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Abstract
The way quantum mechanical ab initio computer codes allow to compute, through perturbation theory (the so-called SC-CP, 
self-consistent coupled-perturbed scheme), many properties resulting from the interaction of the electric field with a crystal-
line system is illustrated. The polarizability, which leads to the dielectric tensors as well as to the refractive indices and to 
he birefringence of materials, is the simplest on this list. Higher order tensors, like the first and second hyperpolarizabilities, 
can be obtained as well with the CRYSTAL code here used. These properties, resulting from the Taylor expansion of the 
total energy of the solid as a function of the electric field, belong to a large family of phenomena generated by combining in 
different ways the frequencies of the fields. Second-harmonic generation (SHG), Pockels effect, intensity-dependent refrac-
tive index (IDRI), and other quantities now accessible to experiment can be computed at a relatively low cost and with high 
accuracy.

Keywords Refractive index · Birefringence · (Non)linear electric susceptibility tensor · Anisotropy · Quantum mechanical 
simulation · CRYSTAL code · Gaussian-type basis set

1 Introduction

In this contribution, we illustrate the way modern quantum 
mechanical methods allow to compute the (hyper)polariz-
ability tensors and, consequently, optical properties such as 
the refractive index and birefringence, through which the 
anisotropy of the physical properties of crystalline com-
pounds manifests itself.

The properties mentioned above can be obtained by inves-
tigating the interaction of the electromagnetic field with a 
periodic infinite system (the model implies, without serious 
consequences, that the crystalline compound is infinite).

The equations describing this interaction can be formu-
lated at various levels (for example: relativistic or non-rel-
ativistic quantum mechanics). As none of these equations 
can be solved exactly, many approximations must be intro-
duced, whose importance should be discussed carefully, and 
one should possibly verify numerically how severe these 
approximations are.

In a very broad sense, all these equations are solved by 
performing at various steps series expansions, so that the 
differential equations transform in matrix equations.

This essentially requires: (a) to compute matrix elements 
(these, in turn, are the sum of integrals, many of which are 

This paper is the peer-reviewed version of a contribution presented 
at the Conference on Anisotropic Properties of Matter, organized 
by Giovanni Ferraris and held at Accademia Nazionale dei Lincei 
in Rome, October 16–17, 2019.
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bielectronic four center six dimensional integrals); (b) sum, 
multiply, and diagonalize matrices that can easily reach very 
large dimensions ( 103–106 , as typical cases).

The larger the matrices, the more accurate the calculation.
Obviously, this kind of linear algebra requires the use of 

computers (clusters of PC) or supercomputers containing 
102–104 processors.

The starting point for describing the crystalline system is 
the (stationary, or time-independent) Schrödinger’s equation:

where Ĥ is an operator, called Hamiltonian in memory of 
classical mechanics developed by Lagrange (1736–1813) 
and then Hamilton (1805–1865), and E  the energy associ-
ated to the wavefunction � .

The real limit of this equation is that Ĥ and � 
depend on many variables as atomic positions, that is 
� ≡ � (�1, �2, �3,… , �N) . In the case of an infinite crystalline 
system, N goes to infinity. But also for a molecule like, say, 
benzene, containing 12 atoms and 42 electrons, for a total 
of 162 Cartesian coordinates (plus the spin), the Schröding-
er’s equation cannot be solved exactly, and its approximate 
solution requires a huge amount of skills and computational 
effort. We will not dwell on the techniques, hypotheses, and 
approximations that bring this intractable problem to some-
thing that can be tackled. The interested reader can refer to 
several excellent textbooks covering quantum mechanics and 
computational chemistry methods. We simply mention that 
these approximations bring to the so-called Hartree–Fock or 
Kohn–Sham methods, in which a single particle (say elec-
tron) is moving in the field created by all the other electrons 
(whose wavefunction is unknown; mean field theory). This 
implies, in turn, that these equations must be solved through 
a self-consistent field (SCF) scheme.

We can now suppose that we are able to describe with 
reasonable accuracy the ground state of a crystalline system.

We are then faced with the problem of the description 
of the electromagnetic field, and of its interaction with the 
solid. This interaction is described through a well-known 
tool of quantum mechanics, namely the perturbation theory, 
that takes the form of a Taylor expansion of the system’s 
energy in powers of the electric field. As usual, the series is 
truncated after a few terms due to (a) computational costs 
and (b) hopefully, the rapid convergence. Also in this case, 
the solution of the resulting equations requires an iterative 
scheme. At the very end, the crucial points (crucial due to 
numerical accuracy and computational cost) are: evaluation 
of multicenter integrals and multiplication of very large 
matrices.

We are then considering a crystalline solid, and an elec-
tric field operating on it. What is the information that can be 
obtained as a response of the system to this perturbation? Let 

(1)Ĥ𝛹 = E𝛹 ,

us consider the Taylor expansion of the total bulk energy of 
the system with respect to the field amplitude �0 , truncated 
to the fourth order:

where �0 , �0 , �0 , and �0 are the permanent dipole moment, 
polarizability, and first and second hyperpolarizabilities 
of the free system, respectively (the conventional nega-
tive sign is such that the dipole moment is defined as the 
sum over the charges multiplied by their position, and such 
that the polarizability of the ground state is positive). The 
symbol ⊗ indicates the outer product of vectors. Given 
the electric field conversion coefficient from the atomic 
units (a.u.) system to the international system of units 
(SI): 1 a.u. = 5.14 × 1011 Vm−1 , a large static field of say 
50 kVcm−1 (maximum field amplitude that can be applied 
with electrodes at the surface of a slab before electric break-
down), is smaller than 10−5 a.u. . If we apply a field of this 
amplitude to a molecule, say water, with a polarizability 
equal to ∼ 10 bohr3 (the polarizability unit is equivalent to 
a volume in a.u.), the energy variation due to the polariza-
tion would be equal to 10−9 Eh . As the ratio between the 
terms appearing in Eq. 2 ( �0∕�0 , �0∕�0 ) is generally smaller 
than 103 a.u. , to be multiplied by an additional field intensity 
of 10−5 , it is clear that contributions approach rapidly the 
numerical accuracy limit of quantum mechanical calcula-
tions. This is why, �0 and �0 coefficients have been con-
sidered in the past of low interest, and terms as �0 , corre-
sponding to power five of �0 , have been neglected in Eq. 2. 
However, if the expanded quantity is not the total energy, 
but some higher term evaluated analytically, then the power 
of �0 for obtaining �0 and �0 is lower. This is the case, for 
example, when the polarizability �0 is computed analyti-
cally, with a reduction by 2 of the power of �0 . Moreover, 
lasers with much higher intensity than static electric fields 
are now available, which can allow to access experimen-
tally many non-negligible second- and third-order non-linear 
optical (NLO) effects.

It should be stressed that Eq. 2 can provide a lot of 
information: 

(a) as �0 is a vector with three components, Ex , Ey , and Ez , 
it turns out that �0 , �0 , �0 , and �0 are tensors of rank 1, 
2, 3, and 4, respectively, whose components can vary 
from case to case, allowing access to important specific 
features.

(b) The electric fields appearing in Eq. 2 can be different 
from each other (say �1 , �2 … ), and combined in dif-
ferent ways.

(2)

E = E0 − �0 ⋅ �0 −
1

2!
�0�0 ⊗ �0 −

1

3!
�0�0 ⊗ �0 ⊗ �0

−
1

4!
�0�0 ⊗ �

0
⊗ �0 ⊗ �0,
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(c) Obviously, the various electric fields can depend on 
frequency as in light radiation, � ≡ �(�) = �0 cos(�t) 
with the angular �-frequency of the corresponding pho-
ton ( ℏ� with ℏ = h∕2� , h being the Planck constant 
equal to 6.63 × 10−34 Js ), further increasing the number 
of possible ways of perturbing the system. For example, 
in the second-harmonic generation (SHG) experiments, 
interaction of light with matter can provide one scat-
tered photon of energy ℏ2� from two photons of energy 
ℏ� , the intensity of the scattering light depending on 
the frequency-dependent first hyperpolarizability, 
�(−2�;�,�) , of the material, as we will see later on.

(d) As a corollary to point (c), the frequency can be used 
for perturbing both nuclei and electrons, or just the lat-
ter.

The following section will deepen some of the main topics 
introduced here.

2  Methods

2.1  Dipole moment and (hyper)polarizability

2.1.1  Definitions

The dipole moment � of a finite system is a vector defined, 
in the atomic unit system, as:

where the absolute value of the electron charge is equal to 1 
( e = −1 a.u. ). ZN and �

�
 are the nuclear charge and position 

of the Nth atom, and �(�) is the electron charge density in � . 
For a given geometry, ZN and �N are fixed, and the value of 
the dipole moment can be obtained if the electron density is 
known in the whole space. In quantum chemistry, this latter, 
which is the square of a wave function, �  , describing the 
electronic state of the system (generally its ground state) can 
be obtained by solving the time-independent Schrödinger’s 
equation (see Eq. 1). Using Dirac’s notation, ∫ ��(�)d� in 
Eq. 3 can now be replaced by ⟨0���0⟩ where ⟨0� and �0⟩ rep-
resent the bra and ket of the ground state.

In the presence of a time-dependent electromagnetic 
(E(r,t), B(r,t)) field, the expression of Ĥ becomes:

where � and � are the momentum and position of the electron, 
m its mass ( m = 1 a.u. ), c the speed of light ( c = 137. a.u. ), 
and VC the Coulomb potential. The electromagnetic field is 

(3)� =
∑

N

ZN�N − ∫ ��(�)d�,

(4)Ĥ =
1

2m

(
� −

e

c
�(�, t)

)2

+ eU(�, t) + VC(�),

defined from the vector A(r,t) and scalar U(r,t) potentials 
via Maxwell’s equations:

and there is an infinite number of (A(r,t),U(r,t)) couples 
describing one electromagnetic field. Obviously, the solu-
tions of the time-dependent Schrödinger’s equation must be 
independent from the choice of the so-called gauge. This 
is indeed the case of the energy E-eigenvalue as well as of 
|� (�, t)|2 . Only the phase of the wave function depends on 
the choice of the gauge.

For a static electric field: �(�) = �0e��⋅� with a small wave 
number: q = 2�∕� compared to � (i.e., for �-wavelength 
much larger than the size of the studied system: 𝜆 ≫ 1Å ), 
�(�) is generally defined from the scalar potential only as 
follows:

which leads for a constant field �0 to:

in the electric dipole moment approximation for finite sys-
tems (0D or molecules), Ĥ0 being the Hamiltonian operator 
of the unperturbed system.

The energy E  of the molecule in presence of the �0-field 
can be developed as a Taylor series as shown in Eq. 2; simi-
larly, for the dipole moment, we have:

where �0 is the permanent dipole moment of the molecule, 
the linear response �0 is called the polarizability, and �0 
and �0 are the first and second hyperpolarizabilities. The 
previous electric responses to the electric field are intrinsic 
properties of the molecule: they are equal to the first, second, 
and third derivatives of the induced dipole moment ( � − �0 ) 
with respect to the field �0 , at zero field ( �0 → � ). Moreo-
ver, being �0 and �0 vectors, �0 , �0 and �0 are tensors of rank 
2, 3, and 4, respectively.

In the case of a frequency-dependent electric field 
( �(�) = �0 cos�t ), the linear term of the dipole moment 
induced by the oscillating field is oscillating at the same fre-
quency of the field (forced oscillation if the field frequency 
is small compared to proper resonance frequencies of the 
system) leading to a frequency-dependent polarizability, 
�(�) . For a molecule in its electronic ground state ( �0⟩ ), 

(5)�(�, t) = −
��(�, t)

�t
− �U(�, t)

(6)�(�, t) = � × �(�, t),

(7)�(�) = −�U(�),

(8)Ĥ =
�

2

2m
+ VC(�) − e� ⋅ �0 = Ĥ0 − e� ⋅ �0

(9)
� = −

dE

d�0

= �0 + �0�0 +
1

2!
�0�0 ⊗ �0

+
1

3!
�0�0 ⊗ �0 ⊗ �0 +⋯ ,

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231



    
    

 R
EVISED PROOF

Journal : Large 12210 Article No : 931 Pages : 17 MS Code : 931 Dispatch : 20-7-2020

 Rendiconti Lincei. Scienze Fisiche e Naturali

1 3

the ”dynamic” polarizability is a sum of two contributions 
that can be separately calculated in the Born–Oppenheimer 
approximation: 

1. The electronic ( �e ) contribution, for a fixed ( �N ) geom-
etry: 

 where �n = En − E0 are the allowed transition energies 
from the �0⟩-ground to �n⟩-excited electronic states with 
E0 and En as corresponding eigenvalues of the unper-
turbed Hamiltonian operator Ĥ0 (if we are interested in 
the polarizability of the ground state) and �n = ⟨0���n⟩ 
is the corresponding transition dipole moment.

  The associated mean value oscillator strengths: 

 are such that 
∑

n fn is equal to the number of electrons 
involved in these transitions, and the (�n, fn) couples 
reproduce the UV–visible spectrum.

  See the work of Orr and Ward (1971) for the expres-
sion of hyperpolarizabilities.

2. The ionic or nuclear relaxation ( �nr ) contribution: 

 where �i is the frequency of the normal mode ( Qi ) and 
�i the Born charge ( d�0∕dQi with �0 as defined in Eq. 3 
at zero field) obtained at the equilibrium geometry. The 
(�i,�i) couples reproduce the infrared (IR) spectrum.

  We refer to the work of Kirtman and Luis (2010) for 
the treatment of the vibrational hyperpolarizabilities that 
can be evaluated from the IR and (hyper) Raman spectra.

�nr is zero in purely covalent materials as diamond or sili-
con, and also negligible for other ionic materials if the field 
frequency ( � ) corresponds to the UV–visible range of 
energy 𝜔 ≫ 𝜔i . Indeed, the Born charge d�0∕dQi , which is 
actually a charge divided by the square root of ion mass, is 
small with respect to 1 a.u., and �2

i
∕(�2

i
− �2) ≃ −�2

i
∕�2 , 

which is then negative, becomes very small in absolute val-
ues compared to the static vibrational polarizability contri-
bution: �2

i
∕�2

i
.

Also the vibrational contribution to � and � can be 
neglected in the UV–visible frequency range for the same 
reason as for � , if all the external fields are frequency-
dependent. The exception is the particular case of the inten-
sity-dependent refractive index, IDRI, a process depending 
on �(−�;�,−�,�) , that includes terms with opposite sign 

(10)�e(𝜔) =
∞∑

n≠0

2𝜔n

�n ⊗ �n

𝜔2
n
− 𝜔2

,

(11)fn =
2

3
�n⟨0���n⟩2

(12)�nr(𝜔) =
3N−6∑

i=1

�i ⊗ �i

𝜔2
i
− 𝜔2

,

phases, ±� , generating then a static field and a vibrational 
contribution.

2.1.2  Calculation of the microscopic response properties

The electronic contribution to the polarizability (Eq. 10) is a 
second-order perturbation energy, the expression of which is 
a sum extended to an infinite number of excited state terms, 
a series which generally converges very slowly. Moreover, 
it also depends on the continuum. For example, if we use 
all the true (and well known) discrete spectral states of the 
H atom, its polarizability value is less than 4 bohr3 , while 
its exact value is 9∕2 bohr3 (without taking into account the 
relativistic effect) (Coulson 1941; McDowell 1976; Traini 
1996; Bishop 1999).

Fortunately, it is not necessary to know all the excited 
discrete and continuum states of the electronic system to 
obtain a ”good” static polarizability value, or dynamic polar-
izabilities for a field frequency smaller than the first reso-
nance one. The coupled-perturbed Hartree–Fock (CPHF) 
method proposed by Hurst et al. (1988), consisting in the 
independent-particle model using relaxed occupied and vir-
tual orbitals via a self-consistent process in the presence of 
the external field, generally leads to results in good agree-
ment with the experiments, in particular when a density 
functional theory (DFT) Hamiltonian with a percentage of 
the exact or Hartree–Fock (HF) non-local exchange potential 
is used, as is the case of the hybrid B3LYP (Becke 1993; 
Lee et al. 1988) functional (20% of HF exchange). Indeed, 
response properties which are n-order perturbation energies 
depend strongly on the band gap (which determines the low-
est transition energy values, �n ≥ gap , on the denominator 
of Eq. 10 for electronic polarizability, and of hyperpolariz-
abilities), generally too large with HF (Evarestov 2007) and 
too small with pure DFT (Yakovkin and Dowben 2007), but 
reasonably described by hybrids (Garza and Scuseria 2016).

2.1.3  Infinite periodic systems

Expression 8 of the Hamiltonian, that includes the position 
operator, � , as the perturbation operator associated to the 
external field, comes from the dipole moment approximation 
that can be used for finite systems (molecules) in the pres-
ence of a constant field, or a field with a large � wavelength 
with respect to the size of the electronic system ( 𝜆 ≫ 1Å).

For infinite periodic systems, the electric potential � ⋅ �0 
becomes infinite  at (±∞) , where the electronic density � is 
finite, so that the wavefunction is not square summable in 
Eq. 3. Moreover, infinite periodic systems described by sym-
metry translated cells and for which the crystalline orbitals 
(CO) are combinations of Bloch functions following Born 
von Karman (BVK) conditions (last cell in each direction is 
bound with the first one) have an ill-defined dipole moment. 
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Indeed, what is the dipole moment of a polymer (AB)n→∞ , 
that of AB: —(A-B)—(A-B)—(A-B)— or the one of BA: 
—A)-(B—A)-(B—A)-(B— ?

Actually � , which is a non-periodic potential, is not Her-
mitian in the BVK CO basis set depending of the � points of 
the reciprocal space. Then, we must restart from the expres-
sion of an external electric field described by a scalar potential 
gauge: � = �0e��⋅� , where �0 is the field amplitude and q its 
wave number 2�∕� , and determine dipole moment transitions 
between i(�) and j(��) COs involved in the field perturbation 
at the � → � limit for a constant field. Using the momentum 
conservation: � = �

� − � , it follows that the dipole moment 
operator becomes (Blount et al. 1962; Otto 1992; Rérat et al. 
2008):

and the perturbative Hamiltonian (multiplied by the constant 
�0 field) is Hermitian and remains block diagonal in the 
reciprocal space for 𝜆 ≫ 1Å.

The basic equations of the self-consistent coupled-per-
turbed (SC-CP) computational scheme for periodic systems 
can be found in Ferrero et al. (2008a, b) for the CPHF calcula-
tion of (hyper)polarizabilities, adapted to Kohn–Sham Ham-
iltonian (CPKS) in Orlando et al. (2010) and to frequency-
dependent electric fields in Ferrari et al. (2015), Rérat et al. 
(2015), Maschio et al. (2015), whereas many numerical exam-
ples are reported in Sect. 3.

2.2  Refractive index

In this section, we are going to look at the refractive index of 
materials, which is a macroscopic property depending on the 
(hyper)polarizability described in the previous section, as we 
will see further. Let us look first at the definition of this optical 
property and then at the resulting birefringence of materials.

2.2.1  Definition

Electric induction ( � ) and magnetic excitation ( � ) fields are 
related to the frequency(�)-dependent electromagnetic ( �,� ) 
field as follows (Condon 1937):

where �r and �r are the relative electric permittivity and 
magnetic permeability (matrices) of the medium, respec-
tively; �0 and �0 are the permittivity and permeability (con-
stants) of the vacuum, such that �0�0c2 = 1 ; and � is the 

(13)�̂�k = � + 𝚤�k = −𝚤e−𝚤�⋅��ke𝚤�⋅� ,

(14)� = �r�0� −
�

c

��

�t

(15)� =�r�0� +
�

c

��

�t
,

chirality (matrix) responsible of the rotation angle of a polar-
ized electromagnetic field.

Then, for materials with �r ≃ � (low magnetic perme-
ability) and � = � (no chirality), the refractive index is 
(Condon 1937):

2.2.2  Optical indicatrix and birefringence

As seen above, the relative dielectric tensor �r is a second-
rank symmetric tensor usually represented by a Hermitian 
matrix. This matches an ellipsoid (Nye 1985), the optical 
indicatrix, whose equation is:

and with semi-axis lengths given by the square roots of the 
dielectric tensor eigenvalues, ni =

√
�i (i = X, Y , Z) , corre-

sponding to the principal refractive indices of the medium. 
We will assume that the indices along the semi-axis X, Y, Z, 
are ordered by increasing value.

Hence, the phenomenon of birefringence is estimated 
as the difference � = nZ − nX . In principle, all crystals are 
birefringent and the specific indicatrix properties depend 
on the crystal symmetry. However, some special direc-
tions—the optical axes—exist which select as many 
circular sections within the indicatrix. For cubic miner-
als, which are optically isotropic, the optical indicatrix 
(see Fig. 1) is a sphere (null birefringence) defined by 
a unique refractive index n. The uniaxial optical indica-
trix of tetragonal, hexagonal, or trigonal minerals is an 
ellipsoid of revolution characterized by two independent 
semi-axis of length n� and n� . The axis of revolution of the 
indicatrix parallels the c-direction of the mineral and cor-
responds to n� . Such ellipsoid possesses a single circular 
section perpendicular to the c-direction which corresponds 
to the optical axis. The birefringence is � = |n� − n�| . If 
n𝜖 > n𝜔 ( n� = nZ , n� = nX = nY ) the indicatrix and the cor-
responding mineral are said uniaxial positive. If n𝜖 < n𝜔 
( n� = nX , n� = nY = nZ  ), the indicatrix and the corre-
sponding mineral are said uniaxial negative. Any other 
mineral is biaxial, having an optical ellipsoid with two cir-
cular sections (and as many optical axes) of indices nY (see 
Fig. 1). nX and nZ lie on the plane of the optical axes and 
bisect the angles between them. Depending on whether the 
acute angle between the optical axes (2V) is bisected by nZ 
( 2V = 2VZ ) or by nX ( 2V = 2VX ), the crystal is said to be 
positive or negative. 2VZ + 2VX = � . The following equa-
tion defines the relationship between V and nX , nY and nZ:

(16)� =
�
(�r�r)

− 1

2 ± ��
�−1

≃
√
�r.

X2

n2
X

+
Y2

n2
Y

+
Z2

n2
Z

= 1
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2.2.3  Non‑linear optics and birefringence

Intense electric fields can also provide birefringence as dem-
onstrated in the following.

Equation 14 for � = � can also be written as follows:

where the polarization vector, �, is the dipole moment per 
unit volume induced by the macroscopic field, and can be 
developed in a Taylor series as follows:

where � (n) are the (non)linear electric susceptibility tensors 
of rank (n + 1) , the units of which are the inverse of field to 
the (n − 1) th power.

Let us consider the field � produced by the light wave of 
frequency � together with an external static electric field �0:

where �� is the vector amplitude of the wave. Then, a non-
zero component value of � (2) leads to an additive term pro-
portional to E0-modulus in the expression of the polarization 

cos V =
nX

nY

√√√√n2
Z
− n2

Y

n2
Z
− n2

X

.

(17)� = �r�0� = �0� + �,

(18)� = 𝜖0(�
(1)
� + � (2)

�⊗ � + � (3)
�⊗ �⊗ � +⋯),

(19)� = �0 + �� cos�t,

vector which oscillates with the same � frequency as the 
electromagnetic field:

and induces a linear variation of the refractive index with 
respect to the modulus of �0:

with

This Pockels effect responsible of the birefringence: 
�� = �1�0 , depends on the odd rank tensor, � (2) , which is 
null for materials with an inversion symmetry. However, the 
birefringence of centrosymmetric materials can be seen if 
they own a large third-order non-linear � (3) susceptibility 
(tensor of rank four) and for intense electric fields. Indeed, 
it comes from the quadratic term in � in the polarization 
vector expression (Eq. 18). In the intensity-dependent refrac-
tive index (IDRI) Kerr effect (see Boyd 2003), an intense 
beam of light in the crystal can itself provide the modulating 
electric field:

without the need for an external field to be applied. The 
product of frequency-dependent fields leads again to a 
polarization vector oscillating with the same frequency as 
the laser field:

and then, we have:

with � the light intensity. In that case, the birefringence is 
given by �2 , i.e., by the IDRI-Kerr non-linear electric 
�

(3)
(−�;�,−�,�)

 susceptibility.
A recent application referring to yttria-stabilized zirconia 

can be found in Marcaud et al. (2020). Several other NLO 
processes also appear when combining the Taylor develop-
ment of the polarization vector shown in Eq. 18 with the 
field expression given in Eq. 19 (see Saleh and Teich 1991; 
Boulon 2001), as SHG linked to � (2)(−2�;�,�) and third 
harmonic generation (THG) linked to � (3)(−3�;�,�,�) , but 
they do not affect the refractive index at �-frequency.

(20)�(�) = �0(�
(1)
(−�;�)

+ 2�
(2)
(−�;�,0)

�0)�� cos�t,

(21)
�(�) =

√
� + �

(1)
(−�;�)

+ 2�
(2)
(−�;�,0)

�0

≃ �0(�) + �1(�)�0

�0(�) =
√

� + �
(1)
(−�;�)

and �1(�) = �
(2)
(−�;�,0)

∕�0(�).

(22)� = �� cos�t =
1

2
��

(
e��t + e−��t

)

(23)�(�) = �0

(
�

(1)
(−�;�)

+
3

4
�

(3)
(−�;�,−�,�)

�
2
�

)
�� cos�t,

(24)
�(�) ≃�0(�) +

3

8n0(�)
�

(3)
(−�;�,−�,�)

�
2
�

≃�0(�) + �2(�)�

Fig. 1  Representation of the indicatrix of a positive biaxial crystals. 
The directions of the principal axes of the ellipsoid X, Y, and Z are 
represented by a thick green line, and the associated red thin arrows 
indicate the corresponding refractive indices nX , nY , and nZ . The grey 
surfaces are the circular sections of the indicatrix, and their radius is 
constant and equals nY . The normals to the circular sections or optical 
axis (OA) form the acute 2VZ angle bisected by the Z semi-axis. For 
uniaxial crystals nX = nY , usually indicated as n� , and nZ is indicated 
as n� ; the two circular sections merge in a single one orthogonal to Z 
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2.2.4  Relation between (non)linear susceptibilities 
and (hyper)polarizabilities

The macroscopic (non)linear optical properties, � (n) , in the 
expression (Eq. 18) of the polarization vector are linked to 
the microscopic � , � , � … (hyper)polarizability properties 
of a unit cell of the material, recalling that � is the dipole 
moment per unit cell volume V induced by the mean (mac-
roscopic) field ( � ) felt by the cell, and that can be also 
developed as follows:

The relative electric permittivity (or dielectric matrix) �r at 
zero field is then linked to the polarizability � of the unit 
cell:

where V is the unit cell volume. Similarly, we have: 
� (2) = 1

2!

1

�0

�∕V  and � (3) = 1

3!

1

�0

�∕V  , with 1∕�0 = 4� in 
atomic units.

It follows that the � , � , and � tensors obtained from the 
SC-CP calculation discussed in Sect. 2.1.3 for infinite peri-
odic systems allow to determine the (non)linear suscep-
tibilities, � (n) , and the refractive index and birefringence.

3  Applications and comparison 
with experimental data

The examples should provide an idea of the quality of the 
results that can be obtained by simulation, and in particu-
lar with the CRYSTAL code (Dovesi et al. 2017, 2018, 
2020).

Before illustrating these examples, it should be mentioned 
that (obviously) the results depend deeply on the computa-
tional parameters; the most important are listed below:

– The variational basis set: in the following examples, a 
localized Gaussian basis set in split valence or multi-
ple zeta forms, usually including polarization functions, 
is used. This is in general sufficient to provide accurate 
results.

– The level of the theory: all calculations are performed 
at the DFT level, and the most reliable, in our opinion, 
are obtained with hybrid functionals, containing a frac-
tion of the exact Hartree–Fock exchange. However, as the 
superiority of one functional with respect to the others is 
frequently a matter of discussion, in some cases we will 
compute the same property with various functionals.

(25)� =
1

V

(
�� +

1

2!
��⊗ � +

1

3!
��⊗ �⊗ � +⋯

)
.

(26)�r = � + � (1) = � +
1

�0

�∕V ,

– The intrinsic numerical accuracy of the implemented 
algorithms, that in the CRYSTAL code is very high, so 
that its influence on the final results can be considered 
negligible.

One additional point must be underlined, when comparing 
simulation and experiments: the experimental determina-
tions to be compared with are, in many cases, scarce, or 
affected by large uncertainty, so that error bars on the two 
sides (simulation and experiment) should be considered. 
Just to mention an example: the complete determination 
of all components of a tensor (and many of the ones men-
tioned above are third or fourth-order tensors, with many 
components) requires that the experiment is repeated 
with different orientations of the crystal, possibly with 
various polarization of the light. The obtained results are 
often not directly the specific constant to be inserted in 
the tensor table, but a linear combination of them gener-
ating a system of (linear) equations, whose solution (in 
particular when small and large numbers are involved) can 
produce strongly correlated final values. The uncertainty 
is increased in some cases by the fact that, intrinsically, 
the experiment is unable to determine the signs of the 
constants.

One advantage of simulation is that all components of 
the tensors are determined in a single shot, so that the 
accuracy of the various terms is the same.

The drawback of simulation is that quantum mechanical 
calculations refer to T = 0 K, so that the effect of tempera-
ture can just be guessed, or evaluated a posteriori with 
simple and, in general, not very accurate tools.

A few more words about anisotropy: each one of the 
properties listed above, when referred to a gas or a liquid, 
reduces to the trace (for order two tensors) or to a few 
invariants (for higher order tensors). In the solid state, on 
the contrary, all specificity related to orientation is con-
tained in the tensor. Tensors are defined with reference to 
a cartesian frame (there are rules for defining the orien-
tation of the lattice vectors with respect to the cartesian 
frame), so that the constants take the following form, for a 
fourth-order tensor: Tijkl , where i, j, k, l can be x, or y or z. 
The first manifestation of anisotropy is that some of these 
components are null for symmetry reasons. Or, viceversa, 
if the components that should be null are not, some sort 
of deformation of the lattice with respect to the ideal situ-
ation must be taken into account.

The examples refer to the (hyper)polarizabilities of pol-
yacetylene (PA) for which both electronic and ionic contri-
butions are important, the NLO properties of benchmarks 
as urea ( CH4N2O ) and potassium di-hydrogen phosphate 
(KDP, KH2PO4 ), and the birefringence of a series of uni-
axal and biaxal minerals.

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580



    
    

 R
EVISED PROOF

Journal : Large 12210 Article No : 931 Pages : 17 MS Code : 931 Dispatch : 20-7-2020

 Rendiconti Lincei. Scienze Fisiche e Naturali

1 3

3.1  The case of polyacetylene: the importance 
of the ionic contribution

The electronic (hyper)polarizabilities (with zero-point 
averaging included) which are calculated from the SC-CP 
method described above do not take into account the so-
called pure vibrational effects, which can be quite important. 
In the CRYSTAL code, these ionic effects are taken into 
account analytically for the polarizability, � (Eq. 12), and for 
the first hyperpolarizability, � (Eq. 6 of Rérat et al. 2015), 
from the IR and Raman spectra, but not for � , the second 
hyperpolarizability (hyper-Raman data are also required; see 
Champagne et al. 1997).

Also the dynamic �e(� )  (or �e(−�;�) )  and 
�e(−�� ;�1,�2) (but not the corresponding �e ) can be 
obtained from CRYSTAL.

The finite field (FF) scheme was implemented in the 
CRYSTAL code before SC-CP, to compute numerically the 
static response properties of molecules and periodic sys-
tems (see Darrigan et al. 2003). Using then, the finite field 
nuclear relaxation (FF-NR) scheme of Bishop et al. (1995) 
that mixes the FF and SC-CP methods, several NLO pro-
cesses due to the second hyperpolarizabilities can be studied 
by fitting the Taylor developments of the dipole moment, 
polarizability, and first hyperpolarizability with respect to 
the static finite field � , at the equilibrium geometry opti-
mized in the presence of the field or not, �E and �0 respec-
tively. For example, the Taylor development of the SC-CP 
(electronic) polarizability is:

where:

The superscript nr indicates the nuclear relaxation 
approximation for the (field-free) equilibrium vibra-
tional contribution, and the (circular) frequencies of the 
applied fields are given (as usual) in parentheses, e.g.: 
�(0;0, 0) = �(−�� ;�1,�2) with static applied fields �i = 0 
and �� = �1 + �2.

(27)

�e
tu
(�0,�) = �e

tu
(�0, �) +

∑

v

�e
tuv

Ev

+
1

2

∑

v,w

�e
tuvw

EvEw +⋯

(28)

�e
tu
(�E,�) = �e

tu
(�0, �) +

∑

v

b�
tuv

Ev

+
1

2

∑

v,w

g�
tuvw

EvEw +⋯ ,

(29)b�
tuv

= �e
tuv

+ �nr
tuv
(−�;�, 0)|�→∞

(30)g�
tuvw

= �e
tuvw

+ �nr
tuvw

(−�;�, 0, 0)|�→∞.

Note that the fits on the dipole moment with respect to the 
static field should lead, in principle, to linear terms identical 
to the electronic and total static polarizabilities, the latter 
being the sum of the electronic (Eq. 10) and nuclear relaxa-
tion (Eq. 12) contributions to the polarizability:

since, in either case, only harmonic vibrational terms are 
included. However, the static hyperpolarizabilities also con-
tain contributions due to anharmonic force constants and 
anharmonic electrical property derivatives (see, for example, 
Torrent-Sucarrat et al. 2004). To isolate the nuclear relaxa-
tion term, one can either subtract the analytically determined 
electronic term or calculate the difference between numeri-
cal values from the Taylor developments with and without 
geometry optimization in the presence of the static field. 
When the geometry is not specified, it is �0 ; the omitted 
frequencies are zero. The subscript � → ∞ in Eqs. 29 and 
30 refers to the infinite optical frequency (high-frequency or 
UV–visible frequency) approximation. In addition to har-
monic terms, first-order anharmonic contributions are also 
included for �nr(−�;�, 0, 0)|�→∞ with this FF-NR method 
(see Bishop et al. 1995); for the other two NLO processes, 
�nr(−�;�, 0)|�→∞ and �nr(−2�;�,�, 0)|�→∞ (the latter being 
obtained from fits of �e ), the first-order anharmonicity terms 
vanish.

The measured values of non-linear optical properties 
ordinarily correspond to the sum of vibrational and elec-
tronic contributions. In principle, the two may be separated 
experimentally as well as computationally. For the former, 
this requires frequency-dependent measurements, as dis-
cussed above for � , and implied when passing for hyperpo-
larizabilities as suggested by Shelton (1986).

Let us consider now the case of all-trans polyacetylene 
(PA) (Lacivita et al. 2012), lying in the xy plane, with alter-
nating double and single C–C bonds along the x periodic 
direction (a double C–C bond is included within each unit 
cell). The center of the unit cell is an inversion point (which 
annihilates odd order energy perturbation terms, i.e., � and 
� in our case) and lies on a C2-axis perpendicular to the �xy

h
 

mirror plane, which relates z and −z directions, so that all the 
components of the � and � tensors containing an odd number 
of z indices vanish.

A finite field is applied along the non-periodic directions 
(y, z, and mixed yz) to obtain the various non-zero inde-
pendent tensor components of the vibrational (hyper)polariz-
abilities. � is a fourth-order tensor consisting, in principle, of 
34 = 81 components, �tuvw . Several components are, however, 
null or equivalent either by point symmetry or permutation 
of indices, the latter depending on the number of static field 
indices. For example, in the case of �nr

tuVW
(−�;�, 0, 0)|�→∞ , 

only the permutations Pt,u (associated with the � → ∞ 

(31)�� = �e+nr = �e + �nr,
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limit) and PV ,W (between two static fields) leave the prop-
erty invariant. According to the number ( m = 4, 2 or 1) of 
static fields, there are three nuclear relaxation contributions 
to the second hyperpolarizability: 

(a) �nr
4,tuvw

= �nr
TUVW

(0;0, 0, 0),
(b) �nr

2,tuvw
= �nr

tuVW
(−�;�, 0, 0)|�→∞

  and
(c) �nr

1,tuvw
= �nr

tuvW
(−2�;�,�, 0)|�→∞.

Seven different finite fields were applied along each direction 
(y, z and y = z ) in Lacivita et al. (2012), namely |�| = 0.1 , 
0.5, 1, 2.5, 5, 7.5, 10 × 10−3 a.u. . Overall, 21 field-dependent 
geometry optimizations, �

�
 , followed by the SC-CP1 calcu-

lations at the first order of perturbation were used to generate 
�(�

�
) , �e(�

�
) (left hand side of Eq. 28) and �e(�

�
) . To 

extract the nuclear relaxation (hyper)polarizabilities from 
the Taylor expansions of the dipole moment and (hyper)
polarizabilities (right-hand side of Eqs. 29 and 30 for the 
polarizability), an additional set of SC-CP2 calculations at 
the second-order of perturbation was performed at the field-
free optimized geometry, �0 . Total and nuclear relaxation 
contributions to � are reported in Table 1.

Let us consider first the transverse (in-plane and non-peri-
odic) yyyy-component of � . The vibrational contribution to 
the static value, �nr

4
(0;0, 0, 0) = 1169 a.u. for four static fields, 

is almost 50% of the total value, g�(0;0, 0, 0) = 2419 a.u. , 
while this percentage decreases to 25% and −2%  when 
only two or one fields are static, �nr

2
(−�;�, 0, 0) and 

�nr
4
(−2�;�,�, 0) , respectively. The same comment applies 

to components including the out-of-plane z-direction and 
off-diagonal yz indices.

In the longitudinal x-direction of PA, no components of 
� can be calculated from the fit of the dipole moment with 
respect to static fields, since its �x-component is ill-defined. 
Then, only components of � having 1, 2, or 3 x-indices can 
be obtained from fits of �e

xy(z)
 and �e

xyz
 , �e

xx
 and �e

xxy(z)
 , and �e

xxx
 

with respect to static Ey and Ez fields. This means that at least 
one field must be frequency-dependent, leading then to a 
small nuclear relaxation contribution �nr

1
 to g� with respect 

to the electronic one. However, the vibrational contribution 
is larger than the electronic one for the two-static field g� 
non-linear optic property, particularly when both in-plane 
periodic x and non-periodic y components are involved. In 
the case of �xxyy(−�;�, 0, 0) , the vibrational contribution, �nr

2
 , 

is equal to +2.332 × 104 a.u. , while the total value is smaller: 
g� = +9877 a.u. , showing that the electronic contribution 
has an opposite sign with respect to the vibrational contribu-
tion, being equal to −1.334 × 104 a.u..

It is worth noting that �nr
xxxx

 for the intensity-dependent 
refractive index (IDRI) process depends on the Raman inten-
sities only, as �nr

xx
 depends on the IR intensities, and can be 

directly obtained as follows (Champagne et al. 1997):

The CRYSTAL code computes the Raman intensities, and 
then allows to analytically obtain this parallel IDRI vibra-
tional contribution too, which is of the same order of mag-
nitude as the electronic one, around 6 × 106 a.u. at the HF 
level of calculation with a 6-31G basis set including ghost 
atoms (basis set B in Lacivita et al. 2012).

(32)�nr
xxxx

(−�;�,−�,�) = 2

3N−6∑

i=1

(
d�e

xx

dQi

)2

�2
i
− �2

,

Table 1  FF-NR static and 
dynamic vibrational (nuclear 
relaxation) contributions to the 
second hyperpolarizability � (in 
a.u.) of PA obtained by fitting 
(a) the dipole moment, (b) the 
polarizability and (c) the first 
hyperpolarizability versus the 
finite field (according to Eq. 28 
in the polarizability case)

HF Hamiltonian and 6-31G(d) basis set including ghost atoms

Fitted values

(a) (b) (c)

g� �nr
4

g� �nr
2

g� �nr
1

yyyy 2419 ± 44 1169 1672 ± 26 422 1223 ± 8 −27
zzzz 2843 ± 283 371 2780 ± 16 308 2514 ± 6 42
xxxy – – – – (1.373 ± 0.004) × 10

5 2900
xyyy – – 1675 ± 80 5247 −3614 ± 5 −42
xxyy – – 9877 ± 1009 2.332 × 10

4 (−1.358 ± 0.002) × 10
4 −140

xxzz – – (1.158 ± 0.241) × 10
4 5874 5766 ± 7 60

yyzz 1541 ± 17 933 861.3 ± 15.7 253.2 658.1 ± 3.1 50
zzyy = yyzz = yyzz 671.7 ± 7.3 63.7 602.6 ± 0.9 −5.5
yzyz = yyzz = yyzz 1855 ± 31 1247 = yyzz = yyzz

xyzz – – 879.4 ± 202.8 659.5 250.2 ± 1.9 30.3
xzyz – – 2740 ± 86 2520 = xyzz = xyzz

xzzy – – = xzyz = xzyz 220.0 ± 0.1 0.1
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The static �nr
xxxx

(0;0, 0, 0) term, instead, needs also the 
determination of the product of IR and hyper-Raman ampli-
tudes, (d�x∕dQi)(d�

e
xxx
∕dQi) , to be evaluated at the equilib-

rium geometry. The latter is not yet available in the CRYS-
TAL code. Nevertheless, in the polyacetylene case, the IR 
intensity is small, leading to 𝛼nr

xx
≪ 𝛼e

xx
 [0.2 and 171.5 a.u., 

respectively (Lacivita et al. 2012)] and then most probably 
to a small contribution, such that the very large �nr

xxxx
(0;0, 0, 0) 

value can be evaluated from Eq. 32 with � = 0.

3.2  KDP and urea: dielectric tensor �e , 
second‑harmonic generation �e , and the effect 
of the field wavelength �

In the previous example of polyacetylene, the subscript 
� → ∞ in Eqs. 29 and 30 means that only the electronic 
transitions, the energies of which are much larger than the 
IR mode ones, are involved in the corresponding high-fre-
quency (”infinite frequency”) electric field perturbation, but 
the frequency was set to zero in the calculation. In the pre-
sent section, the effect of the field wavelength is studied on 
the electronic contribution to the so-called high-frequency 
or optical dielectric tensors.

Let us consider the examples of tetragonal KDP and urea. 
In Table 2, the non-null components of the optical dielectric 
tensor and SHG susceptibility (electronic contribution only, 
�e and �e ) at zero frequency, as obtained at the HF level 
and with various DFT functionals, are reported, and com-
pared with the experimental determinations at � = 1064 nm 
wavelength. The ionic contribution to electric properties at 
this wavenumber is negligible, but the corresponding photon 
energy ( ∼ 1 eV ) is by far smaller than the gap value (and 
the UV–visible absorption edge), confirming that it can be 
considered as null in the electronic contribution as we will 
see further: �e+nr

�=1064nm
∼ �e

�→∞.
� is a symmetric second-order tensor; only two compo-

nents, �xx and �zz , are independent and non-null for sym-
metry reasons. As regards the third-rank SHG � = 1

2
� (2) , 

only one non-equivalent component (xyz) survives. It should 

be underlined that part of the reduction of the number of 
independent terms is due to the intrinsic symmetry of the 
physical property (for � , its symmetric character reduces the 
constants from 9 to 6; in a similar way, the intrinsic symme-
try of SHG reduces, for a triclinic compound, the non-null 
and non-equivalent terms from 27 to 10). In the last line of 
Table 2, the band gap is also reported, due to its relevance in 
determining the numerical values of the various quantities.

Tables 2 and 3 permit to discuss two points characterizing 
the simulation of the reported properties, and of the SC-CP 
approach: 

(a) the effect of the adopted functional;
(b) the effect of the self-consistent treatment.

As regards point (a), in the tables, the results obtained with 
five of the most popular approaches, namely HF, LDA (Per-
dew and Zunger 1981), PBE (Perdew et al. 1996), PBE0 
(Adamo and Barone 1999), and B3LYP (Becke 1993; Lee 
et al. 1988), are reported. The HF Hamiltonian is known to 
be affected by a universal overestimation of the band gap 
Eg (15.99 vs 7.12 eV, + 125%). This leads to a systematic 
underestimation of the dielectric properties ( −10% for �e

xx
 , 

−49% for de
xyz

 ): remember that CPHF and CPKS are SC-CP 
perturbative schemes in which the gap appears in the denom-
inator in the analytical definition of the optical properties, 
see, for example, Eq. 10 where �n ≥ gap.

At the other extreme, the LDA energy gap is underesti-
mated (5.72 vs 7.12 eV, −20% ), because of the self-interac-
tion error; as a consequence, also the (hyper)polarizabilities 
are generally overestimated (+ 4% for �e

xx
 , + 25% for de

xyz
).

Gradient corrections (e.g., PBE) provide only small 
improvements for the gap ( −16% ), and for the dielectric 
properties (+ 4% for �e

xx
 , + 20% for de

xyz
).

When the two hybrid functionals, B3LYP (+ 12% for 
the gap) or PBE0 (+ 20%, about the same error, with oppo-
site sign, of LDA), are used, the difference with respect 
to experiment is usually smaller than when using LDA 
or PBE (0% for �e

xx
 , −4% for de

xyz
 for B3LYP, −1% for �e

xx
 , 

Table 2  Coupled-perturbed 
optical dielectric constants, �e

xx
 

and �e
zz

 , and SHG susceptibility, 
de

xyz
 (in pm/V), of tetragonal 

KDP (space group I4̄d2 ) at zero 
frequency and different levels 
of theory

A split valence basis set was used with d functions on H and f-functions on K, P, and O. SOS (sum over 
states) values in parentheses. Eg is the energy gap (in eV). Calculated data from Lacivita et  al. (2009). 
Experimental values from a Polyanskiy (2020) and b Eckardt and Byer (1991) at � = 1064 nm

HF PBE0 B3LYP PBE LDA Exp.

�e
xx

2.025 2.223 2.230 2.328 2.340 2.23a

(1.712) (2.195) (2.244) (2.526) (2.562)
�e

zz
1.868 2.039 2.046 2.132 2.159 2.13a

(1.639) (2.043) (2.086) (2.317) (2.369)
de

xyz
0.197 0.355 0.373 0.467 0.488 0.38b

(0.066) (0.302) (0.341) (0.609) (0.647)
Eg 15.99 8.51 7.99 6.00 5.72
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−8% for de
xyz

 for PBE0). Note, however, that if the other 
component of the dielectric tensor is considered, �e

zz
 , the 

LDA or PBE results are closer to experiment than the ones 
of hybrids (+ 1%, 0%, −4% , −4% and −12% , from left to 
right in the table).

Let us consider now the effect of the SCF process, which 
permits to the system to respond to the electric field pertur-
bation [point (b) above]. The self-consistent coupled-per-
turbed, SC-CP, results can be compared with the uncoupled 
SOS (sum over states; iteration 0 of the SC-CP process) data 
shown in parentheses in any second row of the table.

A few comments concerning �e:

– In all cases, the coupled-perturbed scheme improves the 
SOS results.

– The larger the distance � from the experiment at the SOS 
level, the larger the SC-CP correction (SC-CP minus 
SOS): for HF, �e

xx
 varies by 0.32 (from 1.71 to 2.03) and 

� from −24 to −10% ; for LDA, at the opposite side of the 
table, �e

xx
 decreases from 2.56 to 2.34 and � from + 14 to 

+ 4%.

It is interesting to notice that for hybrids, and in particular 
for B3LYP, the difference between SOS and SC-CP is quite 
small (0.01 and 0.04 for �e

xx
 and �e

zz
 for B3LYP, and 0.03 

and 0.00 for PBE0 for the same components, with � always 
smaller than 4%). In summary, hybrid functionals seem to 
require a much smaller correction from the coupling than 
LDA, PBE, and HF.

The above comments apply also to the SHG de
xyz

 data; 
the effects are, however, much larger in percentage. There-
fore, for HF, � increases from −83% to −49% ; for LDA, it 
decreases from + 66 to + 25%; for B3LYP from −13 to −4% , 
with a relatively modest change in absolute value from 0.34 
to 0.37 pm/V.

The data shown in Table 2 are static, but they refer to elec-
tronic calculations or measurements in which a high (UV–vis-
ible) field frequency has been used. In Table 3, we explore, for 
both urea and KDP, the effect of the field wavelength, for the 
electronic dielectric tensor (Rérat et al. 2015). Computed SHG 
results for urea and KDP (see Table 4) show that B3LYP 
reproduces rather well the experimental values measured at 
1064 and 600 nm. For urea, the quasi-isotropic electronic con-
tribution is slightly smaller than the experimental value at 
� = 1064 nm (Halbout et al. 1979). At this wavelength, the 
vibrational contribution may not be completely negligible. For 
that reason, the double harmonic vibrational dnr

xyz(zxy)
(−2�;�,�) 

components were calculated at � = 1064 nm (see Eq. 6 in 
Rérat et al. 2015); their value is 0.041 (0.035) pm V−1 for 
B3LYP, and has the same sign as the electronic contribution 
de

xyz(zxy)
(−2�;�,�) . The total B3LYP de+nr

xyz(zxy)
 value is, then, 

equal to 1.027 and 1.018 pm V−1 which falls essentially at the 
outer limit of the error bars for the experimental value: 
d14 = 1.2 ± 0.1 pm V−1 of Halbout et al. (1979) ( de+nr

xyz
≈ de+nr

zxy
 

for wavelength larger than 600 nm). Vibrational anharmonicity 
and/or temperature effects, which would increase the magni-
tude of this term, could be among the reasons of the small 
discrepancy. At 600 nm, the calculated vibrational contribution 
is four times smaller than at 1064 nm and, thus, can be 
neglected. The B3LYP value (1.371 and 1.361 pm V−1 ) in this 
case is well within the experimental window: 1.3 ± 0.3 pm V−1 
of Bäuerle et al. (1977). Finally, for KDP, the B3LYP elec-
tronic value of 0.41 pm V−1 is in perfect agreement with the 
available experimental reference, i.e., 0.41 pm V−1 (Singh 
1986). Again, Table 4 clearly shows the well-known tendency 
of LDA and GGA functionals to grossly overestimate high-
order electric susceptibilities as the value of the wavelength 
approaches the resonance. It is noteworthy that de

xyz
 increases 

at each frequency when the percentage of HF exchange 

Table 3  High-frequency 
dielectric tensor components 
�e

xx
 and �e

zz
 of urea (three top 

lines) and KDP (three bottom 
lines) computed using various 
Hamiltonians at � → ∞ limit 
and � equal to 1064 and 600 nm

Data from Rérat et  al. (2015). Experimental values from Rosker et  al. (1985) for urea and Polyanskiy 
(2020) for KDP

� (nm) HF PBE0 B3LYP LC-BLYP PBE LDA Exp.

Urea ∞ �e
xx

1.901 2.059 2.070 2.057 2.149 2.186
�e

zz
2.187 2.433 2.451 2.430 2.567 2.599

1064 �e
xx

1.907 2.070 2.081 2.067 2.163 2.202 2.194
�e

zz
2.195 2.448 2.467 2.446 2.588 2.621 2.529

600 �e
xx

1.920 2.093 2.106 2.091 2.195 2.237 2.220
�e

zz
2.214 2.483 2.504 2.481 2.635 2.671 2.577

KDP ∞ �e
xx

2.025 2.223 2.230 2.219 2.327 2.341
�e

zz
1.868 2.039 2.046 2.049 2.132 2.160

1064 �e
xx

2.030 2.231 2.239 2.227 2.339 2.352 2.231
�e

zz
1.872 2.046 2.053 2.055 2.141 2.169 2.131

600 �e
xx

2.041 2.250 2.258 2.245 2.363 2.377 2.277
�e

zz
1.880 2.060 2.068 2.069 2.160 2.189 2.155
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decreases. This correlates with the predicted band gap for the 
different Hamiltonians. For urea, Eg decreases from HF (14.0 
eV) to PBE0 (7.4 eV) and B3LYP (6.9 eV) to PBE (5.2 eV) 
and LDA (4.8 eV); see Table 2 for KDP.

Figure 2 shows the variation of SHG de
xyz

 as a function of � , 
the field wavelength, for three levels of theory: HF, LDA, and 
B3LYP. The dots represent the experimental determination. 
Its error bar is also indicated. The above discussion concern-
ing the � effect becomes here very clear: above 600 (HF), 700 
(B3LYP), or 1100 (LDA) nm de

xyz
 remains essentially constant 

when the wavelength of the field is varying. As for other prop-
erties, B3LYP performs best.

3.3  Refractive index n and birefringence ı 
of minerals

The refractive index and birefringence are directly related by 
simple equations to the components of the dielectric tensor, 
as shown in Sect. 2.2.

Here, we will focus on three aspects: 

(a) the relative importance of the electronic and ionic con-
tributions. We remind that the former requires a CPHF 
calculation at fixed geometry (experimental or calcu-
lated); the ionic contribution is more expensive, as it 
requires to build the full Hessian matrix for generating 
the vibrational frequencies.

(b) the dependence of these contributions on the wave-
length �

(c) the anisotropy, that is the different response to the elec-
tric field applied in different directions.

As discussed previously, the relative importance of the elec-
tronic �e (Eq. 10) and ionic �nr (Eq. 12) contributions to 
polarizability depends on the frequency. In the UV–visible 
region, the electronic contribution is much larger than the 
ionic one. Therefore, we will first consider results obtained 
at the sodium source wavelength, �D = 589.3 nm , taking into 
account the electronic contribution alone.

A large set of minerals, namely fluorite ( CaF2 ), periclase 
(MgO), corundum ( Al2O3 ), quartz ( SiO2 ), rutile ( TiO2 ), 
anatase ( TiO2 ), calcite ( CaCO3 ), aragonite ( CaCO3 ), anda-
lusite, sillimanite, and kyanite (three Al2SiO5 polymorphs), 
forsterite ( Mg2SiO4 ), topaz ( Al2SiO4F2 ), and perovskite 
( CaTiO3 ), plus CaO have been selected to cover a large 
range of refractive index and birefringence values. Table 5 
reports data calculated for this set of systems, using the 
B3LYP hybrid functional, relatively severe computational 

Table 4  Calculated SHG 
high-frequency electric 
susceptibilities de

xyz
 and de

zxy
 

(in pm/V) of urea and KDP 
computed using various 
Hamiltonians at � → ∞ limit 
and � equal to 1064 and 600 nm

Data as in Rérat et al. (2015). Experimental data from Levine and Allan (1993), Halbout et al. (1979), Bäu-
erle et al. (1977) for urea and from Refs. Eckardt and Byer (1991), Singh (1986) for KDP

� (nm) HF PBE0 B3LYP LC-BLYP PBE LDA Exp.

Urea ∞ de
xyz

0.680 0.823 0.863 0.876 0.949 1.106
de

zxy
0.680 0.823 0.863 0.876 0.949 1.106

1064 de
xyz

0.738 0.936 0.986 0.989 1.131 1.333 1.2±0.1
de

zxy
0.737 0.934 0.983 0.988 1.128 1.329

600 de
xyz

0.894 1.279 1.371 1.333 1.824 2.243 1.3±0.3
de

zxy
0.889 1.263 1.361 1.323 1.793 2.191

KDP ∞ de
xyz

0.198 0.354 0.373 0.342 0.467 0.487
de

zxy
0.198 0.354 0.373 0.342 0.467 0.487

1064 de
xyz

0.207 0.378 0.397 0.363 0.505 0.530 0.38, 0.41
de

zxy
0.207 0.378 0.396 0.363 0.504 0.529

600 de
xyz

0.228 0.438 0.464 0.416 0.607 0.642
de

zxy
0.227 0.435 0.460 0.415 0.603 0.636

 0

 1

 2
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Fig. 2  Variation of the SHG de
xyz

 tensor component of bulk urea with 
respect to the field wavelength, � , at the HF, B3LYP, and LDA levels 
of calculation. Experimental data from Levine and Allan (1993), Hal-
bout et al. (1979), Bäuerle et al. (1977)
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conditions, and the basis sets developed by Peintinger et al. 
(2013). In all but two cases, the experimental geometry has 
been used. The refractive indices obtained at the optimized 
geometry are extremely close to the ones computed at the 
experimental geometry, the exceptions being topaz and 
perovskite, for which both data are reported in the table. 
Figure 3 shows the birefringence ( � ) as a function of the 
refringence expressed by the proxy ñ . In general, being the 
birefringence a small fraction of the refractive indices, the 
intermediate refractive index is a good approximation of 
the refringence. Therefore, ñ = nY , ñ = n� , and ñ = n for 
biaxial, uniaxial, and cubic crystals, respectively.

Consider first the cubic systems, on the zero axis. For 
fluorite and CaO, simulation and experiment coincide, 
whereas, for periclase, the experimental value is slightly 
larger (1.735 vs 1.725). This is always the case for all sys-
tems: when the two circles do not overlap, the experimental 
ñ value is always slightly larger than the computed one, the 
difference being of the order of 2–3%.

Three sets of polymorphs have been considered: (rutile, 
anatase), (calcite, aragonite), and (andalusite, sillimanite, 
kyanite). As already observed for the andradite-grossular 
solid solution (Lacivita et al. 2013), polymorphs with close 
density (for example, andalusite, sillimanite) present similar 
indices. When the density is different, the denser system 
has the largest ñ value, as is the case of anatase-rutile and 
of andalusite–kyanite, according to the Gladstone–Dale or 
Drude law (Anderson and Schreiber 1965). In summary, the 

ñ experimental data are well reproduced, and the residual 
error is small, and always with the same sign.

The agreement between the experimental and calculated 
birefringence (the difference between the smallest and larg-
est refractive indices) is better than the one for ñ by about 
one order of magnitude. This is due to the fact that inac-
curacies due to basis set limitations, use of a specific func-
tional, definition of the equilibrium geometry, and numerical 
approximations are to a large amount the same for the dif-
ferent components of the dielectric tensor, and then cancel 
when computing birefringence.

The comparison of calculated and experimental optical 
sign and angle is more delicate. Figure 3 confirms that for 
uniaxial crystals, the optical sign is correctly predicted, also 
for quartz or corundum which are characterized by a small 
birefringence. For corundum, the discrepancy is the largest 
in the set; note, however, that the experimental birefringence 
is the smallest in the set. This indicates that the evaluation 
of the optical sign of weakly birefringent uniaxial crystals 
is delicate.

For the biaxial crystals, the optical sign and angle are 
connected. In general, the agreement between calculated 
and experimental optical signs is good. A closer inspection 
reveals, however, the difficulty of obtaining the precise shape 
of the indicatrix, as the interesting case of topaz, orthorhom-
bic, shows. The ”module” of the calculated birefringence 
compares satisfactorily to the experimental one (0.0102) 
either at the experimental (0.0066) or optimized (0.0078) 

Table 5  Calculated and experimental refractive indices both at (�D) for various minerals characterized by different symmetry

For each mineral (col. 1: Flu: Fluorite, Per: Periclase, CaO, Cor: corundum, Qtz: quartz, Ru: rutile, Ana: anatase, Cal: calcite, Ara: aragonite, 
And: andalusite, Sil: sillimanite, Ky: kyanite, Fo: forsterite, Top: topaz, Pv: perovskite) the crystalline system is reported (col. 2 : Cub: cubic, 
Tet: tetragonal, Trig: trigonal, Rho: rhomboedrical, Ort: orthorhombic, Tric: triclinic). Columns 3–5, 6, and 7 report the experimental refrac-
tive indices, the birefringence, and the 2VZ angle, respectively. The corresponding calculated values are given in columns 8–10, 11, and 12, 
respectively. The sign associated with the birefringence � is the optical sign. For uniaxial crystals, nY = n� and nZ = n� for the positive ones and 
nX = n� and nZ = n� for the negative ones. 2VZ is smaller (larger) than 90 degrees for positive (negative) biaxial compounds. Opening braces 
indicate sets of polymorphs. Experimental refractive indices from the compilation at Shannon et al. (2002); when several data are available, pref-
erence has been given to data agreeing with Fleischer et al. (1984). The accuracy on the refractive experimental indices is ±(0.0001 − 0.0010) . 
The variations between different measurements are usually of the order of 0.001. Opening parentheses associate calculations performed at the 
experimental (first line) and optimized (second line) geometry
*See text about birefringence of perovskite
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geometry. However, the sign of the calculated indicatrix 
reverses according to the considered geometry.

We mention here also the CaTiO3 perovskite case, whose 
crystals are finely twinned. We are not aware of any experi-
mental determination of the refractive indices, as Table 5 
shows. We found, however, a single experimental determina-
tion of the birefringence (El-mallah et al. 1987). We indicate 
this situation with an ellipse, rather than with a circle. The � 
value computed at the experimental geometry is quite close 
to the experimental value (0.019 vs 0.018), whereas the 
value at the optimized geometry is slightly larger (0.030).

A few words now concern the optical angle 2V, shown 
in Table 5, for which we consider again topaz and perovs-
kite. In both cases, the calculated refractive indices at the 
two geometries are quite close, but the optical angles are 
different, and strongly dependent on these small differ-
ences. The reason is that the size of the indicatrix depends 
on the refractive index values, whereas the shape is mainly 

controlled by the two partial birefringences: �1 = nY − nX 
and �2 = nZ − nY . Note that � = �1 + �2 (Wright 1951). For 
𝛿 < 0.05 and 1.400 < nX < 2.000 , the main contribution to 
cos 2VZ is given by �2−�1

�
 . The partial birefringence being 

smaller than the birefringence, small changes of the partial 
birefringence can change the optical sign. Therefore, at this 
stage, the calculated sign of the indicatrix of biaxial materi-
als has to be considered as poorly constrained.

As anticipated, at wavelengths shorter than the IR region, 
the polarizability, and, consequently, the dielectric matrix 
(Eq. 26) and refractive index (Eq. 16), can be approximated 
by its electronic part only, since �nr ∼ −

∑
i �

2
i
∕�2 ∼ 0− (see 

Eq. 12 with 𝜔 ≫ 𝜔i ). However, defining a precise limit for 
IR is not simple. It depends on the frequency modes ( �i ) and 
corresponding Born charges ( �i ) of the considered systems. 
Practically, 4000 nm (equivalent to 2500 cm−1 ) is a provi-
sional limit that should be applied to most of the studied sys-
tems. Hence, experimental indices measured at wavelength 
shorter than about 4000 nm should be larger than refractive 
indices evaluated at infinity, when considering only the elec-
tronic part ( ne

�→∞ ), since �e =
∑

n fn∕(�
2
n
− �2) (see Eq. 10) 

increases with respect to � till the first resonance � = �n in 
the UV–visible spectrum ( 𝜆 < 600 nm ) for many minerals.

Then, we have performed a literature search to find 
experimental dispersion of the refractive index with 
respect to the photon energy between the IR and UV–vis-
ible absorption spectra ( � ∈ [200 − 10,000] nm ). Available 
data are represented in Fig. 4. Table 6 reports the larg-
est wavelength ( �max ) at which the refractive index of the 

Fig. 3  Birefringence ( � ) versus refringence ( ̃n ). See text for the 
definition of ñ , that depends on the crystalline system. Positive and 
negative uniaxial or biaxial minerals are reported in the upper (blue 
circles) and lower (red circles) part of the figure, respectively. Open 
and closed circles correspond to calculated and experimental values, 
respectively. The ellipse corresponds to perovskite and is centered 
on the reported interval of indices and the largest measured birefrin-
gence (see text); the optical sign is unknown. Abbreviations are as 
follows: Flu: fluorite, Per: periclase, Cor: corundum, Ru: rutile, Ana: 
anatase, Cal: calcite, Ara: aragonite, Fo: forsterite, And: andalusite, 
Sil: sillimanite, Ky: kyanite, Qtz: quartz, Top: topaz, Pv: perovskite. 
When circles overlap, in all cases, they refer to the same compound, 
that is indicated only in one of the circles

Table 6  Comparison between calculated and measured refractive 
indices n�D

 and n�
max

�
max

 in nm in the last column. For uniaxial minerals, superscripts � 
and � underline that the lines report n� and n� , respectively
aMalitson (1963)
bMalitson (1962)
cStephens and Malitson (1952)
dGhosh (1999)
e Devore (1951)

M1 �D �
max

Calc. Exp. Calc. Exp. �
max

Flu 1.4325 1.4336 1.3001 1.3076 9724.0a

Cor 1.7442� 1.7673 1.5597 1.5864 5577.0b

1.7326� 1.7598 1.5541�

Per 1.7249 1.7355 1.6100 1.6240 5350.0c

Cal 1.6392� 1.658 1.6057 1.6210 2170.0d

1.4796� 1.486 1.4656 1.4739 2324.0d

Qtz 1.5304� 1.5441 1.5027 1.5201 2053.1d

1.5365� 1.553 1.5103 1.5282 2053.1d

Ru 2.5773� 2.613 2.4112 2.451 1529.6e

2.8447� 2.900 2.6501 2.709 1529.6e
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considered materials have been measured, and the cor-
responding measured indices ( n�max

 ), as well as n�D
 , cor-

responding to the yellow line of Na. For quartz, calcite 
and rutile, �max is in the near IR and significantly shorter 
than 4000 nm. For the first two systems, n�max

 is close to 
the ne

�→∞ limit value represented by horizontal lines in 
Fig. 4. For rutile, whose �max is close to the visible spec-
trum represented by the vertical grey strip, n�max

 is smaller 
than ne

�→∞ . The difference ne
�→∞ − n�max

 is comparable to 
its equivalent at �D . For fluorite, corundum, and periclase, 
�max largely exceeds 4000 nm and the n�max

 values are much 
smaller than ne

�→∞ , due to the negative ionic contribu-
tion, see Eq. 12 when 𝜔 > 𝜔i . The larger n�max

 , the larger 
ne
�→∞ − n�max

 (Fig. 4). The difference reaches almost 10% 
in the cases of corundum and fluorite and the electronic 
polarizability alone fails to reproduce indices measured at 
large wavelengths.

Frequency calculations were performed to evaluate �nr(�) 
(Eq. 12) and the polarizability was evaluated considering the 
two contributions. In the case of fluorite, corundum and 
periclase, including the ionic contribution, yield calculated 
refractive indices ( ne+nr

�max
 ) in very good agreement with the 

experimental values (Table 6). The difference between cal-
culated and measured indices is now of the order of the dif-
ference at �D . For rutile, calcite, and quartz, addition of the 
ionic contribution slightly reduces the calculated indices as 
expected.

The relative �e and �e+nr contributions to the refractive 
index in the various spectral regions can be appreciated from 
Fig. 4 where experimental dispersion data and calculated 
n�D

 , ne
�→∞ and ne+nr

�max
 are reported for the materials considered. 

As anticipated above, the electronic contribution yields a 
fairly good value of the index n�D

 (large open symbols in the 
grey vertical strip). However, ne

�→∞ (horizontal lines) deviate 
significantly from indices measured at 𝜆 > 4000 nm . In fact, 
this ”limit” depends on materials. From our data, a better 
provisional ”limit” should be 2500 nm. Above 4000 (or 
2500) nm, the ionic contribution cannot be neglected and 
brings the calculated indices ( ne+nr

�max
 ) in very good agreement 

with experimental indices.

4  Conclusions

In this document, it has been shown that ab initio quantum 
mechanical simulation can be used for the calculation of 
a large set of properties related to the perturbation of an 
electric field on a crystalline system. The simplest ones, 
like the dielectric tensor, the refractive indices, the birefrin-
gence, correspond to the second order terms in the Taylor 
expansion of the total energy of the system as a function 
of the field strength. The laser technology permits nowa-
days to access experimentally also to the third- and fourth-
order terms in the expansion. The combination in various 
ways of the frequencies of the involved fields multiplies 
the number of phenomena and physical features that can 
be accessed experimentally. A large set of these (first and 
second hyperpolarizability, second-harmonic generation, 
intensity-dependent refractive indices, and many others) can 
be obtained from the CRYSTAL code used here, at rela-
tively low cost for small–medium-size periodic systems (the 
most interesting, due to the tensor nature of many of these 
quantities).

One of the big advantages of simulation is that the full set 
of constants defining the tensor are obtained with a single 
calculation, whereas many experiments must be performed 
for obtaining the same result.

The combination with other perturbations, for example 
the strain of the unit cell, generates a new set of important 
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line (see Table 6). Color refers to the compound. The grey strip indi-
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that of the lower part. Notice that no dispersion data have been found 
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properties, like the piezoelectric (third order) or photoelastic 
(fourth order) tensor, available as well in a very simple way 
from CRYSTAL.

Quantum mechanical simulation appears then an essential 
tool for the accurate exploration of many tensorial properties 
of crystalline compounds.
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