See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/340460244

Lie Algebroidal Categories

Presentation · April 2020

DOI: 10.13140/RG.2.2.11757.95209

CITATIONS READS 1,159 1 author: Yuri Ximenes Martins Federal University of Minas Gerais 19 PUBLICATIONS 7 CITATIONS SEE PROFILE

Some of the authors of this publication are also working on these related projects:

0

Some Texts, Books and Lecture Notes by Math-Phys-Cat Group View project

Emergence Theory View project

Lie Algebroidal Categories

Yuri Ximenes Martins¹

Universidade Federal de Minas Gerais

February, 4th, 2020

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

¹sites.google.com/view/y×martins

Plain

- 1. Categorification
- 2. Lie Algebroidal Categories
- 3. Connections with Lie Algebroids

4. Speculations

Lie Algebroids

4 A I

4 E b

< ∃→

Categorification

Y. X. Martins

Lie Algebroidal Categories

UFMG

э

Lie Algebroidal Categories	Lie Algebroids	Speculations
	Lie Algebroidal Categories	Lie Algebroidal Categories Lie Algebroids 000000 000000

categorification is a process that takes a set-theoretic concept and produces an analogous categorical-theoretic concept;

▶ There are at least two of such processes:

- vertical categorification and
- horizontal categorification

Categorification •00000000	Lie Algebroidal Categories	Lie Algebroids	Speculations

 categorification is a process that takes a set-theoretic concept and produces an analogous categorical-theoretic concept;

► There are at least two of such processes:

vertical categorification and

horizontal categorification

伺 ト イヨ ト イヨト

Categorification •00000000	Lie Algebroidal Categories	Lie Algebroids	Speculations

 categorification is a process that takes a set-theoretic concept and produces an analogous categorical-theoretic concept;

There are at least two of such processes:

vertical categorification and

horizontal categorification

Categorification •00000000	Lie Algebroidal Categories	Lie Algebroids	Speculations

 categorification is a process that takes a set-theoretic concept and produces an analogous categorical-theoretic concept;

▶ There are at least two of such processes:

vertical categorification and

horizontal categorification

Categorification	Lie Algebroidal Categories	Lie Algebroids	Speculations
•00000000	00000	0000000	000

 categorification is a process that takes a set-theoretic concept and produces an analogous categorical-theoretic concept;

There are at least two of such processes:

- vertical categorification and
- horizontal categorification

Lie Algebroids

Vertical Categorification

Consists in two steps:

- 1. to describe the set-theoretic concept to be categorified in terms of categorical structures in **Set**;
- 2. to internalize the defining categorical structures in Cat.

- ∢ ≣ →

 to describe the set-theoretic concept to be categorified in terms of categorical structures in Set;

2. to internalize the defining categorical structures in Cat.

- 1 to describe the set-theoretic con
 - to describe the set-theoretic concept to be categorified in terms of categorical structures in Set;
 - 2. to internalize the defining categorical structures in Cat.

- A (B) (b)

▶ in few words, we must replace:

- 1. sets by categories;
- 2. functions between sets by functors between categories;
- 3. commutative diagrams of functions (describing properties) by natural transformations satisfying some universal condition.

- ∢ ≣ →

▶ in few words, we must replace:

- 1. sets by categories;
- 2. functions between sets by functors between categories;
- 3. commutative diagrams of functions (describing properties) by natural transformations satisfying some universal condition.

- A (B) (b)

▶ in few words, we must replace:

- 1. sets by categories;
- 2. functions between sets by functors between categories;
- 3. commutative diagrams of functions (describing properties) by natural transformations satisfying some universal condition.

- ∢ ≣ →

▶ in few words, we must replace:

- 1. sets by categories;
- 2. functions between sets by functors between categories;
- 3. commutative diagrams of functions (describing properties) by natural transformations satisfying some universal condition.

- 1. a set *X*;
- 2. a function $* : X \times X \rightarrow X$;
- 3. a distinguished element $e \in X$;
- 4. such that

$$x * (y * z) = (x * y) * z$$
 (1)
 $x * e = x = e * x$ (2)

・ 同 ト ・ ヨ ト ・ ヨ ト

Lie Algebroidal Categories

UFMG

- 1. a set X;
- 2. a function $* : X \times X \to X$;
- 3. a distinguished element $e \in X$;
- 4. such that

$$x * (y * z) = (x * y) * z$$
 (1)
 $x * e = x = e * x$ (2)

・ 同 ト ・ ヨ ト ・ ヨ ト

Y. X. Martins

Lie Algebroidal Categories

UFMG

► A "monoid" is given by:

- 1. a set *X*;
- 2. a function $*: X \times X \rightarrow X$;
- 3. a distinguished element $e \in X$;

4. such that

$$x * (y * z) = (x * y) * z$$
 (1)
 $x * e = x = e * x$ (2)

・ 同 ト ・ ヨ ト ・ ヨ ト

Y. X. Martins

Lie Algebroidal Categories

UFMG

э

► A "monoid" is given by:

- 1. a set *X*;
- 2. a function $*: X \times X \to X$;
- 3. a distinguished element $e \in X$;

4. such that

$$x * (y * z) = (x * y) * z$$
 (1)
 $x * e = x = e * x$ (2)

伺 ト イヨ ト イヨト

Lie Algebroidal Categories

UFMG

► A "monoid" is given by:

- 1. a set *X*;
- 2. a function $*: X \times X \to X$;
- 3. a distinguished element $e \in X$;
- 4. such that

$$x * (y * z) = (x * y) * z$$
 (1)
 $x * e = x = e * x$ (2)

Lie Algebroidal Categories

UFMG

- ∢ ≣ →

A "monoid" is given by:

- 1. a set *X*;
- 2. a function $*: X \times X \to X$;
- 3. a distinguished element $e \in X$;
- 4. such that

$$x * (y * z) = (x * y) * z$$
 (1)

$$x * e = x = e * x \tag{2}$$

伺 ト イヨ ト イヨト

Remark: 3. and 4. are not categorical!

UFMG

► a "monoid" is given by:

- 1. a set X;
- 2. a function $*: X \times X \to X$;
- 3. a function $e: 1 \rightarrow X$, where 1 is a singleton;
- 4. commutative diagrams

э

a categorified monoid ("monoidal category") is given by:

- 1. a category **C**;
- 2. a functor $*: \mathbf{C} \times \mathbf{C} \to \mathbf{C};$
- 3. a functor $e: 1 \rightarrow \mathbf{C}$, where 1 is the categorical singleton;

4. analogous commutative diagrams

э

Categorification	Lie Algebroidal Categories	Lie Algebroids	Speculations
000000000	00000	0000000	000

set-theoretic concept	vertical categorification
monoid	monoidal category

Table: Examples of Vertical Categorification

Lie Algebroidal Categories

UFMG

- ∢ ≣ →

Categorification	Lie Algebroidal Categories	Lie Algebroids	Speculations
00000000	00000	0000000	000

set-theoretic concept	vertical categorification
monoid	monoidal category
commutative monoid	braided monoidal category
	symmetric monoidal category
group	monoidal category s.t $Ob(C) \subset Pic(C)$
free and fin. gen. monoid	rigid monoidal category

Table: Examples of Vertical Categorification

Lie Algebroidal Categories

UFMG

why should an algebraist be interested in vertical categorification?

- Folklore: Let"P" be some algebraic concept which can be vertically categorified;
- then its category of representations Rep_P has the structure of a vertical categorification of "P";
- Tannaka duality.:Let "P" be <u>associative</u> and suppose that it can be vertically categorified. If C is a category which realizes the vertical categorification of "P", then C ~ Rep_P.
- this goes towards the classification of Rep_P.

- why should an algebraist be interested in vertical categorification? Tannaka duality.
- Folklore: Let"P" be some algebraic concept which can be vertically categorified;
- then its category of representations Rep_P has the structure of a vertical categorification of "P";
- ► Tannaka duality::Let "P" be <u>associative</u> and suppose that it can be vertically categorified. If C is a category which realizes the vertical categorification of "P", then C ≃ Rep_P.
- this goes towards the classification of Rep_P.

- why should an algebraist be interested in vertical categorification? Tannaka duality.
- Folklore: Let"P" be some algebraic concept which can be vertically categorified;
- then its category of representations Rep_P has the structure of a vertical categorification of "P";
- Tannaka duality.:Let "P" be <u>associative</u> and suppose that it can be vertically categorified. If C is a category which realizes the vertical categorification of "P", then C ~ Rep_P.
- this goes towards the classification of Rep_P.

A (1) > A (2) > A (2) >

- why should an algebraist be interested in vertical categorification? Tannaka duality.
- Folklore: Let"P" be some algebraic concept which can be vertically categorified;
- then its category of representations Rep_P has the structure of a vertical categorification of "P";
- ► Tannaka duality.:Let "P" be <u>associative</u> and suppose that it can be vertically categorified. If C is a category which realizes the vertical categorification of "P", then C ≃ Rep_P.
- this goes towards the classification of Rep_P.

くぼう くほう くほう

- why should an algebraist be interested in vertical categorification? Tannaka duality.
- Folklore: Let"P" be some algebraic concept which can be vertically categorified;
- then its category of representations Rep_P has the structure of a vertical categorification of "P";
- Tannaka duality.:Let "P" be <u>associative</u> and suppose that it can be vertically categorified. If C is a category which realizes the vertical categorification of "P", then C ~ Rep_P.

this goes towards the classification of Rep_P.

くぼう くほう くほう

- why should an algebraist be interested in vertical categorification? Tannaka duality.
- Folklore: Let"P" be some algebraic concept which can be vertically categorified;
- then its category of representations Rep_P has the structure of a vertical categorification of "P";
- Tannaka duality.:Let "P" be <u>associative</u> and suppose that it can be vertically categorified. If C is a category which realizes the vertical categorification of "P", then C ~ Rep_P.
- this goes towards the classification of Rep_P.

伺 ト イヨ ト イヨト

Lie Algebroids

Lie Algebroidal Categories

Y. X. Martins

Lie Algebroidal Categories

UFMG

э

Categorification	Lie Algebroidal Categories	Lie Algebroids	Speculations
00000000	00000	0000000	000

Idea

set-theoretic concept	vertical categorification
monoid	monoidal category
Lie algebra	??

Table: Vertical Categorification of Lie Algebra

< ∃ >

Categorification	Lie Algebroidal Categories	Lie Algebroids	Speculations
00000000	0000	0000000	000

Idea

set-theoretic concept	vertical categorification
monoid	monoidal category
Lie algebra	Lie algebroidal category

Table: Vertical Categorification of Lie Algebra

< ∃ >

Categorification	Lie Algebroidal Categories	Lie Algebroids	Speculations
00000000	00000	0000000	000

Lie Algebra

► A "Lie algebra²" is given by:

- 1. an abelian group g;
- 2. a bilinear map $[\cdot, \cdot] : \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g};$
- 3. such that

$$[x, y] + [y, x] = 0$$
(3)
x, [y, z]] + [z, [x, y] + [y, [z, x]] = 0 (4)

²We are working over \mathbb{Z} .
Categorification	Lie Algebroidal Categories	Lie Algebroids	Speculations
00000000	00000	00000000	000

$$[x, y] + [y, x] = 0$$
(3)
x, [y, z]] + [z, [x, y] + [y, [z, x]] = 0 (4)

²We are working over \mathbb{Z} .

(ㅁ▶ 《御▶ 《봄▶ 《봄▶ '봄' '오오(~

Y. X. Martins

Lie Algebroidal Categories

Categorification	Lie Algebroidal Categories	Lie Algebroids	Speculations
00000000	00000	00000000	000

A "Lie algebra²" is given by:
1. an abelian group g;
2. a bilinear map [·, ·] : g × g → g;
3. such that

$$[x, y] + [y, x] = 0$$
(3)
x, [y, z]] + [z, [x, y] + [y, [z, x]] = 0 (4)

²We are working over \mathbb{Z} .

Y. X. Martins

Lie Algebroidal Categories

Categorification	Lie Algebroidal Categories	Lie Algebroids	Speculations
00000000	00000	00000000	000

A "Lie algebra²" is given by:
1. an abelian group g;
2. a bilinear map [·, ·] : g × g → g;
3. such that

$$[x, y] + [y, x] = 0$$
 (3)

$$[x, [y, z]] + [z, [x, y] + [y, [z, x]] = 0$$
(4)

²We are working over \mathbb{Z} .

Y. X. Martins

Lie Algebroidal Categories

Categorification	Lie Algebroidal Categories	Lie Algebroids	Speculations
00000000	00000	0000000	000

- 1. an abelian group \mathfrak{g} ;
- 2. a bilinear map $[\cdot, \cdot] : \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g};$
- 3. such that

$$[x, y] + [y, x] = 0$$
 (3)

$$[x, [y, z]] + [z, [x, y] + [y, [z, x]] = 0$$
(4)

Remark: 3. is not categorical!

²We are working over \mathbb{Z} .

Categorification	Lie Algebroidal Categories	Lie Algebroids	Speculations
00000000	00000	0000000	000

1. the polynomial identity

[x, [y, z]] + [z, [x, y] + [y, [z, x]] = 0

- 2. the fact that the adjoint map $ad : \mathfrak{g} \to \operatorname{End}(\mathfrak{g})$ is an algebra morphism;
- 3. the fact that the adjoint map actually takes values in $Der(\mathfrak{g})$.

Categorification	Lie Algebroidal Categories	Lie Algebroids	Speculations
00000000	00000	0000000	000

Not only this: Jacobi identity is equivalently described by: 1. the polynomial identity

[x, [y, z]] + [z, [x, y] + [y, [z, x]] = 0

- the fact that the adjoint map ad : g → End(g) is an algebra morphism;
- 3. the fact that the adjoint map actually takes values in $Der(\mathfrak{g})$.

Categorification	Lie Algebroidal Categories	Lie Algebroids	Speculations
00000000	00000	0000000	000

Not only this: Jacobi identity is equivalently described by:

1. the polynomial identity

$$[x, [y, z]] + [z, [x, y] + [y, [z, x]] = 0$$

2. the fact that the adjoint map $ad : \mathfrak{g} \to \mathsf{End}(\mathfrak{g})$ is an algebra morphism;

3. the fact that the adjoint map actually takes values in Der(g).

- - E > - - E >

Categorification	Lie Algebroidal Categories	Lie Algebroids	Speculations
00000000	00000	0000000	000

Not only this: Jacobi identity is equivalently described by:

1. the polynomial identity

$$[x, [y, z]] + [z, [x, y] + [y, [z, x]] = 0$$

- 2. the fact that the adjoint map $ad : \mathfrak{g} \to \mathsf{End}(\mathfrak{g})$ is an algebra morphism;
- 3. the fact that the adjoint map actually takes values in $Der(\mathfrak{g})$.

- ∢ ⊒ ▶

Not only this: Jacobi identity is equivalently described by: 1. the polynomial identity

[x, [y, z]] + [z, [x, y] + [y, [z, x]] = 0

- 2. the fact that the adjoint map $ad : \mathfrak{g} \to \mathsf{End}(\mathfrak{g})$ is an algebra morphism;
- 3. the fact that the adjoint map actually takes values in $Der(\mathfrak{g})$.
- <u>OBS</u>: Each of these conditions can be rewritten in terms of categorical structures.

Not only this: Jacobi identity is equivalently described by: 1. the polynomial identity

$$[x, [y, z]] + [z, [x, y] + [y, [z, x]] = 0$$

- 2. the fact that the adjoint map $ad : \mathfrak{g} \to \mathsf{End}(\mathfrak{g})$ is an algebra morphism;
- 3. the fact that the adjoint map actually takes values in $Der(\mathfrak{g})$.
- <u>OBS</u>: Each of these conditions can be rewritten in terms of categorical structures.
- THUS...

Categorification	Lie Algebroidal Categories	Lie Algebroids	Speculations
00000000	00000	0000000	000

Lie Algebroidal Categories

set-theoretic concept	vertical categorification
monoid	monoidal category
Lie algebra	Lie algebroidal category of Type I
	Lie algebroidal category of Type II
	Lie algebroidal category of Type III

Table: Vertical Categorification of Lie Algebra

Y. X. Martins

Lie Algebroidal Categories

Categorification	Lie Algebroidal Categories	Lie Algebroids	Speculations
00000000	00000	0000000	000

Lie Algebroidal Categories

set-theoretic concept	vertical categorification
monoid	monoidal category
Lie algebra	Lie algebroidal category of Type I
	Lie algebroidal category of Type II
	Lie algebroidal category of Type III

Table: Vertical Categorification of Lie Algebra

<u>Remark:</u> It seems (at least to me) that the corresponding categories LieCatl, LieCatlI and LieCatlII are not equivalent.

Lie Algebroids

Y. X. Martins

Lie Algebroidal Categories

UFMG

э

Horizontal Categorification

- Consists in taking a set-theoretic concept "P" and finding for a class of categories Cat_P such that categories C ∈ Cat_P with a single object are equivalent to "P".
- In simple terms, horizontally categorifying "P" is to search for some way of considering a "many objects version of P"

Horizontal Categorification

- Consists in taking a set-theoretic concept "P" and finding for a class of categories Cat_P such that categories C ∈ Cat_P with a single object are equivalent to "P".
- In simple terms, horizontally categorifying "P" is to search for some way of considering a "many objects version of P"

Categorification	Lie Algebroidal Categories	Lie Algebroids	Speculations
00000000	00000	0000000	000

Examples

- If "P" is the concept of group, Cat_P is the category of all categories in which every morphism is an isomorphism.
- In category theory they are called groupoids.
- Thus, "P" group implies $Cat_P \simeq Grpd$

Categorification	Lie Algebroidal Categories	Lie Algebroids	Speculations
00000000	00000	0000000	000

Examples

- If "P" is the concept of group, Cat_P is the category of all categories in which every morphism is an isomorphism.
- In category theory they are called groupoids.

• Thus, "P" group implies $Cat_P \simeq Grpd$

4 E b

Categorification	Lie Algebroidal Categories	Lie Algebroids	Speculations
00000000	00000	0000000	000

Examples

- If "P" is the concept of group, Cat_P is the category of all categories in which every morphism is an isomorphism.
- In category theory they are called groupoids.
- Thus, "P" group implies $Cat_P \simeq Grpd$

Categorification	Lie Algebroidal Categories	Lie Algebroids	Speculations
00000000	00000	0000000	000

Examples

set-theoretic concept	vertical categorification
group	groupoid
Lie algebra	??

Table: Examples of Horizontal categorification

B b

Categorification	Lie Algebroidal Categories	Lie Algebroids	Speculations
00000000	00000	0000000	000

Examples

set-theoretic concept	vertical categorification
group	group <u>oid</u>
Lie algebra	Lie algebroid

Table: Examples of Horizontal categorification

B b

► A Lie algebroid over a manifold M is given by:

- 1. a vector bundle $E \rightarrow M$;
- 2. a Lie algebra structure on the space of gloal sections $\Gamma(E)$;
- 3. a vector bundle morphism $\rho: E \to TM$ such that:

3.1 it is a derivation relative to the action of the ring C[∞](M);
 3.2 the induced map Γ(ρ) : Γ(E) → Γ(TM) is a morphism of Lie algebras.

From the definition it is clear that Lie algebroid is not a horizontal categorification of Lie algebra.

► A *Lie algebroid* over a manifold *M* is given by:

1. a vector bundle $E \rightarrow M$;

- 2. a Lie algebra structure on the space of gloal sections $\Gamma(E)$;
- 3. a vector bundle morphism $\rho : E \rightarrow TM$ such that:

3.1 it is a derivation relative to the action of the ring C[∞](M);
 3.2 the induced map Γ(ρ) : Γ(E) → Γ(TM) is a morphism of Lie algebras.

From the definition it is clear that Lie algebroid is not a horizontal categorification of Lie algebra.

► A *Lie algebroid* over a manifold *M* is given by:

- 1. a vector bundle $E \rightarrow M$;
- 2. a Lie algebra structure on the space of gloal sections $\Gamma(E)$;
- 3. a vector bundle morphism $\rho : E \rightarrow TM$ such that:

it is a derivation relative to the action of the ring C[∞](M);
 the induced map Γ(ρ) : Γ(E) → Γ(TM) is a morphism of Lie algebras.

From the definition it is clear that Lie algebroid is not a horizontal categorification of Lie algebra.

► A *Lie algebroid* over a manifold *M* is given by:

- 1. a vector bundle $E \rightarrow M$;
- 2. a Lie algebra structure on the space of gloal sections $\Gamma(E)$;
- 3. a vector bundle morphism $\rho: E \to TM$ such that:

3.1 it is a derivation relative to the action of the ring $C^{\infty}(M)$; 3.2 the induced map $\Gamma(\rho) : \Gamma(E) \to \Gamma(TM)$ is a morphism of Lie algebras.

From the definition it is clear that Lie algebroid is not a horizontal categorification of Lie algebra.

► A Lie algebroid over a manifold M is given by:

- 1. a vector bundle $E \rightarrow M$;
- 2. a Lie algebra structure on the space of gloal sections $\Gamma(E)$;
- 3. a vector bundle morphism $\rho: E \to TM$ such that:
 - 3.1 it is a derivation relative to the action of the ring $C^{\infty}(M)$;
 - 3.2 the induced map $\Gamma(\rho) : \Gamma(E) \to \Gamma(TM)$ is a morphism of Lie algebras.

From the definition it is clear that Lie algebroid is not a horizontal categorification of Lie algebra.

- ► A Lie algebroid over a manifold M is given by:
 - 1. a vector bundle $E \rightarrow M$;
 - 2. a Lie algebra structure on the space of gloal sections $\Gamma(E)$;
 - 3. a vector bundle morphism $\rho: E \to TM$ such that:
 - 3.1 it is a derivation relative to the action of the ring $C^{\infty}(M)$;
 - 3.2 the induced map $\Gamma(\rho) : \Gamma(E) \to \Gamma(TM)$ is a morphism of Lie algebras.
- From the definition it is clear that Lie algebroid is not a horizontal categorification of Lie algebra.

Categorification	Lie Algebroidal Categories	Lie Algebroids	Speculations
00000000	00000	00000000	000

set-theoretic concept	vertical categorification
group	groupoid
Lie algebra	<u> Lie algebroid </u>

Table: Horizontal Categorification of Lie Algebra

< ∃ >

From Lie Algebroids to Lie Algebras

On the other hand...

- "Lie algebroid" over the point $M \simeq pt$ is equivalent to "Lie algebra".
- This motivates us to ask:

From Lie Algebroids to Lie Algebras

- On the other hand...
- "Lie algebroid" over the point $M \simeq pt$ is equivalent to "Lie algebra".
- This motivates us to ask:

From Lie Algebroids to Lie Algebras

- On the other hand...
- "Lie algebroid" over the point $M \simeq pt$ is equivalent to "Lie algebra".
- This motivates us to ask:

From Lie Algebroids to Lie Algebras

- On the other hand...
- "Lie algebroid" over the point M ~ pt is equivalent to "Lie algebra".
- This motivates us to ask:
- Question: Can we embed LieAlgd_M in some category of categories C ⊂ Cat such that when regarded as object of this new category "Lie algebroid" becomes a horizontal categorification of "Lie algebra"?

何 ト イヨ ト イヨト

From Lie Algebroids to Lie Algebras

▶ We propose a solution (at least after restriction to ℤ):

Y. X. Martins

Lie Algebroidal Categories

UFMG

- ∢ ≣ →

From Lie Algebroids to Lie Algebras

▶ We propose a solution (at least after restriction to ℤ):

► <u>Theorem</u>: For every manifold M the category LieAlgd^ℤ_M of ℤ-Lie algebroids over M can be fully embedded in LieCatIII. Furthermore, inside LieCatIII the one-object limit of LieAlgd^ℤ_M coincides with the one-point limit.

Speculations

Speculations

Y. X. Martins

Lie Algebroidal Categories

UFMG

э

- ∢ ≣ →

Image: A (1) → A (

From Lie Algebras to Lie Algebroids

The idea is to use the following steps:

From Lie Algebras to Lie Algebroids

The idea is to use the following steps:

- 1. to consider a definition/result about Lie algebras;
- to redefine/reprove the result using only categorical structure, i.e, to show that it is internal to LieAlg_Z;
- to apply vertical categorification in order to get an analogous definition/result internal to LieCatIII;
- 4. to use the previous theorem in order to get a definition/result about Lie algebroids.
From Lie Algebras to Lie Algebroids

- The idea is to use the following steps:
 - 1. to consider a definition/result about Lie algebras;
 - to redefine/reprove the result using only categorical structure, i.e, to show that it is internal to LieAlg_Z;
 - to apply vertical categorification in order to get an analogous definition/result internal to LieCatIII;
 - 4. to use the previous theorem in order to get a definition/result about Lie algebroids.

From Lie Algebras to Lie Algebroids

- The idea is to use the following steps:
 - 1. to consider a definition/result about Lie algebras;
 - to redefine/reprove the result using only categorical structure, i.e, to show that it is internal to LieAlg_Z;
 - to apply vertical categorification in order to get an analogous definition/result internal to LieCatIII;
 - 4. to use the previous theorem in order to get a definition/result about Lie algebroids.

From Lie Algebras to Lie Algebroids

- The idea is to use the following steps:
 - 1. to consider a definition/result about Lie algebras;
 - to redefine/reprove the result using only categorical structure, i.e, to show that it is internal to LieAlg_Z;
 - to apply vertical categorification in order to get an analogous definition/result internal to LieCatIII;
 - 4. to use the previous theorem in order to get a definition/result about Lie algebroids.

伺 ト イヨ ト イヨ ト

Lie Algebroids

From Lie Algebras to Lie Algebroids

Example: what is the Lie algebroid version of the classification of complex semisimple Lie algebras?

- OBS: a "semisimple Lie algebroid" should be a Courant algebroid fulfilling additional conditions...
- Example: what is representation theory for Lie algebroids??
 and so on.

くぼう くほう くほう

From Lie Algebras to Lie Algebroids

- Example: what is the Lie algebroid version of the classification of complex semisimple Lie algebras?
- OBS: a "semisimple Lie algebroid" should be a Courant algebroid fulfilling additional conditions...
- Example: what is representation theory for Lie algebroids??
 and so on.

くぼう くほう くほう

From Lie Algebras to Lie Algebroids

- Example: what is the Lie algebroid version of the classification of complex semisimple Lie algebras?
- OBS: a "semisimple Lie algebroid" should be a Courant algebroid fulfilling additional conditions...
- Example: what is representation theory for Lie algebroids??
 and so on.

From Lie Algebras to Lie Algebroids

- Example: what is the Lie algebroid version of the classification of complex semisimple Lie algebras?
- OBS: a "semisimple Lie algebroid" should be a Courant algebroid fulfilling additional conditions...
- Example: what is representation theory for Lie algebroids??

and so on.

伺 ト イヨ ト イヨ ト

Lie Algebroids

Speculations

From Lie Algebroidal Categories to Lie Algebras

- by the very notion of vertical categorification, the category of representations of a Lie algebra should belong to LieCatI, LieCatII or LieCatIII.
- can we build some version of Tannaka duality for "nonassociative algebraic objects"?
- in affirmative case, any Lie algebroidal category should be equivalent (under Tannaka duality) to the category of representations of some Lie algebra.
- ▶ and so on.

From Lie Algebroidal Categories to Lie Algebras

- by the very notion of vertical categorification, the category of representations of a Lie algebra should belong to LieCatI, LieCatII or LieCatIII.
- can we build some version of Tannaka duality for "nonassociative algebraic objects"?
- in affirmative case, any Lie algebroidal category should be equivalent (under Tannaka duality) to the category of representations of some Lie algebra.
- ▶ and so on.

From Lie Algebroidal Categories to Lie Algebras

- by the very notion of vertical categorification, the category of representations of a Lie algebra should belong to LieCatI, LieCatII or LieCatIII.
- can we build some version of Tannaka duality for "nonassociative algebraic objects"?
- in affirmative case, any Lie algebroidal category should be equivalent (under Tannaka duality) to the category of representations of some Lie algebra.

and so on.

From Lie Algebroidal Categories to Lie Algebras

- by the very notion of vertical categorification, the category of representations of a Lie algebra should belong to LieCatI, LieCatII or LieCatIII.
- can we build some version of Tannaka duality for "nonassociative algebraic objects"?
- in affirmative case, any Lie algebroidal category should be equivalent (under Tannaka duality) to the category of representations of some Lie algebra.
- and so on.

伺 ト イヨ ト イヨ ト

Lie Algebroids

Speculations

Thank you.

sites.google.com/view/yxmartins

프 > - * 프 >