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Intuition

◮ Roughly speaking:
◮ categorification is a process that takes a set-theoretic concept

and produces an analogous categorical-theoretic concept;

◮ There are at least two of such processes:
◮ vertical categorification and
◮ horizontal categorification
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Vertical Categorification

◮ Consists in two steps:

1. to describe the set-theoretic concept to be categorified in
terms of categorical structures in Set;

2. to internalize the defining categorical structures in Cat.
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Vertical Categorification

◮ in few words, we must replace:

1. sets by categories;
2. functions between sets by functors between categories;
3. commutative diagrams of functions (describing properties) by

natural transformations satisfying some universal condition.
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Examples

◮ A “monoid” is given by:

1. a set X ;
2. a function ∗ : X × X → X ;
3. a distinguished element e ∈ X ;
4. such that

x ∗ (y ∗ z) = (x ∗ y) ∗ z (1)

x ∗ e = x = e ∗ x (2)
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Examples

◮ A “monoid” is given by:

1. a set X ;
2. a function ∗ : X × X → X ;
3. a distinguished element e ∈ X ;
4. such that

x ∗ (y ∗ z) = (x ∗ y) ∗ z (1)

x ∗ e = x = e ∗ x (2)

◮ Remark: 3. and 4. are not categorical!
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Examples

◮ a “monoid” is given by:

1. a set X ;
2. a function ∗ : X × X → X ;
3. a function e : 1 → X , where 1 is a singleton;
4. commutative diagrams

X × (X × X )

id×∗

��

≃ // (X × X ) × X

∗×id
// X × X

∗

��

1 × X

≃

##❍
❍❍

❍❍
❍❍

❍❍

1×id
// X × X

∗

��

X × 1

≃

{{✈✈
✈✈
✈✈
✈✈
✈

id×1
oo

X × X
∗

// X X

Y. X. Martins Lie Algebroidal Categories UFMG



Categorification Lie Algebroidal Categories Lie Algebroids Speculations

Examples

◮ a categorified monoid (“monoidal category”) is given by:

1. a category C;
2. a functor ∗ : C × C → C;
3. a functor e : 1 → C, where 1 is the categorical singleton;
4. analogous commutative diagrams

C × (C × C)

id×∗

��

≃ // (C × C) × C
∗×id

// C × C

∗

��

1 × C

≃

##●
●●

●●
●●

●●

1×id
// C × C

∗

��

C × 1

≃

{{✇✇
✇✇
✇✇
✇✇
✇

id×1
oo

C × C
∗

// C C

Y. X. Martins Lie Algebroidal Categories UFMG



Categorification Lie Algebroidal Categories Lie Algebroids Speculations

Examples

set-theoretic concept vertical categorification

monoid monoidal category

Table: Examples of Vertical Categorification
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Examples

set-theoretic concept vertical categorification

monoid monoidal category

commutative monoid
braided monoidal category

symmetric monoidal category

group monoidal category s.t Ob(C) ⊂ Pic(C)

free and fin. gen. monoid rigid monoidal category
...

...

Table: Examples of Vertical Categorification

Y. X. Martins Lie Algebroidal Categories UFMG



Categorification Lie Algebroidal Categories Lie Algebroids Speculations

Motivation

◮ why should an algebraist be interested in vertical
categorification?

◮ Folklore: Let“P” be some algebraic concept which can be
vertically categorified;

◮ then its category of representations RepP has the structure of
a vertical categorification of “P”;

◮ Tannaka duality.:Let “P” be associative and suppose that it

can be vertically categorified. If C is a category which realizes

the vertical categorification of “P”, then C ≃ RepP .

◮ this goes towards the classification of RepP .
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Lie Algebroidal Categories
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Idea

set-theoretic concept vertical categorification

monoid monoidal category

Lie algebra ??

Table: Vertical Categorification of Lie Algebra
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Idea

set-theoretic concept vertical categorification

monoid monoidal category

Lie algebra Lie algebroidal category

Table: Vertical Categorification of Lie Algebra
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Lie Algebra

◮ A “Lie algebra2” is given by:

1. an abelian group g;
2. a bilinear map [·, ·] : g× g → g;
3. such that

[x , y ] + [y , x ] = 0 (3)

[x , [y , z]] + [z , [x , y ] + [y , [z , x ]] = 0 (4)

2We are working over Z.
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1. an abelian group g;
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3. such that

[x , y ] + [y , x ] = 0 (3)
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◮ Remark: 3. is not categorical!

2We are working over Z.
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Lie Algebra

◮ Not only this: Jacobi identity is equivalently described by:

1. the polynomial identity

[x , [y , z]] + [z , [x , y ] + [y , [z , x ]] = 0

2. the fact that the adjoint map ad : g → End(g) is an algebra
morphism;

3. the fact that the adjoint map actually takes values in Der(g).
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[x , [y , z]] + [z , [x , y ] + [y , [z , x ]] = 0

2. the fact that the adjoint map ad : g → End(g) is an algebra
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3. the fact that the adjoint map actually takes values in Der(g).

◮ OBS: Each of these conditions can be rewritten in terms of
categorical structures.
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Lie Algebra

◮ Not only this: Jacobi identity is equivalently described by:

1. the polynomial identity

[x , [y , z]] + [z , [x , y ] + [y , [z , x ]] = 0

2. the fact that the adjoint map ad : g → End(g) is an algebra
morphism;

3. the fact that the adjoint map actually takes values in Der(g).

◮ OBS: Each of these conditions can be rewritten in terms of
categorical structures.

◮ THUS...
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Lie Algebroidal Categories

set-theoretic concept vertical categorification

monoid monoidal category

Lie algebra
Lie algebroidal category of Type I
Lie algebroidal category of Type II
Lie algebroidal category of Type III

Table: Vertical Categorification of Lie Algebra

◮
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Lie Algebroidal Categories

set-theoretic concept vertical categorification

monoid monoidal category

Lie algebra
Lie algebroidal category of Type I
Lie algebroidal category of Type II
Lie algebroidal category of Type III

Table: Vertical Categorification of Lie Algebra

◮ Remark: It seems (at least to me) that the corresponding
categories LieCatI, LieCatII and LieCatIII are not equivalent.
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Lie Algebroids
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Horizontal Categorification

◮ Consists in taking a set-theoretic concept “P” and finding for a
class of categories CatP such that categories C ∈ CatP with a
single object are equivalent to “P”.

◮ In simple terms, horizontally categorifying “P” is to search for
some way of considering a “many objects version of P”
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Examples

◮ If “P” is the concept of group, CatP is the category of all
categories in which every morphism is an isomorphism.

◮ In category theory they are called groupoids.

◮ Thus, “P” group implies CatP ≃ Grpd
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Lie Algebroids

◮ A Lie algebroid over a manifold M is given by:

1. a vector bundle E → M ;
2. a Lie algebra structure on the space of gloal sections Γ(E );
3. a vector bundle morphism ρ : E → TM such that:

3.1 it is a derivation relative to the action of the ring C
∞(M);

3.2 the induced map Γ(ρ) : Γ(E) → Γ(TM) is a morphism of Lie
algebras.

◮ From the definition it is clear that Lie algebroid is not a
horizontal categorification of Lie algebra.
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Lie Algebroids

set-theoretic concept vertical categorification

group groupoid

Lie algebra Lie algebroid

Table: Horizontal Categorification of Lie Algebra
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From Lie Algebroids to Lie Algebras

◮ On the other hand...

◮ “Lie algebroid” over the point M ≃ pt is equivalent to “Lie
algebra”.

◮ This motivates us to ask:
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From Lie Algebroids to Lie Algebras

◮ On the other hand...

◮ “Lie algebroid” over the point M ≃ pt is equivalent to “Lie
algebra”.

◮ This motivates us to ask:

◮ Question: Can we embed LieAlgdM in some category of

categories C ⊂ Cat such that when regarded as object of this

new category “Lie algebroid” becomes a horizontal

categorification of “Lie algebra”?
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From Lie Algebroids to Lie Algebras

◮ We propose a solution (at least after restriction to Z):
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From Lie Algebroids to Lie Algebras

◮ We propose a solution (at least after restriction to Z):

◮ Theorem: For every manifold M the category LieAlgdZ

M
of

Z-Lie algebroids over M can be fully embedded in LieCatIII.

Furthermore, inside LieCatIII the one-object limit of

LieAlgdZ

M
coincides with the one-point limit.

Y. X. Martins Lie Algebroidal Categories UFMG



Categorification Lie Algebroidal Categories Lie Algebroids Speculations

Speculations
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From Lie Algebras to Lie Algebroids

◮ The idea is to use the following steps:

1. to consider a definition/result about Lie algebras;
2. to redefine/reprove the result using only categorical structure,

i.e, to show that it is internal to LieAlg
Z
;

3. to apply vertical categorification in order to get an analogous
definition/result internal to LieCatIII;

4. to use the previous theorem in order to get a definition/result
about Lie algebroids.

Y. X. Martins Lie Algebroidal Categories UFMG



Categorification Lie Algebroidal Categories Lie Algebroids Speculations

From Lie Algebras to Lie Algebroids

◮ The idea is to use the following steps:

1. to consider a definition/result about Lie algebras;
2. to redefine/reprove the result using only categorical structure,

i.e, to show that it is internal to LieAlg
Z
;

3. to apply vertical categorification in order to get an analogous
definition/result internal to LieCatIII;

4. to use the previous theorem in order to get a definition/result
about Lie algebroids.

Y. X. Martins Lie Algebroidal Categories UFMG



Categorification Lie Algebroidal Categories Lie Algebroids Speculations

From Lie Algebras to Lie Algebroids

◮ The idea is to use the following steps:

1. to consider a definition/result about Lie algebras;
2. to redefine/reprove the result using only categorical structure,

i.e, to show that it is internal to LieAlg
Z
;

3. to apply vertical categorification in order to get an analogous
definition/result internal to LieCatIII;

4. to use the previous theorem in order to get a definition/result
about Lie algebroids.

Y. X. Martins Lie Algebroidal Categories UFMG



Categorification Lie Algebroidal Categories Lie Algebroids Speculations

From Lie Algebras to Lie Algebroids

◮ The idea is to use the following steps:

1. to consider a definition/result about Lie algebras;
2. to redefine/reprove the result using only categorical structure,

i.e, to show that it is internal to LieAlg
Z
;

3. to apply vertical categorification in order to get an analogous
definition/result internal to LieCatIII;

4. to use the previous theorem in order to get a definition/result
about Lie algebroids.

Y. X. Martins Lie Algebroidal Categories UFMG



Categorification Lie Algebroidal Categories Lie Algebroids Speculations

From Lie Algebras to Lie Algebroids

◮ The idea is to use the following steps:

1. to consider a definition/result about Lie algebras;
2. to redefine/reprove the result using only categorical structure,

i.e, to show that it is internal to LieAlg
Z
;

3. to apply vertical categorification in order to get an analogous
definition/result internal to LieCatIII;

4. to use the previous theorem in order to get a definition/result
about Lie algebroids.

Y. X. Martins Lie Algebroidal Categories UFMG



Categorification Lie Algebroidal Categories Lie Algebroids Speculations

From Lie Algebras to Lie Algebroids

◮ Example: what is the Lie algebroid version of the classification
of complex semisimple Lie algebras?

◮ OBS: a “semisimple Lie algebroid” should be a Courant
algebroid fulfilling additional conditions...

◮ Example: what is representation theory for Lie algebroids??

◮ and so on.
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From Lie Algebroidal Categories to Lie Algebras

◮ by the very notion of vertical categorification, the category of
representations of a Lie algebra should belong to LieCatI,
LieCatII or LieCatIII.

◮ can we build some version of Tannaka duality for
“nonassociative algebraic objects”?

◮ in affirmative case, any Lie algebroidal category should be
equivalent (under Tannaka duality) to the category of
representations of some Lie algebra.

◮ and so on.
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Thank you.
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