to the materials supporting resonance in
the Planck’s window (e.g., SiC), we should also pay atten-
tion to the materials which do not support resonance in the
Planck’s window (e.g., Ag). According to our previous works
[38,40] for metallic Ag, due to the mismatch between the
localized surface resonance wavelength and the thermal wave-
length (Planck’s window), the MBI on RHT between metallic
nanoparticle ensembles (e.g., clusters [38] and nanoparticle
chains [40]) can be safely neglected.
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FIG. 13. Thermal conductance spectrum between 2D ensembles
with three kinds of particle distribution in dense regime: (a) pe-
riodic 2D ensemble (Δ = 0.182), (b) random 2D ensemble, and
(c) concentric-ring-configuration 2D ensemble. a = 20 nm, T =
300 K, N = 400 and separation d = 400 nm + 2a center to center.

C. Effect of the phase change on RHT between 2D finite-size
square-lattice nanoparticle ensembles

The optical property of phase-change material below and
above transition temperature is quite different from each
other. The phase change of material has significant effect on
RHT between planar surfaces in both near field and far field
[56–60]. However, very few works on the effect of phase
change on RHT between 2D nanoparticle ensembles have
been reported. The phase change effect will be analyzed in
this section.

Thermal conductance between the 2D periodic nanoparti-
cle ensembles as a function of the separation distance (d) is
shown in Fig. 14. The symbols correspond to data obtained at
T = 350 K and the lines correspond to data obtained at T =
300 K. N is the number of nanoparticles in each ensemble L
and U (N = 400). p is the periodicity of the periodic ensemble
(p = 500 nm). Two fitting lines of power law (∼d−2 and
∼d−6) are added for reference.

For the 2D periodic nanoparticle ensembles composed of
metallic Ag or dielectric SiC, the thermal conductance at
350 K is similar to that at 300 K, which is also the case for 2D
phase-change VO2 ensembles with a large separation (the far-
field case, larger than 4 μm). However, for 2D periodic phase-
change VO2 nanoparticle ensembles with a small separation
(the near-field case, smaller than 4 μm), thermal conductance
at 300 K is much higher than that at 350 K, which is an ab-
normal phenomenon different from the common sense that the
thermal conductance often increases with temperature. Phase
change of VO2 significantly influences the RHT between 2D
nanoparticle ensembles in the near field and has negligible
effect on the RHT in the far field.

To understand insight of the abnormal phenomenon (men-
tioned in the third paragraph) that the thermal conductance

FIG. 14. Thermal conductance between 2D periodic nanoparticle
ensembles composed of metallic Ag, dielectric SiC, and phase-
change material VO2. Two different temperatures below and above
phase transition temperature of VO2 have been considered, 300 and
350 K, respectively. a is 20 nm. N is the number of nanoparticles in
each ensemble L and U (N = 400). p = 500 nm. Two fitting lines of
power law (∼d−2 and ∼d−6) are added for reference.

between two VO2 nanoparticle ensembles decreases with
increasing temperature, the spectral thermal conductances
between VO2 periodic particle ensembles at 300 and 350 K
are calculated at two different separation distances center to
center (d = 40 nm + 2a and 40 μm + 2a), which are shown
as Fig. 15.

As can be seen from the thermal conductance spectrum
with d = 40 nm at 300 K, there are two main and obvious

FIG. 15. The spectral thermal conductance between two 2D VO2

nanoparticle ensembles for d = 40 nm + 2a and 40 μm + 2a at 300
and 350 K. a is 20 nm.
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FIG. 16. Thermal conductance between particle ensembles as
function of the translation distance of one particle ensemble along
its extending direction for several different cases. Red lines are for
the data of metallic VO2, while the blue ones are for the insulator
VO2. Two different separation distances between the two particle
ensembles are considered, 50 nm + 2a and 20 μm + 2a, respectively.
a is 20 nm. Periodicity of the 2D periodic nanoparticle ensemble p is
80 nm. N = 400.

peaks in the thermal conductance spectrum and the value of
spectral thermal conductance around the peaks is much higher
than that of the metallic-phase VO2 nanoparticle ensembles
at 350 K. The strong localized surface phonon resonance
(LSPhR) may account for the high thermal conductance be-
tween the insulator-phase VO2 particle ensembles at 300 K.
As can be seen in Fig. 3(b), there is a mismatch between the
characteristic thermal frequency and polarizability resonance
frequency of metallic-phase VO2 nanoparticle, which may
account for the lower thermal conductance as compared to
that of insulator-phase VO2 nanoparticles. In the far field, e.g.,
d = 40 μm, the weak near-field effect of both insulator-phase
and metallic-phase VO2 particle ensembles may account for
the similar thermal conductance with each other.

D. Oscillatorylike features of the RHT with translation of the
upper 2D finite-size square-lattice nanoparticle ensembles

A previous investigation on the NFRHT between two gold
nanoparticle array layers with an extreme small separation of
1-nm layer edge to layer edge was reported [47], where the
multipole contribution to NFRHT has been considered. An
interesting oscillatorylike feature of the NFRHT with transla-
tion of one array along its extending direction was observed.
However, the separation distance between 2D nanoparticle
ensembles considered in this work is much larger than that
considered in the reported work [47], where the dipole con-
tribution dominates the NFRHT. Thermal conductance be-
tween nanoparticle ensembles as a function of the translation
distance dt of one particle ensemble along the translation
direction for two different separations d is shown in Fig. 16.
Both insulator-phase and metallic-phase VO2 nanoparticles
are considered here. Two separation distances d between
the 2D periodic nanoparticle ensembles center to center are

FIG. 17. Energy density along the line with two different sep-
aration distances between the line and the lower insulator VO2

nanoparticle ensemble at 300 K, 50 nm + 2a, and 20 μm + 2a,
respectively. p = 80 nm. N = 400.

considered, 50 nm + 2a and 20 μm + 2a, respectively.
Nanoparticle radius a is 20 nm. Periodicity of the 2D periodic
nanoparticle ensemble p is 80 nm.

When d = 50 nm + 2a, oscillatorylike features of RHT
as a function of translation distance dt of the ensemble U
relative to ensemble L is shown with star- and circle-symbols
lines in Fig. 16. When d = 20 μm + 2a, no oscillatorylike
phenomenon of RHT with translation distance can be ob-
served, shown with solid lines in Fig. 16. From Fig. 16,
the oscillatory periodicity is around 80 nm (∼p), which is
equal to the distance between the neighboring particles in
the line parallel to the edge of the particle ensemble and is
corresponding to the result observed in the reported work
[47]. The oscillatory periodicity of thermal conductance with
translation distance dt is similar to the spatial periodicity
of the 2D periodic nanoparticle ensembles, which may not
be an accident. It is noticed that the local energy density
distribution has been demonstrated to be very useful to help
understanding of physical mechanism of NFRHT, e.g., to an-
alyze the emission of plate [61] and NFRHT among particles
in the many-particle system [33,40]. To understand insight
of the relation between the two kinds of periodicity, i.e.,
oscillatory periodicity of thermal conductance with translation
distance and spatial periodicity p of the 2D periodic nanopar-
ticle ensemble, analysis of local energy density distribution
is conducted. Energy density distribution above the insulator
VO2 nanoparticle ensemble is calculated along a line of
interest (shown with the yellow line in Fig. 1), which is shown
in Fig. 17.

The energy density along the line of interest (shown as the
yellow line in Fig. 1) with two different separation distances
between the line and the lower insulator VO2 particle en-
semble, d = 50 nm + 2a and d = 20 μm + 2a, respectively,
are shown in Fig. 17. In the far field, i.e., d = 20 μm + 2a,
the energy density stays constant along the line, as shown in
Fig. 17. However, the energy density shows an oscillatorylike
feature along the line in the near field, i.e., the separation
distance d = 50 nm + 2a, of which the oscillatory periodicity
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FIG. 18. Poynting vector along the line of interest emitted by
a nanoparticle due to electric (E) and magnetic (M) dipole contri-
bution. The investigated physical model is shown in the inset. The
nanoparticle is fixed at (0,0,0). Both dielectric SiC and metallic Ag
nanoparticles are considered. T is 300 K. a is 20 nm.

is also around 80 nm (∼p). The oscillatory periodicity of
thermal conductance shown in Fig. 16 is corresponding to
the oscillatory periodicity of the energy density as shown in
Fig. 17. The extremum of the thermal conductance can be
reached when the upper ensemble is translated with a distance,
of which the value is an integer times of periodicity p, as
shown in Fig. 16 with the dashed line. The strong near-field
effect may account for the oscillatorylike feature of energy
density and thermal conductance in the near field (d = 50 nm
+ 2a). With the separation distance increasing, the near-field
effect decreases gradually, which accounts for that thermal
conductance and energy density have no oscillatorylike fea-
ture in the far field.

V. RADIATIVE THERMAL ENERGY EMITTED BY
PERIODIC AND NONPERIODIC 2D

NANOPARTICLE ENSEMBLE

First of all, we compare the electric dipole and magnetic
dipole contribution to the radiative thermal energy emitted by
a single nanoparticle. Total Poynting vector and Poynting vec-
tor contributed by the electric dipole (E) and magnetic dipole
(M) emitted by a single nanoparticle is shown in Fig. 18.
Both metallic Ag and dielectric nanoparticles are considered.
Particle radius a is 20 nm. Temperature T is 300 K. Poynting
vector distribution along the line (defined by x = 0 and z =
2a) shown with the inset of Fig. 18. Both electric dipole
and magnetic dipole contribute to the Poynting vector. For
Poynting vector emitted by the dielectric SiC nanoparticle, the
electric dipole contribution is four orders of magnitude larger
than that of magnetic dipole contribution. While for Poynting
vector emitted by the metallic Ag nanoparticle, the magnetic
dipole contribution is two orders of magnitude larger than that
of electric dipole contribution. It is worthy to mention that the
magnetic dipole contribution dominates the radiative thermal
energy emitted by metallic Ag nanoparticle. However, the
electric dipole contribution dominates the radiative thermal
energy emitted by the dielectric SiC nanoparticle.

FIG. 19. The Poynting vector along the two lines (defined by
y = 0 and z = 50 nm and y = 0 and z = 200 nm, respectively) for
three different particle ensembles. Both insulator-phase VO2 particle
(300 K) and metallic-phase VO2 particle (350 K) are considered. a is
20 nm. N = 400.

Then, the effect of the nanoparticle distribution on the
radiative thermal energy is analyzed. Three different kinds of
nanoparticle distributions are considered here: (a) periodic 2D
ensemble, (b) random 2D ensemble, and (c) concentric-ring-
configuration 2D ensemble, respectively, as shown in Fig. 2.
Considering that the overlap influences the RHT significantly
[47], all three different 2D particle ensembles are generated to
have similar effective occupied area to each other. Nanoparti-
cle radius a is 20 nm. The Poynting vector along the two lines
[defined by (1) y = 0 and z = 50 nm and (2) y = 0 and z =
200 nm, respectively] for all the three different particle ensem-
bles are shown in Figs. 19(a) and 19(b). Both insulator-phase
and metallic-phase VO2 nanoparticles are considered. The
number of nanoparticles N in each ensemble is 400.
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When the separation distance between the line and the
ensemble is 50 nm, for periodic 2D ensemble, the Poynting
vector shows an oscillatory feature, shown with the red dashed
line in Fig. 19(a). For the random 2D ensemble, no obvious
regulation can be observed and fluctuation of the Poynting
vector also can be observed. However, for concentric-ring-
configuration 2D ensemble, near the center of the ensem-
ble, the Poynting vector approaches to its minimum, which
looks like a deep well. The geometrical configuration of
concentric-ring-configuration particle ensemble may account
for this focusing and inhibition of the radiative thermal en-
ergy. Meanwhile, the periodicity of the structure accounts for
the oscillation of the Poynting vector near the periodic and
concentric-ring-configuration 2D ensembles. The disordered
nanoparticle distribution in the random 2D ensemble accounts
for the irregular distribution of the Poynting vector. Wave
effect of the thermally excited evanescent wave accounts for
that the radiative thermal energy depends on the geometrical
configuration.

When the separation between the line and 2D nanoparticle
ensemble increases to 200 nm, as shown in Fig. 19(b), the
Poynting vector along the line of interest is quite differ-
ent from that observed in the case with 50-nm separation.
No oscillatory feature of Poynting vector can be observed.
The fluctuation of Poynting vector above the random 2D
ensemble is much more dramatic than that of the other two
2D nanoparticle ensembles. The near-field effect decreases
dramatically with the increasing separation from the source,
which accounts for that Poynting vector in the near field is
sensitive to the separation distance. Regularly, 2D nanopar-
ticle ensembles, e.g., periodic 2D ensemble and concentric-
ring-configuration 2D ensembles, emit the radiative thermal
energy in a similar way to each other. However, irregularity of
the structure results in the irregular distribution and fluctuation
of the radiative thermal energy.

From Figs. 19(a) and 19(b), it is noted that the phase
change of VO2 only influences the value of the radiative
thermal energy and has very weak effect on the distribution
regulation of the radiative thermal energy. It is worthwhile
to mention that the sign of the curvature of diagrams has
changed from Fig. 19(a) to Fig. 19(b). When the separation
is small [Fig. 19(a)], the MBI is strong and inhibits the
Poynting vector. Therefore, the Poynting near the center of the
ensemble is inhibited heavily. However, when the separation
is large [Fig. 19(b)], the MBI is weak and each nanoparticle
emits energy separately and additionally. The Poynting vector
near the center of ensemble is higher than that at other places.

Due to the statistical feature of the random ensemble, we
average the Poynting vector over eight realizations of random
metallic-phase VO2 nanoparticle ensembles, as shown in
Fig. 20. The Poynting vector along the two lines [defined by
(1) y = 0 and z = 50 nm and (2) y = 0 and z = 200 nm, re-
spectively] for the random ensembles of eight realizations are
also given in Figs. 20(a) and 20(b): T = 350 K, a = 20 nm. It
is shown that the average over the Poynting vector of eight
random ensembles reduces the asymmetry. Although each
specific configuration of the random ensemble corresponding
to a specific emitted Poynting vector distribution, the average
of the Poynting vector over a large number realization of
random ensembles reduces the asymmetry of the data.

FIG. 20. The averaged Poynting vector over eight random
metallic-phase VO2 nanoparticle ensembles along the two lines (de-
fined by y = 0 and z = 50 nm and y = 0 and z = 200 nm, respec-
tively). T = 350 K. a is 20 nm. N = 400. The lines characterized by
the numbers 1–8 are corresponding to the eight different realizations
of the random ensembles.

Considering that the Poynting vector is a vector, it is worth
pointing out its direction, which indicates the direction of
the radiative thermal energy flow. All components of the
Poynting vector emitted by the concentric-ring-configuration
2D ensemble along the line defined by y = 0 and z = 50 nm
are shown in Fig. 21. The separation distance between the line
of interest and the concentric-ring-configuration nanoparticle
ensemble is 50 nm. The Poynting vector component in the
y-axis direction for the whole domain is zero. The radia-
tive thermal energy flow in the plane perpendicular to the
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FIG. 21. Components of the Poynting vector emitted by the
concentric-ring-configuration 2D ensemble in x, y, and z axes of the
given Cartesian coordinate system along the line parallel to the 2D
ensemble with 50-nm separation distance. a = 20 nm. N = 400.

concentric-ring-configuration 2D ensemble. The symmetry of
the concentric-ring-configuration nanoparticle ensemble geo-
metrical configuration about the line of interest accounts for
the radiative thermal energy flow in the plane perpendicular
to the 2D ensemble.

In addition, the radiative thermal energy emitted by the 2D
nanoparticle ensemble is sensitive to the separation from the
ensemble. To help for the understanding of this separation-
dependent radiative thermal energy, the energy density along
the lines of interest (shown in Fig. 1) parallel to the 2D ensem-
ble with nine different separations is shown in Fig. 22. When
the separation distance between the line and 2D nanoparticle
ensemble is larger than 500 nm, the energy density does
not vary from place to place any more. However, when the

FIG. 22. Energy density along the line above the concentric-
ring-configuration particle ensemble with nine different separation
distances: 0.05, 0.2, 0.5, 1, 4, 7, 10, 15, and 20 μm, respectively.
N = 400.

separation distance is less than 500 nm, the energy density
oscillates along the line and is symmetrical in general about
the center of the line, which can be attributed to the symmetry
of the geometrical configuration of the 2D concentric-ring-
configuration nanoparticle ensemble. Energy density is also
dependent on the separation from the 2D ensemble, which is
corresponding to that observed for the Poynting vector. The
separation dependent near-field effect accounts for both the
separation-dependent observation of the Poynting vector and
energy density.

VI. CONCLUSION

Radiative heat transfer (RHT) and radiative thermal en-
ergy concerning 2D nanoparticle ensembles is investigated
in both the near field and far field by means of the CEMD
approach and the proposed formulas of Poynting vector based
on the framework of many-body radiative heat transfer theory.
Asymptotic regimes of RHT between 2D finite-size square-
lattice nanoparticle ensembles were summarized in Table I
and the regime map Fig. 5. Four regimes and their corre-
sponding thermal conductance formulas were given explicitly:
(a) MBI regime {p � λT }, (b) non-MBI regime, (c) rarefied
regime, and (d) dense regime, respectively. In the rarefied
regime, dense regime, and non-MBI regime, the thermal
conductance formulas can be simplified as compared to the
general formula.

According to the value of the parameter ψ (p, d ), we nu-
merically identified the different asymptotic regimes in detail.
In the MBI regime p � λT , MBI effects manifest themselves
in different ways, depending on the separation d significantly.
In the MBI regime, both the value of the thermal conductance
and shape of the thermal conductance spectrum Gω can be
influenced by the MBI effects. We considered two typical
cases to analyze MBI effects on the spectrum Gω: case 1 (MBI
enhances the RHT, {p � λT } ∩ {d > λT }) and case 2 (MBI
inhibits the RHT {p � λT } ∩ {d < λT }). In the case 1, the de-
creasing pure intra-ensemble MBI accounts for the blueshift
of the peak of the spectrum Gω, and has a slight enhancement
effect on the thermal conductance. In the case 2, the strong
coexisted intra-ensemble and inter-ensemble MBI account
for inhibition of RHT and the two peaks of the spectrum
Gω as compared to that of two isolated nanoparticles, which
also has been demonstrated independent of the nanoparticle
distribution.

The thermal conductance between 2D insulator-phase VO2

nanoparticle ensembles with a small separation is much larger
than that of the metallic-phase VO2 nanoparticle ensembles
due to the strong coupling in the insulator-phase VO2 nanopar-
ticle ensembles. However, this phase-change effect is negli-
gible when the separation is large. An oscillatorylike feature
of thermal conductance between 2D finite-size square-lattice
nanoparticle ensembles with translation of the upper ensemble
relative to the lower ensemble and thermally excited energy
density distribution in the near field is observed, which is
negligible in the far field. The strong near-field effect accounts
for the oscillatory phenomenon of the thermal conductance
and energy density.

In addition, the formulas of the Poynting vector to evaluate
the radiative thermal energy taking both electric and magnetic
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dipole contribution into consideration are given, which is an
extension of the recent work [46] and is applicable for not
only dielectric but also metallic nanoparticle ensemble. It is
the magnetic dipole contribution that dominates the radiative
thermal energy emitted by the metallic nanoparticle. However,
the electric dipole contribution dominates the radiative ther-
mal energy emitted by the dielectric nanoparticle. The radia-
tive thermal energy emitted by the 2D nanoparticle ensemble
is sensitive to the particle distribution and the distance away
from the ensemble. The RTE emitted by 2D concentric-ring-

configuration nanoparticle ensemble has an inhibition feature
near the ensemble center of the ensemble.
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APPENDIX: GREEN’S FUNCTION IN MANY-PARTICLE SYSTEM

In this Appendix, following the previous paper [38], we provide the details about how to calculate the many-body Green’s
function Gμν

i j needed to evaluate the RHT of Eqs. (1) and (2), and Gντ (r, ri ) needed to evaluate the RTE of Eqs. (14) and (15).
Let us start by defining the Green’s function in free space:

GEE
0 (r) = eikr

4πr

[(
1 + ikr − 1

k2r2

)
I3 + 3 − 3ikr − k2r2

k2r2
r̂ ⊗ r̂

]
, (A1)

GME
0 (r) = eikr

4πr

(
1 − 1

ikr

)⎛
⎝ 0 −r̂z r̂y

r̂z 0 −r̂x

−r̂y r̂x 0

⎞
⎠, (A2)

where I3 is a 3 × 3 identity matrix, r is the magnitude of the separation vector r = r f − rs between the source point rs and
field point r f , r̂ is the unit vector r/r and r̂ν=x,y,z denotes its three Cartesian components, ⊗ denotes outer product of vectors.
GEM

0 (r) = −GEM
0 (r) and GMM

0 (r) = GEE
0 (r). The Green’s function in free space can be written in a compact form as

G0,i j =
(

μ0ω
2GEE

0,i j μ0ωGEM
0,i j

kωGME
0,i j k2GMM

0,i j

)
, (A3)

where Gμν
0,i j ≡ Gμν

0 (ri − r j ). Also, the many-body Green’s function Gμν
i j we are looking for can be written by exploiting the

compact form

Gi j =
(

μ0ω
2GEE

i j μ0ωGEM
i j

kωGME
i j k2GMM

i j

)
. (A4)

The function Gi j is the solution of the equation⎛
⎜⎜⎜⎜⎝

0 G12 · · · G1N

G21 0
. . .

...
...

...
. . . G(N−1)N

GN1 GN2 · · · 0

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

0 G0,12 · · · G0,1N

G0,21 0
. . .

...
...

...
. . . G0,(N−1)N

G0,N1 G0,N2 · · · 0

⎞
⎟⎟⎟⎟⎠A−1, (A5)

where the matrix A including many-body interaction is defined as

A = I6N −

⎛
⎜⎜⎜⎜⎝

0 α1G0,12 · · · α1G0,1N

α2G0,21 0
. . .

...
...

...
. . . αN−1G0,(N−1)N

αNG0,N1 · · · αNG0,N (N−1) 0

⎞
⎟⎟⎟⎟⎠, (A6)

with αi defined as

αi =
(

ε0α
i
EI3 0

0 αi
HI3

)
. (A7)

To finish, the many-body Green’s function Gντ (r, ri ) ≡ Gντ
rri

we are looking for to calculate the RTE can also be written in
the compact form

Grri
=

(
μ0ω

2GEE
rri

μ0ωGEM
rri

kωGME
rri

k2GMM
rri

)
. (A8)
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The function Grr1
is the solution of the equation(

Grr1
,Grr2

, . . . ,GrrN

) = (
G0,rr1

,G0,rr2
, . . . ,G0,rrN

)
A−1, (A9)

where the matrix A can be found in Eq. (A6) and the source term G0,rri
is defined as

G0,rri
=

(
μ0ω

2GEE
0,rri

μ0ωGEM
0,rri

kωGME
0,rri

k2GMM
0,rri

)
, (A10)

where Gμν
0,rri

≡ Gμν
0 (r − ri ).
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