

Oxidation-promoted activation of a ferrocene C–H bond by a rhodium complex

Agnès Labande, Nathalie Debono, Alix Sournia-Saquet, Jean-Claude Daran, Rinaldo Poli

▶ To cite this version:

Agnès Labande, Nathalie Debono, Alix Sournia-Saquet, Jean-Claude Daran, Rinaldo Poli. Oxidation-promoted activation of a ferrocene C–H bond by a rhodium complex. Dalton Transactions, 2013, 42 (18), pp.6531-6537. 10.1039/C3DT50240F. hal-02908070

HAL Id: hal-02908070

https://hal.science/hal-02908070

Submitted on 2 Mar 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxxx

ARTICLE TYPE

Oxidation-Promoted Activation of a Ferrocene C-H Bond by a Rhodium **Complex**

Agnès Labande,* a,b Nathalie Debono, a,b Alix Sournia-Saquet, a,b Jean-Claude Daran and Rinaldo Poli a,b,c

Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX 5 DOI: 10.1039/b000000x

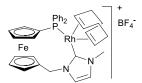
The oxidation of a rhodium(I) complex containing a ferrocene-based heterodifunctional phosphine Nheterocyclic carbene (NHC) ligand produces a stable, planar chiral rhodium(III) complex with an unexpected C-H activation on ferrocene. The oxidation of rhodium(I) to rhodium(III) may be accomplished by initial oxidation of ferrocene to ferrocenium and subsequent electron transfer from 10 rhodium to ferrocenium. Preliminary catalytic tests showed that the rhodium(III) complex is active for the Grignard-type arylation of 4-nitrobenzaldehyde via C-H activation of 2-phenylpyridine.

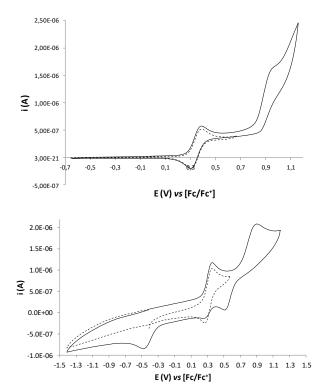
Introduction

Cyclometalation via C-H activation has been very well known for decades, especially with the use of pincer ligands on a large 15 variety of metals.^[1] The mechanisms for C-H activation involve principally oxidative addition on a low oxidation state metal, electrophilic bond activation or σ-bond metathesis.^[1e] C-H activation on rhodium complexes has been widely studied, [2-4] however, only two examples in the literature describe the C-H 20 activation by oxidative addition on rhodium(I) complexes with PCP pincer ligands bearing a ferrocenyl unit in place of a phenyl.^[5] One example of C-H activation has been observed on iridium(I) complex bearing a heterodifunctional ferrocenylphosphine-pyridine ligand, although the corresponding 25 rhodium(I) complex only shows a Rh...HC agostic interaction. [6] Activation on rhodium(III) complexes covers Caryl-H^[7] as well as Calkyl-H^[8] bonds. In this context, half-sandwich rhodium(III) complexes such as [Cp*RhCl2]2 and [Cp*Rh(MeCN)3]X2 proved particularly useful for the catalyzed functionalization of C-H 30 bonds, [4],[9] but very few contributions deal with chiral complexes [8g,h] and we only found one example reporting catalytic C-H activation with a non half-sandwich complex. [10]

Our group has a strong interest in the coordination chemistry and catalytic activity of functionalized N-heterocyclic carbene 35 (NHC) ligands and among them redox-active ferrocenyl ligands.[11] Based on the pioneering work of Wrighton[12] and Mirkin^[13] and more recent one of Long^[14] and Bielawski^[15] on the influence of redox-active ligands on the reactivity of the metal center, we have investigated the behavior of rhodium(I) complex 40 1 [11a] (Figure 1) upon oxidation. The phosphine group in the ferrocene-based heterodifunctional phosphine-NHC ligand is directly linked to the ferrocenyl unit, whereas the NHC is moved away from it by a methylene spacer. As the phosphine group is connected to both ferrocene and rhodium, we envisioned that the 45 electronic changes on ferrocene would be efficiently transmitted to the metal center, [12c,16,17] making it more electrophilic upon

oxidation. In the process of studying the redox chemistry of compound 1, we have discovered an unprecedented C-H activation of a ferrocene C-H bond on Rh triggered by ferrocene 50 oxidation, eventually leading to a planar chiral rhodium(III) complex and we present the results of this investigation in this contribution.




Fig.1 Rhodium(I) complex 1 studied in this work.

55 Results and discussion

A cyclic voltammetry (CV) analysis of 1 in CH2Cl2 showed a reversible redox wave for the ferrocene unit at $E^{\circ}_{1/2} = 0.35 \text{ V } vs.$ $[FcH/FcH^+]$ [18] and a second irreversible process at $E_{p,a}=0.95\ V$ vs. [FcH/FcH+] that could be assigned to the oxidation of Rh(I) 60 (Figure 2, top). A square wave voltammetry analysis at the potential of the first oxidation wave (0.35 V vs. [FcH/FcH⁺]) gave a total of 0.91 F/mol, which indicated the transfer of one electron per molecule.[19]

The CV of 1 in acetonitrile showed a different behavior. 65 Besides a shift of the two waves to less positive potentials (E°1/2 = 0.31 V and $E_{p,a}$ = 0.8 V vs. [FcH/FcH⁺] for the reversible ferrocene and the irreversible Rh(I) oxidations, respectively), two additional reduction waves, not present in CH2Cl2, now appear at 0.53 V and -0.47 V (see Figure 2, bottom).

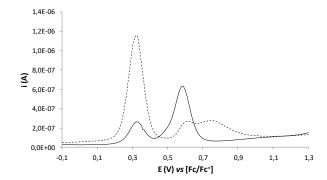

The controlled potential electrolysis of 1 in MeCN at 0.49 V vs. [FcH/FcH⁺], a potential once again sufficient to oxidize the ferrocene unit selectively, resulted in transfer of greater charge. After 165 min of electrolysis, 2 F/mol had passed through the cell and 1 was completely transformed into a new species 2, which 75 shows a redox process at 0.58 V vs. [FcH/FcH⁺] (Figure 3). Upon interrupting the current flow at this stage, **2** evolved spontaneously and slowly to product **3** (0.32 V vs. [FcH/FcH⁺]) which contains ferrocene in its reduced state, as indicated by its electrochemical properties (Figure 3, plain curve). When the selectrolysis was carried out at 1.19 V vs. [FcH/FcH⁺] (thus beyond the oxidation potential of rhodium) and interrupted after counting 2 F/mol, the same intermediate species **2** was again generated selectively after only 50 min, followed by conversion to **3**, which was almost complete 20 h after interruption of lo electrolysis (Figure 4).

Fig.2 Cyclic voltammograms on a Pt microelectrode of complex **1**, top : 1 mM in CH_2Cl_2 with nBu_4NBF_4 (0.1M) at a scan rate of 0.1 V s⁻¹; bottom : 1 mM in MeCN with nBu_4NBF_4 (0.1M) at a scan rate of 0.2 V s⁻¹.

This is a first indication that ferrocene can act as an electron relay for oxidation of the Rh center. When, on the other hand, the same electrolysis was continued beyond the consumption of 2 F/mol of Rh complex, decomposition occurred resulting in partial 20 loss of the ferrocene wave.

The isolation and characterization of the product were then attempted by chemical oxidation experiments. The oxidants 1,1'-diacetylferrocenium tetrafluoroborate [FcAcH][BF4] (E°1/2 = 0.49 V vs. [FcH/FcH+] in MeCN) and thianthrenium tetrafluoroborate [25 [Th][BF4] (E°1/2 = 0.86 V vs. [FcH/FcH+] in MeCN) were selected because of their suitable oxidation potentials, their "innocent" character and the expected ease of purification of the oxidized Rh complex. [20] As calculated from the voltammogram of 1 in MeCN, [FcAcH][BF4] should oxidize only ferrocene while [Th][BF4] should be capable of oxidizing ferrocene and rhodium. The use of d6-MeCN as solvent allowed ¹H and ³¹P NMR monitoring.

35 Fig.3 Square-wave voltammograms recorded during the electrolysis of complex 1 at 0.49 V vs. [FcH/FcH⁺] in MeCN/nBu₄NBF₄ (0.1M); frequency: 20 Hz, step potential 5 mV, amplitude 20 mV. Dashed curve: Rh(I) complex 1; plain curve: intermediate solution, 15 min after interruption of electrolysis.

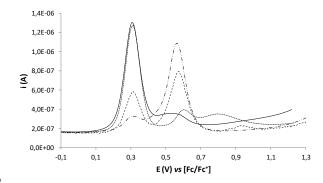


Fig.4 Square-wave voltammograms recorded during the electrolysis of complex 1 at 1.19 V vs. [FcH/FcH⁺] in MeCN/nBu₄NBF₄ (0.1M); frequency: 20 Hz, step potential 5 mV, amplitude 20 mV. Dotted curve: Rh(I) complex 1; dashed-dotted curve: solution immediately after interruption of electrolysis (2 F/mol); dashed curve: intermediate solution, 2 h after interruption of electrolysis; plain curve: final solution, 20 h after interruption of electrolysis.

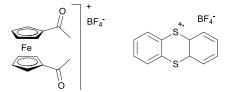


Fig.5 Chemical oxidants $[Fc_{Ac}H][BF_4]$ (left) and $[Th][BF_4]$ (right).

When using [Fc_{Ac}H][BF₄], only minute amounts of **3** were detected by ³¹P NMR as a doublet at ca. δ 41 (*J*_{Rh-P} = 138 Hz) after 12 h.^[21] Greater insight was obtained from the experiment carried out with 1.5 equivalents of [Th][BF₄]. The ³¹P NMR spectrum after 10 min showed a large signal at δ 28.5 that evolved after 4h 15 min to a well-defined major doublet at δ 28.7 assigned to the intermediate **2**, along with some starting material (doublet at δ 19.5) and a small doublet at δ 41.6 (*J*_{Rh-P} = 140 Hz, complex **3**). The NMR monitoring showed gradual disappearance of **2** in favor of the growth of **3**. The transformation was complete after 48 h, with ca. 25% of **1** remaining unreacted. The observation of these ³¹P resonances suggests that compounds **2** and **3** are diamagnetic. The final ¹H NMR spectrum also shows the resonances of reduced thianthrene and free 1,5-cyclooctadiene. The latter is released during the first step of the

process leading from 1 to 2. Use of an excess amount (2.1 equivalents) of [Th][BF4] led to initial broadening of the ³¹P resonance of 2 and did not allow the detection of the resonance of 3, presumably because of overoxidation and rapid self-exchange 5 between 3 and 3+.

The orange product 3 was isolated in 75% yield by repeated precipitation and washings with diethyl ether and characterized by NMR and mass spectrometry.[22] It proved stable at room temperature and even air-stable as a solid. To our surprise, ¹H and 10 13C NMR analyses revealed only seven proton resonances for the ferrocene unit when we expected eight. Additional ¹³C NMR and 2D experiments (COSY, HSQC and HMBC) confirmed the seven C-H bonds and 13C NMR revealed the presence of three quaternary carbon signals in the ferrocene region, one of which 15 appeared as a doublet of doublets with a large coupling constant of 30 Hz to the Rh atom.[23] This suggested that ferrocene C-H activation and creation of a C-Rh bond has occurred, hence generating planar chirality at ferrocene. The carbenic carbon was found at 147.2 ppm, almost 30 ppm upfield relative to 1 (176.9 20 ppm), indicating binding of the NHC to a rhodium(III) center. [24] Additional NMR data acquired in CD2Cl2 account for three MeCN molecules, one of which is in rapid exchange with free acetonitrile. Complex 2 could not be isolated, since it evolved spontaneously to 3 even in the solid state, but its ¹H and ¹³C 25 NMR properties indicate the presence of eight ferrocene C-H bonds. Hence, intermediate 2 contains the unactivated ferrocenyl ligand while the COD ligand is no longer present.

 31 P NMR: δ 19.5 ppm 31 P NMR: δ 41.6 ppm $(d, J_{Rh-P} = 140 \text{ Hz})$ $(d, J_{Rh-P} = 158 \text{ Hz})$

Scheme 1 Oxidation of rhodium(I) complex 1 to rhodium(III) complex 3.

The crystallization of 3 proved unsuccessful whatever the solvent/technique, but the addition of one equivalent of 2,2'bipyridine (bipy) to this complex in CH2Cl2 gave an orange-red solid after purification. Slow evaporation of a MeCN/C₆F₆ 35 solution of the latter led to X-ray quality crystals of 4, where one bipy and one Cl- ligand (coming from the solvent) occupy the three MeCN coordination positions in 3 (Scheme 2 and Figure 6). Selected bond distances and angles are shown in Table 1.

The Rh(1)-C(1) distance is in the range of previously 40 described Rh complexes with pincer-type σ-ferrocenyl ligands, [2a,5b,7a] and the other distances are within the expected range for this type of complex, yet this structure displays a few remarkable features. Firstly, it confirms the presence of a Rh-C bond at ferrocene with a fac arrangement of the tridentate ligand. 45 A second interesting aspect is the generation of both planar chirality at ferrocene and central chirality at the metal, hence the potential production of up to three diastereoisomers in this case (given the rigidity of the tridentate ligand and the strength of the

the rhodium center, imposing 50 stereochemistry). Finally, the tridentate ligand adopts a severely distorted geometry to accommodate the octahedral coordination of rhodium. Indeed, the octahedral coordination is also distorted (see Figure 6). The metal coordination forces the phosphorus atom to deviate significantly from the plane of the Cp ring to 55 which it is attached by 0.357(1) Å, and tilts the two ferrocene cyclopentadienyl units to a dihedral angle of 10.9(2)°.

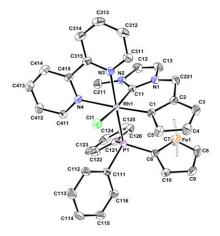


Fig.6 ORTEP view of the cation in compound 4. Ellipsoids are shown at the 50% probability level. All hydrogens are omitted for clarity.

60 Table 1 Selected bond distances (Å) and angles (°) for the experimental structure of 4 and for the optimized geometries of 4, 5 and 6.

	1	υ		
	X-Ray 4	DFT 4	5	6
Distances (Å)				
Rh(1)-Cl(1)	2.4313(6)	2.499	2.577	2.474
Rh(1)-P(1)	2.3210(6)	2.454	2.463	2.482
Rh(1)-N(3)	2.104(2)	2.116	2.153	2.237
Rh(1)-N(4)	2.156(2)	2.226	2.112	2.140
Rh(1)-C(1)	2.028(2)	2.042	2.041	2.046
Rh(1)-C(11)	2.022(2)	2.061	2.062	2.073
Angles (°)				
Cl(1)-Rh(1)-P(1)	101.98(2)	94.94	95.06	175.27
Cl(1)-Rh(1)-N(3)	82.78(5)	83.63	80.56	83.52
Cl(1)-Rh(1)-N(4)	83.56(5)	80.19	84.07	83.63
Cl(1)-Rh(1)-C(1)	87.57(7)	89.76	168.20	91.07
Cl(1)-Rh(1)-C(11)	168.68(7)	173.51	99.85	86.33
P(1)-Rh(1)-N(3)	175.08(5)	178.09	101.02	100.82
P(1)-Rh(1)-N(4)	101.58(6)	101.50	178.64	99.24
P(1)-Rh(1)-C(1)	87.00(7)	88.88	91.69	84.94
P(1)-Rh(1)-C(11)	88.92(7)	91.47	87.75	90.95
N(3)-Rh(1)-N(4)	77.56(8)	77.03	77.82	74.98
N(3)-Rh(1)-C(1)	94.51(8)	92.37	88.67	169.26
N(3)-Rh(1)-C(11)	86.40(8)	89.99	171.17	101.26
N(4)-Rh(1)-C(1)	168.75(8)	166.07	88.99	95.24
N(4)-Rh(1)-C(11)	97.38(8)	99.60	93.43	169.62
C(1)-Rh(1)-C(11)	89.97(9)	89.29	90.06	87.59
C(6)-P(1)-Rh(1)	113.85(8)	112.75	110.65	109.76

A solution of the orange-red solid in acetone-d₆ displays two ³¹P NMR doublets at δ 35.8 (J_{Rh-P} = 128 Hz) and δ 31.5 (J_{Rh-P} = 65 127 Hz) in a 4:3 ratio, and two sets of ¹H NMR signals, which we attributed to the existence of two diastereoisomers. Hence, one of the three possible diastereoisomers is not observed. The carbenic

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxxx

ARTICLE TYPE

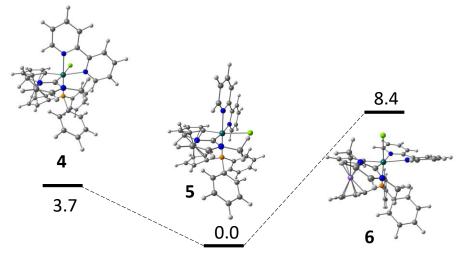
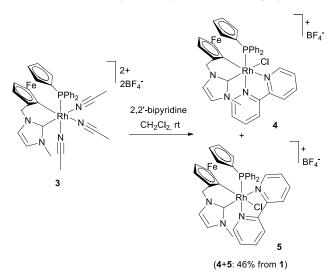



Fig.7 Relative electronic energies (in kcal/mol) and figures of the optimized structures for the three possible isomers of the crystallographically characterized compound 4.

carbon atom in both isomers appears around 154.4 ppm. 5 However, the newly formed Rh-bonded quaternary carbon atom is observed at δ 62.94 for the major isomer and at δ 76.61 for the minor one. This important shift may be imputed to a different trans influence of the Cl- and bipy ligands. [2e] Finally, a ROESY experiment showed dipolar coupling between a bipyridyl proton 10 and two ferrocenyl protons (one on each Cp) for the major species, which does not fit the geometrical features of the structure represented in figure 6. Therefore, we tentatively attribute the minor species to the crystallographically characterized diastereoisomer 4 and the major species to the 15 diastereoisomer bearing the Cl⁻ ligand *trans* to the Cp ligand, **5**.

Scheme 2 Synthesis of complexes 4 and 5.

In order to confirm this assignment, DFT calculations were carried out on the three possible isomers, optimizing first the

20 geometry of 4 on the basis of the experimental structure as a starting geometry, and then the other two possible isomers by transposing the positions of the Cl and bipy ligands. The suitability of the computational level (see Supporting Information) is verified by the relatively good match between 25 experimental and computed geometric parameters of 4, as shown in Table 1. The computed distances between the metal and the donor atoms are slightly longer, within 0.1 Å of the experimental value except for the P donor for which the difference is 0.13 Å, as is commonly found for this level of theory. The match in the 30 angular parameters is less satisfactory with a deviation up to ca. 7° for the P-Rh-Cl angle, whereas all the other angles are in better agreement.

The energy results are shown in Figure 7. For isomer 5 with the Cl atom placed trans to the metallated Cp ring, a lower 35 energy was obtained in agreement with the NMR assignment. For the third isomer (6), containing the Cl ligand trans to the P donor, construction of the starting geometry immediately revealed a severe steric limitation caused by the short van der Waals contacts between the NHC methyl substituent and the o-H atom 40 of the bipy ligand. The geometry optimization converged to a final structure where the NHC is bent away from the ferrocene Cp plane, on one side of the Rh equatorial coordination plane, while the adjacent bipy ring is bent away in the opposite direction (see Figure 7), resulting in significant distortion of the preferred 45 octahedral coordination geometry at the metal and of the preferred coplanarity of the bipy ligand and in a much higher energy minimum, 8.4 kcal/mol higher than the most stable isomer 5. The difference between the calculated electronic energies of 4 and 5 (3.7 kcal/mol) is too high to rationalize the observed ₅₀ relative 4:3 population of the two isomers, for which a ΔG of only 0.17 kcal/mol is expected. However, the prediction of relative stability is in the right direction. More sophisticated

calculations including the zero point vibrational energy and the thermal corrections to enthalpy and entropy were not carried out because prohibitive in this case, given the large size of the calculation (all atoms were treated quantomechanically).

The mechanism of formation of 3 probably involves initial oxidation of rhodium(I) in 1 to rhodium(III), facilitating the release of the COD ligand and leading to the tricationic intermediate 2 (Scheme 3), which is stabilized by solvent coordination. The rhodium center becomes thus very electrophilic 10 and promotes electrophilic aromatic substitution at the ferrocene ring to give the stable complex 3.[13c,25] The C-H activation step is slower than for previously described ferrocenyl PCP pincer ligands,[5] consistent with the high strain generated in the new rhodium(III) complex.

Scheme 3 Proposed mechanism for the formation of complex 3.

15

An interesting point is that, although the oxidation of rhodium(I) to rhodium(III) may be accomplished directly by electrolysis at 1.19 V/[FcH/FcH⁺] or by chemical oxidation with 20 [Th][BF4], the same transformation is also realized by initial oxidation of ferrocene to ferrocenium by electrolysis at 0.49 V vs. [FcH/FcH+] or more sluggishly by chemical oxidation with [Fc_{Ac}][BF₄]. This probably involves a relay mechanism where one or two electrons are transferred from rhodium to ferrocenium. 25 This phenomenon has already been observed on rhodium(I) complexes bearing ferrocenyl ligands.^[17] The difference between the oxidation potentials of ferrocene and rhodium (ca. 0.5 V) means that, after generating the Fe(III)-Rh(I) oxidation product which presumably involves minimal structural rearrangement, the 30 electron transfer from Rh(I) to Fe(III) is endoergic by ca. 11.5 kcal/mol, an activation barrier than can be easily overcome at room temperature. It therefore seems likely that the slow step of the process is this endoergic electron transfer yielding a Fe(II)-Rh(II) intermediate that can subsequently be more easily oxidized 35 with intervention of the MeCN coordination. It is known that, in the presence of structural rearrangement, a second electron transfer can be facilitated.^[26] The second electron transfer may occur either before or after losing the COD ligand. Therefore, the transformation of 1 to 2 should be a relatively fast process in 40 agreement with the cyclic voltammogram shown in Figure 2. The intervention of the solvent before the second electron transfer is suggested by the reversibility of the CV in CH₂Cl₂. Evidently, the

absence of stabilization of the Fe(II)-Rh(II) intermediate in CH2Cl2 further raises the activation barrier for the oxidative 45 decomposition of compound 1. Unfortunately, it was not possible to determine whether a rhodium(II) species was indeed involved in the process, as RPE experiments conducted at 113K immediately after addition of the oxidant to complex 1 did not show any signal corresponding to a metal-centered radical.

The electronic structure of the new complex 3 is similar to that of [Cp*Rh(MeCN)3](BF4)2, which is known to be a good Csp2-H activation catalyst. It was therefore tested for the Grignard-type arylation of 4-nitrobenzaldehyde via the C-H activation of 2phenylpyridine (Scheme 4).^[27] To our delight, preliminary 55 catalytic tests with complex 3 showed 33% conversion into the expected alcohol after 24h at 65°C in THF (1H NMR measurement, non-optimised conditions). The reaction was also carried out in 1,2-dichloroethane at 60°C and gave 24% conversion after 24h.

Scheme 4 Reaction of 2-phenylpyridine with 4-nitrobenzaldehyde.

Conclusions

In summary, the oxidation of rhodium(I) complex 1 produced a stable, planar chiral rhodium(III) complex with an unexpected C-65 H activation on ferrocene that shows some activity for the catalytic C-H activation of 2-phenylpyridine. More work will be done to optimize the reaction conditions and expand the substrate scope. Given the growing importance of rhodium(III)-catalyzed C-H activation/functionalization and the fact that there are very 70 few examples of chiral rhodium(III) complexes bearing three available coordination sites, our efforts will also focus on the resolution of planar chiral complex 3 to give an enantiopure catalyst.

Acknowledgements

75 This work was supported by the Agence Nationale de la Recherche (ANR-07-JCJC-0041, postdoctoral grant to ND).

Notes and references

^a CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP 44099, F-31077 Toulouse Cedex 4, France. Fax: (+33) 80 561553003; Tel: (+33) 561333158; E-mail: agnes.labande@lcctoulouse fr.

^b Université de Toulouse, UPS, INPT, F-31077 Toulouse Cedex 4, France.

Institut Universitaire de France, 103 bd Saint-Michel, F-75005 Paris, 85 France.

† Electronic Supplementary Information (ESI) available: synthetic, spectroscopic, crystallographic, electrochemical and computational details. CCDC reference number 905985. See DOI: 10.1039/b000000x/

(a) A. J. Canty, G. van Koten, Acc. Chem. Res., 1995, 28, 406; (b) M. Albrecht, G. van Koten, Angew. Chem. Int. Ed., 2001, 40, 3750; (c) M. E. van der Boom, D. Milstein, Chem. Rev., 2003, 103, 1759; (d)

- D. Balcells, E. Clot, O. Eisenstein, *Chem. Rev.*, 2010, **110**, 749; (e)
 M. Albrecht, *Chem. Rev.*, 2010, **110**, 576.
- (a) B. Rybtchinski, A. Vigalok, Y. Ben-David, D. Milstein, J. Am. Chem. Soc., 1996, 118, 12406; (b) A. Vigalok, O. Uzan, L. J. W. Shimon, Y. Ben-David, J. M. L. Martin, D. Milstein, J. Am. Chem. Soc., 1998, 120, 12539; (c) A. Sundermann, O. Uzan, D. Milstein, J. M. L. Martin, J. Am. Chem. Soc., 2000, 122, 7095; (d) M. Gandelman, L. J. W. Shimon, D. Milstein, Chem. Eur. J., 2003, 9, 4295; (e) C. M. Frech, L. J. W. Shimon, D. Milstein, Organometallics, 2009, 28, 1900.
- (a) W. D. Jones, *Inorg. Chem.*, 2005, 44, 4475; (b) G. Choi, J. Morris, W. W. Brennessel, W. D. Jones, *J. Am. Chem. Soc.*, 2012, 134, 9276; (c) R. Dorta, E. D. Stevens, S. P. Nolan, *J. Am. Chem. Soc.*, 2004, 126, 5054; (d) J. D. Egbert and S. P. Nolan, *Chem. Commun.*, 2012, 48, 2794; (e) K. F. Donnelly, R. Lalrempuia, H. Müller-Bunz, and M. Albrecht, *Organometallics*, 2012, 31, 8414.
- 4 For catalytic applications: (a) D. A. Colby, R. G. Bergman, J. A. Ellman, Chem. Rev., 2010, 110, 624; (b) D. A. Colby, A. S. Tsai, R. G. Bergman, J. A. Ellman, Acc. Chem. Res., 2012, 45, 814; (c) J. Wencel Delord, T. Droge, F. Liu, F. Glorius, Chem. Soc. Rev., 2011.
- Wencel-Delord, T. Droge, F. Liu, F. Glorius, *Chem. Soc. Rev.*, 2011,
 40, 4740; (d) N. Kuhl, M. N. Hopkinson, J. Wencel-Delord, F. Glorius, *Angew. Chem. Int. Ed.*, 2012, 51, 10236; (e) G. Song, F. Wang, X. Li, *Chem. Soc. Rev.*, 2012, 41, 3651; (f) R. Jazzar, J. Hitce, A. Renaudat, J. Sofack-Kreutzer, O. Baudoin, *Chem. Eur. J.*, 2010, 16, 2654.
- 5 (a) E. J. Farrington, E. Martinez Viviente, B. S. Williams, G. van Koten, J. M. Brown, *Chem. Commun.*, 2002, 308; (b) A. A. Koridze, A. M. Sheloumov, S. A. Kuklin, V. Y. Lagunova, I. I. Petukhova, F. M. Dolgushin, M. G. Ezernitskaya, P. V. Petrovskii, A. A. Macharashvili, R. V. Chedia, *Russ. Chem. Bull.*, *Int. Ed.*, 2002, 51, 1077.
- 6 T. Yoshida, K. Tani, T. Yamagata, Y. Tatsuno, T. Saito, J. Chem. Soc., Chem. Commun., 1990, 292.
- 7 (a) L. Li, W. W. Brennessel, W. D. Jones, J. Am. Chem. Soc., 2008,
 130, 12414; (b) L. Li, W. W. Brennessel, W. D. Jones,
 Organometallics, 2009, 28, 3492; (c) C. Scheeren, F. Maasarani, A. Hijazi, J.-P. Djukic, M. Pfeffer, S. D. Zarić, X.-F. Le Goff, L. Ricard,
 Organometallics, 2007, 26, 3336; (d) L. Barloy, J.-T. Issenhuth, M. G. Weaver, N. Pannetier, C. Sirlin, M. Pfeffer, Organometallics,
 2011, 30, 1168.
- A. Krüger, L. J. L. Haller, H. Muller-Bunz, O. Serada, A. Neels, S. A. Macgregor, M. Albrecht, *Dalton Trans.*, 2011, 40, 9911.
- (a) Y. Lian, R. G. Bergman, J. A. Ellman, Chem. Sci., 2012, 3, 3088;
 (b) J. Wencel-Delord, C. Nimphius, F. W. Patureau, F. Glorius,
 Angay, Chem. Int. Ed., 2012, 51, 2247;
 (c) D. R. Stuart, M. o.
- Angew. Chem. Int. Ed., 2012, 51, 2247; (c) D. R. Stuart, M. g. Bertrand-Laperle, K. M. N. Burgess, K. Fagnou, J. Am. Chem. Soc., 2008, 130, 16474; (d) D. R. Stuart, P. Alsabeh, M. Kuhn, K. Fagnou, J. Am. Chem. Soc., 2010, 132, 18326; (e) N. Guimond, S. I. Gorelsky, K. Fagnou, J. Am. Chem. Soc., 2011, 133, 6449; (f) T. K. Harter, T. Paris, Chem. Soc., 2011, 214006; (f) T. K. Harter, T. F. K.
- Hyster, T. Rovis, *Chem. Sci.*, 2011, **2**, 1606; (g) T. K. Hyster, L. Knörr, T. R. Ward, T. Rovis, *Science*, 2012, **338**, 500; (h) B. Ye, N. Cramer, *Science*, 2012, **338**, 504.
- 10 V. V. Grushin, W. J. Marshall, and D. L. Thorn, Adv. Synth. Catal., 2001, 343, 161.
- 55 11 (a) A. Labande, J.-C. Daran, E. Manoury, R. Poli, Eur. J. Inorg. Chem., 2007, 1205; (b) S. Gülcemal, A. Labande, J.-C. Daran, B. Çetinkaya, R. Poli, Eur. J. Inorg. Chem., 2009, 1806; (c) N. Debono, A. Labande, E. Manoury, J.-C. Daran, R. Poli, Organometallics, 2010, 29, 1879; (d) A. Labande, J.-C. Daran, N. J. Long, A. J. P. White, R. Poli, New J. Chem., 2011, 35, 2162.
 - (a) I. M. Lorkovic, M. S. Wrighton, W. M. Davis, J. Am. Chem. Soc.,
 1994, 116, 6220; (b) I. M. Lorkovic, R. R. Duff Jr., M. S. Wrighton,
 J. Am. Chem. Soc., 1995, 117, 3617; (c) T. M. Miller, K. J. Ahmed,
 M. S. Wrighton, Inorg. Chem., 1989, 28, 2347.
- 65 13 (a) A. M. Allgeier, C. A. Mirkin, Angew. Chem. Int. Ed., 1998, 37, 894, and references therein; (b) C. S. Slone, C. A. Mirkin, G. P. A. Yap, I. A. Guzei, A. L. Rheingold, J. Am. Chem. Soc., 1997, 119, 10743; (c) I. V. Kourkine, C. S. Slone, C. A. Mirkin, M. Liable-Sands, A. L. Rheingold, Inorg. Chem., 1999, 38, 2758.
- 70 14 C. K. A. Gregson, V. C. Gibson, N. J. Long, E. L. Marshall, P. J. Oxford, A. J. P. White, J. Am. Chem. Soc., 2006, 128, 7410.

- (a) D. M. Khramov, E. L. Rosen, V. M. Lynch, C. W. Bielawski, Angew. Chem. Int. Ed., 2008, 47, 2267; (b) E. L. Rosen, C. D. Varnado, A. G. Tennyson, D. M. Khramov, J. W. Kamplain, D. H. Sung, P. T. Cresswell, V. M. Lynch, C. W. Bielawski, Organometallics, 2009, 28, 6695; (c) A. G. Tennyson, R. J. Ono, T. W. Hudnall, D. M. Khramov, J. A. V. Er, J. W. Kamplain, V. M. Lynch, J. L. Sessler, C. W. Bielawski, Chem. Eur. J., 2010, 16, 304; (d) A. G. Tennyson, V. M. Lynch, C. W. Bielawski, J. Am. Chem. Soc., 2010, 132, 9420.
- 16 (a) J. C. Kotz, C. L. Nivert, J. M. Lieber, R. C. Reed, J. Organomet. Chem., 1975, 91, 87; (b) J. H. L. Ong, C. Nataro, J. A. Golen, A. L. Rheingold, Organometallics, 2003, 22, 5027; (c) S. Roy, T. Blane, A. Lilio, C. P. Kubiak, Inorg. Chim. Acta, 2011, 374, 134; (d) J. Berstler, A. Lopez, D. Ménard, W. G. Dougherty, W. S. Kassel, A. Hansen, A. Daryaei, P. Ashitey, M. J. Shaw, N. Fey, C. Nataro, J. Organomet. Chem., 2012, 712, 37.
- (a) D. Lamprecht, G. J. Lamprecht, *Inorg. Chim. Acta*, 2000, 309, 72;
 (b) J. Conradie, T. S. Cameron, M. A. S. Aquino, G. J. Lamprecht, J. C. Swarts, *Inorg. Chim. Acta*, 2005, 358, 2530;
 (c) J. J. C. Erasmus, J. Conradie, *Electrochim. Acta*, 2011, 56, 9287.
- 18 Redox potentials were given *vs* the ferrocene/ferrocenium couple, as recommended by IUPAC. In our hands, E°_[FcH/FcH⁺] = 0.54 V/SCE in CH₂Cl₂/*n*-Bu₄BF₄, 0.1 V.s⁻¹, 25°C, and E°_[FcH/FcH⁺] = 0.41 V/SCE in MeCN/*n*-Bu₄BF₄, 0.2 V.s⁻¹, 25°C.
- 19 A square wave voltammetry study evidenced the reversibility of the first oxidation couple by the linear variation of Ip = f (f^{1/2}) within the 10–100 Hz frequency range (R² = 0,9936); J. G. Osteryoung, J. J. Ondea, in *Electroanalytical Chemistry*, ed. A. J. Bard, Marcel Dekker, New York, 1986, vol.14, p. 209.
- 20 N. G. Connelly, W. E. Geiger, Chem. Rev., 1996, 96, 877.
- 21 A blank experiment was carried out by dissolving complex 1 in d₆-MeCN. After 1 week, the ³¹P NMR only showed the signal of the initial complex at 19.3 ppm.
- os 22 The purification of complex **3** can also be done by column chromatography on silicagel (MeCN/MTBE:1/3 then pure MeCN), albeit giving **3** in lower yield due to complex trailing on silica.
- 23 Selective ¹H{³¹P} and ¹³C{³¹P} NMR experiments allowed us to assign unambiguously the quaternary carbon signals in the ferrocene region.
 - 24 (a) M. Poyatos, M. Sanaú, E. Peris, *Inorg. Chem.*, 2003, 42, 2572; (b) E. Mas-Marzá, M. Poyatos, M. Sanaú, E. Peris, *Organometallics*, 2003, 23, 323.
 - 25 BF₄ acts as the Lewis base to take the proton from ferrocene in the Wheland-type intermediate.
 - 26 "If one or more electron-transfer steps involve significant structural change such as a rearrangement or a large change in solvation, the standard potentials of the electron transfer reactions can shift to promote the second electron transfer and produce an apparent multielectron wave", A. J. Bard, L. R. Faulkner, in *Electrochemical Methods: Fundamentals and Applications*, John Wiley & Sons, Inc., New York, 2nd edn., 2001, ch. 12, p. 475.
 - L. Yang, C. A. Correia, and C.-J. Li, Adv. Synth. Catal., 2011, 353, 1269.