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In this paper we consider existence and multiplicity results concerning affine connections on C k -manifolds M whose coefficients are as regular as one needs, following the regularity theory introduced in [1]. We show that if M admits a B k \alpha ,\betastructure, then the existence of such regular connections can be established in terms of properties of the structural presheaf B. In other words, we propose a solution to the existence problem in this setting. With regard to the multiplicity problem, we show that the space of regular affine connections is an affine space of the space of regular End(T M )-valued 1-forms, and that if two regular connections are locally additively different, then they are actually locally different. The existence of a topology in which the space of regular connections is a nonempty open dense subset of the space of all regular End(T M )-valued 1-forms is suggested.

Introduction

In a naive sense, a ``regular"" mathematical object in one which is described by functions. The space where these structural functions live is the ``regularity"" of the defined mathematical object. Thus, n-manifolds M are ``regular"" because they are described by its charts \varphi i : U i \rightar \BbbR n . Furthermore, its regularity is given by the space where the transition functions \varphi ji = \varphi j \circ \varphi - 1 i live. Similarly, tensors T , affine connections \nabla and partial differential operators D in M are also ``regular"", because they are described by their local coefficients.

In [START_REF] Martins | Existence of B k \alpha ,\beta -Structures on C k -Manifolds[END_REF] the authors proposed a formalization to this general notion of ``regularity"" and begin its study in the context of C k -manifolds. In particular, we considered the existence problem of subatlases satisfying prescribed regularity conditions. In the present work we will continue this study by considering existence and multiplicity problems for regular affine connections on regular C k -manifolds.

Such problems are of wide interest in many areas. For instance, in gauge theory and when one needs certain uniform bounds on the curvature, it is desirable to work with connections \nabla whose coefficients are not only C k - 2 , but actually L p -integrable or even uniformly bounded [START_REF] Uhlenbeck | Connections with L p bounds on curvature[END_REF][START_REF] Eichhorn | The Boundedness of Connection Coefficients and their Derivatives[END_REF]. In other situations, as in the study of holomorphic geometry, one considers holomorphic or Hermitian connections over complex manifolds whose coefficients are holomorphic [START_REF] Kobayashi | Differential Geometry of Complex Vector Bundle[END_REF][START_REF] Atiyah | Complex analytic connections in fibre bundles[END_REF]. If M has a G-structure, one can also consider G-principal connections \omega on the frame bundle F M , which induce an affine connection \nabla \omega in M , whose coefficients \omega c b (\partial a ) = \Gamma c ab are such that for every a, \Gamma a \in C k - 2 (U ) \otimes \frakg , where (\Gamma a ) cb = \Gamma c ab [START_REF] Kobayashi | Foundations of Differential Geometry[END_REF]. Interesting examples of these are the symplectic connections, which are specially important in formal deformation quantization of symplectic manifolds [START_REF] Bieliavsky | Symplectic connections[END_REF][START_REF] Fedosov | A simple geometrical construction of deformation quantization[END_REF]. As a final example, a torsion-free affine connection defines a L 3 -space structure in a smooth manifold M (in the sense of [START_REF] Kowalski | The Riemann extensions with cyclic parallel Ricci tensor[END_REF]) iff its coefficients satisfy a certain system of partial differential equations [START_REF] Diallo | Affine Szab\' o connections on smooth manifolds[END_REF]. Thus, the theory of L 3 -spaces is about certain regular connections.
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In the formulation of ``regular"" object of [START_REF] Martins | Existence of B k \alpha ,\beta -Structures on C k -Manifolds[END_REF], the spaces describing the regularity are modeled by nuclear Fr\' echet spaces, since their category NFre is a closed symmetric monoidal relatively to the projective tensor project \otimes , and since most of the function spaces arising from geometry belongs to NFre. Furthermore, since one such space for every open set U \subset M , this leads to consider presheaves B : Open(\BbbR n ) op \rightar NFre. On the other hand, notice that if a mathematical concept is described by C k -functions f , then the regularity of this object is typically described not only by the space where the functions f live, but also by the space where their derivatives \partial i f , 1 \leq i \leq k, belong. Thus, we should consider sequences of presheaves B i : Open(\BbbR n ) op \rightar NFre, with i = 0, ..., k. But, for reasons which will be more clear later (see Remark 2.50), it is better to allow sequences B i indexed in more general sets \Gamma . These are called presheaves of \Gamma -spaces.

Example 1.1. The prototypical example of [0, k]-presheaf, where [0, k] = 0, ..., k, is the sequence C k - i . If \beta : \Gamma \rightar [0, k] is any function we get the \Gamma -presheaf C k - \beta (i) . One can also consider the sequences L i (U ), W i,p (U ), and so on.

We would also like to sum and multiply in the regularity spaces in a distributive way. We will consider presheaves of distributive \Gamma -spaces, which are presehaves of \Gamma -spaces endowed with a distributive structure. On the other hand, recall that we will be interested in regularity structures on C k -objets. Thus, we need some way to make sense of the intersections B \alpha (i) (U ) \cap C k - \beta (i) (U ), where the index \alpha is necessary to ensure that both are presheaves of \Gamma -spaces for the same \Gamma . This will be done with the help of an ambient category \BbbX with pullbacks (typically the category of \Gamma -graded real vector spaces) and of an ambient object X, in which both B i and C k - \beta (i) can be included, being the intersection B i \cap X C k - \beta (i) given by the pullbacks of the inclusions. In other words, we will need an intersection structure between B i and C k - \beta (i) , denoted by \BbbX .

With all this stuff, we define a ``regular"" function f : U \rightar \BbbR , here called (B, k, \alpha , \beta )function in \BbbX , as a C k -function such that \partial i f \in B \alpha (i) (U ) \cap X(U ) C k - \beta (i) (U ) for each i. Similarly, a ``regular"" C k -manifold, called (B k \alpha ,\beta , \BbbX )-manifold is one whose transition functions \varphi ji are regular functions, i.e., are (B, k, \alpha , \beta )-functions in \BbbX . Finally, a ``regular"" affine connection in a (B k \alpha ,\beta , \BbbX )-manifold M is a C k affine connection \nabla whose coefficients (\Gamma \varphi ) c ab in each regular chart \varphi of M are (B, k, \alpha \prime , \beta \prime )-functions in some other ambient \BbbY . We also say that \nabla is an affine (B k \alpha \prime ,\beta \prime , \BbbY )-connection in M . In this new language, the existence and multiplicity problems for regular affine connections on regular manifolds have the following description:

\bullet Existence. Let M be a (B k \alpha ,\beta , \BbbX )-manifolds. Given \alpha \prime and \beta \prime and \BbbY , can we find conditions on B, k, \alpha and \beta such that M admits affine (B k \alpha \prime ,\beta \prime , \BbbY )-connections? \bullet Multiplicity. What can be said about the dimension of the space Conn k \alpha \prime ,\beta \prime (M ; \BbbY ) of (B k \alpha \prime ,\beta \prime , \BbbY )-connections in M ? We prove that arbitrarily regular connection exist in sufficiently regular manifolds. The will be based on four steps:

(1) existence of arbitrarily regular affine connections in each U \subset M (Proposition 3.1); (2) existence of global affine connections in M whose coefficients (\Gamma \varphi ) c ab are regular, but whose derivatives are not (Theorem 3.2);
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1-forms, and in Theorem 4.6 we prove that if two regular connections are locally additively different, then they are locally different. The paper is organized as follows. In Section 2 we present the needed background for our main results. In parts, it contain concepts introduced in [START_REF] Martins | Existence of B k \alpha ,\beta -Structures on C k -Manifolds[END_REF], but now described in a more concrete way. Subsection 2.9 and Subsection 2.9 are fully new in content if compared to [START_REF] Martins | Existence of B k \alpha ,\beta -Structures on C k -Manifolds[END_REF]. In particular, in Subsection 2.9 the Regularity Globalization Lemma is stated and proved. Section 3 deals with the existence problem and the four steps described above. Section 4 is about the multiplicity problem. The paper ends with an informal discussion of why we should believe that there exists a topology in which Conn k \alpha \prime ,\beta \prime (M ; \BbbY ) is a nonempty open dense subset of the space of tuples of (B, k, \alpha \prime , \beta \prime )-functions in \BbbY .

\bullet Convention: remarks concerning notations and assumptions will be presented using a bullet.

Background

In this section we will present all that is necessary to formally state and prove the existence and multiplicity results described in the introduction. We begin by recalling in detail the definitions and results from [START_REF] Martins | Existence of B k \alpha ,\beta -Structures on C k -Manifolds[END_REF] that will be needed in the next sections, which are basically the notion of B k \alpha ,\beta -manifold and the underlying concepts. \bullet Notations. In the following \Gamma denotes an arbitrary set, regarded as a set of indexes. Given k, l \geq 0 with k \leq l, [k, l] will denote the integer closed interval from k to l. NFre will denote the category of nuclear Fr\' echet spaces with continuous linear maps, and \otimes is the projective tensor product, which makes NFre a symmetric monoidal category [START_REF] Treves | Topological Vector Spaces, Distributions and Kernels[END_REF]. 

B i = C i (M ; \BbbR m ),
where M is a C k -manifold, with the standard family of semi-norms

\| f \| r,l = \sum j sup | \mu | =r sup x\in K l | \partial \mu f j (x)| (2.1)
with 0 \leq r \leq i and (K l ) some nice sequence of compact sets of M . More generally, given a set \Gamma and a function \beta : \Gamma \rightar [0, k], we can define the \Gamma -space

B i = C k - \beta (i) (M ; \BbbR m ).
Example 2.3. Similarly, we can consider in C k - \beta (i) (U ; \BbbR ) other Banach norms, as L p -norms or Sobolev norms.

Example 2.4. More generally, any sequence of Banach spaces defines a \Gamma -space, where \Gamma is the set in which the sequence is indexed.

Example 2.5. Given a \Gamma -space B and a function \alpha : \Gamma \prime \rightar \Gamma we define a new \Gamma \prime -space B \alpha by reindexing B, i.e., (B \alpha ) i = B \alpha (i) .

Definition 2.6. A distributive structure in a \Gamma -space B consists of:

(1) maps \epsilon , \delta : \Gamma \times \Gamma \rightar \Gamma ;

(2) continuous linear maps \ast ij : B i \otimes B j \rightar B \epsilon (i,j) and + ij : B i \otimes B j \rightar B \delta (i,j) , for every i, j \in \Gamma \mathrm{\mathrm{\mathrm{\mathrm{ \mathrm{\mathrm{ \mathrm{\mathrm{ \mathrm{\mathrm{ \mathrm{ \mathrm{\mathrm{\mathrm{ \mathrm{\mathrm{ \mathrm{\mathrm{ \mathrm{\mathrm{\mathrm{ \mathrm{ \mathrm{\mathrm{\mathrm{\mathrm{ \mathrm{ \mathrm{ \mathrm{\mathrm{ \mathrm{ \' \mathrm{ \mathrm{ \mathrm{ \mathrm{ \mathrm{ \mathrm{\mathrm{\mathrm{ \mathrm{ such that the following compatibility equations are satisfied for every x \in B i , y \in B j and z \in B k , and every i, j, k \in \Gamma (notice that the first two equations, which describe left and right distributivity, respectively, makes sense only because of the last two).

x \ast i\delta (j,k) (y + jk z) = (x \ast ij y) + (x \ast ik z)

(x + ij y) \ast \delta (i,j)k z = (x \ast ik z) + (y \ast jk z) \epsilon (i, \delta (j, k)) = \delta (\epsilon (i, j), \epsilon (i, k))
\epsilon (\delta (i, j), k) = \delta (\epsilon (i, k), \epsilon (j, k)).

We also require that + ii coincides with the sum + i in B i .

Definition 2.7. A distributive \Gamma -space is a \Gamma -space B endowed with distributive structure (\epsilon , \delta , +, \ast ). A morphism between distributive \Gamma -spaces (B, \epsilon , \delta , +, \ast ) and (B \prime , \epsilon \prime , \delta \prime , + \prime , \ast \prime ) is a pair (f, \mu ), where \mu : \Gamma \rightar \Gamma is a function and f = (f i ) i\in \Gamma is a family of continuous linear maps f i : B i \rightar B \prime \mu (i) such that the following equations are satisfied (notice again that the first two equations, which describe left and right distributivity, respectively, makes sense only because of the last two):

f (x \ast ij y) = f (x) \ast \prime \epsilon \prime (\mu (i),\mu (j)) f (y) f (x + ij y) = f (x) + \prime \delta \prime (\mu (i),\mu (j)) f (y) \mu (\epsilon (i, j)) = \epsilon \prime (\mu (i), \mu (j)) \mu (\delta (i, j)) = \delta \prime (\mu (i), \mu (j)).
Example 2.8. With pointwise sum and multiplication, the \Gamma -spaces C k - \beta (i) (M ; \BbbR ) are distributive for \delta (i, j) = k -max(\beta (i), \beta (j)) = \epsilon (i, j). H\" older's inequality implies that the \BbbZ \geq 0 -spaces L i (U ) also are distributive, with \delta (i, j) = min(i, j) and \epsilon (i, j) = i \star j = (i\cdot j)/(i+j), now viewed as a \Gamma -space for \Gamma \subset \BbbZ \geq 0 being the set of all i, j \geq 0 such that i \star j is an integer. From Yong's inequality one can considers a different distributive structure in L i (\BbbR n ) given by convolution product and such that \epsilon (i, j) = r(i, j) = (i \cdot j)/(i + j -(i \cdot j)), where now \Gamma \subset \BbbZ \geq 0 is such that r(i, j) is an integer. Definition 2.9. Let B and B \prime be a \Gamma -space and a \Gamma \prime -space, respectively. The external tensor product between them is the \Gamma \times \Gamma \prime -space B \otimes B \prime such that (B \otimes B \prime ) i,j = B i \otimes B \prime j . Remark 2.10. A distributive \Gamma -space (B, \epsilon , \delta , +, \ast ) induces two (\Gamma \times \Gamma )-spaces B \epsilon and B \delta , defined by (B \epsilon ) ij = B \varepsi (i,j) and (B \delta ) ij = B \delta (i,j) . The family of maps \ast ij and + ij defining a distributive \Gamma -structure are actually morphisms of \Gamma \times \Gamma -spaces \ast : B \otimes B \Rightar B \epsilon and + : B \otimes B \Rightar B \delta .

2.2. Abstract Intersections. We now recall abstract intersection structures between presheaves of distributive \Gamma -spaces. For a complete exposition, see Section 2 of [START_REF] Martins | Existence of B k \alpha ,\beta -Structures on C k -Manifolds[END_REF].

As a motivation, recall that the intersection A \cap B of vector subspaces A, B \subset X of a fixed vector space X can be viewed as the pullback between the inclusions A \lhook \rightar X and B \lhook \rightar X. However, if A and B are arbitrary vector spaces, the ``abstract intersection"" A \subset B is a priori not well-defined. In order to define it we first consider an ambient space X in which both can be embedded and one fixes embeddings \alpha : A \lhook \rightar X and \beta : B \lhook \rightar X. The abstract intersection between A and B inside X, relative to the fixed embeddings \alpha and \beta , is then defined as the pullback pb(\alpha , \beta ) between \alpha and \beta .

Notice that if the category C in which the objects A and B live does not have pullbacks, then the above notion of abstract intersection may not exist for certain triples (X, \alpha , \beta ). In these cases we first need to regard both A and B as objects of another category X with pullbacks. Thus, we take a faithful functor \gamma : A \rightar X, a fixed ambient object X \in X and fixed monomorphisms \alpha : \gamma \bfA (A) \lhook \rightar X and \alpha : \gamma (A) \lhook \rightar X \alpha : \gamma (B) \lhook \rightar X. The abstract intersection can then be defined as the pullback pb(\alpha , \beta ) between \alpha and \beta , but now it \mathrm{\mathrm{ \mathrm{\mathrm{\mathrm{ \mathrm{\mathrm{\mathrm{ \mathrm{ \mathrm{\mathrm{ \mathrm{\mathrm{\mathrm{ \mathrm{\mathrm{\mathrm{ \mathrm{\mathrm{ \mathrm{\mathrm{ \mathrm{ \mathrm{\mathrm{ \mathrm{\mathrm{ \mathrm{\mathrm{ B k \alpha ,\beta -\mathrm{\mathrm{\mathrm{\mathrm{ \mathrm{ \mathrm{\mathrm{ \mathrm{\mathrm{ , \mathrm{ : \mathrm{\mathrm{ \mathrm{ \mathrm{ \mathrm{\mathrm{ \mathrm{\mathrm{\mathrm{\mathrm{\mathrm{ \mathrm{\mathrm{\mathrm{ \mathrm{\mathrm{\mathrm{ 5

depends additionally on the faithful functor \gamma . Furthermore, a priori it exists only as an object of X, which is why we call it ``abstract"".

Definition 2.11. A \Gamma -ambient is a tuple \scrX = (X, \gamma , \gamma \Sigma ), where X is a category with pullbacks and \gamma and \gamma \Sigma are faithful functors \gamma : NFre \Gamma \rightar X and \gamma \Sigma : NFre \Gamma \times \Gamma \rightar X.

We say that a \Gamma -ambient \scrX has null objects if the ambient category X has a null object 0.

Example 2.12. As discussed in [START_REF] Martins | Existence of B k \alpha ,\beta -Structures on C k -Manifolds[END_REF], the typical example of \Gamma -ambient is such that \BbbX is the category Vec \BbbR ,\Gamma \times \Gamma of \Gamma \times \Gamma -graded real vector spaces, \gamma \Sigma : NFre \Gamma \times \Gamma \rightar Vec \BbbR ,\Gamma \times \Gamma is the forgetful functor and \gamma : NFre \Gamma \rightar Vec \BbbR ,\Gamma \times \Gamma is the composition of \Gamma \Sigma with the inclusion NFre \Gamma \lhook \rightar NFre \Gamma \times \Gamma given by \imath (B) i,j = B i \oplus 0.

Example 2.13. More generally, it is interesting to consider the class of vector \Gamma -ambients [START_REF] Martins | Existence of B k \alpha ,\beta -Structures on C k -Manifolds[END_REF]. These are such that X = Vec \BbbR ,\Gamma \times \Gamma , \gamma \Sigma creates null objects and \gamma = \gamma \Sigma \circ F , where F is another functor that creates null objects.

Definition 2.14. Let B, B \prime be two \Gamma -spaces and let \scrX = (X, \gamma , \gamma \Sigma ) be a \Gamma -ambient. An intersection structure between B and B \prime in (X, \gamma , \gamma \Sigma ) is given by an object X \in X and monomorphisms \imath : \gamma (B) \lhook \rightar X and \imath \prime : \gamma (B \prime ) \lhook \rightar X. We write \BbbX in order to denote (X, \imath , \imath \prime ) and we say that X is the ambient object of \BbbX .

Notice that in the definition above the functor \gamma \Sigma , which is part of the \Gamma -ambient, was not used yet. It will be used when taking distributive structures into account.

Definition 2.15. Let (B, \epsilon , \delta , +, \ast ) and (B \prime , \epsilon \prime , \delta \prime , + \prime , \ast \prime ) be distributive \Gamma -spaces. An intersection structure between them, denoted by \BbbX , consists of 1 (1) a \Gamma -ambient \scrX = (X, \gamma , \gamma \Sigma );

(2) an intersection structure \BbbX 0 = (X, \imath , \imath \prime ) between B and B \prime ;

(3) an intersection structure \BbbX \ast = (X \ast , \jmath \ast , \jmath \prime \ast ) between B \epsilon and B \prime \epsilon \prime ; (4) an intersection structure \BbbX + = (X + , \jmath + , \jmath \prime + ) between B \delta and B \prime \delta \prime . The abstract intersection between (B, \epsilon , \delta , +, \ast ) and (B \prime , \epsilon \prime , \delta \prime , + \prime , \ast \prime ) in \scrX , relatively to \BbbX , is:

(1) the abstract intersection pb(X, \imath , \imath \prime ; \scrX , \BbbX 0 ) between B and B \prime ;

(2) the abstract intersection pb(X \ast , \jmath \ast , \jmath \prime \ast ; \scrX , \BbbX \ast ) between B \epsilon and B \prime \epsilon \prime ; (3) the abstract intersection pb(X + , \jmath + , \jmath \prime + ; \scrX , \BbbX + ) between B \delta and B \prime \delta \prime ; (4) the additional pullbacks between \gamma \Sigma (\ast ) \circ \jmath \ast and \gamma \Sigma (\ast \prime ) \circ \jmath \prime \ast , and between \gamma \Sigma (+) \circ \jmath + and \gamma \Sigma (+ \prime ) \circ \jmath \prime + , as below 2 , describing the abstract intersections between the multiplications \ast and \ast \prime , and the sums + and + \prime , respectively 

G G \gamma \Sigma (B \epsilon ) \jmath \ast G G X \ast (2.2)
1 Recall the definitions of B\epsilon and B \delta in Remark 2.10. 2 We presented only the first of these pullbacks, since the second one is fully analogous. 3 Recall from Remark 2.10 that \ast and + can be viewed as morphisms defined on external tensor products.

\mathrm{\mathrm{\mathrm{\mathrm{ \mathrm{\mathrm{ \mathrm{\mathrm{ \mathrm{\mathrm{ \mathrm{ \mathrm{\mathrm{\mathrm{ \mathrm{\mathrm{ \mathrm{\mathrm{ \mathrm{\mathrm{\mathrm{ \mathrm{ \mathrm{\mathrm{\mathrm{\mathrm{ \mathrm{ \mathrm{ \mathrm{\mathrm{ \mathrm{ \' \mathrm{ \mathrm{ \mathrm{ \mathrm{ \mathrm{ \mathrm{\mathrm{\mathrm{ \mathrm{ \bullet The abstract intersections between \ast and \ast \prime , and between + and + \prime , as above, will be denoted simply by pb(\ast , \ast \prime ; \scrX , \BbbX \ast ) and pb(+, + \prime ; \scrX , \BbbX + ), respectively.

Example 2.16. The abstract intersection usually depends strongly on the ambient object X. E.g, in the \Gamma -ambient of Example 2.12, if X = \gamma (B)\oplus \gamma (B \prime ), then pb(X, \imath , \imath \prime ; \scrX , \BbbX ) \simeq 0 independently of \imath and \imath \prime . On the other hand, if X = span(\gamma (B)\cup \gamma (B \prime )), then the abstract intersection is a nontrivial graded vector space if B i \cap B \prime i is nontrivial for some i \in \Gamma . See Examples 12-13 of [START_REF] Martins | Existence of B k \alpha ,\beta -Structures on C k -Manifolds[END_REF].

Remark 2.17. In typical examples, if there is some i \in \Gamma such that B i or B \prime i is a nontrivial vector space, then the abstract intersection between B and B \prime is nontrivial too. This depends on how we ``concretify"" the abstract intersections: see Lemma 2.2.

2.3.

Concretization. Here we will recall the concretization procedures for abstract intersection structures. See Section 2 of [START_REF] Martins | Existence of B k \alpha ,\beta -Structures on C k -Manifolds[END_REF].

In the last section we described how we can intersect two objects A, B \in C in a category without pullbacks by means of considering spans in an ambient category X with pullbacks via a faithful functor \gamma : C \rightar X. The resulting abstract intersection, however, exists a priori only in X, but in many situations we actually need to work with it in C. Thus we need some ``concretization"" procedure. An obvious approach would be to require that \gamma : C \rightar X reflects pullbacks, but this would assume that C has pullbacks, which is precisely what we are avoiding. One could also assume the presence of an opposite directed functor F : X \rightar C which preserves pullbacks, but again this assumes that C has pullbacks. A final obvious attempt would be consider only flat functors \gamma : C \rightar X, but this is too restrictive for our purposes. The exact condition that we need is the following4 : Definition 2.18. Let \gamma : C \rightar X be a faithful functor and X \in X. A concreteness structure for \gamma in X is given by a set W \gamma (A; X) of morphisms \gamma (A) \rightar X for each A \in C. Let

W \gamma (X) = \bigcup A\in \bfC W \gamma (A; X).
We say \gamma satisfies the concreteness property in the concreteness structure W \gamma (X) if for every pair f : \gamma (A) \lhook \rightar X and f \prime : \gamma (B) \lhook \rightar X in W \gamma (X) there exist:

(1) an object A \cap X,\gamma B \in C and an isomorphism u : \gamma (A \cap X,\gamma B) \simeq pb(f, f \prime );

(2) morphisms \theta 1 : A \cap X,\gamma B \rightar A and \theta 2 : A \cap X,\gamma B \rightar B, such that the diagram below commutes.

\gamma (A \cap X,\gamma B) \gamma (\theta 1) 6 6 u \simeq 9 9 \gamma (\theta 2) 9 9 pb(f, f \prime ) \pi 1 \pi 2 G G \gamma (B) f \prime \gamma (A) f G G X (2.3)
Remark 2.19. The cospan in C defined by (\theta 1 , \theta 2 ) is called concrete cospan of the span (f, f \prime ). Thus, the concreteness property allow us to replace a span in X by a not necessarily universal cospan (i.e., not necessarily a limit) in C. Lemma 2.1. If \gamma satisfies the concreteness property in W \gamma (X) and if f and f \prime are monomorphisms, then the corresponding \theta 1 and \theta 2 are too.

conditions are sufficient for essentially everything, including our main results.
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Proof. By the comutativity of the diagram above, we have \gamma (\theta i ) = \pi i \circ u, with i = 1, 2. Since f and f \prime are monomorphisms, it follows that \pi i are monomorphisms too. Thus, \gamma (\theta i ) also are. Since \gamma is faithful, it reflect monomorphisms. \square

We can now put the previous discussion in our context.

Definition 2.20. Let \scrX = (X, \gamma , \gamma \Sigma ) be a \Gamma -ambient and let X \in X. Define (1) W \gamma (B; X) as the collection of all monomorphisms \imath : \gamma (B) \lhook \rightar X, where B \in NFre \Gamma , and W \gamma (X) as the union of all of them; (2) W \gamma \Sigma (B; X) as the collection of all morphisms f : \gamma \Sigma (B) \rightar X, for B \in NFre \Gamma \times \Gamma which are of the form f = \imath \circ g, where \imath : \gamma \Sigma (B \prime ) \lhook \rightar X is a monomorphism and g : \gamma \Sigma (B) \rightar \gamma \Sigma (B \prime ) is an arbitrary morphism. Let W \gamma \Sigma (X) be the union of all of them. We say that \scrX is \gamma -concrete (resp. \gamma \Sigma -concrete) in X if the functor \gamma (resp. \gamma \Sigma ) satisfies the concreteness property in W \gamma (X) (resp. W \gamma \Sigma (X)). We say that \scrX is concrete if it is both \gamma -concrete and \gamma \Sigma -concrete.

Remark 2.21. The class W \gamma \Sigma (B; X) contains morphisms of the form f = \imath \circ g (instead of only monomorphism) precisely because we will need to concrectify diagrams like (2.2), where g = \gamma \Sigma (\ast ). Notice that if g was assumed to be a monomorphism, then by the arguments of Lemma 2.1, the multiplication \ast : B \otimes B \rightar B would be a monomorphism too, which is not true in full generality. Definition 2.22. Let \BbbX = (\scrX , X, \imath , \imath \prime ) be an intersection structure between two fixed \Gamma -spaces B and B \prime . We say that it is \gamma -concrete5 (resp. \gamma \Sigma -concrete or concrete) if \Gamma -ambient \scrX is \gamma -concrete (resp. \gamma \Sigma -concrete or concrete) in X.

Definition 2.23. Consider, now, an intersection structure \BbbX = (\scrX , \BbbX 0 , \BbbX \ast , \BbbX + ) between two distributive \Gamma -spaces (B, \epsilon , \delta , \ast , +) and (B \prime , \epsilon \prime , \delta \prime , \ast \prime , + \prime ). We say that \BbbX is concrete if \BbbX 0 is \gamma -concrete and \BbbX \ast and \BbbX + are \gamma \Sigma -concrete. The concrete intersection between B and B \prime in \BbbX is given by the concrete cospans of the spans6 (\imath , \imath \prime ), (\jmath \ast , \jmath \prime \ast ), (\jmath + , \jmath \prime + ), (\jmath \ast \circ \gamma \Sigma (\ast ), \jmath \prime \ast \circ \gamma \Sigma (\ast \prime )) and (\jmath + \circ \gamma \Sigma (+), \jmath \prime + \circ \gamma \Sigma (+ \prime )). The vertices of these cospans will be respectively denoted by B \cap X,\gamma B \prime , B \epsilon \cap X\ast ,\gamma \Sigma B \epsilon \prime , B \delta \cap X+,\gamma \Sigma B \delta \prime , \ast \cap X\ast ,\gamma \Sigma \ast \prime and + \cap X+,\gamma \Sigma + \prime . Remark 2.24. Notice that if an abstract intersection between \Gamma -spaces B and B \prime is concrete, then it can itself be regarded as a \Gamma -space. However, if an abstract intersection between distributive \Gamma -space is concrete, then it is not necessarily a distributive \Gamma -space; it is only a \Gamma \times \Gamma -space with further stuff. This is enough for our purposes.

We close with a useful lemma which shows that for concrete vector ambients, concrete intersections of nontrivial distributive \Gamma -spaces are nontrivial too. Lemma 2.2. Let \BbbX be a concrete intersection structure between distributive \Gamma -spaces (B, \epsilon , \delta , \ast , +) and (B \prime , \epsilon \prime , \delta \prime , \ast \prime , + \prime ), whose underlying \Gamma -ambient \scrX is vectorial. If there exist i, j \in \Gamma such that B i or B \prime j are nontrivial, then \BbbX is nontrivial too. Proof. See Proposition 1, page 10, of [START_REF] Martins | Existence of B k \alpha ,\beta -Structures on C k -Manifolds[END_REF]. \square 2.4. Extension to Sheaves. In the last sections we discussed that in order to formulate a notion of ``regularity"" on a C k -manifold M we have to consider nontrivial intersections between the existing C k regularity and the additional one. Notice, on the other hand, that by the very notion of regularity, they are local properties. This means that a manifold M is ``regular"" when the regularity is satisfied on the local pieces U s \subset M in such a way \mathrm{\mathrm{\mathrm{\mathrm{ \mathrm{\mathrm{ \mathrm{\mathrm{ \mathrm{\mathrm{ \mathrm{ \mathrm{\mathrm{\mathrm{ \mathrm{\mathrm{ \mathrm{\mathrm{ \mathrm{\mathrm{\mathrm{ \mathrm{ \mathrm{\mathrm{\mathrm{\mathrm{ \mathrm{ \mathrm{ \mathrm{\mathrm{ \mathrm{ \' \mathrm{ \mathrm{ \mathrm{ \mathrm{ \mathrm{ \mathrm{\mathrm{\mathrm{ \mathrm{ that coherence conditions hold at the intersections U ss \prime = U s \cap U s \prime . Thus, we do not need a global \Gamma -space B(M ), but actually one B(\varphi s (U s )) for each local chart \varphi s : U s \rightar \BbbR n . Therefore, we have to work with presheaves B : Open(\BbbR n ) op \rightar NFre \Gamma of \Gamma -spaces. Notice that all the discussion above can be internalized in the presheaf category of presheaves in \BbbR n by means of just taking a parametrization of definitions and results in terms of opens sets of \BbbR n . Thus, we can talk about presehaves of distributive \Gamma -spaces, presheaves of intersection structures between presheaves of distributive \Gamma -spaces, and so on. We refer the reader to Section 3 of [START_REF] Martins | Existence of B k \alpha ,\beta -Structures on C k -Manifolds[END_REF] for more details to this extension to the presheaf setting.

Remark 2.27. To maintain compatibility with notations of [START_REF] Martins | Existence of B k \alpha ,\beta -Structures on C k -Manifolds[END_REF], throughout this paper a presheaf of intersection structures between presheaves of distributive \Gamma -spaces B and B \prime will be called an intersection structure presheaf (ISP). Furthermore, it will be denoted simply by \BbbX = (\scrX , X), where \scrX = (X, \gamma , \gamma \Sigma ) is the \Gamma -ambient and X : Op(\BbbR n ) op \rightar NFre \Gamma is the presheaf of ambient \Gamma -spaces.

B k

\alpha ,\beta -Presheaves. In order to prove the existence of a geometric object on a smooth manifold one typically first proves local existence and then uses a partition of unity to globalize the construction. To extend the use of partition functions to the present regular setting we will work with presheaves of \Gamma -spaces which are B k \alpha ,\beta -presheaves. See Section 3 of [START_REF] Martins | Existence of B k \alpha ,\beta -Structures on C k -Manifolds[END_REF] for more details. \bullet In the following: C k b (U ) \subset C k (M ) denotes the space of C k -bump functions with the Fr\' echet structure induced by the seminorms (2.1). Definition 2.28. We say that a set of indexes \Gamma \prime has degree r for some 0 \leq r \leq k if it contains the interval [0, r].

\bullet In the following we will write \Gamma r to denote a generic set with degree r, while \Gamma will remain an arbitrary set.

Definition 2.29. Let B = (B i ) i\in \Gamma be a presheaf of \Gamma -spaces and let \alpha : \Gamma \prime \rightar \Gamma and \beta : \Gamma \prime \rightar [0, k] be functions. We say that the tuple (B, \alpha , \beta , k) has degree r if the domain \Gamma \prime of the functions \alpha and \beta has degree r, i.e., if they are defined in some \Gamma r .

Definition 2.30. Let (B, \alpha , \beta , k) be a tuple as above. Let \BbbX = (\scrX , X) be a concrete ISP between B \alpha and C k - \beta . We say that (B, k, \alpha , \beta ) is a B k \alpha ,\beta -presheaf in \BbbX if it has degree k and for every open set U \subset \BbbR n and every i\Gamma k there exists the dotted arrow \star U,i making commutative the diagram below, where \theta 2,U is part of the concrete cospan 7 .

C k (U ) \otimes C k - \beta (i) (U ) \cdot U,i G G C k - \beta (i) (U ) C k b (U ) \otimes B \alpha (i) (U ) \cap X(U ) C k - \beta (i) (U ) ? \imath U \otimes \theta 2,U y y \star U,i G G B \alpha (i) (U ) \cap X(U ) C k - \beta (i) (U ) ? \theta 2,U y y (2.4)
7 which therefore is a monomophisms due to Lemma 2.1.
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Intuitively, a B k \alpha ,\beta -presheaf is a presheaf of \Gamma -spaces B(U ), which, when regarded as a presheaf B \alpha of \Gamma k -spaces via \alpha , has an intersection space with C k - \beta (U ) that is closed under multiplication of C k -bump functions.

Example 2.31. For every k, \beta , \alpha the presheaf of C k - \alpha is a B k \beta \beta -presheaf in the ISP which is objectwise the standard vectorial intersection structure of Example 2.13.

Example 2.32. Similarly, the presheaves L \alpha (U ) i = L \alpha (i) (U ) with the distributive structure given by pointwise sum and multiplication, is a nice B k,\alpha \beta -presheaf in the standard ISP, for A(U ) = C \infty b (U ). An analogous conclusion is valid if we replace pointwise multiplication with convolution product.

We close this section with two remarks concerning Definition 2.30.

(1) It has a generalization where one requires invariance under multiplication only by a subvector space A(U ) \subset C k (U ) with a nuclear Fr\' echet structure. In this case, for instance, in Example 2.32 we would get a different B k \alpha ,\beta -structure in L \alpha taking A(U ) = \scrS (U ) as the Schwartz space. Following [START_REF] Martins | Existence of B k \alpha ,\beta -Structures on C k -Manifolds[END_REF], a nice B k \alpha ,\beta -presheaf should be one such that A(U ) nontrivially intersects C k b (U ). In the following, however, we will work only with A(U ) = C k b (U ), so that every B k \alpha ,\beta -preshef will be nice.

(2) Following the conventions of [START_REF] Martins | Existence of B k \alpha ,\beta -Structures on C k -Manifolds[END_REF] a B k \alpha ,\beta -presheaf in \BbbX whose presheaves of intersection spaces B \alpha \cap X C k - \beta are nontrivial is called a C k \alpha ,\beta -presheaf. In this paper we will not work directly with them. However, from Lemma 2.2, for vectorial ISP \BbbX , if B \alpha is nontrivial (i.e., if for every U \subset \BbbR n there is i U \in \Gamma such that B \alpha (i U ) (U ) \not = 0), then every B k \alpha ,\beta -presheaf in \BbbX is a C k \alpha ,\beta -presheaf. In particular, the B k \alpha ,\beta -presheaves of Examples 2.31-2 are C k \alpha ,\beta -presheaves.

2.6. B k \alpha ,\beta -Functions. As discussed in the introduction, in order to formalize the notion of regularity on manifolds we have to demand conditions not only on the transition functions \varphi a s \prime s : \varphi s (U ss \prime ) \rightar \BbbR , with a = 1, ..., n, but also on their derivatives \partial \mu \varphi a s \prime s , with \mu = 1, ..., k, where \varphi s \prime s = \varphi s \prime \circ \varphi - 1 s . In our context this is described as follows. See Section 5 of [START_REF] Martins | Existence of B k \alpha ,\beta -Structures on C k -Manifolds[END_REF] for a complete exposition. Definition 2.33. Let (B, k, \alpha , \beta ) be a B k \alpha ,\beta -presheaf in a concrete ISP \BbbX . Let U \subset \BbbR n be an open set and let f :

U \rightar \BbbR be a real C k -function. Let S \subset [0, k] \subset \Gamma k be a subset 8 . We say that f is a (B k \alpha ,\beta | S)-function (or (B, k, \alpha , \beta | S)-function) in \BbbX if for every i \in S we have \partial i f \in B \alpha (i) (U ) \cap X(U ) C k - \beta (i) (U ). A vectorial function f : U \rightar \BbbR m , with m \geq 1 is a (B k \alpha ,\beta | S)-function in \BbbX if its coordinate functions f a : U \rightar \BbbR , with a = 1, ..., m, are. Thus, for instance, if \Gamma = [0, k] = \Gamma k and \alpha (i) = i = \beta (i), then f is a (B, k, \alpha , \beta | S)- function in \BbbX precisely if \partial \mu f belongs to B i (U ) \cap X (U )C k - i (U )
. This means that the set S and the functions \alpha and \beta determine how the derivatives \partial \mu f of f lose regularity when \mu increases. 

(\varphi s (U ss \prime )) \cap X(\varphi s(Uss\prime )) C k - \beta (i) (\varphi s (U ss \prime )) for every i \in [0, k] \subset \Gamma k .
Definition 2.37. A (B k \alpha ,\beta , \BbbX )-manifold is a C k manifold endowed with a (B k \alpha ,\beta , \BbbX )structure.

In [START_REF] Martins | Existence of B k \alpha ,\beta -Structures on C k -Manifolds[END_REF] the authors define morphisms between two (B k \alpha ,\beta , \BbbX )-manifolds as C k -maps whose local representation by charts in the corresponding (B k \alpha ,\beta , \BbbX )-structures are (B, k, \alpha , \beta )functions in \BbbX . Here we will need only the particular case between C k -manifolds. From the examples above it is clear that a C k -manifold does not necessarily admits any (B k \alpha ,\beta , \BbbX )-structure. Thus, there are obstructions which typically can be characterized as topological or geometric obstructions on the underlying C k -structure. A complete characterization of these obstructions was not found yet. On the other hand, in [START_REF] Martins | Existence of B k \alpha ,\beta -Structures on C k -Manifolds[END_REF] the authors give sufficient conditions on B, \alpha , \beta , k and on the underlying C k -structure ensuring the existence of B k \alpha ,\beta -structures, specially in the case where (B, k, \alpha , \beta ) is a C k \alpha ,\beta -presheaf. 2.8. Affine B k \alpha ,\beta -Connections. We now introduce the objects of study in this paper: affine \nabla connections on C k -manifolds M whose local coefficients \Gamma c ab satisfies additional regularity conditions, possibly depending on some regularity on the underlying manifold M . In other words, we will consider ``regular"" affine connections on (B k \alpha ,\beta , \BbbX )-manifolds. The obvious idea would then to be take affine connections whose coefficients (\Gamma \varphi ) c ab : \varphi (U ) \rightar \BbbR in each (\varphi , U ) \in \scrB k \alpha ,\beta (\BbbX ) are B k \alpha ,\beta -functions. This, however, is too restrictive to the global existence of such objects due to two reasons.

(1) The regularity rate decay of the derivatives \partial \mu \Gamma c ab , when \mu grows, is typically different of that \partial \mu \varphi a ji of the transition functions \varphi a ji . This leads us instead to consider affine connections whose coefficients are (B k \alpha \prime ,\beta \prime | S)-functions, where \alpha \prime , \beta \prime are functions typically different from \alpha , \beta in shape and/or in domain/codomain. For instance, \varphi a ji are C k , while \Gamma c ab is C k - 2 . Thus, if \beta (i) = i, then \beta \prime must be \beta \prime (i) = i + 2. Equivalently, we can regard \beta \prime as defined in [2, k] instead of in [0, k] and take \beta \prime (i) = i.

(2) The ISP appearing in the regularity of \Gamma c ab is usually different from that describing the regularity of \varphi ij . For instance, we could consider intersections in the same \Gamma -ambient (X, \gamma , \gamma \Sigma ), but in different presheaves of ambient \Gamma -spaces X and Y . suffice to ensure existence of connections \nabla which are locally regular in \BbbX , following the classical construction of affine connections via partitions of unity. Condition 2 will be used to prove global regularity. More precisely, we show that if B \alpha admits some universal way to connect two ISP from it to C k - \beta , then every affine connection \nabla locally regular in a given \BbbX induces another affine connection \nabla which is globally regular in an ISP \BbbY `compatible"" with \BbbX . Here we introduce these notions of universality and compatibility between two ISP.

Definition 2.41.

(1) Two ISP \BbbX and \BbbY between presheaves of \Gamma -spaces B and B \prime are compatible if they have the same underlying \Gamma -ambient and strongly compatible if they also have the same presheaf of ambient spaces X; (2) A strongly compatible sequence of ISP (or scISP, for short) between sequences B = (B i ) and B = (B \prime i ) of presheaves of \Gamma -spaces is a sequence \BbbX = (\BbbX i ) such that \BbbX i and \BbbX j are strongly compatible for every i, j;

(3) Two sequences \BbbX = (\BbbX i ) and \BbbY = (\BbbY i ) of ISP between B = (B i ) and B \prime = (B \prime i ) are compatible if \BbbX i and \BbbY i are compatible for every i. Definition 2.42. Let B and B \prime be two presheaves of \Gamma -spaces and of \Gamma \prime -spaces, respectively. Let \Gamma k be a set of degree k. A \Gamma k -connective structure between B and B \prime is given by:

(1) sets of functions \scrO \subset Mor(\Gamma k , \Gamma ) and \scrO \subset Mor(\Gamma k , \Gamma \prime );

(2) functions D \scrO and D \scrQ assigning to each pairs \theta , \theta \prime \in \scrO and \vargamm , \vargamm \prime \in \scrQ corresponding morphisms D \scrO (\theta , \theta \prime ) : B \theta \Rightar B \theta \prime and D \scrQ (\vargamm , \vargamm \prime ) : B \prime \vargamm \Rightar B \prime \vargamm \prime which satisfy the composite laws D \scrO (\theta , \theta \prime \prime ) = D \scrO (\theta \prime , \theta \prime \prime ) \circ D \scrO (\theta , \theta \prime ), meaning that the following triangles are commutative: 

B \theta D \scrO (\theta ,\theta \prime \prime ) 5 C D \scrO (\theta ,\theta \prime ) C Q B \theta \prime D \scrO (
C Q \jmath \theta D R B \theta \prime \imath \theta \prime C Q Y X \scrD (X;Y ) u (2.6)
Remark 2.43. By the universality of pullbacks, there exists the dotted arrow \xi \theta ,\vargamm \theta \prime ,\vargamm \prime in diagram (2.6). Furthermore, the composition laws (2.5) and the uniqueness of pullbacks imply a composition law for those dotted arrows: \xi \theta ,\vargamm \theta \prime \prime ,\vargamm \prime \prime = \xi \theta \prime ,\vargamm \prime \theta \prime \prime ,\vargamm \prime \prime \circ \xi \theta ,\vargamm \theta \prime ,\vargamm \prime . Definition 2.44. We say that the sequence X = (\BbbX \theta ,\vargamm ) is the base scISP of the \Gamma kconnective structure.

\bullet In the following we will say ``consider a \Gamma k -connective structure between B and B \prime in the scISP \BbbX "", meaning that \BbbX is the base scISP of the refereed connective structure. In the case where B and B \prime are presheaves of distributive \Gamma -spaces and \Gamma \prime -spaces, we need to require that the connection between them preserves sum and multiplication. Definition 2.45. Let B and B \prime be presheaves of distributive \Gamma -spaces and \Gamma \prime -spaces, respectively. A \Gamma k -connective structure between B and B \prime in \BbbX = (\BbbX \theta ,\vargamm ) is distributive if for every \theta , \theta \prime \in \scrO and every \vargamm , \vargamm \prime \in \scrQ there are objective monomorphisms (\gamma \ast ) \theta ,\theta \prime : B \epsilon (\theta ,\theta ) \Rightar B \epsilon (\theta \prime ,\theta \prime ) and (\gamma Let us now return to our context of B k \alpha ,\beta -presheaves. First, a notation: \bullet given a set \Gamma k of degree k, a function \beta 0 : \Gamma k \rightar [2, k] and j \in \Gamma k , let [\beta 0 ; j] k denote the subset of all i \in [0, k] \subset \Gamma k such that 0 \leq \beta 0 (j) -i \leq k, i.e., the interval [0, k -\beta 0 (j)]. \bullet Thus, by restriction each presheaf B of \Gamma \prime -spaces and the presheaf 9 C k -of [0, k] can both be regarded as presheaves of [\beta 0 ; j] k -spaces.

Definition 2.46. Let \BbbX be a concrete ISP and let (B, k, \alpha , \beta ) be a B k \alpha ,\beta -presheaf in \BbbX . Given functions \alpha 0 : \Gamma k \rightar \Gamma and \beta 0 : \Gamma k \rightar [2, k], for each j \in \Gamma k regard B and (C k - i ) i as presheaves of [\beta 0 ; j] k -spaces. A (\alpha 0 , \beta 0 ; j)-connection in B is a connection between B and C k -in some scISP \BbbX , such that: 9 Recall the notation in Example 2.25.
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(1) \alpha , \alpha 0 \in \scrO , \beta , \beta 0 \in \scrQ and \BbbX \alpha ,\beta = \BbbX ;

(2) \alpha 0,j \in \scrO and \beta \#,j \in \scrQ , where \alpha 0,j (i) = \alpha 0 (j) is the constant function and \beta ,j (i) = \beta 0 (j) -i is the shifting function; (3) if \vargamm \scrQ is any function bounded from above by \beta 0 , i.e., if \vargamm (i) \leq \beta 0 (i), then the morphism D \scrQ (\beta 0 , \vargamm ) : C h - \beta 0 \Rightar C k - \vargamm is the canonical inclusion.

Definition 2.47. A (\alpha 0 , \beta 0 , j)-connection in B is distributive if it is a distributive connection between B and C k -in the sense of Definition 2.45.

The globalization of the local regularity of an affine connection in a (B k \alpha ,\beta , \BbbX )-manifold will depends on the existence of a distributive (\alpha 0 , \beta 0 ; j)-connection in B. Furthermore, the extended regular will have local coefficients which are (B, \theta , \vargamm , \BbbY | S)-functions for functions (\theta , \vargamm ) \in \scrO \times \scrQ which are ``ordinary"" and for a set S which is of a very special shape, in the the following sense. Definition 2.48. An additive structure in a set \Gamma k of degree k consists of (1) a set \Gamma 2k of degree 2k containing \Gamma k ;

(2) a map + : \Gamma k \times \Gamma k \rightar \Gamma 2k extending sum of nonnegative integers, i.e., such that if z, l \in [0, k], then z+l = z + l. An additive set of degree k is a set of degree k where an additive structure where fixed.

\bullet To make notations simpler, in the following we will write z + l instead of z+l even if z, l are arbitrary elements of \Gamma k . \bullet Let (\Gamma k , +) be an additive set of degree k and \beta 0 : \Gamma k \rightar [2, k] be a map. Given z \in [\beta 0 ; j] k , let \Gamma k [z] \subset \Gamma k be the set of every l \in \Gamma k such that z + l \in [\beta 0 ; j] k .

Lemma 2.3. In the same notations above, for every z \in [\beta 0 ; j] k we have 

\Gamma k [z] \subset (\Gamma k -\Gamma k \cap [\beta 0 (j) -z + 1, \infty )). ( 2 
= [0, k], then \Gamma k [z] \subset [0, \beta 0 (j) -z]. More specifically, if z = 0, then \Gamma k [z] = [\beta 0 ; j] k , while if z = k -\beta 0 (j), then \Gamma k [z] = 0.
Remark 2.50 (Important Remark). Sets like \Gamma k [z] will be the sets S in which the regular affine connections that we will build will have coefficients as (B, k, \theta , \vargamm | S)-functions. Thus, for larger \Gamma k [z] we will have more control on the regularities of higher order derivatives of the coefficient functions. On the other hand, from Lemma 2.3 we see that when z increases, the set \Gamma k [z] becomes smaller. Furthermore, in Example 2.49 we saw that if \Gamma k = [0, k] is the obvious set of degree k, then \Gamma k [z] strongly depends on z. In particular, for z = k -\beta 0 (j) we have \Gamma k [z] = 0 which would produce a regular affine connection with no control on the regularity of derivatives! This is one of the main reasons for working in the setup of general \Gamma k -spaces: to have more control on the regularity of derivatives of the new affine connections, specially independing on z. Indeed, notice that if \Gamma k increases, then the difference (2.49) becomes closer to \Gamma k and, therefore, is independent of z.

Example 2.51. If k = \infty , then [\beta 0 ; j] \infty = [0, \infty ) for every \beta 0 . Thus [0, \infty ) \subset \Gamma \infty [z] for every z \in [\beta 0 ; j] \infty = [0, \infty ), which follows from the fact that the additive structure of \Gamma \infty is compatible with sum of integers.

Definition 2.52. Let \Gamma k be a set of degree k, \Gamma a set and let \scrO \subset Mor(\Gamma k ; \Gamma ) and \scrQ \subset Mor(\Gamma k ; [0, k]). Let X \subset \Gamma r a subset. We say that a sequence of pairs (\theta l , \vargamm l ) l , with \theta l \in \scrO and \vargamm l \in \scrQ , is ordinary in X if each l \in X and the corresponding pair (\theta \ast , \vargamm \ast ), given by \theta \ast (l) = \theta l (z) and \vargamm \ast (l) = \vargamm l (z) also belongs to \scrO \times \scrQ . Finally, we say that (\theta , \vargamm ) \in \scrO \times \scrQ is ordinary in X if \theta = \theta \prime \ast and \vargamm = \vargamm \prime \ast for some \theta \prime \ast and \vargamm \prime \ast , i.e, if it is the induced pair of a sequence of ordinary pairs in X.
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We can now state and prove the fundamental step in the globalization of the regularity.

Lemma 2.4 (Regularity Globalization Lemma). Let M be a (B k \alpha ,\beta , \BbbX )-manifold and suppose that B admits a (\alpha 0 , \beta 0 ; j)-connection in some scISP \BbbX . Then, for every U \subset \BbbR n , every z \in [\beta 0 ; j] k and every scISP \BbbY = (\BbbY \theta ,\vargamm ) between B and C k -, compatible with \BbbX , the elements of B \alpha 0(j) (U ) \cap X(U ) C k - \beta 0(j) - z (U ) can be regarded as (B, k, \theta , \vargamm | \Gamma k [z])-functions in \BbbY \theta ,\vargamm , for every (\theta , \vargamm ) \in \scrO \times \scrQ ordinary in \Gamma k [z].

Proof. Since the B and C k -admits a \Gamma k -connective structure in some \BbbX , by definition it follows that for every scISP \BbbY compatible with \BbbX and every \theta , \theta \prime \in \scrO and \vargamm , \vargamm \prime \in \scrQ we have morphisms \xi U,i : (2.6). Since the \Gamma k -connective structure is actually a (\alpha 0 , \beta 0 ; j)-connection we have \alpha 0,j \in \scrO and \beta \#,j \in \scrQ . Thus, for \theta = \alpha 0,j and \vargamm = \beta \#,j we see that for every \theta \prime \in \scrO , \vargamm \prime \in \scrQ , and i \in [\beta 0 ; j] k we have a morphism from

B \theta (i) (U ) \cap X(U ) C k - \vargamm (i) \rightar B \theta \prime (i) (U ) \cap Y (U ) C k - \vargamm \prime (i) (U ) making commutative the diagram
B \alpha 0(j) (U ) \cap X(U ) C k - \beta 0(j) - i (U ) to B \theta \prime (i) (U ) \cap Y (U ) C k - \vargamm \prime (i) (U ). Notice that if f \in B \alpha 0(j) (U ) \cap X(U ) C k -
\beta 0(j) - i (U ), then \partial l f \in C k - \beta 0(j) - (i+l) (U ) for every l that i + l \in [\beta 0 ; j] k . Thus, by universality, for every such l we can regard \partial l f \in B \theta \prime

l (i) (U ) \cap Y (U ) C k - \vargamm \prime l (i) (U )
, where \theta \prime l \in \scrO and \vargamm \prime l \in \scrQ . If z \in [\beta 0 ; j] k , then by definition we have z + l \in [\beta 0 ; j] k for every l \in \Gamma k [z], so that the functions \theta (l) = \theta \prime l (z) and \vargamm (l) = \vargamm \prime l (z) are defined on \Gamma k [z]. Suppose that this pair (\theta , \vargamm ) belongs to \scrO \times \scrQ , i.e, suppose that it is ordinary in \Gamma

k [z]. Thus, \partial l f \in B \theta (l) (U ) \cap Y (U ) C k - \vargamm (l) (U ), meaning that f can be regarded as a (B, k, \theta , \vargamm | \Gamma k [z])-function in \BbbY .
\square

The Regularity Globalization Lemma will ensure that in each open set U \subset \BbbR n the local regularity can be globalized. The collage of these conditions when U varies will be made gain, as expected, via partitions of unity. Since we are introducing a new structure (connections between presheaves of \Gamma -spaces in an scISP), we need to require some compatibility between them, the partitions of unity and the regular charts of the underlying regular manifold. Definition 2.53. Let B be a B k \alpha ,\beta -presheaf in a concrete ISP \BbbX . We say that a (\alpha 0 , \beta 0 ; j)connection in some scISP \BbbX is:

(1) Support preserving if for every pair (\theta , \vargamm ) \in \scrO \times \scrQ , every scISP \BbbY compatible with \BbbX and every

U \subset \BbbR n , if f \in B \alpha 0(i) (U ) \cap X(U ) C k b (U ), then supp(\xi \alpha 0,\beta 0 \theta ,\vargamm (f )) \subset supp(f ) 10 .
(2) Bump preserving if for every pair (\theta , \vargamm ) \in \scrO \times \scrQ , every scISP \BbbY compatible with \BbbX and every U \subset \BbbR n , the map \xi \alpha 0,\beta 0 \theta ,\vargamm factors as below 11 .

B \alpha 0(i) (U ) \cap X(U ) C k - \beta 0(i) (U ) \xi \alpha 0 ,\beta 0 \theta ,\vargamm B \alpha 0(i) (U ) \cap X(U ) C k b (U ) ? _ o o B \theta (i) (U ) \cap Y (U ) C k - \vargamm (i) (U ) B \theta (i) (U ) \cap X(U ) C k (U ) ? _ o o (3) Unital if given f \in B \alpha 0(i) (U ) \cap X(U ) C k - \beta 0(i) (U ) and p \in U such that f (p) = 1,
then (\xi \alpha 0,\beta 0 \theta ,\vargamm (f ))(p) = 1 for every (\theta , \vargamm ) \in \scrO \times \scrQ and every scISP \BbbY compatible with \BbbX . (4) Nice if it is support preserving, bump preserving and unital.
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Next lemma shows that distributive nice (\alpha 0 , \beta 0 ; j)-connections preserve partitions of unity.

Lemma 2.5. Let B be B k \alpha ,\beta in \BbbX and suppose that it admits a distributive and nice (\alpha 0 , \beta 0 ; j)-connection in some scISP \BbbX . In this case, if (U s ) s is a covering of \BbbR n and (\psi s ) s is a C k -partition of unity in \BbbR n subordinate to it, then for every (\theta , \vargamm ) \in \scrO \times \scrQ the corresponding sequence (\xi \alpha 0,\beta 0 \theta ,\vargamm (\psi s )) s is a partition of unity subordinate to the same covering.

Proof. Support preserving ensures that each \xi \alpha 0,\beta 0 \theta ,\vargamm (\psi s ) is a bump function with support in U s , which is C k due to the bump preserving condition. Support preserving and locally finiteness of (\psi s ) s imply that (\xi \alpha 0,\beta 0 \theta ,\vargamm (\psi s )) s is locally finite too. Furthermore, since the (\alpha 0 , \beta 0 ; j)-connection is distributive and unital, we have \sum s \xi \alpha 0,\beta 0 \theta ,\vargamm (\psi s )(p) = \xi \alpha 0,\beta 0 \theta ,\vargamm ( \sum s \psi s (p)) = \xi \alpha 0,\beta 0 (1) = 1, so that (\xi \alpha 0,\beta 0 \theta ,\vargamm (\psi s )) s is a partition of unity, as desired. \square

\bullet Let (M, \scrA ) be a C k -manifold. For every 0 \leq r \leq k, let \partial r \scrA (U ) \subset C k - r (U ) be the set of rth derivatives \partial r \varphi a ji of transitions functions \varphi ji = \varphi j \circ \varphi - 1 i by charts \varphi i , \varphi j \in \scrA such that \varphi i (U ij ) = U . Note that if \scrB \subset \scrA is a subatlas, then \partial r \scrB (U ) \subset \partial r \scrA (U ) for each r. Definition 2.54. Let (M, \scrB k \alpha ,\beta (\BbbX )) be a (B k \alpha ,\beta , \BbbX )-manifold and take 0 \leq r \leq k. We say that a (\alpha 0 , \beta 0 ; j)-connection in B in some scISP \BbbX has degree r if for every par (\theta , \vargamm ) \in \scrO \times \scrQ such that i \leq \vargamm (i), with 0 \leq i \leq r, every scISP \BbbY compatible with \BbbX and every U \subset \BbbR n , there exists the dotted arrow below (we omitted U to simplify the notation). In other words, \xi \alpha ,\beta \theta ,\vargamm (\partial l \varphi ji ) = \partial l \phi ji , for every transition function \varphi ji by charts \varphi i , \varphi j \in \scrB k \alpha ,\beta (\BbbX ), where \phi ji are transition functions of charts \phi i , \phi j \in \scrA .

(B \alpha (i) \cap X C k - \beta (i) ) \cap C k - \beta (i) \partial i \scrB k \alpha ,\beta (\BbbX ) G G B \alpha (i) \cap X C k - \beta (i) \xi \alpha ,\beta \theta ,\vargamm (B \theta (i) \cap X C k - \vargamm (i) ) \cap C k - \vargamm(i) \partial i \scrA G G B \theta (i) \cap X C k - \vargamm (i) (2.8) 

Existence

We are now ready to prove the existence theorem of (B k \alpha 0,\beta 0 | S)-connections in B k \alpha ,\betamanifolds in the same lines described in the introduction, now presented in a much more precise form:

(1) Existence of regular locally defined connections. In Proposition 3.1 we will show that every coordinate open set U \subset M of a C k -manifold admits a B k \alpha 0,\beta 0connection for every \alpha 0 , \beta 0 .

(2) Existence of weakly locally regular globally defined connections. In Theorem 3.2 we will prove, using the first step and a partition of unity argument, that every (B k \alpha ,\beta , \BbbX )-manifold admits, for every given functions \alpha 0 , \beta 0 , affine connections \nabla whose coefficients in each (\varphi , U ) \in \scrB k \alpha ,\beta (\BbbX ) belongs to 3.9, where \alpha \prime 0 and \beta \prime 0 are numbers depending on \alpha 0 and \beta 0 .

(3) Existence of locally regular globally defined connections. The connections obtained in the last step are almost locally regular because their local coefficients are not (B, k, \alpha \prime , \beta \prime )-functions for certain \alpha \prime , \beta \prime , but only belong to (3.9). In order to be (B, k, \alpha \prime , \beta \prime )-functions we also need regularity on the derivative of the coefficients.
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It is at this moment that Lemma 2.4 plays its role and, therefore, the moment when we need to add their hypotheses and additional objects ((\alpha 0 , \beta 0 ; j)-connections). This is done in Proposition 3.3. (4) Existence of globally regular globally defined connections. Finally, in Theorem 3.4 we glue the locally regular connections in each (\varphi , U ) \in \scrB k \alpha ,\beta (\BbbX ) getting the desired B k \alpha \prime ,\beta \prime -connections. It is in this step that we will need to assume that the (\alpha 0 , \beta 0 ; j)-connections are compatible with partitions of unity, i.e., that they are nice in the sense of Definition 2.53. Theorem 3.2 (Locally Weakly Regular Existence). Let \BbbX be a concrete ISP and let M be a (B k \alpha ,\beta , \BbbX )-manifold, with k \geq 2. Let \Gamma k be a set of degree k. Given functions \alpha 0 : \Gamma k \rightar \Gamma and \beta 0 : \Gamma k \rightar [2, k], there exists an affine connection \nabla in M whose coefficients in each (\varphi , U ) \in \scrB k \alpha ,\beta (\BbbX ) belong to

B \alpha \prime 0 ((\varphi (U \prime )) \cap X(\varphi (U \prime )) C k - \beta \prime 0 (\varphi (U \prime )) (3.9)
for some nonempty open set U \prime \subset U , \alpha \prime 0 = \delta (\epsilon 3 (\alpha (1), \alpha 0 (0)), \epsilon (\alpha (2), \alpha (1))), \beta \prime 0 = max(\beta (1), \beta (2), \beta 0 (0)) (3.10) and (\epsilon , \delta ) are part of the distributive structure of B.

Proof. Let (\varphi s , U s ) s be an open covering of M by coordinate systems in \scrB k \alpha ,\beta (\BbbX ) and let \nabla s be an affine connection in U s with coefficients (f s ) c ab . Let (\psi s ) be a partition of unity of class C k , subordinate to (\varphi s , U s ), and recall that \nabla = \sum s \psi s \cdot \nabla s is a globally defined connection in M . We assert that if \varphi s are in \scrB k \alpha ,\beta (\BbbX ), then \nabla is a well-defined connection whose cofficients belong to (3.9) for certain U \prime . Notice that the coefficients (\Gamma s ) c ab of \nabla in a fixed \varphi s are obtained in the following way: let N (s) be the finite set of every s \prime such that U ss \prime \equiv U s \cap U s \prime \not = \varnoth . For each s \prime \in N (s) we can do a change of coordinates and rewrite (f s \prime ) c ab in the coordinates \varphi s as given by the functions where by abuse of notation \varphi c s = (\varphi s \circ \varphi - 1 s \prime ) c . We then have

(\Gamma s ) c ab = \sum s \prime \in N (s)
\psi s \prime (f s \prime ;s ) c ab .

(3.12)
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From Proposition 3.1 we can take each \nabla s (B k \alpha 0,\beta 0 , \BbbX )-connection, so that (f s \prime ) l mn can be choosen (B, k, \alpha 0 , \beta 0 )-functions in \BbbX . Furthermore, since \varphi s \in \scrB k \alpha ,\beta (\BbbX ) we have \partial\varphi c s \partial\varphi l s \prime \in (B \alpha (1) \cap X C k - \beta ( 1) )(U s \prime ss \prime ) and

\partial 2 \varphi l s \prime \varphi a s \partial\varphi b s \in (B \alpha (2) \cap X C k - \beta (2) )(U s \prime ss \prime )
where U s \prime ss \prime = \varphi s \prime (U ss \prime ). This is well-defined since \beta (2) \leq k. Due to the compatibility between the additive/multiplicative structures of B \alpha and C k - \beta , the first and the second terms of the right-hand sice of (3.11) belong to (B \epsilon 3 (\alpha (1),\alpha 0(0)) \cap X C k - \mathrm{\mathrm{ \mathrm{ (\beta (1),\beta 0(0)) )(U s \prime ss \prime ) and (B \epsilon (\alpha (2),\alpha (1)) \cap X C k - \mathrm{\mathrm{ \mathrm{ (\beta (2),\beta (1)) )(U s \prime ss \prime ), respectively, so that the left-hand side of (3.11) belongs to (B \tau (\epsilon 3 (\alpha (1),\alpha 0(0)),\epsilon (\alpha (2),\alpha (1))) \cap X C k - \mathrm{\mathrm{ \mathrm{ (\beta (1),\beta (2),\beta 0(0))

)(U N (s) ) = (B \alpha \prime 0 \cap X C k - \beta \prime 0 )(U N (s) ),
where U N (s) = \cap s \prime \in N (s) U ss \prime . Since B is a B k \alpha ,\beta -presheaf in \BbbX , diagram (2.4) implies that each product \psi s \prime (f s \prime ;s ) c ab in the sum (3.12) belongs to the same space, so that the entire sum also belongs to that space. Repeating the process for all coverings in \scrB k \alpha ,\beta (\BbbX ) and noticing that \alpha \prime and \beta \prime do not depend on s, s \prime , we get the desired result. \square Proposition 3.3 (Locally Regular Existence). In the same notations and hypotheses of Theorem 3.2, if B admits a (\alpha \prime , \beta \prime ; j)-connection in some scISP \BbbX , where \alpha \prime : \Gamma k \rightar \Gamma and \beta \prime : \Gamma k \rightar [2, k] are functions such that \alpha \prime (j) = \alpha \prime 0 and \beta \prime (j) = \beta \prime 0 , then for every scISP \BbbY compatible \BbbX and every z \in [\beta \prime ; j] k , the elements of (3.9) can be regarded as (B, k, \theta , \vargamm | \Gamma k [z])-functions in \BbbY \theta ,\vargamm , for every pair (\theta , \vargamm ) \in \scrO \times \scrQ which is ordinary in

\Gamma k [z].
Proof. Direct application of Lemma 2.4. \square Theorem 3.4 (Global Regular Existence). Let M be a (B k \alpha ,\beta , \BbbX )-manifold, with k \geq 2, and, as above, suppose that the structural presheaf B admits a (\alpha \prime , \beta \prime ; j)-connection in some scISP \BbbX , where \alpha \prime (j) = \alpha \prime 0 and \beta \prime (j) = \beta \prime 0 . Suppose, in addition, that this (\alpha \prime , \beta \prime ; j)-connection is distributive, nice and has degree r \geq 2. Then, M admits a (B k \theta ,\vargamm , \BbbY \theta ,\vargamm | \Gamma k [z])-connection for every scISP \BbbY compatible with \BbbX , every z \in [\beta \prime ; j] k and every pair (\theta , \vargamm ) ordinary in \Gamma k [z] such that i \leq \vargamm (i).

Proof. From Theorem 3.2 there exists an affine connection \nabla whose coefficients (3.12) belong to (3.9). By the first part of the hypotheses we can apply Proposition 3.3, so that for any pair (\theta , \vargamm ) ordinary in \Gamma k [z], the coefficients (\Gamma s ) c ab in (3.12) can be regarded as (B, k, \theta , \vargamm , \BbbY \theta ,\vargamm | \Gamma k [z])-functions. But, from the proof of Lemma 2.4 we see that this way to regard elements of an intersection space as regular functions is made by taking their image under \xi \alpha \prime ,\beta \prime \theta ,\vargamm . Thus, Proposition 3.3 is telling us precisely that, for every \varphi s , the corresponding \xi \alpha \prime ,\beta \prime \theta ,\vargamm ((\Gamma s ) c ab ) are (B, k, \theta , \vargamm , \BbbY \theta ,\vargamm | \Gamma k [z])-functions. We will show that, under the additional hypotheses, the collection of these when varying s also defines an affine connection in M , which will be a (B , where we omitted the superior indexes in the maps \xi to simplify the notation and \phi s are charts in the maximal C k -atlas \scrA of M . Furthermore, in the first step we used (3.11) and in the second one we used compatibility between the distributive structures of B and C k -and also the distributive properties of \xi (which comes from the fact that the (\alpha \prime , \beta \prime ; j)-connection is supposed distributive) and the composition laws (2.5). In the third step we used that the (\alpha \prime , \beta \prime ; j)-connection has degree r \geq 2 (here is where we need i \leq \vargamm (i) 

where ((\Gamma s \prime ) \theta ,\vargamm ) c ab are the coefficients of the affine connection in U s \prime defined by the family of functions \xi \alpha \prime ,\beta \prime \theta \vargamm ((f s \prime ) l mo ). Since the (\alpha \prime , \beta \prime ; j)-connection in B is nice and distributive it follows from Lemma 2.5 that (\xi \alpha \prime ,\beta \prime \theta ,\vargamm (\psi s )) s is a C k -partition of unity for M . Thus, (3.16) is a globally defined affine connection in M , which by construction is a (B k \theta ,\vargamm , \BbbY \theta ,\vargamm | \Gamma k [z])connection. \square

Multiplicity

The last result was about the existence of regular connections. In the following we will consider the multiplicity problem. More precisely, given a B k \alpha ,\beta -manifold M in an ISP \BbbX , S \subset \Gamma k , functions \theta : S \rightar \Gamma and \vargamm : S \rightar [2, k], and a concrete ISP \BbbY compatible with \BbbX , we will study the set Conn We begin with an easy fact: in the same way as the set of affine connections in a C k -manifold is an affine space of the vector space of End(T M )-valued 1-forms, the set of regular affine connections on a regular manifold is an affine space of the vector space of regular End(T M )-valued 1-forms. More precisely, Proposition 4.2. Let M be a (B k \alpha ,\beta , \BbbX )-manifold. For every S, \theta , \vargamm and \BbbY as above: (1) (4.17) is a vector subspace of \Omega 1 (M ; End(T M ));

(2) Conn k \theta ,\vargamm (M ; \BbbY | S) is an affine space of (4.17). Proof. For the first one, recall that in a distributive \Gamma -space B = (B i ) the additive structure + ij : B i \otimes B j \rightar B \delta (i,j) is such that \delta (i, i) = i and + ii is the sum of B i . For the second one, if \nabla and \nabla are two affine C k -connections in M , then \omega = \nabla -\nabla has coefficients in (\varphi , U ) \in (\scrB \mathrm{ \mathrm{ \mathrm{ ) k \alpha ,\beta (\BbbX ) given by (\omega \varphi ) c ab = (\Gamma \varphi ) c ab -(\Gamma \varphi ) c ab . Thus, again by + ii = + i , if (\Gamma \varphi ) c ab and (\Gamma \varphi ) c ab are (B, k, \theta , \vargamm , \BbbY | S)-functions, then (\omega \varphi ) c ab are so. \square

We will now prove that (B k \theta \vargamm , \BbbY | S)-connections \nabla and \nabla which are ``locally additively different"" are actually ``locally different"". Taking U a \prime ,b \prime ,c = U a \prime ,c \cap U b \prime ,c and noticing that this intersection is nonempty, the proof is done. \square 4.1. Discussion. We close with a broad discussion which we would like to see formalized and enlarged in some future work. \bullet Let \scrC k (\theta , \vargamm ; \BbbY ) denote the set of 3-parameter (\theta , \vargamm , \BbbY )-families in some (B k \alpha ,\beta , \BbbX )manifold M . Let \xi be a nice and distributive (\alpha \prime , \beta \prime ; j)-connection in M with degree r \geq 0. The construction of Section 3 shows that every 3-parameter (\alpha 0 , \beta 0 , \BbbX )-family f = (f \varphi ) c ab in M induces, for each ordinary pair (\theta , \vargamm ), a corresponding (B k \theta ,\vargamm , \BbbY \theta ,\vargamm )-connection \nabla f \xi in M , whose 3-parameter family of coefficients (\Gamma f \xi ,\varphi ) c ab is given by (3.16). Suppose, for a moment, that we found a class \scrS \subset \scrC k 3 (\alpha 0 , \beta 0 ; \BbbX ) of 3-parameter (\alpha 0 , \beta 0 , \BbbX )-families such that for every f \in \scrS the corresponding regular connection \nabla f \xi has coefficients (\Gamma f \xi ,\varphi ) c ab \in \scrC k (\theta , \vargamm ; \BbbY ) which are locally additively different to each other \Omega \varphi \in \scrC k (\theta , \vargamm ; \BbbY ). Thus, by Theorem 4.6 it follows that they are also locally different. In particular, every 3-parameter (\theta , \vargamm , \BbbY )-family is locally additively different to some (B k \theta ,\vargamm , \BbbY )-connection and this ``difference"" is measured by elements in \scrS . This is the typical shape of denseness theorems. More precisely, one could expect the existence of a topology in \scrC k (\theta , \vargamm ; \BbbY ) whose basic open sets are parameterized by elements of \scrS and such that Conn k \theta ,\vargamm (M ; \BbbY ) \subset \scrC k (\theta , \vargamm ; \BbbY ) is a dense subset.

Actually, the existence of \scrS as above also implies that if f \in \scrS , then \nabla f \xi is locally additively different to each other \nabla \in Conn k \theta ,\vargamm (M ; \BbbY ), which is the shape of an openness theorem. Thus, we could expect that, if the topology described above exists, then Conn \xi \alpha \prime ,\beta \prime \theta ,\vargamm ((\Gamma f \xi ,\varphi ) c ab ), (4.18) whose coefficients belong to the space of (B, k, \theta , \vargamm | \Gamma k [z])-functions. Since equations (4.18) strongly depend on the (\alpha \prime , \beta \prime ; j)-connection \xi , the basic strategy to find \scrS (and then to get the openness and denseness results described above) would be to introduce additional conditions in \xi which simplify (4.18). In other words, would be to look at (4.18) as parameterized systems of equations in the space of all (\alpha \prime , \beta \prime ; j)-connections.

Example 2 .

 2 25. The examples of \Gamma -spaces in Example 2.2 and Example 2.5 extends, naturally, to presheaves of \Gamma -spaces. E.g, given m, k and \beta : \Gamma \rightar [0, k], we have the presheaf U \mapsto \rightar (C k - \beta (i) (U )) i . It will be denoted by C k - \beta m . or simply C k - \beta if m = 1. If, in addition, \Gamma = [0, k] and \beta = id it will be denoted by C k -. Example 2.26. Let B be a presheaf of \Gamma -spaces. Then every function \alpha : \Gamma \prime \rightar \Gamma defines a new presheaf of \Gamma \prime -spaces B \alpha by (B \alpha )(U ) = B(U ) \alpha .

Definition 2 .

 2 38. Let (M, \scrA ) and (M \prime , \scrA \prime ) be C k -manifolds, let \BbbX a concrete ISP, (B, k, \alpha , \beta ) a B k \alpha ,\beta -presheaf in \BbbX and S \subset [0, k] \subset \Gamma k a subset. A (B, k, \alpha , \beta | S)-morphism, (B, k, \alpha , \beta | S)-function or (B k \alpha ,\beta | S)-morphism between M and M \prime is a C k -function f : M \rightar M \prime such that for every \varphi \in \scrA and \varphi \prime \in \scrA \prime the corresponding C k -function \varphi \prime \circ f \circ \varphi - 1 is actually a (B k \alpha ,\beta | S)-function in \BbbX . If S = [0, k] we say simply that f is a B k \alpha ,\beta -morphism. Remark 2.39.

Proposition 3 . 1 (

 31 Regular Local Existence). Let (M, \scrA ) be a C k -manifold, with k \geq 2, and (\varphi , U ) \in \scrA a chart, regarded as a C k -manifold. Let \Gamma be a set, S \subset [0, k] \subset \Gamma k a subset, and consider functions \alpha 0 : S \rightar \Gamma and \beta 0 : S \rightar [2, k]. Let B be a presheaf of distributive \Gamma -spaces. Then U admits a (B k \alpha 0,\beta 0 | S)-connection \nabla \varphi relatively to every concrete ISP between B \alpha 0 and C k - \beta 0 . Proof. Recall that any family of C 2 -functions f c ab : \BbbR n \rightar \BbbR defines a connection in \BbbR n [2]. Thus, any family of C 2 -functions f c ab : V \rightar \BbbR in an open set V \subset \BbbR n defines a connection \nabla 0 in V . If \varphi : U \rightar \BbbR n is a chart in M with \varphi (U ) \subset V , pulling back \nabla 0 we get a connection \nabla \varphi in U whose coefficients are f c ab \circ \varphi . Consequently, if f c ab are chosen (B, k, \alpha 0 , \beta 0 | S)-functions in \BbbX , then \nabla \varphi is a (B k \alpha 0,\beta 0 , \BbbX | S)-connection in U . \square \bullet If (\ast , \epsilon ) is the multiplicative structure of B, let \epsilon r (l, m) = \epsilon (l, \epsilon (l, \epsilon (l, \epsilon (...\epsilon (l, m)...))).

(

  f s \prime ;s ) c ab = \sum l,m,o

Definition 4 . 3 .

 43 Let M be a (B k \alpha ,\beta , \BbbX )-manifold. Given S \subset \Gamma k , \theta , \delta and \BbbY as above, a 3-parameter (\theta , \vargamm , \BbbY | S)-family in M is just a collection (\Omega \varphi ) c ab of (B, k, \theta , \vargamm | S)-functions in \BbbY , with a, b, c = 1, ..., n, for each (\varphi , U ) \in \scrB k \alpha ,\beta (\BbbX ).\bullet If (\Omega \varphi ) c ab is a 3-parameter family, let (\Omega \varphi ) c = \sum a,b (\Omega \varphi ) c ab (p).

Definition 4 . 4 .

 44 Two 3-parameter (\theta , \vargamm , \BbbY | S)-families (\Omega \varphi ) c ab and (\Omega \varphi ) c ab are: (1) locally additively different if for every chart (\varphi , U ) \in \scrB k \alpha ,\beta (\BbbX ) and every c = 1, ..., n we have (\Omega \varphi ) c \not = (\Omega \varphi ) c ; (2) locally different if for every chart (\varphi , U ) \in \scrB k \alpha ,\beta (\BbbX ) and every a, b, c = 1, ..., n there exists a nonempty open set U a,b,c \subset U such that (\Omega \varphi ) c ab (p) \not = (\Omega \varphi ) c ab (p) for every p \in U a,b,c . Definition 4.5. Two (B k \theta ,\vargamm , \BbbY | S)-connections \nabla and \nabla in M are locally additively different (resp. locally different) if the corresponding 3-parameter (\theta , \vargamm , \BbbY | S)-families of their coefficients are locally additively different (resp. locally different).

Theorem 4 . 6 .

 46 If two 3-parameter (\theta , \vargamm , \BbbY | S)-families (\Omega \varphi ) c ab and (\Omega \varphi ) c ab in a smooth (B \infty \alpha ,\beta , \BbbX )-manifold are locally additively different, then they are locally different. Proof. For every chart (\varphi , U ) and every c = 1, .., n, let U c \subset U be the subset in which (\Omega \varphi ) c (p) \not = (\Omega \varphi ) c (p). Since the 3-parameters are locally additively different, the subsets U c are nonempty. On the other hand, they are the complement of the closed sets [(\Omega \varphi ) c -(\Omega \varphi ) c ] - 1 (0). Thus, they are nonempty of sets. For each p \in U c we then have0 < | \Omega c \varphi (p) -(\Omega \varphi ) c (p)| \leq\sum a,b | (\Omega \varphi ) c ab (p) -(\Omega \varphi ) c ab (p)| , implying the existence of functions a c , b c : U c \rightar [n] such that (\Omega \varphi ) c ac(p)bc(p) (p) \not = (\Omega \varphi ) c ac(p)bc(p) (p). Regard [n] as a 0-manifold and notice that if two smooth functions f, g : V \rightar [n] are transversal, then they coincide in an open set V \prime \subset V . Since [n] is a 0-manifold, any smooth map f : V \rightar [n] is a submersion and therefore transversal to each other. In particular, a c (resp. b c ) is transversal to each constant map a \prime \in [n] (resp. b \prime ), so that for each a \prime (resp. b \prime ) there exists U a \prime ,c \subset U c (resp. U b \prime ,c \subset U c ) in which (\Omega \varphi ) c a \prime bc(p) (p) \not = (\Omega \varphi ) c a \prime bc(p) (p) (resp. (\Omega \varphi ) c ac(p)b \prime (p) \not = (\Omega \varphi ) c ac(p)b \prime (p))\mathrm{\mathrm{\mathrm{\mathrm{ \mathrm{\mathrm{ \mathrm{\mathrm{ \mathrm{\mathrm{ \mathrm{ \mathrm{\mathrm{\mathrm{ \mathrm{\mathrm{ \mathrm{\mathrm{ \mathrm{\mathrm{\mathrm{ \mathrm{ \mathrm{\mathrm{\mathrm{\mathrm{ \mathrm{ \mathrm{ \mathrm{\mathrm{ \mathrm{ \' \mathrm{ \mathrm{ \mathrm{ \mathrm{ \mathrm{ \mathrm{\mathrm{\mathrm{ \mathrm{

  k \theta ,\vargamm (M ; \BbbY ) \subset \scrC k (\theta , \vargamm ; \BbbY ) should be open and nonempty due Theorem 3.4. Finally, looking again at the expressions (3.11) and (3.16) defining \nabla f \xi , one concludes that the problem of finding \scrS consists in studying the complement in \scrC k (\theta , \vargamm ; \BbbY ) of the solution spaces \scrX \xi (\varphi , \Omega ), for each \varphi \in \scrB k \alpha ,\beta (\BbbX ) and each \Omega \in \scrC k (\theta , \vargamm ; \BbbY ), of the system of nonhomogeneous equations F c \xi (f ; \varphi , \Omega ) = (\Omega \varphi ) c , where F c \xi (f ; \varphi , \Omega ) = \sum a,b

  3 , in \scrX and relatively to \BbbX .

	pb(\gamma \Sigma (\ast ) \circ \jmath \ast , \gamma \Sigma (\ast \prime ) \circ \jmath \prime \ast )	G G \gamma \Sigma (B \prime \otimes B \prime )
			\gamma \Sigma (\ast \prime )
		pb(\jmath \ast , \jmath \prime \ast )	G G \gamma \Sigma (B \prime \epsilon ) _
			\jmath \prime \ast
	\gamma \Sigma (B \otimes B)	\gamma \Sigma (\ast )

  Definition 2.34. A C k -manifold is a paracompact Hausdorff topological space M endowed with a maximal atlas \scrA with charts \varphi s : U s \rightar \BbbR n , whose transition functions \varphi s \prime s = \varphi s \prime \circ \varphi - 1 \mathrm{\mathrm{ \mathrm{\mathrm{ \mathrm{\mathrm{ \mathrm{ \mathrm{\mathrm{\mathrm{ \mathrm{\mathrm{ \mathrm{\mathrm{ \mathrm{\mathrm{\mathrm{ \mathrm{ \mathrm{\mathrm{\mathrm{\mathrm{ \mathrm{ \mathrm{ \mathrm{\mathrm{ \mathrm{ \' \mathrm{ \mathrm{ \mathrm{ \mathrm{ \mathrm{ \mathrm{\mathrm{\mathrm{ \mathrm{ Definition 2.35. Let (M, \scrA ) be a C k -manifold. A subatlas \scrA \prime \subset \scrA is closed under restrictions if restrictions of charts in \scrA \prime to smaller open sets remains in \scrA \prime . More precisely, if (\varphi , U ) \in \scrA \prime and V \subset U , then (\varphi | V , V ) \in \scrA \prime . Definition 2.36. Let (B, k, \alpha , \beta ) be a B k \alpha ,\beta -presheaf in a concrete ISP \BbbX . A (B k \alpha ,\beta , \BbbX )structure in a C k -manifold (M, \scrA ) is a subatlas \scrB k \alpha ,\beta (\BbbX ) closed under restrictions whose transition functions \varphi s \prime s are (B, k, \alpha , \beta )-functions in \BbbX . Explicitly, this means that if \varphi s \in \scrB k \alpha ,\beta (\BbbX ), then for each other \varphi s \prime \in \scrB k \alpha ,\beta (\BbbX ) such that U ss \prime \not = \varnoth , we have \partial i \varphi a ss \prime \in B \alpha (i)

2.7. B k

\alpha ,\beta -Manifolds. We are now ready to define what is a B k \alpha ,\beta -manifold. See Section 5 of

[START_REF] Martins | Existence of B k \alpha ,\beta -Structures on C k -Manifolds[END_REF]

. s : \varphi s (U ss \prime ) \rightar \BbbR n are C k , where U ss \prime = U s \cap U s \prime . \mathrm{\mathrm{\mathrm{\mathrm{

  \mathrm{\mathrm{\mathrm{ \mathrm{\mathrm{\mathrm{ \mathrm{ \mathrm{\mathrm{ \mathrm{\mathrm{\mathrm{ \mathrm{\mathrm{\mathrm{ \mathrm{\mathrm{ \mathrm{\mathrm{ \mathrm{ \mathrm{\mathrm{ \mathrm{\mathrm{ \mathrm{\mathrm{ B k \alpha ,\beta -\mathrm{\mathrm{\mathrm{\mathrm{ \mathrm{ \mathrm{\mathrm{ \mathrm{\mathrm{ , \mathrm{ : \mathrm{\mathrm{ \mathrm{ \mathrm{ \mathrm{\mathrm{ \mathrm{\mathrm{\mathrm{\mathrm{\mathrm{ \mathrm{\mathrm{\mathrm{ \mathrm{\mathrm{\mathrm{ 11 \alpha \prime : \Gamma k \rightar \Gamma and \beta \prime : \Gamma k \rightar [2, k]. Let \BbbY be a concrete ISP between B \alpha \prime and C k - \beta \prime . An affine (B k \alpha \prime ,\beta \prime | S)-connection in M , relative to \BbbY , is an affine connections \nabla in the underlying C k -manifold such that for every (\varphi , U ) \in \scrB k \alpha ,\beta (\BbbX ) the corresponding local coefficients (\Gamma \varphi ) c ab : \varphi (U ) \rightar \BbbR are (B, k, \alpha \prime , \beta \prime | S)-functions in \BbbY .

	2.9. Regularity Globalization Lemma. Condition 1 and the nice hypotheses on B k \alpha ,\beta

Definition 2.40. Let (B, k, \alpha , \beta ) be a B k \alpha ,\beta -presheaf in a concrete ISP \BbbX . Let (M, \scrB k \alpha ,\beta (\BbbX )) be a B k \alpha ,\beta -manifold in \BbbX . Let S \subset [0, k] \subset \Gamma k be a subset and consider functions \mathrm{\mathrm{

  \theta \prime ,\theta \prime \prime ) B \vargamm \prime D \scrQ (\vargamm \prime ,\vargamm \prime \prime ) \mathrm{\mathrm{ \mathrm{\mathrm{ \mathrm{\mathrm{ \mathrm{ \mathrm{\mathrm{\mathrm{ \mathrm{\mathrm{ \mathrm{\mathrm{ \mathrm{\mathrm{\mathrm{ \mathrm{ \mathrm{\mathrm{\mathrm{\mathrm{ \mathrm{ \mathrm{ \mathrm{\mathrm{ \mathrm{ \' \mathrm{ \mathrm{ \mathrm{ \mathrm{ \mathrm{ \mathrm{\mathrm{\mathrm{ \mathrm{ commutes for every \theta , \theta \prime , \vargamm , \vargamm \prime .(B \theta \cap X,\gamma B \prime \vargamm )

				C Q B \prime \vargamm
		\xi \theta ,\vargamm \theta \prime \vargamm \prime	D \scrQ (\vargamm ,\vargamm \prime )
		6 D (B \theta \prime \cap Y B \prime \vargamm \prime )		C Q B \prime \vargamm \prime
					\imath \prime \vargamm \prime	\jmath \prime \vargamm
	B \theta	D \scrO (\theta ,\theta \prime )		
					Ñ Ù
				k s	D \scrQ (\vargamm ,\vargamm \prime )	B \vargamm	(2.5)
		B \theta \prime \prime	B \vargamm \prime \prime	s {	D \scrQ (\vargamm ,\vargamm \prime \prime )

(3) for every (\theta , \vargamm ) \in \scrO \times \scrQ a concrete ISP \BbbX \theta ,\vargamm between B \theta and B \prime \vargamm whose corresponding sequence \BbbX = (\BbbX \theta ,\vargamm ) is strongly compatible. Let X denote the underlying presheaf of ambient spaces; (4) for every other scISP \BbbY = (\BbbY \theta ,\vargamm ) between B and B \prime , indexed in \scrO \times \scrQ and compatible with \BbbX = (\BbbX \theta ,\vargamm ), a morphism \scrD (X; Y ) : X \Rightar Y of presheaves, where Y is the presheaf of ambient spaces of each \BbbY i , such that the diagram below \mathrm{\mathrm{\mathrm{\mathrm{

  \prime \ast \prime ) \vargamm ,\vargamm \prime : B \prime \epsilon \prime (\vargamm ,\vargamm ) \Rightar B \prime \epsilon \prime (\vargamm \prime ,\vargamm \prime ) making commutative the diagram below, and also objectwise monomorphisms (\gamma + ) \theta ,\theta \prime : B \delta (\theta ,\theta ) \Rightar B \delta (\theta \prime ,\theta \prime ) and (\gamma \prime + \prime ) \vargamm ,\vargamm \prime : B \prime \delta \prime (\vargamm ,\vargamm ) \Rightar B \prime \delta \prime (\vargamm \prime ,\vargamm \prime ) making commutative the analogous diagram for the additive structures. \theta \prime \cap Y B \prime \vargamm \prime ) \otimes (B \theta \prime \cap Y B \prime \vargamm \prime ) C Q k s B \theta \prime \otimes B \theta \prime \ast C Q B \epsilon (\theta \prime ,\theta \prime )

	B \prime \epsilon \prime (\vargamm ,\vargamm )	k s	\ast \prime	B \prime \vargamm \otimes B \prime \vargamm	k s	(B \theta \cap X B \prime \vargamm ) \otimes (B \theta \cap X B \prime \vargamm )	C Q	B \theta \otimes B \theta	\ast	C Q B \epsilon (\theta ,\theta )
	(\gamma \prime \ast \prime ) \vargamm,\vargamm \prime					\xi \theta ,\vargamm \theta \prime ,\vargamm \prime \otimes \xi \theta ,\vargamm \theta \prime ,\vargamm \prime				(\gamma \ast )\theta ,\theta \prime
	B \prime \epsilon \prime (\vargamm \prime ,\vargamm \prime )	k s	\ast \prime	B \prime \vargamm \prime \otimes B \prime \vargamm \prime		(B				

  Notice that the expression (3.11) which describes how (\Gamma s ) c ab changes when s varies involves multiplications, sums, bump functions and derivatives of the transition functions. But the additional hypotheses are precisely about the preservation of these data by \xi ! \mathrm{\mathrm{\mathrm{\mathrm{ \mathrm{\mathrm{ \mathrm{\mathrm{ \mathrm{\mathrm{ \mathrm{ \mathrm{\mathrm{\mathrm{ \mathrm{\mathrm{ \mathrm{\mathrm{ \mathrm{\mathrm{\mathrm{ \mathrm{ \mathrm{\mathrm{\mathrm{\mathrm{ \mathrm{ \mathrm{ \mathrm{\mathrm{ \mathrm{ \' \mathrm{ \mathrm{ \mathrm{ \mathrm{ \mathrm{ \mathrm{\mathrm{\mathrm{ \mathrm{ More precisely, for i \leq \vargamm (i) we have:\xi \alpha \prime ,\beta \prime \theta \vargamm ((f s \prime ;s ) c ab ) = \xi \alpha \prime ,\beta \prime

		\theta \vargamm	\Bigl(	\sum l,m,o	\partial\varphi c s \partial\varphi l s \prime	\partial\varphi m s \prime \partial\varphi a s	\partial\varphi o s \prime \partial\varphi b s	(f s \prime ) l mo +	l \sum	\partial\varphi a s \partial\varphi b s \partial 2 \varphi l s \prime	s \prime \partial\varphi l \partial\varphi c s	\Bigr)
	=	\sum l,m,o	\xi \theta \vargamm	\Bigl( \partial\varphi c s \partial\varphi l s \prime	\Bigr) \xi \theta \vargamm	\Bigl( \partial\varphi m s \prime \partial\varphi a s	\Bigr)	\xi \theta \vargamm	\Bigl( \partial\varphi o s \prime s \partial\varphi b	\Bigr)	\xi \theta \vargamm ((f s \prime ) l mo ) +
		+	\sum l	\xi \theta \vargamm	\Bigl( \partial 2 \varphi l s \prime \partial\varphi a s \partial\varphi b s	\Bigr)	\xi \theta \vargamm	s \prime \partial\varphi l \Bigl( \partial\varphi c s	\Bigr)
	=	\sum l,m,o	\partial\phi c s \partial\phi l s \prime	\partial\phi m s \prime \partial\phi a s	\partial\phi o s \prime \partial\phi b s	\xi \alpha \prime ,\beta \prime \theta \vargamm ((f s \prime ) l mo ) +	\sum l	\partial 2 \phi l s \prime \partial\phi a s \partial\phi b s	\partial\phi c s \partial\phi l s \prime

k \theta ,\vargamm , \BbbY \theta ,\vargamm | \Gamma k [z])-connection by construction.

  ). By the same kind of arguments, \xi \alpha \prime ,\beta \prime \theta ,\vargamm ((\Gamma s ) c ab ) = \xi \alpha \prime ,\beta \prime

		\theta \vargamm	\Bigl(	\sum		ab	\Bigr)		(3.13)
	=	\sum s \prime \in N (s)	\xi \alpha \prime ,\beta \prime \theta ,\vargamm (\psi s \prime ) \Bigl(	\sum l,m,o	\partial\phi c s \partial\phi l s \prime	\partial\phi m s \prime \partial\phi a s	\partial\phi o s \prime s \partial\phi b	\xi \alpha \prime ,\beta \prime \theta \vargamm ((f s \prime ) l mo ) + (3.14)
								+	\sum l	\partial 2 \phi l s \prime \partial\phi a s \partial\phi b s	\partial\phi c s s \prime \partial\phi l	\Bigr)	(3.15)
	=	\sum						

s \prime \in N (s) \psi s \prime \cdot (f s \prime ;s ) c s \prime \in N (s)

\xi \alpha \prime ,\beta \prime \theta ,\vargamm (\psi s \prime )((\Gamma s \prime ) \theta ,\vargamm ) c ab ,

  \mathrm{\mathrm{\mathrm{ \mathrm{\mathrm{\mathrm{ \mathrm{ \mathrm{\mathrm{ \mathrm{\mathrm{\mathrm{ \mathrm{\mathrm{\mathrm{ \mathrm{\mathrm{ \mathrm{\mathrm{ \mathrm{ \mathrm{\mathrm{ \mathrm{\mathrm{ \mathrm{\mathrm{ B k \alpha ,\beta -\mathrm{\mathrm{\mathrm{\mathrm{ \mathrm{ \mathrm{\mathrm{ \mathrm{\mathrm{ , \mathrm{ : \mathrm{\mathrm{ \mathrm{ \mathrm{ \mathrm{\mathrm{ \mathrm{\mathrm{\mathrm{\mathrm{\mathrm{ \mathrm{\mathrm{\mathrm{ \mathrm{\mathrm{\mathrm{ 19

	k \theta ,\vargamm (M ; \BbbY | S) of (B k \theta ,\vargamm , \BbbY \theta ,\vargamm | S)-connections in M .
	\bullet Let (\scrB \mathrm{ \mathrm{ \mathrm{ ) k \alpha ,\beta (\BbbX ) \subset \scrB k \alpha ,\beta (\BbbX ) be the collection of all charts (\varphi , U ) \in \scrB k \alpha ,\beta (\BbbX ) which
	trivializes the endomorphism bundle End(T M ).

Definition 4.1. Let S \subset \Gamma k , \theta : S \rightar \Gamma , \vargamm : S \rightar [2, k] and \BbbY as above. An End(T M )valued (B k \theta ,\vargamm , \BbbY )-form of degree one is an End(T M )-valued 1-form \omega of class C k whose coefficients (\omega \varphi ) c ab in every (\varphi , U ) \in (\scrB \mathrm{ \mathrm{ \mathrm{ ) k \alpha ,\beta (\BbbX ) are (B, k, \theta , \vargamm | S)-functions in \BbbY . Let \Omega 1 \theta ,\vargamm (M ; End(T M ), \BbbY | S) (4.17) denote the set of all of them.

\mathrm{\mathrm{

One can actually work in a more general setting, as those discussed in[START_REF] Martins | Existence of B k \alpha ,\beta -Structures on C k -Manifolds[END_REF]. However, the present

In[START_REF] Martins | Existence of B k \alpha ,\beta -Structures on C k -Manifolds[END_REF] this corresponds to the notion of proper intersection structure.

Take a look at diagrams (2.2) and (2.3), and at Remark 2.21.

Here is where we are using that a B k \alpha ,\beta -presheaf has degree k.

Recall that \alpha 0 \in \scrO and \beta 0 \in \scrQ , so that the map \xi \alpha 0 ,\beta 0 above exists.
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