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A Data-Driven Multiscale Theory For
Modeling Damage and Fracture of
Heterogeneous Materials

Modesar Shakoor, Jiaying Gao, Zeliang Liu, and Wing Kam Liu

Abstract The advent of advanced processing and manufacturing techniques
has led to new material classes with complex microstructures across scales
from nanometers to meters. In this paper, a data-driven multiscale theory
for the analysis of these complex material systems is presented. A mechanis-
tic concurrent multiscale method called Self-consistent Clustering Analysis
(SCA) is developed for general inelastic heterogeneous material systems. The
efficiency of SCA is achieved via data compression algorithms which group
local microstructures into clusters during the training stage, thereby reducing
required computational expense. Its accuracy is guaranteed by introducing a
self-consistent method for solving the Lippmann-Schwinger integral equation
in the prediction stage. The proposed theory is illustrated for a compos-
ite cutting process where fracture can be analyzed simultaneously at the
microstructure and part scales.

1 Introduction

The analysis and design of new materials with improved efficiency and per-
formance requires cutting edge process and material modeling theories. For
instance, new lightweight vehicles are being developed using lighter material
systems [7]. Conventional processing-structure-property-performance relation-
ships must be reconsidered to account for the microstructural complexity of
new advanced materials systems such as hierarchical materials [15]. In this
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aim, integrated computational materials engineering approaches relying on
predictive multiscale modeling theories are being developed [12, 16].

In this paper, a data-driven multiscale modeling theory is presented and ap-
plied to a problem involving a process-structure relationship. This relationship
emerges from microstructure modeling using computational homogenization
and reduced order modeling.

The first novelty of the proposed data-driven multiscale modeling theory is
the use of the so-called Self-consistent Clustering Analysis (SCA) [9]. This
method relies on the Fast Fourier Transform (FFT) based numerical method
introduced in Ref. [14], which formulates conventional balance equations with
periodic boundary conditions as a periodic Lippmann-Schwinger equation.
The originality in SCA is that the Lippmann-Schwinger equation is solved
using a clustered discretization. The voxel mesh Direct Numerical Simulation
(DNS) model of the microstructure is hence reduced into clusters of voxels,
and degrees of freedom in the reduced model are defined cluster-wise instead
of voxel-wise. This reduces mesh dependency in the RVE due to the built-in
local averaging characteristics of the clusters.

Voxels clustering is performed using the k-means clustering method [11] ap-
plied on a database of DNS results for the studied microstructure. These DNS
results do not need to include complex loading paths, as accurate predictions
could be obtained in a previous work using only proportional loading paths
in 6 orthogonal directions [9]. In fact, in this previous work DNS results were
obtained using small strain amplitudes for which material response remained
in the linear elastic range.

The second novelty of the proposed data-driven multiscale modeling theory
is its capability to model damage and fracture at multiple scales [10]. A
concurrent computational homogenization scheme is developed in order to
solve any macroscale problem with material laws computed on the fly from
microstructure information. In this scheme, the macroscale problem is solved
using the FE method, with the particularity that conventional phenomenolog-
ical constitutive equations are replaced by micromechanical problems solved
using SCA. These micromechanical models, called Representative Volume
Elements (RVEs), include enough microstructural features to be statistically
representative of the local microstructure around each material integration
point. Moreover, the RVEs are solved by SCA, which defines non-local inter-
action tensors among material clusters and can be considered as a specific
type of meshfree method. This nonlocal effect introduced by SCA also avoids
localization issues at RVE scale.

Damage modeling leads to well-known localization and pathological mesh
dependence issues. In the context of concurrent computational homogeniza-
tion, these issues arise at two scales. Indeed, pathological localization can
occur within arbitrary elements of the macroscale problem discretization, and
also within arbitrary clusters of microscale problems discretizations. In the
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proposed data-driven multiscale damage modeling theory [10], the damage
variable is regularized at the macroscale using non local integral averaging to
avoid any localization between RVEs, while at the microscale it is coupled to
constitutive equations in an average sense to avoid any localization within
RVEs.

The paper is structured as follows. It starts with a presentation of SCA in
Sect. 2, followed by details on its exploitation for multiscale damage modeling
in Sect. 3. The relevance of the proposed data-driven multiscale modeling
theory is illustrated by applications in Sect. 4.

A multiscale simulation of the cutting of a Unidirectional (UD) Carbon
Fiber Reinforced Polymer (CFRP) composite is conducted to show how
fracture can be modeled simultaneously at two scales with the proposed
theory.

2 Self-consistent Clustering Analysis

In the Finite Element (FE) method, the displacement field is discretized
at mesh nodes, and material integration is conducted at integration points.
Reducing the number of displacement degrees of freedom does not directly
reduce neither the number of integration points nor the cost of material
integration. Therefore, FE based model order reduction methods must be
coupled to material integration reduction techniques in order to be efficiently
applicable to nonlinear materials [3, 4, 5].

In the FFT-based numerical method [14], the strain field is discretized
voxel-wise, and material integration is conducted voxel-wise as well. As a
consequence, reducing the number of strain degrees of freedom directly reduces
the cost of both Lippmann-Schwinger equation solution and material inte-
gration. In comparison to FE based model order reduction methods [3, 4, 5],
SCA is hence a more straightforward approach to reduced order modeling [9].
This approach is briefly summarized in the following. The reader is referred to
Ref. [9] for a full description, and to Ref. [17] for discussions on mathematical
foundations. Details on the clustering algorithm can be found in Ref. [11].

In the following, the superscript m indicates microscale variables that are
discretized voxel-wise in the FFT-based numerical method, and cluster-wise
in SCA. The RVE domain over which Eq. (2) is solved is denoted Ωm. The
superscript M indicates macroscopic variables that are homogeneous over the
RVE.
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2.1 Continuous Lippmann-Schwinger equation

First order homogenization consists in defining the infinitesimal strain tensor
field in the RVE εm as the addition of the macroscopic (homogeneous) strain
εM and a microscopic (heterogeneous) fluctuation. As proved in Ref. [14],
Hill’s lemma enables to define the macroscopic Cauchy stress tensor σM as
the average of the microscopic one σM = 1

|Ωm|
∫
Ωm σm(x)dx.

Hill’s lemma requires (εm− εM ) to verify compatibility, i.e., to derive from
a periodic displacement field, and σm to verify equilibrium, i.e. to be the
solution of

∇.σm(x) = 0, x ∈ Ωm. (1)

As shown in Ref. [17], Eq. (1) is equivalent to

εm(x) = −
∫
Ωm

Φ0(x, x′) :
(
σm(x′)− C0 : εm(x′)

)
dx′ + ε0, x ∈ Ωm. (2)

Eq. (2) is the Lippmann-Schwinger equation for first order homogenization.
The fourth rank tensor C0 is the stiffness tensor associated to an isotropic
linear elastic reference material. This tensor will be determined in Sect. 2.2.2,
as well as the far field strain tensor ε0 and the periodic Green’s operator Φ0.
The latter maps any tensor field τm to a compatible one:

∃u ∈ (H1(Ωm))3, u periodic on Ωm,−Φ0 ∗ τm =
1

2
(∇u+∇uT ). (3)

The combination of Eqs. (2) and (3) yields a microscopic infinitesimal strain
tensor εm that verifies compatibility and a Cauchy stress tensor σm that
verifies equilibrium.

2.2 Discrete Lippmann-Schwinger equation

SCA consists in solving Eq. (2) cluster-wise instead of voxel-wise. Fig. 1a
shows an example of voxel mesh for a single inclusion embedded within a
matrix material. This voxel mesh is clustered in Fig. 1b. The clustering method
for the training stage is presented in Sect. 2.2.1, including the construction
of the database of DNS results. The use of this database to compute the
mechanical response by solving the discrete Lippmann-Schwinger equation in
the prediction stage is described in Sect. 2.2.2.
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Fig. 1 Example of microstructure discretized using: (a) voxels; (b) clusters

2.2.1 Training stage

The aim of the training stage is to compute a cluster-wise discretization
such as shown in Fig. 1. The mechanical response obtained by solving the
Lippmann-Schwinger equation discretized cluster-wise should be as close as
possible as that obtained by solving it voxel-wise. This can be done a posteriori,
by solving the reduced order model for different trial configurations of clusters
and searching for the optimal one. It can also be done a priori, for instance
by basing the clustering algorithm on some mechanistic criterion such as the
similarity in strain concentration tensors [9]. The strain concentration tensor
field Am is the fourth order tensor field defined by

εm(x) = Am(x) : εM , x ∈ Ωm. (4)

At a given instant T , the strain concentration tensor field depends on the
applied macroscopic strain εM and, for plastic materials, on the loading his-
tory

(
εMt
)
t≤T . It is neither possible to compute the Am fields for all potential

loading paths, nor is it possible to apply clustering directly to data of such
high dimensionality. Therefore, the space of all possible Am fields must be
sampled down to a few loading paths [4]. As shown in a previous study [9], the
most cost-efficient way to do this sampling in the case of SCA is to consider
only very small macroscopic strains εM in the training stage. For such strains,
the mechanical response is purely elastic and linear, and the single tensor
field Am, which has only 36 independent components due to symmetries of
εm and εM , can be computed by conducting 6 DNS in 6 orthogonal loading
directions.

The training data set hence consists in 36 values for each voxel of the
DNS mesh. A k-means clustering algorithm [11] is applied to this data set.
Since the microstructure is a heterogeneous domain composed of multiple
phases, clustering is done independently for each of those phases, so that a
given cluster cannot contain voxels from different phases. The result of this
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training stage is a unique identifier I = 1 . . . k for each voxel of the DNS mesh.
Voxels with same identifier have a similar microscopic response to macroscopic
solicitations. Similarly to the convergence and sensitivity analysis that must
be conducted when choosing an appropriate mesh for a FE simulation, the
number of clusters k cannot be guessed a priori and requires a thorough
analysis.

2.2.2 Prediction stage

As a result of the training stage, the RVE domain Ωm is discretized into
k subsets (ΩmI )I=1...k. The degrees of freedom in the FFT-based numerical
method [14] are associated to the microscopic strain εm. In SCA [9], εm
is discretized by a cluster-wise constant approximation (εmI )I=1...k. As a
consequence, the microscopic Cauchy stress tensor is also approximated
cluster-wise (σmI )I=1...k, and Eq. (2) can be discretized:

εmI = −
∑

J=1...k

D0
IJ :

(
σmJ − C0 : εmJ

)
+ ε0, I = 1 . . . k (5)

where D0 is the interaction tensor defined by

D0
IJ =

1

|ΩmI |

∫
Ωm

χmI (x)

∫
Ωm

χmJ (x′)Φ0(x, x′)dx′dx. (6)

The characteristic functions χmI and χmJ are equal to 1 in, respectively, clusters
I and J , and 0 elsewhere. In the FFT-based numerical method [14], the
periodic Green’s operator Φ0 depends on C0, and is known only in Fourier
space. Because C0 is associated to an isotropic linear elastic reference material,
Φ0 can be expressed in Fourier space as a function of the reference Lamé
parameters λ0 and µ0. It is then obtained in real space by using the inverse
FFT. In particular, Eq. (6) can be written in the form

D0
IJ = f1(λ0, µ0)D1

IJ + f2(λ0, µ0)D2
IJ ,

Di
IJ =

1

|ΩmI |

∫
Ωm

I

FFT−1
{
FFT{χmJ }Φ̂i

}
(x)dx, i = 1, 2. (7)

The detailed expressions of f1, f2, Φ̂1 and Φ̂2 can be found in Refs. [14, 8, 9]
among others. Drastic computational cost reduction is enabled by SCA thanks
to a reduced number of degrees of freedom by clustering, and by the fact that
D1 and D2 can be precomputed in the training stage. Therefore, neither FFTs
nor inverse FFTs are computed in the prediction stage, even if the reference
material is changing.

In the present work, boundary conditions for Eq. (5) are purely kinematic.
The average of the microscopic strain tensor εm must be enforced to be
equal to the macroscopic strain tensor εM or, equivalently, the microscopic
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fluctuation must have zero average. This can be done by adding the condition∑
I=1...k

|ΩmI |εmI = |Ωm|εM to Eq. (5).

As noted in Ref. [9], solutions of Eq. 5 are dependent on the choice of
reference material. An optimal choice can be computed in the prediction stage
by making the reference material consistent with the homogenized material.
This means that the far field strain tensor ε0 is an additional unknown that
must be solved for in SCA [9], as opposed to the FFT-based numerical method
where ε0 ≡ εM [14]. The self-consistent method consists in using a fixed-point
iterative method where, at each step, the reference Lamé parameters λ0 and
µ0 are changed so that ||σM − C0 : ε0||2 is minimized. A discussion on this
self-consistent scheme and its mathematical foundations can be found in Ref.
[17].

2.2.3 Summary

To summarize, the training stage in SCA consists in using a k-means clustering
algorithm based on a mechanistic a priori clustering criterion computed using
a simple sampling of the loading space. This training stage also includes
computing all voxel-wise and computationally expensive operations such as
FFTs and inverse FFTs.

In the prediction stage, a self-consistent iterative algorithm is used to search
for the optimal choice of reference Lamé parameters. At each iteration of this
self-consistent loop, matrix assembly operations are accelerated because all
voxel-wise operations have been precomputed in the training stage and already
reduced to cluster-wise contributions. In order to avoid recomputing the
latter, clusters cannot be changed during the simulation. A Newton-Raphson
iterative algorithm must be embedded within each self-consistent iteration for
nonlinear materials, in which case the discrete Lippmann-Schwinger equation
is linearized. The self-consistent nature of this algorithm is due to the fact
that the reference Lamé parameters are iteratively corrected in order to be as
close as possible to that of the homogenized material.

The output from SCA are the microscopic variables’ cluster-wise approxi-
mations, and the macroscopic Cauchy stress tensor.

3 Multiscale damage

Concurrent computational homogenization implies introducing a macroscopic
domain ΩM , which can be a specimen or an industrial part. In the present
work, the macroscale problem is solved using the FE method for the spatial
discretization and an explicit scheme for the time discretization. The use of
SCA as a material law is straightforward. Conventional constitutive equations
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defining the macroscopic stress σM as a function of the macroscopic strain
εM are replaced by the theory described in Sect. 2. Although macroscopic
variables are constant in space at the microscale, they vary at the macroscale,
namely, σM = σM (x), εM = εM (x), x ∈ ΩM .

If the relation between macroscopic variables σM and εM included a soften-
ing effect, then the macroscale problem would be ill-defined. Softening would
localize in a single arbitrary layer of elements, which would be dependent
on the FE mesh, and lead to zero dissipated energy for very fine meshes.
This well-known pathological mesh dependence problem when modeling soft-
ening materials can be solved by using non local integral averaging on the
macroscopic damage variable [1]. The main issue in concurrent computational
homogenization is that there is no macroscopic damage variable, since damage
is modeled within RVEs. While Hill’s lemma allows to formulate σM as the
average σm, there is no such result for internal variables related to plasticity
or damage.

As proposed in a recent work [10], non local integral averaging can be applied
directly on the microscopic damage variable dm. An additional difficulty when
damage is modeled within the RVE, is that the RVE problem itself becomes
ill-defined if damage localizes within the RVE. To avoid such situation, damage
can be uncoupled from the microscale problem, and considered only in an
average sense. These two steps are presented in the following. More details
can be found in Ref. [10].

3.1 Macroscale damage

The damage variable dm is defined at the microscale and discretized cluster-
wise along with the infinitesimal strain tensor and the Cauchy stress ten-
sor. While these microscale variables have been written as functions of mi-
croscale coordinates in Sect. 2, they must now be written as functions of both
macroscale and microscale coordinates.

First, a RVE domain Ωm = Ωm(xM ) is associated to each point xM of the
macroscale domain ΩM . Since the macroscale problem is solved using the FE
method, RVEs are attached to the integration points of the macroscale FE
mesh.

Second, microscale variables can be written as functions of both macroscale
and microscale coordinates, so that localization issues at microscale and
macroscale can be distinguished and treated separately [10]. For instance, the
microscale damage variable is discretized as

dm(xM , xm) =
∑

I=1...k

dmI (xM )χmI (xM , xm), xM ∈ ΩM , xm ∈ Ωm(xM ). (8)



A Data-Driven Multiscale Damage and Fracture Modeling Theory 9

Third, classic non local integral regularization [1] can be applied to the
microscale damage variable defined in Eq. (8), with the novelty that the
averaging is applied at two scales [10]. The non local microscale damage
variable d

m
is hence defined by

d
m
(xM , xm) =

∑
I=1...k

d
m

I (xM )χmI (xM , xm), xM ∈ ΩM , xm ∈ Ωm(xM ),

d
m

I (xM ) =

∫
ΩM

w(||xM − yM ||2)dmI (yM )dyM , xM ∈ ΩM ,
(9)

where w is the non local averaging kernel given by

w(r) =
w∞(r)∫ +∞

0
w∞(r′)dr′

, r ∈ [0,+∞[,

w∞(r) =


(
1− 4

r2

l2c

)2

, r ≤ lc
0, r > lc

, r ∈ [0,+∞[.

(10)

The characteristic length scale lc is a material parameter associated to the
width of damage localization bands at the macroscale. As defined by Eqs.
(9) and (10), the non local damage variable is regularized at the macroscale
and the macroscale FE problem is hence well-defined. In particular, results
will not pathologically depend on the macroscale FE mesh. However, the
non local damage variable may still localize at the microscale and yield
clustering-dependent results.

3.2 Microscale damage

To prevent localization within RVEs, an averaging procedure is also applied
at the microscale. This procedure consists in uncoupling the damage model
from the plasticity model, and modeling softening only in an average sense.

First, the microscopic infinitesimal strain tensor εm is additively decom-
posed into an elastic part εm,el and a plastic part εm,pl. The microscopic dam-
age variable dm is written as a function of the plastic strain dm = dm(εm,pl),
but the plastic strain itself is not a function of the damage variable. Eq. (5)
is hence solved with a first definition of the microscopic Cauchy stress tensor
that does not account for softening.

Second, the evolution of the damage variable is computed based on the
stress state and plastic strain computed in the first step. For the CFRP
composite studied in Sect. 4, the following power law is used to define the
evolution of damage in the epoxy matrix as a function of the von Mises
equivalent plastic strain εm,pl,eq:



10 M. Shakoor et al.

depoxy = 1− εm,pl,c

εm,pl,eq
exp

(
−100(εm,pl,eq − εm,pl,c)

)
(11)

This law involves the material parameter εm,pl,c = 0.13. The brittle fracture
of fibers is modeled by maximum stress theory [2]. Thus, the damage variable
in fibers can be equal only to 0 or 1.

Third, the effective macroscopic Cauchy stress tensor σM is computed by
solving Eq. (5) with a softening effect but no plasticity, namely, Cm being
the microscopic elastic stiffness tensor, σm = (1− dm)Cm : εm,el. The applied
macroscopic strain for this third step is the macroscopic elastic strain com-
puted by elastic relaxation and averaging of the first step solution [10].

Although this averaging procedure requires two solutions of Eq. (5), only
the first one accounts for plasticity and material nonlinearity. Thus, the second
solution has a reduced cost. Furthermore, both solutions are accelerated thanks
to SCA.

Because the microscopic plastic strain does not depend on damage, it
can not localize pathologically within a single layer of clusters. Then, the
damage variable being written as a function of the microscopic plastic strain,
pathological localization of this variable is not possible within the RVE.
With the addition of the macroscale non local integral averaging described in
Sect. 3.1 that prevents pathological localization and mesh dependence at the
macroscale scheme, a regularized multiscale damage theory is obtained.

4 Multiscale carbon fiber reinforced polymer composite
cutting process modeling

An example of concurrent simulation of the cutting process of a UD CFRP
composite is proposed in this section. Literature reports some progress made in
simulating CFRP cutting processes at the microscale [2, 6]. This is necessary
to observe microscale deformation, such as fiber distortion and matrix cracking
during this process. For a full scale cutting process, the material is generally
assumed homogeneous and modeled using phenomenological constitutive
equations to reduce the computational cost, but all microscale details are lost.
The theory presented in this paper opens a new window for structure scale
simulation with minimum loss of microscale details.

The cutting simulation is based on experimental work performed in a
previous study [2]. The key difference between the model presented here
and Ref. [2] is that here all fibers are implicitly modeled as clusters. This
allows modeling of a larger UD CFRP part with width of 0.2 mm. Details of
the experimental setup can be found in the given reference. To demonstrate
the capabilities of the multiscale modeling theory presented in this paper,
a 3D transverse UD CFRP cutting simulation is performed on a domain of
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Fig. 2 Cutting simulation setup and geometry of UD CFRP part

length x weight x height of 1.25mm x 0.2mm x 1.25mm. The cutting depth is
0.015mm, following the experimental setup. The model setup is shown in Fig.
2. The bottom surface of the UD CFRP part is fixed to ensure that it stays
in its position. Cutting speed is set to 8mm/s according to the experimental
setup. The UD CFRP part is modeled with 142,500 reduced integration cubic
elements, where each element has one integration point.

The UD CFRP material has fiber volume fraction of 60%. Fiber is assumed
to be of circular shape with a diameter of 7 µm, as shown in Fig. 3a. The
RVE has an identical length and width of 84 µm, and a depth of 14 µm.
The RVE is meshed with 740x740x5 voxels, which are then clustered using
the method presented in Sect. 2.2.1 into 16 clusters for the matrix, and 16
additional clusters for the fibers. As shown in Ref. [9], 16 clusters in each
phase are sufficient to preserve the accuracy of the RVE solution. This choice
is also efficient due to the saving regarding the total number of degrees of
freedom. The result is shown in Fig. 3b.

Fiber and matrix elastic properties are given in Tab. 1. Fibers tensile and
compressive strengths follow the parameters listed in Ref. [2]. It is assumed
that excessive deformation of the matrix happens when the cutting tool is
in compressive contact with the material. Thus, matrix plasticity has been
calibrated to the uniaxial compression curve for epoxy in Fig. 1 of Ref. [13]
with a simple J2 plasticity model. The damage evolution law for the matrix
has been given in Eq. (11).

Using the damage evolution law in Eq. (11) within the multiscale damage
modeling theory, the microscale damage variable might reach 1 in some clusters.
In such case, the material has completely lost its load carrying capacity. If



12 M. Shakoor et al.

Fig. 3 Cross section of the UD CFRP RVE showing: (a) the random fibers arrangement;
(b) the clusters

Table 1 Carbon fiber and epoxy matrix elastic properties

E1 E2 E3 v12 v13 v23 Em vm

240 GPa 19 GPa 19 GPa 0.28 0.28 0.32 3.8 GPa 0.387

this happens for multiple clusters, the averaged load carrying capacity of
some RVEs might be significantly lost. With a criterion to measure this
loss of averaged load carrying capacity, element deletion could be triggered
in the macroscale mesh to model the cutting process. A macroscopic non
local damage variable d

M
is introduced to measure this loss of averaged load

carrying capacity:

d
M

= 1−
||σM : σMpl ||
||σMpl : σMpl ||

(12)

where σMpl is the average of the Cauchy stress tensor computed with the
plasticity model but no damage, while σM is the macroscopic Cauchy stress
tensor computed with the non local damage model but no plasticity. For each
element of the UD CFRP part FE model, element deletion is triggered when
d
M

= 0.25.
Simulation of concurrent UD CFRP cutting has been performed for 0.01s

using ABAQUS CAE with the multiscale damage model. The average reaction
force obtained from concurrent cutting was 0.881 N. The comparison between
numerical result and experimental result is presented in Tab. 2. The simulated
average horizontal cutting force is 7.3% less than that measured in the
experiment.

Table 2 Comparison of simulated cutting force against experimental data

Experimental data [2] Multiscale model Difference
Horizontal cutting force 0.946 N/m 0.881 N/m 7.3%
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The main feature of the multiscale model is that it captures the microscale
fiber and matrix failure within UD RVEs at each integration point of the
macroscale part. Fig. 4 shows the macroscopic part with RVEs at three
selected integration points where damage can be seen at different phases
of the cutting process. At different time steps, it can be seen that different
elements have different macroscopic non local damage d

M
that can be traced

back to the microscopic damage dm within each cluster in RVEs. Here, the
element embedding the second RVE fails after the element embedding the
first RVE, although it seems to have a higher total damaged volume. This
shows the effect of the element deletion criterion in Eq. (12), which does not
define the macroscopic damage variable just as the average of the microscopic
one, but as the actual loss of load carrying capacity. Additionally, the local
damage within damaged elements RVEs is transferred to neighboring elements
RVEs via non local averaging. This can be seen from the left column of Fig.
4, where localized damage is being distributed to nearby elements from those
contacting the tool. As a consequence, some damage can be seen in the third
RVE, but it does not cause enough loss of load carrying capacity for the
associated element to get deleted.

5 Conclusions

Two main contributions were presented in this paper. A regularized multi-
scale modeling theory was proposed to model multiscale damage and fracture
processes such as the fracture of material systems with heterogeneous mi-
crostructure. The latter was modeled using the self-consistent clustering
analysis method for data-driven reduced order modeling.

To illustrate the capabilities of this data-driven multiscale damage and
fracture modeling theory, a simulation of a cutting process was conducted.
The considered material, a carbon fiber reinforced composite, exhibited a
heterogeneous microstructure which failed by epoxy matrix damage and fiber
breakage. The effect of these microscale damage and fracture mechanisms
on the macroscale behavior was modeled using a material law computed on-
the-fly by the multiscale modeling theory instead of relying on conventional
phenomenological constitutive equations.

For future work, the proposed theory is going to be extended to other mate-
rial and processes involving more complex damage and fracture mechanisms.
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Fig. 4 Macroscopic non local damage variable and microscopic damage variable at: (a)
5.125e-3 s; (b) 5.250e-3 s; (c)5.5e-3 s
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