
HAL Id: hal-02907937
https://hal.science/hal-02907937v1

Submitted on 27 Jul 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Neural networks based speed-torque estimators for
induction motors and performance metrics

Sagar Verma, Nicolas Henwood, Marc Castella, Al Kassem Jebai,
Jean-Christophe Pesquet

To cite this version:
Sagar Verma, Nicolas Henwood, Marc Castella, Al Kassem Jebai, Jean-Christophe Pesquet. Neural
networks based speed-torque estimators for induction motors and performance metrics. IECON 2020
- 46th Annual Conference of the IEEE Industrial Electronics Society, Oct 2020, Singapore, Singapore.
pp.495-500, �10.1109/IECON43393.2020.9255236�. �hal-02907937�

https://hal.science/hal-02907937v1
https://hal.archives-ouvertes.fr

Neural Networks based Speed-Torque Estimators
for Induction Motors and Performance Metrics

Sagar Verma,1,2 Nicolas Henwood,2 Marc Castella,3 Al Kassem Jebai,2

Jean-Christophe Pesquet,1
1 Université Paris-Saclay, CentraleSupélec, Inria, Centre de Vision Numérique

2 Schneider Toshiba Inverter Europe
3 SAMOVAR, Télécom SudParis, Institut Polytechnique de Paris

Abstract—This paper focuses on the quantitative analysis of
deep neural networks used in data-driven modeling of induction
motor dynamics. With the availability of a large amount of data
generated by industrial sensor networks, it is now possible to
train deep neural networks. Recently researchers have started
exploring the usage of such networks for physics modeling, online
control, monitoring, and fault prediction in induction motor
operations. We consider the problem of estimating speed and
torque from currents and voltages of an induction motor. Neural
networks provide quite good performance for this task when
analysed from a machine learning perspective using standard
metrics. We show, however, that there are some caveats in using
machine learning metrics to analyze a neural network model
when applied to induction motor problems. Given the mission-
critical nature of induction motor operations, the performance
of neural networks has to be validated from an electrical
engineering point of view. To this end, we evaluate several
traditional neural network architectures and recent state of the
art architectures on dynamic and quasi-static benchmarks using
electrical engineering metrics.

Index Terms—induction motor, neural networks, deep learning,
time series, training

I. INTRODUCTION

Induction motors have very complex dynamics and it is
essential to have a controller that can provide robust control
based on these dynamics. Induction motor controllers also
offer protection and supervision of the electro-mechanical
system [1], [2]. For these services, it is mandatory to know
the dynamical physical model of induction motors. Accurate
dynamics is derived from the first principles of physics. These
dynamical models are dependent on different induction motor
physical characteristics like currents, voltages, speed, fluxes,
inductances, and resistances, which are measured directly or
indirectly using sensors or estimators. Accurately measuring
some of these quantities is challenging due to the presence of
noise and the operating conditions.

Controllers derived from physical models are widely used in
industry and are very reliable. Although moderate complexity
models of the induction motor exist, they are nonlinear and
include several uncertain parameters. Industrial Internet of
Things (IIoT) has made it possible to collect a large amount of
data from different electro-mechanical devices. This collection
of real-time or near real-time data from induction motor
systems has enabled the development of online decision algo-

rithms for electrical system monitoring applications. Recent
advances in deep neural networks for time series analysis
have also led to better prediction models. End-to-end learning
of temporal dynamics from time-series data has been made
easier due to techniques like Convolutional Neural Network
(CNN), Recurrent Neural Network (RNN), and Long-Short
Term Memory (LSTM) structures.

Neural networks have been actively used for controller
[3]–[5], monitoring and fault prediction in electrical motor
operations [6]–[9]. Verma et. al. [10] used encoder-decoder
architecture to learn dynamics from induction motor signals.
These methods are evaluated using machine learning metrics
like mean square error, r-square, accuracy, etc. These metrics
are well suited for regression and prediction tasks but have
an inherent bias towards the dataset. We analyze how and
when these metrics fail and propose a way to properly evaluate
neural network methods for induction motor problems using
dynamic and quasi-static benchmarks, as well as electrical
engineering metrics. We consider the problem of predicting
speed and electromagnetic torque from currents and voltages
represented in (d − q) frame. We experiment on network
architectures similar to those proposed in [10].

This paper is structured as follows: Section II provides
a short survey on induction motor physics modeling and
neural networks. Section III explains the nonlinear physical
model of an induction motor and electrical engineering metrics
used in our experiments. Section IV details neural network
models used in this paper. Section V describes the training and
benchmark data. Section VI contains experimental details and
the obtained results. In the last section, conclusions are drawn
and some possible extensions of this work are mentioned.

II. RELATED WORK

Development in model-based nonlinear control methods in
the last three decades can be grouped in the following cate-
gories: feedback linearization methods [11], [12], Lyapunov-
based control [13], [14], and passivity-based methods [15],
[16]. The state-space model of an induction motor is described
in [17]. Modeling of electrical motors based on analytical
mechanics and energy consumption is presented in [18].
Existing methods for designing a controller for an induction
motor can be done in two ways, when perfect knowledge of

the parameters is available [19]–[21] and when there is an
uncertainty associated with the estimation of the parameters
[22]–[24]. Model-based control methods for induction motors
all require proper knowledge about four independent electrical
parameters of the motors.

Neural network-based control methods have also been pro-
posed to learn a better model that can overcome problems
associated with the traditional model-based approach. [25]
uses radial basis neural networks to learn the relationship be-
tween currents and flux linkages. [6] presents a neural network
classifier for fault diagnosis in electrical motor operations.
The approach does not use dynamics modeling and only
relies on supervised labels [8], learn motor dynamics from
simulated data, and perform fault detection in simulated motor
operations. In [10], encoder-decoder network is proposed to
learn dynamics of electrical motor directly from recorded data.
The proposed method achieves good performance in modeling
the input-output relationship.

The reasons why neural networks fail is analyzed in [26].
Neural networks make fewer assumptions, have a large number
of parameters, and have different modeling processes, open-
ing more possibilities for inappropriate uses and problematic
applications. Another major pitfall consists of treating neural
networks as black boxes. In [27] a robustification technique
is proposed to interpret neural network results in terms of
the input effects and interactions among input variables.
Underfitting and overfitting being well-known problems in
machine learning methods, neural networks are prone to these
problems due to their data-hungry nature and large number of
parameters, as discussed in [28].

III. PHYSICAL MODELING

A. Nonlinear State-Space Motor Model

In this section, we present the mathematical model of an
induction motor we consider, which was introduced in [17].
Rotating reference frame at pulsation ωs (d − q model) is
used to express all the quantities. Park transformation is used
to convert the quantities from the fixed three-axis frame to the
orthogonal rotating (d − q) frame. The fifth-order nonlinear
state space model of the induction motor reads as follows:

J

np

d

dt
ωr =

3

2
np=(ψ∗

s is)− τL (1)

d

dt
ψs = −jωsψs −Rsis + us (2)

d

dt
ψr = −jωsψr −Rrir + jωrψr (3)

where =(z) and z∗ are respectively the imaginary part and
conjugate of z. np denotes the number of pole pairs, J the
motor shaft inertia, τL the load torque, and us = usd + jusq
the motor input voltage in the (d − q) frame. ωr (np times
the mechanical speed), ψs = ψsd + jψsq (stator flux), and
ψr = ψrd + jψrq (rotor flux) are the five state variables. The
flux variables are linked to the current variables is (stator) and
ir (rotor) by nonlinear relationships [29] given by :

ψs = Lfsis +
Lm(is + ir)

1 + γ|is + ir|

ψr = Lfrir +
Lm(is + ir)

1 + γ|is + ir|

(4)

The parameters are the stator and rotor resistances Rs and
Rr, the stator and rotor leakage inductances Lfs and Lfr, and
the magnetic saturation coupling parameters Lm and γ.

B. Performance Metrics

To evaluate neural networks we use electrical engineering
(EE) performance metrics widely used in industrial settings.
We report the following metrics, applied to the response signal
to a speed or torque reference ramp (whose amplitude is the
absolute difference between the starting and target values):

• 2% response time (t2%) is the time value at which the
response signal has covered 2% of the ramp amplitude.

• 95% response time (t95%) is the time value after which
the response signal remains at less than 5% of the ramp
amplitude from the target value.

• Overshoot (D%) is the difference between the maximum
peak value of the response signal and the target value. It
is expressed in percentage of the ramp amplitude.

• Steady-state error (Ess) is the difference between the
response signal and target values once the steady-state
has been reached.

• Following error (Efol) is the difference between the
reference and response signal values at the time when the
reference value has covered 50% of the ramp amplitude.

• Maximum acceleration torque (for speed ramp only)
(∆τmax) is the maximum response torque deviation dur-
ing the speed ramp.

• Speed drop (for torque ramp only) (SD) is the maxi-
mum response speed deviation during the torque ramp.

IV. DATA DRIVEN MODELING

A. Standard Neural Networks

We use three benchmark neural network architectures from
[10] for our experiments. Since the focus of this paper is on
the evaluation of performance metrics, we only use subset of
benchmark networks from [10].

1) Four layer Fully Connected Network (FCN): A four
layer fully connected network which has been used in different
tasks related to induction motor operations.

2) Two layer Long-Short Term Memory Network (LSTM):
In sequential neural networks, we use LSTM as it performs
better than RNN. We use two layers of LSTM, followed by
three fully connected layers in this network.

3) Four layer Convolutional Neural Network (CNN):
CNNs have been shown to provide competitive results on
sequential data. In line with recent advances in the use of 1D
convolutions for sequential tasks, we also employ a four-layer
convolutional neural network for our experiments.

B. Encoder-Decoder Networks

Encoder-decoder networks have been proven to perform
better when input and output dimensions are the same. We con-
sider encoder-decoder variants proposed in [10]. This structure
consists of encoding and decoding blocks with convolutional
and deconvolutional layers, respectively.

1) Vanilla Encoder-Decoder (Vanilla): Vanilla Encoder-
Decoder consists of four layers of convolutional and four
layers of a deconvolutional block.

2) Skip Connections (Skip): We add skip connections to
each convolutional layer of the encoding block to consecutive
deconvolutional layer of the decoder block.

3) Recurrent Skip Connections (RNN): Better temporal
dynamics learning is achieved by introducing RNN layers in
skip connections.

4) Bidirectional Recurrent Skip Connections (BiRNN):
Bidirectional RNN in skip connections have a better scope
over complete input sequence than unidirectional RNN.

5) Bidirectional Diagonalized Recurrent Skip Connections
(BiDiagRNN): RNNs in the network are diagonalized by
making their parameters independent of each other. This leads
to fewer parameters.

C. Loss Function and Evaluation Metrics

Very often, mean square error loss is used to train a
regression model. Total variation weighted mean square loss
LTV-MSE as proposed in [10] gives more weight to dynamic
parts of the signal:

LTV-MSE =
1

N

N∑
i=1

(
T−1∑
t=1

|yit − yit+1|

)
︸ ︷︷ ︸

Total Variation

MSE︷ ︸︸ ︷(
1

T

T∑
t=1

(yit − ŷit)2
)

(5)
where yit and ŷit are the values of output and predicted sample
i at time-step t, respectively. N is the number of training
samples where each sample is of duration T .

To analyse model performance at global scope, we report
machine learning (ML) metrics. Mean absolute error (MAE),
symmetric mean absolute percentage error (SMAPE), and
coefficient of determination (R2) are used, whose expressions
are recalled below:

MAE(y, ŷ) =
1

T

T∑
t=1

|yt − ŷt| (6)

SMAPE(y, ŷ) =
100

T

T∑
t=1

|ŷt − yt|
|ŷt|+ |yt|

(7)

R2(y, ŷ) = 1−
∑T

t=1(ŷt − ȳ)2∑T
t=1(yt − ȳ)2

(8)

where yt is the ground truth, ŷt is the predicted output of the
model at time t, and T is the total experiment duration. ȳ
denotes the mean of ground truth y.

V. DATASETS

We use the motor model proposed in [17] to generate our
simulated data.

A. Reference Trajectory Generator

To generate simulated training and validation sets, we
created a trajectory generator that generates realistic reference
speed and load torque trajectories. For every simulation, the
number of static states is drawn randomly from a uniform
distribution between 5 and 15. The duration of a static state in
a simulation is drawn from a uniform distribution between
1 and 5 seconds. Ramp duration between two consecutive
static states is generated according to a shifted truncated
exponential distribution between 4 and 2000 milliseconds to
provide more frequent short duration ramps. For each static
state, speed and load torque values are generated according
to a uniform distribution on [-70, 70] Hz and [-120, 120] %
of nominal torque (%τnom), respectively. Figure 1 shows a
sample reference trajectory from the training set.

0 20 40 60 80
Time (s)

130
75

0

75
130

Lo
ad

 T
or

qu
e

(%
 N

om
in

al
 T

or
qu

e)

0 20 40 60 80
Time (s)

80

40

0

40

80

Re
fe

re
nc

e
Sp

ee
d

(H
z)

Fig. 1: Reference speed and load torque trajectories from one
of the training samples.

B. Training and Validation Dataset

75 50 25 0 25 50 75
Reference Speed (Hz)

150

100

50

0

50

100

150

Lo
ad

 T
or

qu
e

(%
 o

f N
om

in
al

 T
or

qu
e)

(a) Training zone

100 75 50 25 0 25 50 75 100
Reference Speed (Hz)

150

100

50

0

50

100

150

Lo
ad

 T
or

qu
e

(%
 o

f N
om

in
al

 T
or

qu
e)

(b) Validation zone

Fig. 2: Density plots of torque vs speed plans for all the
simulations in training set and validation set.

We use our reference trajectory generator to generate 100
simulated paths totaling about 1000 speed and torque ramps
in 150 minutes for the training set and 50 simulations totaling

about 200 ramps in 30 minutes for the validation set. Torque-
speed plan density plots for training and validation zones are
shown in Figure 2. We then simulate these trajectories using
our Simulink model of a 4kW induction motor and collect
simulation data every 4ms. The simulation dataset consists
of the following electrical quantities: currents isd and isq ,
voltages usd and usq acting as inputs and rotor speed ωr,
and electromagnetic torque τem acting as outputs.

C. Test Dataset

The validation dataset is sufficient to evaluate neural net-
work models on ML metrics (equations (6), (7), and (8)). To
properly evaluate neural network models on EE performance
metrics (see Section III-B), we generate five classical bench-
mark trajectories. These are divided into two categories:

1) Quasi-Static Benchmarks: At constant torque, reference
speed goes from 70 to -70Hz in 50 seconds. Two constant
torques are tested: no-load and 50% of the nominal load. We
name these benchmarks, Quasi-Static1 and Quasi-Static2,
respectively. In the case of the 50% nominal load torque, the
torque has already reached the steady-state before the start of
the benchmark.

2) Dynamic Benchmarks: We generate three dynamic
benchmarks to evaluate our neural network models:

(a) Dynamic-Speed1: Reference speed goes from 0 to
50Hz in 1 second at no load.

(b) Dynamic-Speed2: Reference speed goes from 50 to
-50Hz in 1 second at 50% of nominal load.

(c) Dynamic-Torque: Load torque goes from 0 to 100%
of nominal torque in 4ms with a constant 25Hz refer-
ence speed.

VI. EXPERIMENTAL RESULTS

Model Speed (ωr) Torque (τem)

MAE SMAPE MAE SMAPE

FCN 0.79 21.77% 0.57 48.66%
LSTM 0.11 18.76% 0.21 43.01%
CNN 0.06 19.14% 0.09 38.91%

Vanilla 0.05 18.94% 0.10 39.91%
Skip 0.08 19.08% 0.12 43.23%
RNN 0.06 19.31% 0.08 41.81%

BiRNN 0.05 18.67% 0.09 42.82%
DiagBiRNN 0.03 18.76% 0.04 38.46%

R2 is 0.99 for all the networks for both quantities.

TABLE I: ML metrics for the predictions done on benchmark
set using standard models and the encoder-decoder variants.
Aggregated results are shown for all 5 benchmarks.

During our experiments, we found that all our models were
biased towards long-duration ramps present in the training
data. This was due to the fact that when reference trajectories
were generated, ramp durations were originally sampled from
a uniform distribution. Motor responses to ramps being far
more different for a small ramp duration variation when the
ramps are short than when they are long, a uniform distribution
was not adequate. To overcome this bias, generating data

0.0 0.5 1.0 1.5 2.0 2.5
Ramp Duration (s)

0

5

10

15

20

25

30

35

Ov
er

sh
oo

t (
%

Hz
)

DiagBiRNN on Data V1
DiagBiRNN on Data V2
Real

Fig. 3: Overshoot vs. ramp for DiagBiRNN network trained
on two versions of data. Data V1 corresponds to training data
in which ramps are sampled from a uniform distribution. Data
V2 corresponds to training data in which ramps are sampled
from an exponential distribution.

with ramps drawn from an exponential distribution plays a
prominent role. This guarantees that our model can see more
frequently short duration ramps during training. The benefit of
using the exponential distribution for ramps in the reference
trajectory generator is illustrated by ramp vs. overshoot plot
in Figure 3.

ML metrics for the results obtained on the quasi-static and
dynamic benchmarks are reported in Table I. Smaller MAE
and SMAPE values are desired for a good prediction model
and R2 closer to 1 is considered as a perfect predictor. We
observe that ML metrics do not allow a clear comparison
between different networks. We can see that any evaluation
based on SMAPE and R2 is difficult.

Model
t2%
(ms)

t95%
(ms)

Efol

(Hz)
D%
(%)

Ess

(Hz)
∆τmax

(%τnom)

Real 48 960 -0.02 2.16 0.00 32.69

FCN 8 988 0.56 0.94 1.20 34.18
LSTM 44 933 -0.04 3.30 -0.13 33.49
CNN 40 964 -0.04 2.96 -0.04 32.57

Vanilla 44 968 -0.08 2.62 0.02 32.37
Skip 48 952 0.12 3.04 0.01 32.46
RNN 48 952 -0.04 2.28 0.02 32.82

BiRNN 44 944 -0.11 2.29 0.01 32.67
DiagBiRNN 44 952 -0.01 2.21 0.03 32.67

TABLE II: EE performance metrics obtained by different
models on Dynamic-Speed1 benchmark.

ML metrics provide a global performance index on the
benchmark set. Evaluating on individual benchmark using ML
metrics does not yield a meaningful analysis. ML metrics
provide good results because there is a large number of
static points which are easy to predict compared to fewer
dynamic points. EE metrics focus on these dynamic parts of
the signal. For readability, we only plot predictions of the
worst performing network (FCN), the best performing standard
neural network (CNN) and the overall best performing network
(DiagBiRNN) along with reference trajectory and real output

0 1 2 3 4
Time (s)

0

10

20

30

40

50
Sp

ee
d

(H
z)

Reference
Real
FCN
CNN
DiagBiRNN

0.80 0.85 0.90 0.95 1.00 1.05 1.10
Time (s)

0

1

2

3

4

5

Sp
ee

d
(H

z)

Reference
Real
FCN
CNN
DiagBiRNN

1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5
Time (s)

38

40

42

44

46

48

50

52

Sp
ee

d
(H

z)

Reference
Real
FCN
CNN
DiagBiRNN

0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50
Time (s)

0

5

10

15

20

25

30

35

To
rq

ue
 (%

 N
om

in
al

 T
or

qu
e)

Load (Abs. Value)
Real
FCN
CNN
DiagBiRNN

Fig. 4: Results on Dynamic-Speed1 benchmark.

5.0 5.5 6.0 6.5 7.0 7.5 8.0
Time (s)

40

20

0

20

40

Sp
ee

d
(H

z)

Reference
Real
FCN
CNN
DiagBiRNN

5.80 5.85 5.90 5.95 6.00 6.05 6.10
Time (s)

40

42

44

46

48

50

Sp
ee

d
(H

z)

Reference
Real
FCN
CNN
DiagBiRNN

6.8 6.9 7.0 7.1 7.2 7.3 7.4 7.5
Time (s)

55

50

45

40

35

30

Sp
ee

d
(H

z)

Reference
Real
FCN
CNN
DiagBiRNN

5.75 6.00 6.25 6.50 6.75 7.00 7.25 7.50
Time (s)

125

100

75

50

25

0

25

50

To
rq

ue
 (%

 N
om

in
al

 T
or

qu
e)

Load (Abs. Value)
Real
FCN
CNN
DiagBiRNN

Fig. 5: Results on Dynamic-Speed2 benchmark.

2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0
Time (s)

0

20

40

60

80

100

120

To
rq

ue
 (%

 N
om

in
al

 T
or

qu
e)

Load (Abs. Value)
Real
FCN
CNN
DiagBiRNN

2.80 2.85 2.90 2.95 3.00
Time (s)

0

20

40

60

80

100

To
rq

ue
 (%

 N
om

in
al

 T
or

qu
e)

Load (Abs. Value)
Real
FCN
CNN
DiagBiRNN

3.0 3.1 3.2 3.3 3.4 3.5
Time (s)

0

20

40

60

80

100

120

To
rq

ue
 (%

 N
om

in
al

 T
or

qu
e)

Load (Abs. Value)
Real
FCN
CNN
DiagBiRNN

2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.50
Time (s)

21

22

23

24

25

Sp
ee

d
(H

z)

Reference
Real
FCN
CNN
DiagBiRNN

Fig. 6: Results on Dynamic-Torque benchmark.

Model
t2%
(ms)

t95%
(ms)

Efol

(Hz)
D%
(%)

Ess

(Hz)
∆τmax

(%τnom)

Real 52 956 0.10 2.00 0.00 72.33

FCN -144 944 1.06 4.03 0.37 69.35
LSTM 32 1052 0.10 7.46 -0.33 73.30
CNN 44 960 0.42 3.21 -0.08 72.30

Vanilla 44 956 0.34 3.55 -0.11 72.29
Skip 48 1036 0.45 5.07 -0.16 71.28
RNN 48 936 0.26 3.89 -0.06 72.25

BiRNN 48 940 0.02 3.28 -0.13 72.45
DiagBiRNN 52 948 0.15 2.39 -0.12 72.15

TABLE III: EE performance metrics obtained by different
models on Dynamic-Speed2 benchmark.

(given by Simulink) for each of the dynamic benchmark.
Figures 4 and 5 show plots for Dynamic-Speed1 and Dynamic-
Speed2 benchmarks. From left to right, plots show speed,
speed during the start of ramp, speed during end of the ramp,
and torque. Tables II and III show EE performance metrics on
Dynamic-Speed1 and Dynamic-Speed2, respectively. Overall,
DiagBiRNN can be considered as the best choice as its metrics
are closest to the metrics of the real output. Among standard
neural networks, FCN performs worst and CNN performs bet-
ter when compared to some of the encoder-decoder variants.

Figure 6 shows plots for Dynamic-Torque benchmark.
From left to right, plots show torque, torque during start,
torque during the end, and speed. Table IV shows results
obtained on Dynamic-Torque benchmark. Acceptable values

Model
t95%
(ms)

D%
(%)

Ess

(%τnom)
SD
(Hz)

Real 244 15.96 0.00 4.39

FCN 252 11.19 -0.32 3.30
LSTM 244 15.95 -0.02 4.28
CNN 244 16.01 0.01 4.45

Vanilla 244 15.46 0.04 3.88
Skip 244 15.90 -0.02 4.43
RNN 244 15.87 0.00 4.03

BiRNN 244 16.01 0.01 4.23
DiagBiRNN 244 15.91 -0.02 4.31

TABLE IV: EE performance metrics obtained by different
models on Dynamic-Torque benchmark.

are less than 0.1Hz / 10ms / 0.2 percent point from real values
and bad values are more than 0.25Hz / 25ms / 0.5 percent point
from real values.

0 10 20 30 40 50 60
Time (s)

60

40

20

0

20

40

60

Sp
ee

d
(H

z)

Reference
Real
FCN
CNN
DiagBiRNN

5 15 25 35 45 55
Time (s)

2

1

0

1

2

3

Sp
ee

d
(H

z)

Difference with real speed
FCN
CNN
DiagBiRNN

Fig. 7: Results on Quasi-Static1 benchmark.

For quasi-static benchmarks, we plot the speed during the
long ramp and the difference between neural network speed

0 10 20 30 40 50 60
Time (s)

60

40

20

0

20

40

60
Sp

ee
d

(H
z)

Reference
Real
FCN
CNN
DiagBiRNN

7 17 27 37 47 57
Time (s)

4

2

0

2

4

6

Sp
ee

d
(H

z)

Difference with real speed
FCN
CNN
DiagBiRNN

Fig. 8: Results on Quasi-Static2 benchmark.

Model FCN LSTM CNN

Quasi-Static1 3.66 0.992 0.261
Quasi-Static2 5.751 0.629 0.259

Model Vanilla Skip RNN BiRNN DiagBiRNN

Quasi-Static1 0.178 0.549 0.341 0.236 0.198
Quasi-Static2 0.336 0.444 0.258 0.346 0.171

TABLE V: Max absolute error (Hz) for static benchmarks.

prediction and real output speed. Figures 7 and 8 show plots
for Quasi-Static1 and Quasi-Static2 benchmarks, respectively.
The max absolute error for the predictions on quasi-static
benchmarks are reported in Table V. It can be seen that
DiagBiRNN has the smallest error and therefore is again
closest to the real output speed, whereas FCN leads to the
largest error.

VII. CONCLUSION

We present neural network methods to estimate speed and
torque from currents and voltages of an induction motor.
We show that, without care, these networks can be biased
towards the data. We provide a realistic trajectory generator
that helps in learning better dynamics. We also emphasize
the limitations of machine learning metrics in understanding
neural network real performance. By using dynamic and quasi-
static benchmarks, we show that electrical engineering metrics
are better suited to evaluate the merits of different neural
networks. Both types of metrics show that our proposed
DiagBiRNN network performs better on benchmarks. In the
future, we plan to work with real motor data and generalize
our network architectures for modeling different motor types.

REFERENCES

[1] S. J. Campbell, Solid-State AC Motor Controls, 1987.
[2] C. S. Sisking, Electrical Control Systems in Industry, 1978.
[3] P. H. Truong, D. Flieller, N. K. Nguyen, J. Mercklé, and M. T. Dat,

“Optimal efficiency control of synchronous reluctance motors-based
ann considering cross magnetic saturation and iron losses,” in Annual
Conference of the IEEE Industrial Electronics Society, 2015, pp. 4690–
4695.

[4] M. Zhou, Y. Feng, C. Xue, and L. Xu, “Neural network based non-
singular terminal sliding-mode control of induction motors,” in Annual
Conference of the IEEE Industrial Electronics Society, 2019, pp. 6538–
6542.

[5] Z. Wang, C. Hu, Y. Zhu, S. He, K. Yang, and M. Zhang, “Neural
network learning adaptive robust control of an industrial linear motor-
driven stage with disturbance rejection ability,” IEEE Transactions on
Industrial Informatics, vol. 13, no. 5, pp. 2172–2183, 2017.

[6] A. A. Silva, A. M. Bazzi, and S. Gupta, “Fault diagnosis in electric drives
using machine learning approaches,” in 2013 International Electric
Machines Drives Conference, May 2013, pp. 722–726.

[7] R. Zhang, Z. Peng, L. Wu, B. Yao, and Y. Guan, “Fault diagnosis
from raw sensor data using deep neural networks considering temporal
coherence,” Sensors, vol. 17, no. 3, p. 549, 2017.

[8] Y. L. Murphey, M. A. Masrur, Z. Chen, and B. Zhang, “Model-based
fault diagnosis in electric drives using machine learning,” IEEE/ASME
Transactions on Mechatronics, vol. 11, no. 3, pp. 290–303, June 2006.

[9] T. Ince, S. Kiranyaz, L. Eren, M. Askar, and M. Gabbouj, “Real-
time motor fault detection by 1-d convolutional neural networks,” IEEE
Transactions on Industrial Electronics, vol. 63, no. 11, pp. 7067–7075,
2016.

[10] S. Verma, N. Henwood, M. Castella, F. Malrait, and J.-C. Pesquet,
“Modeling electrical motor dynamics using encoder-decoder with re-
current skip connection,” in AAAI conference on artificial intelligence,
New York, United States, 2020, pp. 1–8.

[11] R. Marino and P. Tomei, Nonlinear control design: geometric, adaptive
and robust. Prentice Hall, 1996.

[12] A. Isidori, M. Thoma, E. D. Sontag, B. W. Dickinson, A. Fettweis,
J. L. Massey, and J. W. Modestino, Nonlinear Control Systems, 3rd ed.,
Berlin, Heidelberg, 1995.

[13] M. Krstic, P. V. Kokotovic, and I. Kanellakopoulos, Nonlinear and
Adaptive Control Design, 1st ed., USA, 1995.

[14] R. Sepulchre, M. Jankovic, and P. V. Kokotovic, Constructive Nonlinear
Control, 1st ed., USA, 1997.

[15] A. van der Schaft, L2-Gain and Passivity Techniques in Nonlinear
Control, 3rd ed., 2016.

[16] “Passivity-based control of euler-lagrange systems: Mechanical, electri-
cal and electromechanical applications,” Industrial Robot: An Interna-
tional Journal, vol. 26, no. 3, 1999.

[17] F. Jadot, F. Malrait, J. Moreno-Valenzuela, and R. Sepulchre, “Adaptive
regulation of vector-controlled induction motors,” IEEE Transactions on
Control Systems Technology, vol. 17, no. 3, pp. 646–657, May 2009.

[18] A. K. Jebai, P. Combes, F. Malrait, P. Martin, and P. Rouchon, “Energy-
based modeling of electric motors,” in 53rd IEEE Conference on
Decision and Control, Dec 2014, pp. 6009–6016.

[19] G. Espinosa-Perez and R. Ortega, “State observers are unnecessary for
induction motor control,” Systems & Control Letters, vol. 23, no. 5, pp.
315 – 323, 1994.

[20] G. Espinosa-Perez and R. Ortega, “An output feedback globally stable
controller for induction motors,” IEEE Transactions on Automatic Con-
trol, vol. 40, no. 1, pp. 138–143, Jan 1995.

[21] P. J. Nicklasson, R. Ortega, G. Espinosa-Perez, and C. G. J. Jacobi,
“Passivity-based control of a class of Blondel-Park transformable electric
machines,” IEEE Transactions on Automatic Control, vol. 42, no. 5, pp.
629–647, May 1997.

[22] C. C. Chan and H. Wang, “An effective method for rotor resistance
identification for high-performance induction motor vector control,”
IEEE Transactions on Industrial Electronics, vol. 37, no. 6, pp. 477–482,
Dec 1990.

[23] J. Stephan, M. Bodson, and J. Chiasson, “Real-time estimation of
the parameters and fluxes of induction motors,” in IEEE Industry
Applications Society Annual Meeting, Oct 1992, pp. 578–585 vol.1.

[24] R. Marino, S. Peresada, and P. Tomei, “Global adaptive output feedback
control of induction motors with uncertain rotor resistance,” IEEE
Transactions on Automatic Control, vol. 44, no. 5, pp. 967–983, May
1999.

[25] L. Ortombina, F. Tinazzi, and M. Zigliotto, “Magnetic modeling of syn-
chronous reluctance and internal permanent magnet motors using radial
basis function networks,” Annual Conference of the IEEE Transactions
on Industrial Electronics, vol. 65, no. 2, pp. 1140–1148, 2018.

[26] G. P. Zhang, “Avoiding pitfalls in neural network research,” IEEE
Transactions on Systems, Man, and Cybernetics, vol. 37, no. 1, pp. 3–16,
2007.

[27] O. Intrator and N. Intrator, “Interpreting neural-network results: a
simulation study,” Computational Statistics & Data Analysis, vol. 37,
no. 3, pp. 373 – 393, 2001.

[28] S. Geman, E. Bienenstock, and R. Doursat, “Neural networks and the
bias/variance dilemma,” Neural Computation, vol. 4, no. 1, pp. 1–58,
1992.

[29] F. Malrait, A. K. Jebai, and K. Ejjabraoui, “Power conversion optimiza-
tion for hydraulic systems controlled by variable speed drives,” Journal
of Process Control, vol. 74, pp. 133 – 146, 2019.

