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Highlights
A minimal model of self propelled locomotion
Jesús Sánchez-Rodríguez,Christophe Raufaste,Médéric Argentina

• Fish locomotion is studied with a two-dimensional thin airfoil-shaped body, which kinematics reduces to the tail
beat amplitude and frequency, both in the transient and steady states

• Several parameters are studied both theoretically and with numerical simulations: length of the body, amplitude
and frequency of the tail motion, dimensionless mass, position of the center of mass, and drag coefficient

• An analytical expression is found for the Strouhal number, which is strongly correlated to the drag coefficient
while the other parameters can be neglected at the first-order approximation.
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ABSTRACT
Fish locomotion is a complicated problem in the context of fluid-structure interaction and it is
still not understood what is linked to biology and what is linked to mechanics. Measurements
performed on natural fish and artificial systems reveal that swimming at high Reynolds number
is found in a narrow range of Strouhal numbers - a dimensionless combination of the swimming
velocity, tail beat amplitude and frequency. With a minimal model of aquatic locomotion, we
investigate how this number depends on the numerous parameters at play. We show a strong
correlation with the drag coefficient, while the effect of the other parameters can be neglected at
the first-order approximation.

1. Introduction
Fish across many species and scales cruise in a relatively narrow range of Strouhal numbers, around 0.3 (Triantafyl-

lou, Triantafyllou and Gopalkrishnan (1991); Taylor, Nudds and Thomas (2003); Gazzola, Argentina and Mahadevan
(2014); Saadat, Fish, Domel, Di Santo, Lauder and Haj-Hariri (2017)). This dimensionless parameter, St = Af∕U , is
a simple combination of the swimming velocity U , tail beat amplitude A and frequency f . The self propelled locomo-
tion is usually modelled by accounting for the fluid-structure interaction and neglecting the biological aspects. In that
sense, the constancy of the Strouhal number is found in the high Reynolds numbers - or turbulent - regime with typical
Re larger than 103 − 104. This indicates a correlation with the nature of the drag force, dominated by pressure drag
over skin friction, and the possibility to derive a simple scaling argument to understand the almost constancy of the
Strouhal number as a balance between thrust and drag per unit depth, which scale as �f 2A2L and �U2L respectively
with L the fish length (Gazzola et al. (2014)). In the same vein, numerous artificial systems have been studied in
experiments and models such as flapping foils (Koochesfahani (1987); Triantafyllou, Triantafyllou and Grosenbaugh
(1993); Schouveiler, Hover and Triantafyllou (2005)) or compliant robots (Gibouin, Raufaste, Bouret and Argentina
(2018); Zhu, White, Wainwright, Di Santo, Lauder and Bart-Smith (2019)).

Some experiments consist in varying the kinematic parameters A and f and to find the free swimming velocity U .
Experiments performed with flexible panels (Quinn, Lauder and Smits, 2014; Saadat et al., 2017) and robots (Gibouin
et al., 2018) undergoing heaving or pitching motions show that St is relatively constant, independently of f , as long
as the dimensionless amplitude A∕L remains small. As an example it varies less than 50% up to A∕L = 0.35 for
the robotic fish studied by Gibouin et al. (2018), in agreement with the thrust–drag balance mentioned above. In
addition Saadat et al. (2017) consider that an efficiency criterion holds at the same time, which leads to a maximal
efficiency around A∕L ∼ 0.2, as observed in nature (Bainbridge, 1958; Hunter and Zweifel, 1971; Rohr and Fish,
2004; Saadat et al., 2017).

On the other hand, experiments performed with rigid foils undergoing heaving and pitching motions propose a
slightly different approach: the Strouhal number is varied for a given value of A∕L. For instance it varies in the range
0.1-1.5 for A∕L ∼ 0.2 in experiments by Quinn, Lauder and Smits (2015). The propulsive efficiency is called to set
the value of parameters, here St, and in that case the efficiency exhibits a maximum in the range 0.2-0.4 (Floryan,
Van Buren and Smits (2018)).

While both a thrust-drag balance and an efficiency criteria are called at the same time with these different kind of
systems, they set the values of A∕L and St in different ways. It is still remarkable that these values are consistent with
data obtained with natural fish in all cases. While the thrust-drag balance sets the order of magnitude of St (Gazzola
et al. (2014)), it is remarkably fixed for free-swimming flexible structures, while it needs to be fine-tuned with an
efficiency criterion for rigid systems undergoing heaving and pitching motions.
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Here we consider a simple model of aquatic locomotion to give further insights. We consider an airfoil-shaped,
rigid and two-dimensional body performing a kinematic motion of amplitude A and frequency f . This body is free
to move contrary to the experiments and is not prescribed to a given position. Only the orientation of the body with
respect to a fixed frame of reference is forced and the rest is predicted by the second law of Newton. Expressions of the
thrust and drag forces are based from the Theodorsen approach (Theodorsen (1935); Garrick (1936)) in the realm of
perfect fluid, but we take into account an additional pressure drag, which can not be predicted in this framework. First,
we show that such a swimmer initially at rest, starts to propel itself as the body oscillates. It exhibits both heaving and
pitching motions and will finally cruise at constant speed whatever the initial conditions. Second, in the limit of small
tail beat amplitude, we predict the locomotion velocity, and the Strouhal number. The latter does not depend on the tail
beat frequency but is strongly correlated with the drag coefficient. For classical values of this coefficient, we find that
St is almost constant, around 0.1 − 0.3, in agreement with natural and artificial systems. In addition to this very good
predictive capacity, we demonstrate how the physical parameters prescribe the phase angle between pitch and heave.

The article is composed as follows. After having introduced the problem, we present our model (Sec. 2) and the
methods (Sec. 3) to analyse it. Sec. 4 is devoted to present the results of our approaches, and the last section gathers
some concluding remarks.

2. Model
We assume our swimmer to be a two-dimensional thin body, composed by a point mass (2D mass m, unit kg.m−1)

attached to a straight, rigid andmassless foil of lengthL, whichmodels the tail. In the reference frame of the laboratory,
this tail is inclined by an angle � with respect to the x axis and is counted positive clockwise, as seen in Fig. 1. The
center of mass is located at the algebraic distance aL∕2 from the center of the tail (with a a dimensionless number
in the range [−1, 1]). As example, for a = 0, the center of mass coincides with the center of the tail. The swimmer
evolves inside an inviscid fluid of density �. Swimming is triggered by imposing the harmonic forcing

�(t) = �0 sin(!t). (1)
We expect the swimmer to evolve in average in the x direction, because the trailing edge sits in the right part of the
foil. We note u(t) and v(t) respectively the instantaneous velocities of the center of mass in the x and y directions. In
the following, we will define U =< u(t) > as the average swimming velocity in steady state, where < . > consists in
averaging over one period of the harmonic forcing �.

Figure 1: Sketch of the swimmer and relevant quantities. We note m the mass of the swimmer per unit length in the third
dimension and � the density of the fluid. Angles are counted positively clockwise.

Assuming small angles (�0 ≪ 1), we rely on the approach developed by Theodorsen (1935) and Garrick (1936)
to calculate the forces at play. Since our swimmer is free to move, the position of the axis of rotation defined in
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Theodorsen is not relevant here and everything can be expressed in terms of the position of the center of mass only.
In Theodorsen’s equations we can set the position of the center of mass at aL∕2 by setting x� = 0 and ℎ̇ = v(t) with
Theodorsen’s notations. In addition, � = 0 since we do not consider any flap. The y direction force, Fy, writes:

Fy = −��
(L
2

)2 [
u(t)�′(t) + u′(t)�(t) + v′(t) − aL

2
�′′(t)

]

− 2��L
2
u(t)C(k)

[

u(t)�(t) + v(t) +
(1
2
− a

) L
2
�′(t)

]

+ O(�3),
(2)

where C(k = !L∕u(t)) is a function introduced by Theodorsen (1935) to account for the history of the shed vortices.
Here two comments come into sight.

• First, C(k) is difficult to compute because it is a non-local quantity that accounts for the vorticity distribution
in the entire wake of the airfoil. Nevertheless, if we consider a treatment of the problem with complex periodic
variables and set � = �0ei!t, this function noted CTℎ(k) becomes complex and reduces to a composition of
Hankel functions (Theodorsen (1935)). In the framework developed here, the argument k ⪆ 1 and CTℎ(k) iswell approximated by a real constant equal to 1/2 (Theodorsen (1935); Garrick (1936)), which means that we can
set C = 1∕2 as well in the treatment of the problem with real quantities. In the following, we treat the influence
of the wake by setting C = 1∕2.

• Second, the term u′(t)�(t) does not appear in Theodorsen’s derivation but arises immediately as soon as we
consider temporal variations of u, as remarked in Greenberg (1947). Theodorsen’s approach exploits the linearity
of the equation of the velocity potential, and predicts Fy(t) by adding the potentials induced by the motions of
the airfoil - like the vertical displacement and the variation of the attack angle. To take into account the effect of
an unsteady streaming flow, it is necessary to add the supplementary potential induced by a longitudinal velocity
u(t), which turns out to be zero, because the airfoil is infinitely thin. Consequently the potential flow of an airfoil,
submitted to an unsteady velocity u(t) takes the same form as prescribed in Theodorsen’s model. Nevertheless,
to compute the pressure exerted by the fluid, we use, as usual, the Bernoulli relation which generates the extra
term �(t)u̇(t), as in Greenberg (1947).

Following Garrick (1936), the force induced by the inviscid fluid in the x direction, Fx accounts for two contributions:
Fx = �Fy + FLE + O(�4)

1. The first contribution �Fy corresponds to the projection of the Theodorsen pressure in the x direction
2. FLE stands for a force that results from the presence of a singular flow: an infinitely thin body would lead to a

divergence of the pressure at the leading edge of the swimmer. To avoid for this non physical effect, we use the
expression of Garrick (1936), by adding FLE .

FLE = ��
(L
2

) 1
√

2

[

2C
(

v(t) + u(t)�(t) +
(1
2
− a

) L
2
�′(t)

)

− L
2
�′(t)

]2
(3)

We remark here that Garrick introduced a regularization to smooth the horizontal velocity, i.e. the horizontal
component of the gradient of the velocity potential, and therefore does not introduce any temporal derivative of
u(t), v(t) or �′(t). The resulting force, known as the leading edge suction, appears to be significant for biological
swimmers, as shown by recent measurements (Lucas, Lauder and Tytell (2020)).

In this approach, note that Fy is a second-order approximation in �0, while Fx accounts for third-order terms as well.
Finally, the velocities of the swimmer are calculated following the second law of Newton:

mu′ = Fx − �cdLu(t)2 (4)
mv′ = Fy (5)

We recall here that these momentum balances are written per unit length. To take into account the drag induced by
the boundary layers, we have added an horizontal pressure drag force. Defining the wetted perimeter as 2L, this force
writes 1

2�u(t)
2cd(2L), with the drag coefficient cd .
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3. Methods
First, the equations are transformed to use dimensionless quantities. Time and velocities are scaled by 1/! and

!L∕2 respectively. We define t̃ = !t, ũ = 2u
!L and ṽ = 2v

!L . Using these quantities, we write the set of dimensionless
equations summarized in the appendix A. We deduce four relevant dimensionless parameters: �0, cd , a and

M = 4m∕(��L2), (6)
whereM is the dimensionless mass of the swimmer. Given that we consider a thin swimmer, we expectM ≪ 1. In
regard of the dimensional analysis, any dimensionless calculated quantity will be a function of these four parameters.
Such is the case of the dimensionless steady velocity Ũ , of the ratio A∕L = 1

2 Ã of the tail beat amplitude (defined as
the peak-to-peak amplitude) to the length or of the Strouhal number St = Af∕U = Ã

2�Ũ .We study the set of dimensionless equations using direct simulations, and perturbative expansion. For both ap-
proaches, we take ũ(0) = ṽ(0) = 0. We have checked with the numerical approach that these values do not change the
behavior in the steady state.
3.1. Perturbative approach

To go in depth in understanding this minimal model and how the different parameters influence the swimming, we
perform a perturbative development in order to determine an analytical expression for the velocities. The parameter
which allows our perturbative expansion is �0, which is assumed to be small compared to the unity, because self
propelled swimmers rarely exhibit high values for �. In fact, we show in Sec. 4.2 that �0 ∼ A∕L, which is equal to
0.2 for most fish as written in introduction.

Wewill rename �0 as " all along this section and �(t) = " sin(t). Thorough calculations are reported in the appendix
B. Given the small angle hypothesis, the expressions of the velocities can be expanded to the second order in ". In the
limitM ≪ 1, the velocities in the steady state write:

ũ(t̃) = "
√

�
32cd

+ "2
[ 1
32M

sin(2t̃)
]

+ O("3) (7)

ṽ(t̃) = "a cos(t̃) − "2 3
2

√

�
32cd

sin(t̃) + O("3) (8)

ũ(t̃) and ṽ(t̃) reach their steady state values after a transient time t̃ ∼ M∕"
√

cd : this reflects that a heavy swimmer
will need time to reach its cruising velocity. An oscillatory function, whose frequency is doubled as compared to the
driving angle, is superposed to the mean swimming velocity. We remark here that this expansion in terms of the small
parameter " is formal and might break the assumption of a small transverse velocity in comparison to the longitudinal
velocity. Nevertheless, on one hand, we recall that the pressure drag coefficient is quite small, of order 0.01 (see
Sec. 4), and this value permits to finally verify that the locomotion velocity is larger than the transverse velocity.
On the other hand, experimental data suggest that the thrust derived from the linear theory likely extends beyond
the small amplitude regime (Mackowski and Williamson (2015); Fernandez-Feria and Sanmiguel-Rojas (2019)). The
dimensionless swimming velocity Ũ =< ũ(t̃) > is given by

Ũ = "
√

�
32cd

+ O("3). (9)

The steady state transverse velocity ṽ(t̃) is a harmonic function of time. By integrating this velocity, the dimensionless
y-position of the center of mass is given by ỹc(t̃) = "a sin(t̃) + "2 32

√

�
32cd

cos(t̃) =
√

"2a2 + "4 94
�

32cd
sin(t̃−�). From

this expression we can infer the phase angle� between the oscillations of the position of the mass center and the driving
angle �.

� = −�
2

+ arctan

[

8a
3"

√

2cd
�

]

. (10)
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Still in the small angle limit, the dimensionless y-position of the tip of the tail is given by ỹt = ỹc + (1 − a)� =
" sin(t̃) + "2 32

√

�
32cd

cos(t̃). The dimensionless tail beat amplitude Ã is thus given by

Ã = 2"

√

1 +
(

"3
2

√

�
32cd

)2
+ O("3) = 2" + O("3). (11)

As a consequence the tail beat amplitude A is given by 2"L∕2 and A∕L = �0. The position of the tail is in-phase withthe driving angle, while the phase of the position of the center of mass depends on a: it is in-phase if a → 1 and the
phase shift equals −� if a → −1.

With the dimensionless quantities, the Strouhal number St = Af∕U writes St = Ã
2�ũ . Given that ũ and Ã are

calculated up to the second order in ", St can be calculated up to the first order in ":

St =

√

32cd
�3∕2

+ O("2). (12)

In this first-order approximation, only the constant term is nonzero. Remarkably, it emphasizes that the Strouhal
number is strongly correlated to the drag coefficient and barely depends on the other parameters.
3.2. Numerical approach

The equations are solved numericallywith a Runge-Kuttamethod, at the fourth-order approximation (Press, Teukol-
sky, Vetterling and Flannery (2007)). We impose as initial conditions ũ(0) = ṽ(0) = 0, and let our model evolves
towards the cruising locomotion regime, which is reached after the aforementioned transient timeM∕�0

√

cd .

Figure 2: ũ and ṽ as functions of t̃ for the set of parameters [�0 = 0.2, a = 0, cd = 0.01] and M = 0.01, 0.02 and 0.04
represented by the bold green, regular orange and thin blue lines respectively.

In all our simulations, the forcing in the pitch results in a cruising self propelled swimmer, for physically acceptable
dimensionless parameters. In Fig. 2, we show a typical time evolution of the velocities ũ and ṽ: as expected after a
transient time which depends onM , the swimmer cruises in the steady state regime. Theodorsen’s approach has been
designed for a finite stream velocity. The model is robust with respect to the unsteadiness but is expected to be less
precise in the transient regime, in particular if the swimmer starts from rest.

We remark here that the horizontal component of the locomotion oscillates around the steady value given by Eq. (9),
with a frequency doubled with respect to the pitch forcing. We present in the Fig. 3 the dynamics of the angle �, the
y-position of the center of mass ỹc and the x-component of the velocity, obtained after the transient regime. ũ(t̃)
oscillates twice faster than � and ỹc , as predicted by the asymptotics, Eqs. (7,8). We will directly address the phase
angle between pitch and heave in Sec. 4.3.
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Figure 3: �, ỹc and ũ as functions of t̃ in the steady state for the set of parameters [�0 = 0.2, a = 0, M = 0.01, cd = 0.01].

4. Results
The model depends on four dimensionless numbers and it is necessary to explore the parameter space in order to

gain a complete outlook of the predictions of the system. In this part, we systematically study the effects of varying
the values of �0, a,M and cd . We then vary most of these parameters while maintaining some of them fixed. We tune
our controlling parameters to the typical values measured in underwater swimming animals.

The reference values are set to [�0 = 0.2, a = −1∕2,M = 0.01 and cd = 0.01]. The perturbative analysis show that
�0 ≃ A∕L. Consequently, we have chosen as reference value �0 = 0.2, which is typical for fish (Bainbridge (1958);
Hunter and Zweifel (1971); Rohr and Fish (2004); Saadat et al. (2017)). a = −1∕2 corresponds to the particular case,
where the center of mass is situated in the middle of the leading part of the fish. Since the swimmer is considered as a
thin body, we expectM ≪ 1. M = 0.01 is taken quite arbitrarily since we will show that in this limit,M does not have
a significant effect on the measured quantities in the steady state. Values of the drag coefficient cd are more difficult
to infer from experiments since they require measurements when fish do not make any movement. Nevertheless some
data were collected either with dead fish or during gliding deceleration. Lighthill reviewed data obtained with salmon,
herring and trout and emphasized coefficients around 0.01 (Lighthill (1971)). Cods exhibit value around 0.011−0.015
(Videler (1981)), bluegill around 0.015 (Tandler, Gellman, De La Cruz and Ellerby (2019)) and dolphins between 0.003
and 0.03 (Lang (1975); Videler and Kamermans (1985)). The drag coefficient seems to depend on the experimental
procedure, but in most cases the coefficients range between 0.01 and 0.1 for Reynolds numbers ranging between 103
and 3 ⋅ 106 (Tandler et al. (2019)). In the light of these measurements, we take cd = 0.01 as the reference value.

In what follows, we discuss the effect of the four parameters on the Strouhal number St, the amplitude to length
ratio A∕L and the phase angle �.
4.1. Strouhal number

The Strouhal number is assessed from the steady state values of Ũ and Ã in simulation. In Fig. 4, color plots
represent St as a function of cd (from 10−3 to 10−1) and another parameter among �0 (from 0.003 to 0.3), a (from −1
to 1) andM (from 10−3 to 10−1). This choice follows the observation that St is strongly correlated to cd around the
reference values, independently of the other parameters. This is consistent with the first-order approximation obtained
theoretically (see Eq. (12)).
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Figure 4: Variation of the Strouhal number, as the dimensionless numbers M , cd , � and a are varied. From left to right:
[a = −1∕2 and �0 = 0.2], [M = 0.01 and a = −1∕2] and [M = 0.01 and �0 = 0.2].

The perturbative approach and the numerical simulations are compared in Fig. 5. They are in very good agreement
with each other and support the trend St ∝ √

cd . More quantitatively, using the analytical expression of the Strouhal
number at the first-order approximation, Eq. (12), with values of the drag coefficient measured with fish (0.01-0.1),
we obtain values of St between 0.1 and 0.3. It is remarkable that our simple model recovers quantitatively the values
measured in biological swimmers.

Figure 5: Strouhal number St as a function of the drag coefficient cd [�0 = 0.2, a = −1∕2 and M = 0.01]. The blue
thick curve is obtained numerically, while the the red curve corresponds to the prediction, Eq. (12). In the two insets, we
display St as a function of �0 [a = −1∕2, M = 0.01 and cd = 0.01] and a [�0 = 0.2, M = 0.01 and cd = 0.01].

The study emphasizes that St barely vary with �0, a orM , but we recall thatM and �0 play a role in the transientstate since the cruising swimming velocity Ũ is reached after a typical time t̃ ∼ M∕�0
√

cd (Eq. (7) and Fig. 2). In
the steady state where the swimmer has reached a nearly constant velocity, the inertia terms (closely related to the
parameter M) become negligible and do not play any important role in the final swimming velocity, because this
quantity is only determined by the equilibrium between thrust and drag forces as proved by Gazzola et al. (2014).
4.2. Tail beat amplitude

In Fig. 6, A∕L is represented as a function of �0, both in simulations with the parameters [a = −1∕2,M = 0.01
and cd = 0.01] and in theory with the second-order approximation (A∕L = Ã∕2 in Eq. (11)). We see that A∕L ≃ �0is a very good approximation in the small angle limit. For A∕L = 0.2 (�0 = 0.17), there is a 15% difference between
what is obtained in simulation and in theory. This means that the we probe the limit of the small angle regime (and
the validity of our equations as well) and it is remarkable that natural fish are found there, at the onset of a strongly
nonlinear regime where a third-order approximation would be required. Saadat et al. (2017) have shown that a criterion
on the minimal energy assumption sets A∕L ∼ 0.2, which would emphasizes that higher order terms become rapidly
inefficient. The same argument would hold in the study performed by Floryan et al. (2018) since they find that the St
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number at maximal efficiency is still very close to the one obtained in the small angle limit.

Figure 6: Tail beat amplitude A∕L as a function of the driving angle �0. The blue symbols are obtained numerically, while
the red curve corresponds to the prediction from Eq. (11).

4.3. Phase angle between heave and pitch
Our asymptotics computations conjecture through Eq. (10) the existence of a master curve for the phase � as a

function of a
√

cd
�0

. We have collapsed various results of numerical computations onto this sigmoid curve in Fig. 7: it
appears that our small angle approximation successfully predicts the phase angle between pitch and heave, and � takes
value in the ranges [−�,−�∕2] and [−�∕2, 0] for a < 0 and a > 0 respectively.
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Figure 7: � as a function of
a
√

cd
�0

. The red curve is the analytical prediction of Eq. (10), �(x) = −�∕2+arctan
(

8
3

√

2
�
x
)

.

In all the simulations we vary a and use the value M = 0.01, and the results are displayed for several values of cd and �0.
Triangles and squares correspond to cd = 0.01 and 0.1 respectively, and large black and small blue symbols correspond to
�0 = 0.02 and 0.2 respectively.

Thanks to pioneering studies in driving a NACA airfoil, there exist some measurements with respect to the syn-
chronisation of the pitch and heave undulations (Anderson, Streitlien, Barrett and Triantafyllou (1998); Read, Hover
and Triantafyllou (2003)). To compare our results with these studies, we define  = � + � the phase angle between
pitch and heave with angles � counted positively counterclockwise (all along our study we have used the clockwise
definition taken by Theodorsen (1935)). The aforementioned studies demonstrate that the best thrust performance is
reached as the phase angle  is close to 90◦ for a driven airfoil, or equivalently � close to -90◦, following our notation.
In the light of our results, this suggests that the best thrust performance is obtained as a√cd∕�0 → 0 or |a|≪ �0∕

√

cd .We remark here that if a < 0,  tends to 0, for very low amplitude of the tail �0 → 0. We also emphasize that the
phase  is equal to 90◦, independently of any controlling parameter if a = 0. All these arguments indicates that the
location of the mass center should have an impact on the thrust performance.

5. Discussion
First, with our set of equations we expect St to be a function of the dimensionless quantities �0, cd , a and M .

None of them is a function of the tail beat frequency f . This means that the Strouhal number of a free-swimming,
airfoil-shaped, rigid body does not depend on the frequency. This behavior is different from the one of the same kind
of bodies performing pitching and heaving motions in classical water tunnel experiments (Quinn et al. (2015); Floryan,
Van Buren, Rowley and Smits (2017)). In this case, the body is not free to move since the longitudinal position is fixed
and the transverse motion is imposed. These constraints allow pitching and heaving motions to be set independently,
which is accounted for by an additional dimensionless number that includes the tail beat frequency. With a free-
swimming body, pitching and heaving motions can not be dissociated and the tail beat frequency is not relevant in
determining the Strouhal number.

Second, the model makes explicit the trend St ∝ √

cd expected from a simple thrust-drag balance (Gazzola et al.
(2014); Gibouin et al. (2018)). This result obtained with a free-swimming body in the small amplitude regime stems
from a thrust scaling as A2f 2. This scaling seems to be validated beyond the small amplitude regime with constrained
systems such as heaving foils (Quinn et al. (2014)), pitching foils (Floryan et al. (2017)), foils combining both of them
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(Floryan et al. (2018)) and flexible robotic fish Gibouin et al. (2018).

6. Conclusions
We have studied a minimal model of fish locomotion. Our model is a 2D thin airfoil-shaped body which performs

an oscillating motion; its cruising swimming velocity is predicted both numerically and theoretically in the small
amplitude regime as a function of several parameters: the body length, the amplitude and frequency of the tail motion,
the dimensionless mass, the position of the center of mass and the drag coefficient. We show that the Strouhal number
is strongly correlated to the drag coefficient, while the effect of the other parameters can be neglected at the first order
approximation. Given that natural fish exhibit values of cd about 0.01-0.1, we find an almost constant Strouhal number,
around 0.1-0.3, in very good agreement with values measured in biological swimmers. In addition, we uncover that
the position of the center of mass has an effect on the phase angle between pitch and heave, and should consequently
influence the thrust performance.

Our simple model accurately predicts the cruising motion of swimmers, but it remains dependent on the choice of
the tail dynamics. It would be engaging to implement a mechanism that automatically selects the kinetics of the tail,
without imposing either the amplitude �0 or the beat frequency. We believe that a proprioceptive approach, like those
proposed in Gazzola, Argentina and Mahadevan (2015), would be a good research direction.
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A. Appendix: Dimensionless equations
In this appendix we derive the dimensionless equations that we use in numerical simulations as well as in the

perturbative treatment. Newton’s second law with the forces calculated in Eqs. (2) and (3) plus pressure drag force
reads:

mu′ = Fx − �cdLu2 (13)
mv′ = Fy (14)

To obtain the dimensionless system we define the new dimensionless variables:

ũ(t) =
2u(t)
L!

(15)
ṽ(t) =

2v(t)
L!

(16)
t̃ = !t (17)

Using these variables, we obtain the two dimensionless differential equations that we use for both the numerical
and perturbative resolutions of our system.

Mũ′(t̃) = F̃x −
2
�
cd ũ

2(t̃) (18)
Mṽ′(t̃) = F̃y (19)

F̃x = �(t̃)F̃y +
1
√

2

[

2C
(

1
ũ(t̃)

)

(

ṽ(t̃) + ũ(t̃)�(t̃) +
(1
2
− a

)

�′(t̃)
)

− �′(t̃)
]2

(20)

F̃y = −
[

ũ(t̃)�′(t̃) + ũ′(t̃)�(t̃) + ṽ′(t̃) − a�′′(t̃)
]

− 2ũ(t̃)C
(

1
ũ(t̃)

)

[

ũ(t̃)�(t̃) + ṽ(t̃) +
(1
2
− a

)

�′(t̃)
]

, (21)

Three dimensionless parameters appear: i) M = 4m∕(��L2) stands for the ratio of the swimmer mass to the added
mass, ii) the drag coefficient cd , iii) the dimensionless position of the center of mass a. The driving amplitude �0 is thefourth relevant dimensionless parameter in the system. We recall that the influence of the shed vortices is measured
by the function C(1∕ũ(t̃)), which is set to 1∕2 because 1∕ũ(t̃) ⪆ 1.

B. Appendix: Asymptotic approach
In this appendix, we derive the expression of the swimmer velocities as functions of all the dimensionless param-

eters. For simplicity (and only in this appendix), we remove the tilde above the dimensionless quantities. We assume
that the driving amplitude is a small quantity, �0 ≪ 1, and we use the notation " = �0 to emphasize this hypothesis.

The angle �(t) writes as:
�(t) = "

2i
eit + c.c.,

where i is the imaginary unit, and c.c.means complex conjugate. We use as an ansatz the following form of expansion:
u(t) = "u1(�) + "2u2(t) + "3u3(t) + O("4) (22)
v(t) = "v1(t) + "2v2(t) + O("3), (23)

where � is used to identify a slow time scale � = "t, to capture transient regimes. We have assumed that the first order
of the horizontal velocity only depends on the slow time scale. The purpose of this appendix is to compute the leading
orders of these expansions.
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B.1. First Order
At order ", we thoroughly determine the equation for the leading term of the transverse velocity:
v′1(t) =

a
2(1 +M)

(

ieit + c.c.
)

.

This system is integrated into:
v1(t) =

a
2(1 +M)

(

eit + c.c.
)

+Kv,1, (24)
where Kv,1 is an integration constant, that should be set to zero, to remove any vertical drift induced by the initial
condition.
B.2. Second Order

At order "2, we find the equation needed to determine the values of u1(�) and u2(t):
du2(t)
dt

= −
du1(�)
d�

−
2cd
�M

u21(�) +
1

2M
v21(t) +

1 +M + 4a(1 + a + (a − 1)M)
16M(1 +M)

− 1 + 2a
4M

v1(t)eit +
1 +M + 4a (1 + a +M(3 + a))

32M(1 +M)
e2it + c.c

Given that v1(t) ∝ exp (it), we re-interpret this ODE under the following form
du2(t)
dt

= C +De2it + c.c.

This system does not present harmonic terms because the forcing is a quadratic function of � in the horizontal velocity
component. In this ODE, we remark that if C is not equal to zero, then the amplitude of u2(t) will increase linearly in
time, such that at we will have u2 ≫ u1 for large times, which breaks our expansion. To maintain the validity of the
ansatz, we set C = 0 as a solvability condition. In other words, we invoke the Fredholm Alternative (Guckenheimer
and Holmes (2002)), this restriction imposes an equation for u1(�) :

du1(�)
d�

= −
2cd
M�

u21(�) +
(1 +M − 2aM)2

16M(1 +M)2

The initial condition to solve this equation is u1(0) = 0,

u1(�) = U1 tanh
(

�
�sat

)

, U1 =
1 +M − 2aM
4(1 +M)

√

cd

√

�
2
, �−1sat =

1 +M − 2aM

2M(1 +M)
√

2�

√

cd . (25)

Hence U = "U1 is the asymptotic locomotion velocity, and �sat is defined as the characteristic transient time. In the
limit for whichM tends to zero, we obtain the simplified expression of the dominant term in ũ(t̃) in Eq. (7)

Inserting the expression of u1(�) in the equation for u′2(t), we deduce the equation determining u2(t):
du2(t)
dt

=
1 + 2M(1 + 6a) +M2(1 + 4a(a + 3))

32M(1 +M)2
e2it + c.c

We obtain by integrating:

u2(t) = Ku,1 − i
1 + 2M(1 + 6a) +M2(1 + 4a(a + 3))

64M(1 +M)2
e2it + c.c (26)

The equation v2(t) is deduced from the second order of the vertical momentum balance:
v′2(t) =

2a − 3
4(1 +M)

u1(�) −
u1(�)
1 +M

v1(t),

and we solve it :
v2(t) = Kv,2 + i

3 + (3 − 2a)M
4(1 +M)2

u1(�)eit + c.c. (27)
Again the integration constant Kv,2 is set to zero to remove any vertical drift.
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B.3. Third order
At this order, the expression becomes very lengthy, but the equation for u3 presents the same form as those of u2:
u′3(t) = C + oscillating terms

By invoking the solvability condition to maintain the validity of the expansion, the constant C is set to zero and we
finally get:

Ku,1 = 0

B.4. Phase shifting
To compute the phase angle between pitch and heave in the steady state, we first rewrite the expression of the lateral

velocity at the second-order:

v(t) = " a
1 +M

cos(t) + "2U1
M(2a − 3) − 3
2(1 +M)2

sin(t),

using the results from Eqs. (24,27). In order to compare the heave and the pitch, we decompose this expression using
only one trigonometric function:

v(t) = − a"
1 +M

√

1 + "2
(

U1
M(2a − 3) − 3
2a(1 +M)

)2
sin

(

t − �v
)

�v = arctan
[

2a(1 +M)
"U1 (3 −M(2a − 3))

]

,

which integrated gives the position of the tail:

yt(t) =
a"

1 +M

√

1 + "2
(

U1
M(2a − 3) − 3
2a(1 +M)

)2
cos

(

t − �v
)

By comparing the above expression of yt(t) with respect to �(t) = " cos (t − �∕2), we finally deduce the phase
shifting in the heave-pitch motion:

� = −�
2
+ �v = −�

2
+ arctan

[

2a(1 +M)
"U1 (3 −M(2a − 3))

]

. (28)

In the main text, we introduce this phase in the limitM → 0, in the Eq. (10)
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