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Abstract

These are notes for a short course and some talks gave at Departament of Mathematics and at
Departament of Physics of Federal University of Minas Gerais, based on the author’s paper [26].
Some new information and results are also presented. Unlike the original work, here we try to
give a more physical emphasis. In this sense, we present obstructions to realize gravity, modeled
by the tetradic Einstein-Hilbert-Palatini (EHP) action functional, in a general geometric setting.
In particular, we show that if spacetime has dimension n ≥ 4, then the cosmological constant
plays no role in any “concrete geometries” other than Lorentzian. If n ≥ 6, then the entire EHP
theory is trivial, meaning that Lorentzian geometry is (essentially) the only “concrete geometry”
in which gravity (i.e, the EHP action functional) makes sense. Examples of “concrete geometries”
include those locally modeled by group reductions H →֒ O(k;A) for some k and some algebra A,
so that Riemannian geometry, Hermitian geometry, Kähler geometry and symplectic geometry,
as well as Type II geometry, Hitchin’s generalized complex geometry and G2-geometry are
included. We also study EHP theory in “abstract geometries”, such as graded geometry (and
hence supergeometry), and we show how the obstruction results extend to this context. We
construct two theories naturally associated to EHP, which we call the geometric/algebraic dual
of EHP, and we analyze the effect of the obstructions in these new theories. Finally, we speculate
(and provide evidence for) the existence of a “universal obstruction condition”.

1 Introduction

Einstein’s theory of gravity is formulated in Lorentzian geometry: spacetime is regarded as an
orientable four-dimensional Lorentzian manifold (M,g) whose Lorentzian metric g is a critical point
of the Einstein-Hilbert action functional

SEH [g] =

∫

M

(Rg − 2Λ) · ωg, (1)

defined on the space of all possible Lorentzian metrics in M . Here, Λ ∈ R is a parameter (the
cosmological constant), while Rg and ωg are, respectively, the scalar curvature and the volume-form
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of g, locally written as gij Ricij and
√

|det g| dx1 ∧ ...∧ dx4, where Ricij are the components of the
Ricci tensor. Such critical points are precisely those satisfying the vacuum Einstein’s equation

Ricij −
1

2
Rggij + Λgij = 0. (2)

The action (1) is about tensors, so that we can say that General Relativity is generally formulated
in a “tensorial approach”. Electromagnetism (or, more generally, Yang-Mills theories) was also
initially formulated in a “tensorial approach”. Indeed, the action functional for electromagnetism is
given by

SYM [A] = −
1

4

∫

M

FijF̃
ij,

where F and F̃ are the “electromagnetic tensor” and the “dual eletromagnetic tensor”, with compo-
nents

Fij = ∂iAj − ∂jAi and F̃ ij =
1

2
ǫijklFkl

√

|det g|,

respectively. Varying this action we get Maxwell’s equations in their tensorial formulation:

∂kF̃
kl +AkF̃

kl = 0. (3)

Notice that this is actually one half of the actual Maxwell’s equations, corresponding to the
“inhomogeneous equations”. In order to get the full equations we need to take into account an
external set of equations, corresponding to the “homogeneous part” of Maxwell’s equations:

ǫijklmn∂lFmn = 0. (4)

It happens that, when we move from the tensorial language to the language of differential forms
and connections on bundles, we rediscover (4) as a geometric identity (Bianchi identity), so that (4)
actually holds a priori and not a posteriori, as was suggested using tensorial language. This is not
a special feature of Yang-Mills theories. In fact, General Relativity (GR) also manifests this type
of behavior: alone, Einstein’s equation (2) does not completely specify a system of (GR); we also
need to assume that the connection in question is precisely the Levi-Civita connection of g. But,
as in the case of Bianchi identity for Yang-Mills theories, this assumption can be avoided if we use
the language of differential forms.

Indeed, in the so-called first order formulation of gravity (also known as tetradic gravity) we can
rewrite Einstein-Hilbert action functional as the Einstein-Hilbert-Palatini (EHP) action:

SEHP [e, ω] =

∫

M

tr(e f⋊ e f⋊ Ω+
Λ

6
ef⋊ e f⋊ e f⋊ e), (5)

where e and ω are 1-forms in the frame bundle FM with values in the Lie algebras R3,1 and o(3, 1),
called tetrad and spin connection, respectively, and f⋊ is a type of “wedge product”1 induced by
matrix multiplication in O(3, 1). Because M is Lorentzian, its frame bundle is structured over
O(3, 1) and the spin connection is actually a connection in this bundle. The tetrad e is such that

1In this paper we will work with many different types of “wedge products”, satisfying very different properties.
Therefore, in order to avoid confusion, we will not follow the literature, but introduce specific symbols for each of
them.
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for every a ∈ FM the corresponding map ea : FMa → R
3,1 is an isomorphism, so that it has the

geometrical meaning of a soldering form. Furthermore, in (5) we have a 2-form Ω with values in
o(3, 1), representing the curvature Ω = dω+ωf⋊ω of ω. The translational algebra and the Lorentz
algebra fits into the Poincaré Lie algebra iso(3, 1) = R

3,1
⋊ o(3, 1). The equations of motion for the

EHP action are [42]

dωef⋊ e = 0 and ef⋊ Ω+
Λ

6
e f⋊ e f⋊ e = 0.

The second of them is just Einstein’s equation (2) rewritten in the language of forms, while the
first, due to the fact that e is an isomorphism, is equivalent to dωe = 0. As the 2-form Θ = dωe
describes precisely the torsion of the spin connection ω, the first equation of motion implies that ω
is actually the only torsion-free connection compatible with the metric: the Levi-Civita connection.

These examples emphasize that the language of differential forms seems to be a nice way to
describe physical theories. Indeed, [18, 19] started a program that attempts to unify different
physical theories by using the same type of functional on forms, the so-called Hitchin’s functional.
Furthermore, in [11] it was shown that all known “gravity theories defined by forms” can really
be unified in that they are particular cases of a single topological M-theory. Motivated by this
philosophy, in this article we will consider generalizations of classical EHP theories (5).

First of all notice that if the underlying manifold is n-dimensional spacetime (instead of four-
dimensional), (5) can be immediately generalized by considering iso(n − 1, 1)-valued forms and an
action functional given by

Sn,Λ[e, ω] =

∫

M

tr(e f⋊ ... f⋊ e f⋊ Ω+
Λ

(n − 1)!
ef⋊ ... f⋊ e). (6)

However, this is not the only generalization that can be considered. We notice that in the modern
language of differential geometry, the data defined by the pairs (ω, e) above corresponds to reductive
Cartan connections on the frame bundle FM with respect to the inclusion O(n − 1, 1) →֒ Iso(n −
1, 1) of the Lorentz group into the Poincaré group. Indeed, given a G-bundle P → M and a
structural group reduction H →֒ G, we recall that a Cartan connection in P for such a reduction
is a G-connection ∇ in P which projects isomorphically onto g/h in each point. Explicitly, it is an
(horizontal and equivariant) g-valued 1-form ∇ : TP → g such that in each a ∈ P the composition
below is an isomorphism of vector spaces:

TPa

≃

55
∇a // g

π // g/h

Due to the decomposition (as vector spaces) g ≃ g/h ⊕ h, the existence of the isomorphism above
allows us to write ∇a = ea + ωa in each point. If this varies smoothly we say that the Cartan
connection is reductive (or decomposable).

Now, looking at (6) we see that the groups O(n−1, 1) →֒ Iso(n−1, 1) and the bundle FM do not
appear explicitly, so that we can think of considering an analogous action for other group reductions
H →֒ G in other bundle P . Intuitively, this means that we are trying to realize gravity (as modeled
by EHP theory) in different geometries other than Lorentzian. But, is (6) always nontrivial? In
other words, is it possible to realize gravity in any geometry? Notice that it is natural to expect
that the algebraic properties of H and G will be related to the fundamental properties of the
corresponding version of (6), so that a priori there should exist some abstract algebraic conditions
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under which (6) is trivial. In this article we will search for such nontrivial conditions, which we call
geometric obstructions. Thus, one can say that we will do Geometric Obstruction Theory applied to
EHP theory. For instance, one of the results that we will prove is the following, which emphasizes
that some notion of “solvability” is crucial:

Theorem A. Let M be an n-dimensional spacetime and P → M be a R
k
⋊ H-bundle, endowed

with the group reduction H →֒ R
k
⋊H. If h is a (k, s)-solv algebra and n ≥ k + s + 1, then the

cosmological constant plays no role; if n ≥ k + s+ 3, then the entire EHP theory is trivial.

This type of obstruction theorem gives restrictions only on the dimension of spacetime. We also
show that if we restrict to torsion-free connections, then there are nontrivial geometric obstructions
that gives restrictions not only on the dimension, but also on the topology of spacetime. For
instance,

Theorem B. Let M be an n-dimension Berger manifold endowed with an H-structure. If h ⊂ so(n),
then the torsionless EHP theory is nontrivial only if n = 2, 4 and M is Kähler. In particular, if M
is compact and H2(M ;C) = 0, then it must be a K3-surface.

The generalization of EHP from Lorentzian geometry to arbitrary geometry is not the final
step. Indeed, looking at (6) again we see that it remains well defined if one forgets that e and ω
together define a Cartan connection. In other words, all one needs is the fact they are 1-forms that
take values in some algebra. This leads us to consider some kind of algebra-valued EHP theories,
defined on certain algebra-valued differential forms, for which we show that Theorem A remains
valid almost ipsis litteris. We also show that if the algebra in question is endowed with a grading,
then the “solvability condition” in Theorem A can be weakened.

This paper is organized as follows: in Section 2 we review some facts concerning algebra-valued
differential forms and we study the “solvability conditions” that will appear in the obstructions
results. In Section 3 we introduce EHP theory into the “linear”/ “extended-linear” contexts and
we prove many obstruction theorems, including Theorem A and Theorem B. In Section 4 EHP is
internalized into the “abstract context”, where matrix algebras are replaced by arbitrary (possibly
graded) algebras. We then show how the “fundamental obstruction theorem”, namely Theorem A,
naturally extends to this context. We also give geometric obstructions to realize EHP into the “full
graded context”, i.e, into “graded geometry” and, therefore, into “supergeometry”. This section ends
with a conjecture about the existence of some kind of “universal geometric obstruction”. Finally, in
Section 5 many examples are given, where by an “example” we mean an specific algebra fulfilling the
hypothesis of some obstruction result, so that EHP cannot be realized in the underlying geometry.

2 Polynomial Identities in Algebra-Valued Forms

Let A be a real vector space2 and P be a smooth manifold. A A-valued k-form in P is a section
of the bundle ΛkTP ∗ ⊗ A. In other words, it is a rule α assigning to any a ∈ P a skew-symmetric
k-linear map

αa : TPa × ...× TPa → A.

2All definitions and almost all results of this section hold analogously for modules over any commutative ring R of
characteristic zero. For some results in Subsection 2.4 we must assume that the module is free, which is guaranteed
if R is a field.
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The collection of such maps inherits a canonical vector space structure which we will denote by
Λk(P ;A). Given an A-valued k-form α and a B-valued l-form β we can define an (A ⊗ B)-valued
(k + l)-form α⊗ β, such that

(α⊗ β)a(v,w) =
1

(k + l)!

∑

σ

sign(σ)αa(vσ)⊗ βa(wσ),

where v = (v1, ..., vk) and w = (vk+1, ..., vk+l) and σ is a permutation of {1, ..., k+ l}. This operator
is obviously bilinear, so that it extends to a bilinear map

⊗ : Λk(P ;A)× Λl(P ;B) → Λk+l(P ;A⊗B).

We are specially interested when A is an algebra, say with multiplication ∗ : A ⊗ A → A. In this
case we can compose the operation ⊗ above with ∗ in order to get an exterior product ∧∗, as shown
below.

Λk(P ;A)× Λl(P ;A)

∧∗

22
⊗ // Λk+l(P ;A ⊗A)

∗ // Λk+l(P ;A) (7)

Explicitly, following the same notations above, if α and β are A-valued k and l forms, we get a new
A-valued (k + l)-form by defining

(α ∧∗ β)a(v,w) =
1

(k + l)!

∑

σ

sign(σ)αa(vσ) ∗ βa(wσ).

This new product defines an N-graded algebra structure on the total A-valued space

Λ(P ;A) =
⊕

k

Λk(P ;A),

whose properties are deeply influenced by the properties of the initial product ∗. For instance, recall
that many properties of the algebra (A, ∗) can be characterized by its polynomial identities (PI’s),
i.e, by polynomials that vanish identically when evaluated in A. Just to mention a few, some of
these properties are commutativity and its variations (as skew-commutativity), associativity and its
variations (Jacobi-identity, alternativity, power-associativity), and so on [22, 12].

The following proposition shows that each such property is satisfied in A iff it is satisfied (in the
graded-sense) in the corresponding algebra of A-valued forms.

Proposition 2.1. Any PI of degree m in A lifts to a PI in the graded algebra of A-valued forms.
Reciprocally, every PI in the graded algebra restricts to a PI in A.

Proof. Let f be a polynomial of degree m. Given arbitrary A-valued forms α1, ..., αm of degrees
k1, ..., km, we define a corresponding A-valued form of degree k = k1 + ...+ km as

f̂(α1, ..., αm)(v1, ..., vk) =
1

k!

∑

σ

sign(σ)f(α1(wσ(1)), α2(wσ(2))..., αm(wσ(m))),

where
wσ(1) = (vσ(1), ..., vσ(k1)), w2 = (vσ(k1+1), ..., vσ(k1+k2)), and so on.

Therefore, f̂ is a degree m polynomial in Λ(P ;A). It is clear that if f vanishes identically then f̂
vanishes too, so that each PI in A lifts to a PI in Λ(P ;A). On the other hand, if we start with
a polynomial F in Λ(P ;A), we get a polynomial F |A in A of the same degree by restricting F to
constant 1-forms. Clearly, if F is a PI, then F |A is also a PI.
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It follows that the induced product ∧∗ is associative, alternative, commutative, and so on, iff
the same properties are satisfied by ∗. Notice that, because the algebra Λ(P ;A) is graded, its
induced properties must be understood in the graded sense. For instance, by commutativity and
skew-commutativity of ∧∗ one means, respectively,

α ∧∗ β = (−1)klβ ∧∗ α and α ∧∗ β = −(−1)klβ ∧∗ α.

Let us analyze some useful examples.

Example 2.1 (Cayley-Dickson forms). There is a canonical construction, called Cayley-Dickson
construction [2], which takes an algebra (A, ∗) endowed with an involution (−) : A → A and returns
another algebra CD(A). As a vector space it is just A⊕A, while the algebra multiplication is given
by

(x, y) ∗ (z, w) = (x ∗ z − w ∗ y, z ∗ x+ y ∗ z).

This new algebra inherits an involution (x, y) = (x,−y), so that the construction can be iterated.
It is useful to think of CD(A) = A⊕A as being composed of a “real part” and an “imaginary part”.
We have a sequence of inclusions into the “real part”

A // CD(A) // CD2(A) // CD3(A) // · · ·

For any manifold P , such a sequence then induce a corresponding sequence of inclusions into the
algebra of forms

Λ(P ;A) // Λ(P ; CD(A)) // Λ(P ; CD2(A)) // Λ(P ; CD3(A)) // · · ·

The Cayley-Dickson construction weakens any PI of the starting algebra [2, 37] and, there-
fore, due to Proposition 2.1, of the corresponding algebra of forms. For instance, if we start
with the commutative and associative algebra (R, ·), endowed with the trivial involution, we see
that CD(R) = C, which remains associative and commutative. But, after an iteration we ob-
tain CD2(R) = CD(C) = H, which is associative but not commutative. Another iteration gives
the octonions O which is non-assocative, but alternative. The next is the sedenions S which is
non-alternative.

Example 2.2 (Lie algebra valued forms). Another interesting situation occurs when (A, ∗) is a
Lie algebra (g, [·, ·]). In this case, we will write α[∧]gβ or simply α[∧]β instead of3 α ∧[·,·] β. Lie
algebras are not associative and in general are not commutative. This means that the corresponding
algebra Λ(P ; g) is not associative and not commutative. On the other hand, any Lie algebra is skew-
commutative and satisfies the Jacobi identity, so that these properties lift to Λ(P ; g), i.e, we have

α[∧]β = (−1)kl+1β[∧]α

and
(−1)kmα[∧](β[∧]γ) + (−1)klβ[∧](γ[∧]α) + (−1)lmγ[∧](α[∧]β) = 0

for any three arbitrarily given g-valued differential forms α, β, γ of respective degrees k, l,m.
3Some authors prefer the somewhat ambiguous notations [α∧β], [α, β] or [α; β]. The reader should be very careful,

because for some authors these notations are also used for the product [∧]g without the normalizing factor (k + l)!.
Here we are adopting the notation introduced in [25].
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We end with an important remark.

Remark 2.1. In the study of classical differential forms we know that if α is an odd-degree form,
then α ∧ α = 0. This follows directly from the fact that the algebra (R, ·) is commutative. Indeed,
in this case Λ(P ;R) is graded-commutative and so, for α of odd-degree k, we have

α ∧ α = (−1)k
2
α ∧ α = −α ∧ α,

implying the condition α∧α = 0. Notice that the same argument holds for any commutative algebra
(A, ∗). Dually, analogous arguments show that if (A, ∗) is skew-commutative, then α ∧∗ α = 0 for
any even-degree A-valued form. So, for instance, α[∧]gα = 0 for any given Lie algebra g.

2.1 Matrix Algebras

In Example 2.2 above, we considered the algebra Λ(P ; g) for an arbitrary Lie algebra g. We
saw that, because a Lie algebra is always skew-commutative, the corresponding product [∧] is also
skew-commutative, but now in the graded sense, i.e,

α[∧]β = (−1)kl+1β[∧]α

for every g-valued forms α, β. As a consequence (explored in Remark 2.1) we get α[∧]α = 0 for
even-degree forms.

From now on, let us assume that the Lie algebra g is not arbitrary, but a subalgebra of gl(k;R),
for some k. In other words, we will work with Lie algebras of k × k real matrices. We note that in
this situation Λ(P ; g) can be endowed with an algebra structure other than [∧]. In fact, for each k
there exists an isomorphism

µ : Λl(P ; gl(k;R)) ≃ Matk×k(P ; Λl(P ;R))

given by [µ(α)]ij(a) = [α(a)]ij , allowing us to think of every g-valued l-form α as a k × k matrix
µ(α) of classical forms. It happens that matrix multiplication gives an algebra structure on

Matk×k(P ; Λ(P ;R)) =
⊕

l

Matk×k(P ; Λl(P ;R)),

which can be pulled-back by making use of the isomorphism µ, giving a new product on the graded
vector space Λ(P ; g), which we will denote by the symbol “f”.

Because g is a matrix Lie algebra, its Lie bracket is the commutator of matrices, so that we
have an identity relating both products. From Proposition 2.1 it follows that we have an analogous
identity between the corresponding “wedge products” f and [∧]:

α[∧]β = α f β − (−1)klβ f α. (8)

This relation clarifies that, while the product [∧] is skew-commutative for arbitrary Lie algebras, we
cannot conclude the same for the product f, i.e, it is not always true that αf β = (−1)kl+1βfα.
Consequently, it is not true that α f α = 0 for every even-degree g-valued form. It is easy to
understand why: recalling that f is induced by matrix multiplication, the correspondence between
PI’s on the algebra (g, ∗) and on the algebra of g-forms teaches us that f is skew-commutative
exactly when the matrix multiplication is skew-commutative, in other words, iff g is a Lie algebra of
skew-commutative matrices.

Useful examples are given in the following lemma.
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Lemma 2.1. The condition αfα = 0 is satisfied for even-degree forms with values into subalgebras

g ⊂ so(k1)⊕ ...⊕ so(kr).

Proof. By definition, so(k) is the algebra of skew-symmetric matrices, which anti-commute, thus
the result holds for g = so(k) for every k. It is obvious that if g is some algebra of skew-commuting
matrices, then every subalgebra g ⊂ g is also of skew-commuting matrices. Therefore, the result
holds for subalgebras g ⊂ so(k). But it is also clear that the direct sum of algebras of anti-commuting
matrices remains an algebra of anti-commuting matrices, so that if g1 and g2 fulfill the lemma, then
g1 ⊕ g2 fulfills too. In particular, the lemma holds for subalgebras g ⊂ so(k1) ⊕ so(k2). Finite
induction ends the proof.

Remark 2.2. We could have given a proof of the last lemma without using its invariance under direct
sums. In fact, assuming that it holds for subalgebras of so(k), notice that for every decomposition
k = k1 + ...+ kr we have a canonical inclusion

so(k1)⊕ ...⊕ so(kr) →֒ so(k).

While the last lemma is a useful source of examples in which the discussion above applies, let
us now give a typical non-example.

Example 2.3. Let H be a linear group of k × k real matrices. We have a canonical action of H
on the additive abelian group R

k, allowing us to consider the semi-direct product G = R
k
⋊ H,

of which H →֒ G can be regarded as subgroup. The same holds in the level of Lie algebras, so
that g ≃ R

k
⋊ h. As a vector space we have g/h ≃ R

k. Now, because g/h is abelian, it follows
that α[∧]β = 0 for every two g/h-valued forms and from (8) we then conclude that α f α = 0
for every odd-degree form α. In particular, if A = ω + e is a reductive Cartan connection for the
reduction H →֒ Rk ⋊H, then e is a g/h-valued 1-form, so that ef e = 0. Consequently, the action
(5) is trivial. But, for H = O(3, 1) this is precisely General Relativity, which is clearly nontrivial.
Therefore, at some moment we made a mistake! The problem is that we applied the relation (8) to
R
n-valued forms, but the product f is not defined for such forms. Indeed, it can be defined only

for Lie algebras arising from matricial algebras.

The example above teaches us two things:

1. The way it was defined, the product f makes sense only for matrix Lie algebras. Particularly,
it does not makes sense for a semi-direct sum of a matrix algebra with other algebra, so
that f is not the product appearing in the classical EHP action (5). Therefore, if we need
to abstract the structures underlying EHP theory we need to show how to extend f to a
new product f⋊ defined on forms taking values in semi-direct sums. This will be done in
Subsection 2.2;

2. Once f⋊ is defined, the corresponding Einstein-Hilbert-Palatini action functional can be triv-
ial. In fact, looking at (6) we see that we have terms like ef⋊ ef⋊ ....f⋊ e, where the number
of e’s depends on the spacetime dimension. So, if we are in an algebraic context in which
αf⋊ α = 0 for odd-degree forms, then ef⋊ e = 0 and, consequently, the action will vanishes
in arbitrary spacetime dimensions! On the other hand, if α f⋊ α = 0 for even-degree forms,
then (e f⋊ e) f⋊ (e f⋊ e) = 0 and the theory is trivial when n ≥ 6. This simple idea is the
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core of almost all obstruction results that will be presented here. Notice that what we need is
f

k
⋊α = 0 for some k, which is a nilpotency condition. The correct nilpotency conditions that

will be used in our abstract obstruction theorems will be discussed in Subsections 2.3 and 2.4.

2.2 Splitting Extensions

In this section we will see how to define the product f⋊ abstractly. We start by recalling the
notion of “extension of an algebraic object”. Let Alg be a category of algebraic objects, meaning
that we have a null object 0 ∈ Alg (understood as the trivial algebraic entity) and such that every
morphism f : X → Y has a kernel and a cokernel, computed as the pullback/pushout below.

ker(f)

��

// 0

��

coker(f) 0oo

X
f

// Y Y

OO

X
f

oo

OO

Example 2.4. The category Grp of groups and the category VecR of real vector space are examples
of models for Alg. A non-example is LieAlg, the category of Lie algebras, since a Lie algebra
morphism f : h → g may not have a cokernel, which means that the vector space g/f(h) may not
have a canonical Lie algebra structure.

If a morphism has a kernel and a cokernel we can then define its image as the kernel of its
cokernel. Consequently, internal to Alg we can talk of an “exact sequence”: this is just an increasing
sequence of morphisms fi : Xi → Xi+1 such that for every i the kernel of fi+1 coincides with the
image of fi. An extension is just a short exact sequence, i.e, an exact sequence condensed in three
consecutive objects. More precisely, in a short exact sequence as the one below we say that the
middle term A was obtained as an extension of H by E.

0 // E
ı // A

 // H // 0 (9)

Remark 2.3. From the last example we conclude that we cannot talk of extensions internal to
the category of Lie algebras. This does not mean that we cannot define a “Lie algebra extension”
following some other approach. In fact, notice that we have a forgetful functor U : LieAlg → VecR,
so that we can define a Lie algebra extension as a sequence of maps in LieAlg which is exact in
VecR. The same strategy allows us to enlarge the notion of extension in order to include categories
that, a priori, are not models for Alg.

Now, a typical example of extensions.

Example 2.5. The Poincaré group is just an extension of the Lorentz group by the translational
group. More generally, given a Lie group H endowed with an action H × R

n → R
n we can form

the semi-direct product Rn
⋊H, which fits into the canonical exact sequence below, where the first

map is an inclusion and the second is obtained restricting to pairs (0, h).

0 // Rn // Rn
⋊H // H // 0 (10)

The extensions in the last example are special: in them we know how to include the initial object
H into its extension R

n
⋊H. An extension with this property is called splitting. More precisely, we

9



say that an abstract extension as (9) is splitting if there exists a morphism s : H → A such that
 ◦ s = idH .

0 // E
ı // A

 // H
s

ff // 0 (11)

The name comes from the fact that in some good situations, the category Alg have a notion
of “product”, say #, such that a sequence (9) is splitting iff A “splits” as A ≃ E#H. For instance,
if Alg is an abelian category, then the Splitting Lemma shows that such a product # is just the
coproduct ⊕, i.e, the “direct sum”. For general groups or Lie algebras, # is the corresponding notion
of semi-direct product/sum.

Now, assume that the ambient category Alg is actually monoidal, meaning that we have a fixed
bifunctor ⊗ : Alg ×Alg → Alg and an object 1 ∈ Alg such that ⊗ is associative (up to natural
isomorphisms) and has 1 as a neutral object (also up to natural isomorphisms). We can then talk
of monoids in Alg. These are objects X ∈ Alg endowed with morphisms ∗ : X ⊗ X → X and
e : 1 → X which satisfy the associavitity-type and neutral element-type diagrams.

The main point is that we can use sections morphisms to transfer (to pullback) monoid struc-
tures. Indeed, if f : X → Y is a morphism with section s : Y → X, then for any monoid structure
(∗, e) in Y we get a corresponding monoid structure (∗′, e′) in Y with ∗′ as shown below and e′ = s◦e.
In particular, if in an splitting extension (11) H is a monoid, then we can use the section s : H → A
to get a monoid structure in A.

X ⊗X

∗′

44
f⊗f // Y ⊗ Y

∗ // Y
s // X (12)

In the case when Alg admits a product # characterizing splitting extensions it is natural to
write ∗# and e# (instead of ∗′ and e′) to denote the monoid structure induced on an extension.

Example 2.6. Let us take the category VecR endowed with the monoidal structure given by the
tensor product ⊗R. Its monoid objects are just real algebras. From the last paragraphs, if A is a
splitting extension of a vector space H by another vector space E and H is an algebra, say with
product ∗, then A is automatically an algebra with product ∗⊕. Therefore, for a given manifold P
we will have not only a wedge product ∧∗ between H-valued forms, but also a product ∧∗⊕ . In the
very particular case when H is a matrix algebra, recall that ∧∗ is denoted by f, which motivate us
to denote the corresponding ∧∗⊕ by f⊕. It is exactly this kind of multiplication that appears in
(5).

2.3 (k, s)-Nil Algebras

In the last subsection we showed how to build the products that will enter in the abstract
definition of EHP theory. Here we will discuss the nilpotency conditions that will be imposed into
these products in order to get obstruction theorems for the corresponding EHP theory.

We start by recalling that an element v ∈ A in an algebra (A, ∗) has nilpotency degree s if
vs 6= 0, but vs+1 = 0, where vi = v ∗ ... ∗ v. In turn, the nilpotency degree of A is the minimum
over the nilpotency degree of its elements. An algebra with non-zero nilpotency degree is called a
nil algebra. This “nil” property can also be characterized as a PI: A is nil iff for some s 6= 0 the
polynomial p1(x) = xs does not vanish identically, but xs+1 does.

10



The first nontrivial examples of nil algebras are the anti-commutative algebras, which include
Lie algebras, for which the nilpotency degree is s = 1. For such kind of objects we usually consider
the more restrictive notion of nilpotent algebra. Indeed, we say that A is nilpotent of degree s if not
only p1(x) = xs+1 vanishes, but also

ps+1(x1, ..., xs+1) = x1 · .... · (xs−1 · (xs · xs+1))

and any other polynomial obtained from ps+1 by changing the ordering of the parenthesis. In
general, being nilpotent is much stronger than being nil. For associative algebras, on the other
hand, such concepts coincide [41, 36]. A fact more easy to digest is that an anti-commutative and
associative algebra A is nilpotent iff it is an Engel’s algebra, in the sense that the PI’s

ps,1(x, y) = ps+1(x, ...., x, y) = 0

are satisfied for any “ps+1-type” polynomial. Due to Engel’s theorem, other important examples of
Engel’s algebras are the Lie algebras.

From Proposition 2.1, if an algebra A is nil or nilpotent, then the corresponding graded-algebra
of A-valued exterior forms, with the product ∧∗, have the same properties, but in the graded

sense. Notice that xs+1 = 0 iff xs+1 = −xs+1, so that the graded-nil condition becomes xs+1 =
(−1)k

s+1+1xs+1, where k = degx, which is nontrivial only when k is even. The conclusion is the
following: if (A, ∗) is nil with nilpotency degree s > 0, then Λeven(P ;A) is graded-nil with the same
degree.

The next example sets Lemma 2.1 in terms of this new language.

Example 2.7. If A is anti-commutative, then it is nil with degree s = 1, which implies that even
A-valued forms are also nil with degree s = 1, i.e, α ∧∗ α = 0 for even forms. If A and B are nil of
respective degrees r and s, then the direct sum A ⊕ B is also nil, with degree given by min{r, s}.
Subalgebras of nil algebras are also nil algebras. Consequently,

A →֒ A1 ⊕ ...⊕Ar

is nil when each Ai is nil. This is exactly a generalization of Lemma 2.1.

The same kind of discussion applies to the nilpotent property. The analysis is easier when A is
skew-commutative and satisfies an associativity or Jacobi identity, because we can work with ps,1
instead of ps+1. Noting that ps,1 is a PI iff xs · y = −xs · y we conclude that the graded-nilpotent
property is described by

xs · y = (−1)k
sl+1(xs · y),

where k = deg x and l = deg y. This condition is nontrivial iff ksl + 1 is odd, i.e, iff ksl is even,
which implies that k and l have the same parity. Summarizing: if A is nilpotent of degree s, then
Λodd(P ;A) or Λeven(P ;A) is graded-nilpotent with the same degree.

Notice that the nil property gives nontrivial conditions only on even-degree forms. On the other
hand, while the nilpotency property can be used to give nontrivial conditions on even-degree or odd-
degree forms, it is too strong for most purposes. This leads us to define an intermediary concept of
(k, s)-nil algebra containing both nil and nilpotent algebras as particular examples. Indeed, given
integers k, s > 0, we will say that an algebra (A, ∗) is (k, s)-nil if in the corresponding graded-algebra
Λ(P ;A) every A-valued k-form has nilpotency degree s.

11



2.4 (k, s)-Solv Algebras

In this subsection we will explore more examples of (k, s)-nil algebras. In the study of Lie algebras
(as well as of other kinds of algebras), there is a concept of solvable algebra which is closely related to
the concept of nilpotent algebra. Indeed, to any algebra A we can associate two decreasing sequences
An and A(n) of ideals, respectively called the lower central series and the derived series, inductively
defined as follows:

A0 = A, Ak =
⊕

i+j=k

Ai ∗ Aj and A(0) = A, A(k) = A(k−1) ∗ A(k−1),

where, for given subsets X,Y ⊂ A , by X ∗ Y we mean the ideal generated by all products x ∗ y,
with x ∈ X and y ∈ Y . Clearly, the polynomials like ps+1 are PI’s for A iff As+1 = 0. So, A is
nilpotent of degree s iff its lower central series stabilizes in zero after s+ 1 steps. Analogously, we
say that A is solvable of solvability degree s if its derived series stabilizes in zero after s+ 1 steps.

We notice that A(k+1) can be regarded not only as an ideal of A, but indeed as an ideal of
A(k). Furthermore, the quotient A(k)/A(k+1) subalgebra is always commutative [36]. Starting with
A(1) we get the first exact sequence (the first line) below. Because we are working over fields, the
quotient is a free module and then the sequence splits, allowing us to write A ≃ A(1) ⊕ A/A(1).
Inductively we then get A ≃ A′

s ⊕ ... ⊕ A′
0, where A′

i := A(i)/A(i+1). Summarizing: as a vector
space, a solvable algebra can be decomposed into a finite sum of spaces each of them endowed with a
structure of commutative algebra.

0 // A(s)

��

// A(s−1)

��

// A/A(1)

��

// 0

...

��

...

��

...

��

0 // A(2)

��

// A(1)

��

// A(1)/A(2)

��

// 0

0 // A(1) // A // A/A(1) // 0

With the remarks above in our minds, let us prove that any solvable algebra is “almost” a
(k, s)-nil algebra.

Proposition 2.2. Let (A, ∗) be a solvable algebra and let α be an A-valued k-form in a smooth
manifold P . If k is odd and α is pointwise injective, then α ∧∗ α = 0.

Proof. Let A ≃ A′
s ⊕ ... ⊕ A′

0 be the decomposition above. Given a k-form α, assume that αa is
injective for every a ∈ P . Then, by the isomorphism theorem, αa induces an isomorphism from
its domain on its image. Notice that the subespace img(α) ⊂ A can be decomposed as As ⊕ ...A0,
where Ai = img(α) ∩ A′

i. Let Vi be the preimage α−1
a (Ai), so that the domain of αa decomposes

as V ′
s ⊕ ... ⊕ V ′

1 , allowing us to write αa = αs
a + ... + α0

a. We assert that α ∧∗ α = 0. From the
bilinearity of ∧∗ it is enough to verify that αi

a ∧∗ α
j
a = 0 for every i, j and a ∈ P . If i 6= j this is

immediate because αi
a and αj

a are nonzero in different subspaces. So, let us assume i = j. In this
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case, since A is solvable, the algebras A′
i are commutative, so that by the discussion in Section 2 we

have β ∧∗ β = 0 for every A′
i-valued odd-degree form and, in particular, αi

a ∧∗ α
i
a = 0.

Up to the injectivity hypothesis, the last proposition is telling us that solvable algebras are
(k, 1)-nil algebras for every k odd. So, we can say that solvable algebras are (k, 1)-nil “on the
class of injective forms”. This motivates us to define the following: given a class Ck ⊂ Λk(P ;A) of
A-valued k-forms, we say that A is a (Ck, s)-nil algebra if any A-valued form belonging to Ck has
nilpotency degree s.

We are now in position of generalizing the last proposition. Indeed, the structure of its proof is
very instructive in the sense that it can be easily abstracted by noticing that the “solvable” hypothesis
over A was used only to get a decomposition of A ≃ A′

s⊕ ...⊕A′
0 in terms of commutative algebras.

The commutativity, in turn, was important only to conclude α∧∗ α = 0. Therefore, using the same
kind of proof we immediately obtain an analogous result if we consider algebras A endowed with a
vector space decomposition A ≃ As⊕ ...⊕A0 where each Ai is a (k, s)-nil algebra. We will call this
kind of algebras (k, s)-solv algebras, because they generalize solvable algebras in the same sense as
(k, s)-nil algebras generalize nil and nilpotent algebras.

Summarizing, in this new terminology we have the following result.

Proposition 2.3. Every (k, s)-solv algebra is (Ck, s)-nil over the class of pointwise injective forms.

Remark 2.4. Exactly as nilpotent algebras are always solvable, (k, s)-nil algebras are (k, s)-solv.
The last proposition shows that the reciprocal is almost true. On the other hand, we could have
analogously defined (Ck, s)-solv algebras and, in this case, if Ck is contained in the class of pointwise
injective forms, the last proposition would be rephrased as stating an equivalence between the
concepts of (Ck, s)-solv algebras and (Ck, s)-nil algebras.

Remark 2.5. In Subsection 4.2 we will work with special vector subspaces of a given algebra. Let
us seize the opportunity to introduce them. Given an arbitrary algebra A, we say that a vector
subspace V ⊂ A is a (k, s)-nil subspace of A if every V -valued k-form has nilpotency degree s when
regarded as a A-valued form. Similarly, we say that V is a (k, s)-solv subspace if it decomposes as
a sum of (k, s)-nil subspaces. When A = ⊕mAm is m-graded, there are other kind of subespaces
V ⊂ A that can be introduced. For instance, we say that V is graded (k, s)-solv if each Vm = V ∩Am

is a (k, s)-solv subspace. In any subspace V of a m-graded algebra we get a corresponding grading
by V ≃ ⊕mVm. So, any V -valued form α can be written as α =

∑

m αm. We say that V is weak
(k, s)-nilpotent if for every k-form α, any polynomial ps+1(α

m1 , ..., αs+1) vanishes. Similarly, we say
that V is weak (k, s)-solvable if it decomposes as a sum of weak (k, s)-nilpotent subspaces.

2.5 Functorial Algebra Bundle System

Now, let us discuss the last ingredient before applying Geometric Obstruction Theory to EHP
theories. In previous subsections, P was an arbitrary smooth manifold. Let us now assume that
it is the total space of a G-bundle π : P → M . EHP theories (which are our aim) are not about
forms on the total space P , but about forms on the base manifold M . So, we need some process
allowing us to replace A-valued forms in P by forms in M with coefficients in some other bundle,
say EA. More precisely, we are interested in rules assigning to every pair (P,A) a corresponding
algebra bundle EA, whose typical fiber is A, in such a way that there exists a graded-subalgebra
S(P,A) ⊂ Λ(P ;A) and a canonical morphism  : S(P,A) → Λ(M ;EA).
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It is more convenient to think of this in categorical terms. Let AlgR be the category of real
finite-dimensional4 algebras, ZAlgR be the category of Z-graded real algebras and, given a manifold
M , let BunM and AlgRBunM denote the categories of bundles and of R-algebra bundles over M ,
respectively. As in the first diagram below, we have two canonical functors, which assign to each
pair (A,P ) the corresponding superalgebra of A-valued forms in P , and to each algebra bundle E
over M the graded algebra of E-valued forms in M . We also have the projection (P,A) 7→ A. So,
our problem of passing from forms in P to forms in M could be solved by searching for a functor F
making commutative the second diagram below.

AlgRBunM

Λ(M ;−)

��

AlgR
E− //❴❴❴❴❴ AlgRBunM

Λ(M ;−)

��
BunM ×AlgR

Λ(−;−)
// ZAlgR BunM ×AlgR

π1

OO

Λ(−;−)
// ZAlgR

But this would be a stronger requirement; for instance, it would imply the equality of two
functors, a fact that can always be weakened by making use of natural transformations. Therefore,
we could search for functors E− endowed with natural transformations , as in the diagram below.
This condition would remain stronger than we need: it requires that for any bundle P → M and
for any algebra A we have a canonical algebra morphism Λ(P ;A) → Λ(M ;EA). We would like to
include rules that are defined only for certain classes of bundles and algebras. This leads us to work
in subalgebras C of BunM ×AlgR as in the second diagram below.

AlgR
E− //❴❴❴❴❴ AlgRBunM

Λ(M ;−)

��

AlgR
E−//❴❴❴ AlgRBunM

Λ(M ;−)

��
BunM ×AlgR

π1

OO


2:♠
♠

♠
♠

♠
♠

♠
♠

♠
♠

♠
♠

Λ(−;−)
// ZAlgR C

π1

OO


3;♦
♦

♦
♦

♦
♦

♦
♦

♦
♦

♦
♦

Λ(−;−)
// ZAlgR

But, once again, we should consider weaker conditions. Indeed, the above situation requires
that for (P,A) ∈ C the algebra morphism Λ(P ;A) → Λ(M ;EA) is “canonical” in the entire algebra
Λ(P ;A). It may happen that Λ be “canonical” only in some subalgebra S(P ;A) ⊂ Λ(P ;A), meaning
that it is first defined in S(P ;A) and then trivially extended to Λ(P ;A). Therefore, the correct
approach seems to be to replace Λ by another functor S endowed with an objectwise injective
transformation ı : S ⇒ Λ, as in the following diagram.

AlgR
E− //❴❴❴❴❴❴ AlgRBunM

Λ(M ;−)

��

4<

♣
♣
♣

♣
♣
♣

C

π1

OO

S(−,−)
++❥

❢ ❝ ❴ ❬ ❳

Λ(−;−)

33ı !)❑
❑

❑

❑
❑

❑
ZAlgR

In sum, given a manifold M , the last diagram describes, in categorical terms, the transition
between algebra-valued forms in bundles over M and algebra bundle-valued forms in M . The input

4Actually, we can work in the infinite-dimensional setting, but in this case we have to take many details into
account. For instance, we would need to work with topological algebras, bounded linear maps, etc.
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needed to do this transition corresponds to the dotted arrows in the last diagram. We will say that
they define a functorial algebra bundle system (FABS) for the manifold M . Concretely, a FABS for
M consists of

1. a category C of pairs (P,A), where P → M is a bundle and A is a real algebra;

2. a functor E− assigning to any algebra A ∈ C a corresponding algebra bundle EA → M whose
typical fiber is A;

3. a functor S(−;−) that associates an algebra to each pair (P,A) ∈ C;

4. natural transformations ı : S(−;−) ⇒ Λ(−;−) and ξ : S(−;−) ⇒ Λ(M ;−) such that ı is
objectwise injective.

Such systems always exists, as showed by the next examples. The fundamental properties and
constructions involving FABS will appear in a work under preparation [27].

Example 2.8 (trivial case). Starting with any subcategory C of pairs (P,A) that contains only
the trivial algebra, up to natural isomorphisms there exists a single E−: the constant functor at
the trivial algebra bundle M × 0 → M . Noting that Λ(M ;M × 0) ≃ 0 since the trivial algebra
is a terminal object in AlgR, independently of the choice of S and ı : S ⇒ Λ there is only one
 : S ⇒ Λ(M ;−): the trivial one.

Example 2.9 (almost trivial case). The last situation has the defect that it can be applied only
for subcategories C whose algebraic part is trivial. It is easy, on the other hand, to build FABS for
arbitrarily given algebras. Indeed, let C be defined by pairs (P,A), where A is an arbitrary algebra,
but P is the trivial principal bundle M × GL(A) → M . Putting EA as the trivial algebra bundle
M × A → A, we have a 1-1 correspondence between A-valued forms in P and forms in M with
values in EA. Therefore, we actually have a map  : Λ(P ;A) → Λ(M ;EA) leading us to take S = Λ
and ı = .

Example 2.10 (standard case). In the first example we considered C containing arbitrary bundles,
but we paid the price of working only with trivial algebras. In the second example we were faced
with a dual situation. A middle term can be obtained by working with pairs (P,A), where P → M
is a G-bundle whose group G becomes endowed with a representation ρ : G → GL(A). In that
case we define E− as the rule assigning to each A the corresponding associated bundle P ×ρ A.
The functor S is such that S(P,A) is the algebra Λρ(P ;A) of ρ-equivariant A-valued forms α in
P , i.e, of those satisfy the equation R∗

gα = ρ(g−1) · α, where here R : G × P → P is the canonical
free action characterizing P as a principal G-bundle. This algebra of ρ-equivariant forms naturally
embeds into Λ(P ;A), giving ı. Finally, it is a standard fact [24] that each ρ-equivariant A-valued
form on P induces an P ×ρA-valued form on M , defining the transformation ξ. This is the standard
approach used in the literature, so that we will refer to it as the standard FABS.

Example 2.11 (canonical case). There is an even more canonical situation: that obtained from the
latter by considering only associative algebras underlying matrix Lie algebras. Indeed, in this case
we have also a distinguished representation ρ : G → GL(g), given by the adjoint representation.
The corresponding bundles Eg correspond to what is known as the adjoint bundles, leading us to
say that this is the adjoint FABS.
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3 Concrete Obstructions

After the algebraic prolegomena developed in the previous section, we are ready to introduce and
study EHP theories in the general setting. We will start in Subsection 3.1 by considering a very
simple framework, modeled by inclusions of linear groups, where our first fundamental obstruction
theorem is obtained. At each following subsection the theory will be redefined (in the direction of
the full abstract context) in such a way that the essence of the obstruction theorem will remain the
same.

Thus, in Subsection 3.2 we define a version of EHP for reductions H →֒ G such that G is not
a linear group, but a splitting extension of H. We then show that, as desired, the fundamental
obstruction theorem remains valid, after minor modifications.

Independently, if one is interested in matrix EHP theories or EHP theories arising from splitting
extensions, we also work with reductive Cartan connections. These are 1-forms ∇ : TP → g that
decompose as ∇ = e+ω, where e : TP → g/h is a pointwise isomorphism and ω : TP → h is an H-
connection. What happens if we forget the pointwise isomorphism hypothesis on e? In Subsection
3.3 we discuss the motivations to do this and we show that the fundamental obstruction theorem
not only holds, but becomes stronger.

Finally, in Subsection 3.5 we show that if we restrict our attention to connections ∇ = e + ω
such that ω is torsion-free, then we get, as a consequence of Berger’s classification theorem, a new
obstruction result which is independent of the fundamental obstruction theorem. In particular,
this new result implies topological obstructions to the spacetime in which the EHP theory is being
described.

3.1 Matrix Gravity

Let us start by considering a smooth G-bundle P → M over an orientable smooth manifold M ,
with G a linear group, and fix a group structure reduction H →֒ G of P . Given an integer k > 0
and Λ ∈ R, we define the homogeneous and the inhomogeneous linear (or matrix ) Hilbert-Palatini
form of degree k of a reductive Cartan connection ∇ = e+ ω in P , relative to the group structure
reduction H →֒ G, as

αk = ef ... f ef Ω and αk,Λ = αk +
Λ

(k − 1)!
ef ... f e, (13)

respectively. In αk the term e appears (k − 2)-times, while in right-hand part of αk,Λ it appears
k-times. Because we are working with matrix Lie algebras we have the adjoint FABS, so that these
g-valued forms correspond to k-forms in M with values in the adjoint bundle P ×ad g, respectively
denoted by (αk) and (αk,Λ).

We define the homogeneous and the inhomogeneous linear EHP theories in P with respect to
H →֒ G as the classical field theories whose spaces of configurations are the spaces of reductive
Cartan connections ξ = e+ ω and whose action functionals are respectively given by

Sn[e, ω] =

∫

M

tr((αn)) and SΛ,n[e, ω] =

∫

M

tr((αn,Λ)). (14)

Warning: The expression “linear EHP” is used here to express the fact that the EHP action is
realized in a geometric background defined by linear groups. It does not mean that the equations
of motion were linearized or something like this.
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Remark 3.1. A priori, H is an arbitrary subgroup of G, which implies that h is a Lie subalgebra of
g. It would be interesting to think of g as the Lie algebra extension of some r by h. This makes
sense only when h ⊂ g is not just a subalgebra, but an ideal, which is true iff H ⊂ G is a normal

subgroup.

With the remark above in mind, we can state our first obstruction theorems. In them we will
consider theories for reductions H →֒ G fulfilling one of the following conditions:

(C1) the subgroup H ⊂ G is normal and, as a matrix algebra, g is an splitting extension by h of a
(k, s)-nil algebra r.

(C2) as a matrix algebra, g is a (k, s)-nil algebra.

Theorem 3.1. Let M be an n-dimensional spacetime and P → M be a G-bundle, endowed with a
group reduction H →֒ G fulfilling (C1) or (C2). If n ≥ k + s + 1, then the linear inhomogeneous
EHP theory equals the homogeneous ones. If n ≥ k + s+ 3, then both are trivial.

Proof. Assume (C1). As vector spaces we can write g ≃ g/h ⊕ h and, because g is a Lie algebra
extension of r by h, it follows that g/h ≃ r. How the extension splitting, r is a subalgebra of g

and g/h ≃ r is indeed a Lie algebra isomorphism, So, g/h can be regarded as a (k, s)-nil algebra
and, therefore, fs+1α = 0 for every g/h-valued k-form in P . If ∇ = e + ω is a reductive Cartan
connection in P relative to H →֒ G, then e is a g/h-valued 1-form in P and, because g/h is a
subalgebra of g, fke is a g/h-valued k-form. Consequently,

(fk+s+1e)f α = 0 (15)

for any g-valued form α. In particular, for

α =
Λ

(n− 1)!
f

n−(k+s+1) e

(15) is precisely the inhomogeneous part of αΛ,n. Therefore, for every n ≥ k + s + 1 we have
αΛ,n = αn and, consequently, (αk) = (αΛ,n), implying Sn[e, ω] = Sn,Λ[e, ω] for any Cartan
connection ∇ = e+ ω, and then Sn = Sn,Λ. On the other hand, for

α = (fn−(k+s+1)+2e)f Ω

we see that (15) becomes exactly αn. Therefore, when n ≥ k + s + 3 we have αn = 0, implying
(because  is linear) (αn) = 0 and then Sn = 0. But k + s + 3 > k + s + 1, so that Sn,Λ = 0 too.
This ends the proof when the reduction H →֒ G fulfills condition (C1). If we assume (C2) instead
of (C1), we can follow exactly the same arguments, but now thinking of e as a g-valued 1-form.

Recall that, as remarked in Section 2, examples of (k, s)-nil algebras g include nil and nilpotent
algebras. In particular, from Lemma 2.1 we see that subalgebras of so(k1)⊕ ...⊕ s(kr) are (k, s)-nil
for every (k, s) such that k is even and s ≥ 1. This leads us to the following corollary:

Corollary 3.1. For subalgebras as above, in a spacetime of dimension n ≥ 4, the inhomogeneous
and the homogeneous linear EHP are equal. If n ≥ 6 both are trivial.
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3.2 Gravity Arising From Extensions

Now, let us move on to a slightly more abstract situation: when G is not a linear group, but a
splitting extension of a given linear group H, i.e, we will deal with group reductions H →֒ R

k
⋊H.

First of all, notice that if P → M is a bundle structured over H ⊂ GL(k;R), then we can always
extend its group structure to R

k
⋊H. Indeed, up to isomorphisms this bundle is classified by a map

f : M → BH and getting a group extension is equivalent to lifting f as shown below. It happens
that this lifting actually exists, since we are working with splitting extensions (second diagram). It
is in this context that we will now internalize EHP theories.

R
k
⋊H



��

R
k
⋊H



��
M

;;✈
✈

✈
✈

✈

f
// H M

s◦f
;;✈

✈
✈

✈
✈

f
// H

s

^^

Thus, given a linear group H, consider bundles P → M endowed with group reductions H →֒
R
k
⋊H. As previously, fixed k > 0 and Λ ∈ R we define homogeneous and inhomogeneous extended-

linear Hilbert-Palatini form of reductive Cartan connections ∇ = e+ ω in P as

αk = e f⋊ ... f⋊ ef⋊ Ω and αk,Λ = αk +
Λ

(k − 1)!
ef⋊ ... f⋊ e. (16)

Furthermore, fixed a FABS, the corresponding extended-linear EHP theories are defined by
(14). At first sight, the only difference between the “extended-linear” and the “linear” theories is
that we now consider the induced product f⋊ instead of f. However, in the context of Geometric
Obstruction Theory, this replacement makes a fundamental difference. For instance, the condition
(C1) used to get Theorem 3.1 no longer makes sense, because H →֒ R

k
⋊ H generally is not a

normal subgroup. Immediate substitutes for (C1) and (C2) are

(C1’) as an associative algebra (h,f⋊) is (k, s)-nil;

(C2’) as an associative algebra, (Rk
⋊ h,f⋊) is (k, s)-nil.

But, differently from (C1) and (C2), these new conditions are intrinsically related. It is obvious
that (C2)’ implies (C1)’, because h is a subalgebra of Rk

⋊ h. The reciprocal is also valid, as shown
in the next lemma.

Lemma 3.1. Let (A, ∗) be an algebra, B a vector space and f : A → B a linear map that admits a
section s : B → A. In this case, if (A, ∗) is (k, s)-nil, then (B, ∗′) is too, where ∗′ is the pulled-back
multiplication (12).

Proof. Recall that any algebra X induces a corresponding graded-algebra structure in Λ(P ;X)
according to (7). Due to the functoriality of Λ(P ;−), we then get the commutative diagram below,
where the horizontal rows are just (7) for the algebras (A, ∗) and (B, ∗′), composed with the diagonal
map. The commutativity of this diagram says just that ∧2

∗′α = ∧2
∗f(α) for every α ∈ Λ(P ;B).

From the same construction we get, for each given s ≥ 2, a commutative diagram that implies
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∧s
∗′α = ∧s

∗f(α). Therefore, if (A, ∗) is (k, s)-nil it immediately follows that (B, ∗′) is (k, s)-nil too.

Λ(P ;B)

Λf
��

∆ // Λ(P ;B)⊗ Λ(P ;B)

(Λf)⊗(Λf)
��

// Λ(P ;B ⊗B)

Λ(f⊗f)
��

// Λ(P ;B)

Λf
��

Λ(P ;A)

Λs

OO

∆ // Λ(P ;A) ⊗ Λ(P ;A) //

(Λs)⊗(Λs)

OO

Λ(P ;A⊗A) //

Λ(s⊗s)

OO

Λ(P ;A)

Λs

OO

As a consequence of the lemma above, the version of Theorem (3.1) for extended-linear EHP is
the following:

Theorem 3.2. Let M be an n-dimensional spacetime and P → M be a H-bundle, where H is a
linear group such that (h,f) is (k, s)-nil. If n ≥ k + s+ 1, then the inhomogeneous extended-linear
EHP theory equals the homogeneous ones. If n ≥ k + s+ 3, then both are trivial.

Proof. From the last lemma we can assume that (g,f⋊) with g = R
l
⋊ h is (k, s)-nil. An argument

similar to that of the (C2)-case in Theorem 3.1 gives the result.

Corollary 3.2. In a spacetime of dimension n ≥ 4, the cosmological constant plays no role in any
extended-linear EHP theory with h ⊂ so(k1)⊕ ...⊕ so(kr). If n ≥ 6 the full theory is trivial.

Remark 3.2. This simple result will be our primary source of examples of geometric obstructions.
This is due to the fact that essentially all “classical” geometry satisfies the hypothesis of the last
corollary, implying that EHP cannot be realized in them in higher dimensions.

Remark 3.3. For future reference, notice that any linear EHP theory induces, in a canonical way, a
corresponding extended linear EHP theory. Indeed, if G ⊂ GL(k;R) is a linear Lie group, then any
subgroup H ⊂ G inherits a canonical action on R

k, allowing us to consider the semidirect product
R
k
⋊H and then H as a subgroup of it. So, if we start with a linear theory for the inclusion H →֒ G

we can always move to a a extended-linear theory for the inclusion H →֒ R
k
⋊H. We will refer to

this induced theory as the canonical extended-linear theory associated to a given linear theory.

3.3 Gauged Gravity

In the last subsection we defined EHP theories in linear geometries H →֒ G and in extended-linear
geometries H →֒ R

k
⋊ H as direct analogues of the EHP action functional. This means that we

considered theories on (reductive) Cartan connections for the given group reduction, which are pairs
∇ = e+ ω, where ω is an usual H-connection and e is a pointwise isomorphism.

In order to regard EHP theories as genuine (reductive) gauge theories, it is necessary to work
with arbitrary (i.e, not necessarily Cartan) reductive connections. In practice, this can be obtained
by just forgetting the hypothesis of pointwise isomorphism in e. This leads us to define homoge-
neous and inhomogeneous gauge linear/extended-linear Hilbert-Palatini forms of a reductive (not
necessarily Cartan) connection ∇ = e+ω as in (13). Similarly, we can then define homogeneous and
inhomogeneous gauge linear/extended-linear EHP theories as in (14), whose configuration space is
this new space of arbitrary reductive connections.

A linear map may not be an isomorphism when it is not injective or/and when it is not surjective.
We would like that gauge EHP theories have a nice physical interpretation, leading us to ask: what
is the physical motivation for e be injective or/and surjective?
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At least for geometries described by G-structures (which in our context means extend-linear
geometries), the quotient g/h can be identified with some R

l endowed with a tensor t such that
the pair (Rl, t) is the “canonical model” for the underlying geometry. In such cases, the injectivity
hypothesis on ea : TPa → g/h is important to ensure that we have a good way to pull-back this
“canonical geometric model” to each fiber of TP . For instance, when G = R

l
⋊ O(n − 1, 1) and

H = O(n − 1, 1), the quotient g/h is just Minkowski space endowed with its standard metric η,
and the injectivity of e implies that g = e∗η is also a Lorentzian metric TP . But, even if we
forget injectivity, the tensor g = e∗η remains well-defined, but now it is no longer non-degenerate.
Furthermore, for some models of Quantum Gravity, this non-degeneracy is welcome (say to ensure
the possibility of topology change [20, 1]), which means that physically it is really interesting to
consider reductive connections ξ = ω + e such that e is pointwise non-injective. With this in mind,
we will do gauge EHP theories precisely for this kind of reductive connections.

On the other hand, in the context of Geometric Obstruction Theory, it is natural to expect that
working with gauge EHP theories such that e in non-injective will impact the theory more than
usual. But, how deep will be this impact? Notice that the proofs of Theorem 3.1 and Theorem 3.2
were totally based on the fact that in each point e take values in some (k, s)-nil algebra. In general,
as discussed in Subsection 2.4, being (k, s)-solv is weaker than being (k, s)-nil. But, if we are in the
class of injective forms, Proposition 2.3 shows that both concepts agree. Therefore, when working
with Cartan connections, no new results can be obtained if we replace “(k, s)-nil” with “(k, s)-solv”.
However, forgetting injectivity we may build stronger obstructions.

In order to get these stronger obstructions, let us start by recalling that until this moment we
worked with the class of reductive connections. These are g-valued 1-forms ξ which, respectively
to the vector space decomposition g ≃ g/h ⊕ h, can be globally written as ξ = e + ω. This notion
of “reducibility” extends naturally to k-forms with values in A, endowed with some vector space
decomposition A ≃ As ⊕ ...⊕A0. Indeed, we say that an A-valued k-form α in a smooth manifold
P is reductive (or decomposable) respectively to the given vector space decomposition if it can be
globally written as α = αs + ... + α0. We can immediately see that when P is parallelizable every
A-valued k-form is reductive respectively to an arbitrarily given decomposition of A. It then follows
that in an arbitrary manifold algebra-valued k-forms are locally reductive.

After this digression, we state and proof the obstruction result for gauge linear/extended-linear
EHP theories. Here, once fixed a group reduction H →֒ G, instead of (C1) and (C2) (which are
nilpotency conditions) we will consider the following analogous solvability conditions:

(S0) the group G is isomorphic to R
l
⋊H and (h,f) is (k, s)-solv;

(S1) the subgroup H ⊂ G is normal and, as a matrix algebra, (g,f) is a splitting extension by h

of a (k, s)-solv algebra r;

(S2) the full algebra (g,f) is a (k, s)-solv algebra.

Theorem 3.3. Let M be an n-dimensional spacetime and P → M be a G-bundle, endowed with
a group reduction H →֒ G fulfilling (S0), (S1) or (S2). If n ≥ k + s + 1, then the inhomogeneous
gauge EHP theory equals the homogeneous ones. If n ≥ k + s+ 3, then both are trivial.

Proof. By definition, a (k, s)-solv algebra A comes endowed with a decomposition A ≃ As⊕ ...⊕A0

by (k, s)-nil algebras Ai. Therefore, under condition (S1) if, e is an g/h-valued 1-form, where g/h is
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(k, s)-solv, the digression above tells us that it can be locally written as e = es+...+e0. Furthermore,
we have

f
re = f

res + ...+f
re0,

because for i 6= j the forms ei and ej are non-zero in different spaces. Since each ei take values in a
(k, s)-nil algebra, it then follows that f

k+s+1e = 0 locally, which implies f
k+s+1efα = 0 for every

g-valued form α. The remaining part of the proof is identical to that of Theorem 3.1, starting after
equation (15). Case (S2) is analogous to (S1) and (after using Lemma 3.1) case (S0) is analogous
to (S2).

3.4 Dual Gravity

Here we will see that there are two “dual theories” associated to any EHP theory and we will see
how the geometric obstructions of the actual EHP theory relate to the obstructions affecting these
new theories.

We start by recalling that the fields in a gauge EHP theory (being it linear or extended-linear) are
reductive connections for a given reduction H →֒ G. As a vector space we always have g ≃ h⊕ g/h
and these connections are given by 1-forms e : TP → g/h and ω : TP → h such that ω is a
connection. We can then think of a EHP theory as being determined by four variables: the fields e
and ω together with the spaces g/h and h. This allows us to define two types of “dual EHP theories”
by interchanging such variables.

More precisely, we define the geometric dual of a given EHP theory as that theory having the
same space of configurations, but whose action functional ∗Sn,Λ is ∗Sn,Λ[e, ω] = Sn,Λ[ω, e]. Explicitly,
for any fixed FABS we have

∗Sn,Λ[e, ω] =

∫

M

tr((∗αn,Λ)), with ∗αn,Λ = f
n−2
∗ ω f∗ E +

Λ

(n− 1)!
f

n
∗ ω, (17)

where E = de+ e f∗ e and f∗ must be interpreted as f or f⋊ depending if the starting theory is
linear or extended-linear.

On the other hand, we define the algebraic dual of a EHP theory as that theory having an action
functional with the same shape, but now defined in a “dual configuration space”. This is the theory
whose action function S∗

n,Λ is given by

S∗
n,Λ[e, ω] =

∫

M

tr((α∗
n,Λ)), with α∗

n,Λ = f
n−2
∗ e f∗ Ω+

Λ

(n− 1)!
f

n
∗ e, (18)

where e and ω take value in h and g/h, respectively. Furthermore, as above, f∗ must be interpreted
as f or f⋊, depending of the case.

In very few words we can say that the geometric dual of a given theory makes a change at the
dynamical level, in the sense that only the action funcional is changed. Dually, the algebraic dual
of a given theory produce changes only at the kinematic level, meaning that the dualization refers
to the configuration space. This can be summarized in the table below.
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theories /variables e ω g/h h

EHP e ω g/h h
∗ EHP ω e g/h h

EHP∗ e ω h g/h

Table 1: Relation between EHP theories and its geometric and algebraic dualizations.

Once such dual theories are introduced, let us now see how the obstruction results for EHP
theories apply to them. Let us start by focusing on the geometric dual. Our main result until now
is Theorem 3.3. It is essentially determined by two facts. First, e take values in an algebra fulfilling
some “solvability condition” (i.e, any one of hypotheses (S0), (S1) or (S2)); and second, the EHP
action contains powers of e.

When we look at the action (17) of the geometric dual theory we see that it contains powers of ω
(instead of e). Therefore, assuming that ω take values in some “solvable” algebra we will get a result
analogous to Theorem 3.3. Looking at Table 1 we identify that in the geometric dual theory ω takes
values in h which is a subalgebra of g, where the product f makes sense, so that the “solvability
condition” should be on h. Dually, the action (18) also contains powers, now of e. Table 1 shows
that here e take values in h, so that if (h,f) is “solvable”, then not only the geometric dual theory is
trivial, but also the algebraic dual one! Formally, we have the following result, whose proof follows
that of Theorem 3.3

Theorem 3.4. Let M be an n-dimensional spacetime and P → M be a G-bundle, endowed with a
group reduction H →֒ G. Assume that (h,f) is a (k, s)-solv algebra. If n ≥ k+ s+3, then both the
geometric dual and the algebraic dual of gauge EHP theory are trivial.

Corollary 3.3. If condition (S0) is satisfied and n ≥ k + s+ 3, then gauge EHP theory and all its
duals are trivial.

Remark 3.4. In the linear context, where G is a linear Lie group and H ⊂ G is a subgroup, Theorem
3.4 above implies that if (h,f) is (k, s)-solv, then the duals of the actual EHP theory are trivial.
This does not mean that the actual EHP is trivial. In fact, Corollary 3.3 needs condition (S0),
which subsumes that we are working in the extended-linear context.

3.5 The Role of Torsion

Until this moment we have given conditions under which gauge EHP theories and their duals are
trivial. One of this conditions is (S0), which makes sense in the extended-linear context and states
that the subalgebra (h,f) is (k, s)-solv. Indeed, from Corollary 3.3, if this condition holds then EHP
and their duals are all trivial for n ≥ k+s+3. Due to Lemma 2.1, the standard examples of (1, 2)-nil
algebras are subalgebras of so(k1)⊕ ... ⊕ so(kr), so that for such types of geometry EHP and their
duals are trivial if n ≥ 6. Here we will see that if we work with a special class of connections, then
there are even more obstructions, due essentially to Berger’s classification theorem on Riemannian
holonomy [4, 29].

We start by recalling that if ω is a connection on a G-principal bundle π : P → M , each point
a ∈ P determines a Lie subgroup Hol(ω, a) ⊂ G, called the holonomy group of ω in a, which
measures the failure of a loop in M , based in π(a), remaining a loop after horizontal lifting [24].
In typical situations, P is the frame bundle FM of a n-manifold M , regarded as a G-structure
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under some reduction G →֒ GL(n;R). Such a G-structure, in turn, generally is determined as the
space of frame transformations which preserve some additional tensor field t in M . In this context,
the condition Hol(ω, a) ⊂ G is equivalent to saying that there exists one such tensor field which
is parallel relative to ω, i.e, such that ∇ωt = 0, where ∇ω is the covariant derivative on tensors
induced by ω. Particularly, SO(n)-reductions of FM correspond to Riemannian metrics on an
oriented manifold, so that if ω is a connection on FM such that Hol(ω, a) ⊂ SO(n), then ∇ωg = 0
for some Riemannian metric g. Consequently, a torsion-free connection ω in FM whose holonomy
is contained in SO(n) is the Levi-Civita connection of some metric.

Recall that, as pointed in Remark 2.2, for every k1 + ...+ kr = n we have a canonical inclusion

SO(k1)× ...× SO(kr) →֒ SO(n) (19)

as diagonal block matrices. Given a connection ω with special Riemannian holonomy (meaning that
it is contained in SO(n)) we can ask: when is it indeed contained in the product subgroup above?
From de Rham decomposition theorem [33, 43] we see that if ω is torsion-free (and, therefore, the
Levi-Civita connection of a metric g) and M is simply connected, this happens iff (M,g) is locally
isometric5 to a product of Riemannian ki-manifolds (Mi, gi), with i = 1, ..., r, and Hol(ω) is actually
the product of Hol(ωi) ⊂ SO(ki), where ωi is the Levi-Civita connection of gi.

Assuming (M,g) simply connected and locally irreducible in the above sense, the holonomy
reduction (19) does not exist. In this case, it is natural to ask for which proper subgroups G →֒
SO(n) the holonomy of the Levi-Civita connection of g can be reduced. When (M,g) is not locally
isometric to a symmetric space, we have a complete classification of such proper subgroups, given
by Berger’s classification theorem, as in Table 2.

G ⊂ SO(n) dim(M) nomenclature

U(n) 2n Kähler

SU(n) 2n Calabi-Yau

Sp(n) · Sp(1) 4n Quaternionic-Kähler

Sp(n) 4n Hyperkähler

G2 7 G2

Spin(7) 8 Spin(7)

Table 2: Berger’s classification theorem for Riemannian signature.

Let us see how we can use Berger’s classification theorem to get geometric obstructions similar
to those given in Theorem 3.4 and in Corollary 3.3. We will need some definitions. We say that
a linear group H is a k-group if there are nonnegative integers k1, ..., kr, with k1 + ... + kr = k,
such that (h,f) is a subalgebra of so(k1) ⊕ ... ⊕ so(kr). In other words, k-groups are fundamental
examples of (1, 2)-nil algebras. Furthermore, we say that a manifold N is a Berger k-manifold if
it has dimension k and it is simply connected, locally irreducible and locally non-symmetric. A
bundle P → M is called k-proper if there exists an immersed Berger k-manifold N →֒ M whose
frame bundle is a subbundle of P , i.e, such that FN ⊂ ı∗P . The motivating (trivial) examples are
the following:

Example 3.1. The frame bundle of a Berger n-manifold is, of course, n-proper.

5If (M, g) is geodesically complete, the decomposition is global.
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Example 3.2. If f : N →֒ M an immersion with N a Berger k-manifold, then FM is automatically
k-proper, because FN ⊂ f∗FM .

Despite the notions introduced above, in the next theorem we will work with torsionless (extended-
linear) EHP theories, i.e, extended-linear EHP theories restricted to reductive connections ∇ = e+ω
such that Θω = dωe = 0. For the case of linear EHP theories, recall that as discussed in Remark
3.3, to any of them we have an associated canonical extended-linear theory.

Theorem 3.5. Let P → M be a k-proper H-bundle over a n-manifold M . If H is a k-group, then
k1 = k and ki>1 = 0. Furthermore, for any FABS, a torsionless extended-linear EHP theory based
on H is nontrivial only if one of the following conditions is satisfied

(B1) k = 2, 4 and M contains a Kähler Berger k-manifold;

(B2) k = 4 and M contains a quaternionic-Kähler Berger k-manifold.

Proof. From Lemma 2.1, the hypothesis on h implies that it is (1, 2)-nil and, therefore, because we
are working with extended-linear theories, condition (S0) is satisfied. Consequently, by Theorem
3.3 the actual (and, in particular, the torsionless) EHP theory is trivial if n ≥ 6, so that we may
assume n < 6. Since P → M is k-proper, M contains at least one immersed Berger k-manifold
ı : N →֒ M such that FN ⊂ ı∗P . Let κ denote the inclusion of FN into ı∗P . On the other hand,
we also have an immersion ı∗P →֒ P , which we denote by ı too. Lie algebra-valued forms can be
pulled-back and the pullback preserves horizontability and equivariance. So, for any ∇ = e+ ω the
corresponding 1-form (ı ◦ κ)∗ω ≡ ω|N is an H-connection in FN and its holonomy is contained in
H. By hypothesis H is an k-group so that, via Lie integration,

H ⊂ SO(k1)× ...× SO(kr) ⊂ SO(k).

In particular, the holonomy of ω|N is contained in SO(k), implying that ω|N is compatible with
some Riemannian metric g in N . But, we are working with torsion-free connections, so that ω|N
is actually the Levi-Civita connection of g and, because N is irreducible, de Rham decomposition
theorem implies that there exists i ∈ 1, ..., r such that ki = k and kj = 0 for j 6= i. Without loss of
generality we can take i = 1. Because N is a Berger manifold, Berger’s theorem applies, implying
that the holonomy of ω|N is classified by Table 2, giving conditions (B1) and (B2).

Corollary 3.4. Let M be a Berger n-manifold with an H-structure, where H is a n-group. In
this case, for any FABS, a torsionless extended-linear EHP based on H is nontrivial only if M has
dimension n = 2, 4 and admits a Kähler structure.

Proof. The result follows from the last theorem by considering the bundle P → M as the frame
bundle FM → M and from the fact that every orientable four-dimensional smooth manifold admits
a quaternionic-Kähler structure [5, 34].

Remark 3.5. This corollary shows how topologically restrictive it is to internalize torsionless extended-
linear EHP in geometries other than Lorentzian. Indeed, if the spacetime M is compact and 2-
dimensional, then it must be S

2. On the other hand, in dimension n = 4 compact Kähler structures
exist iff the Betti numbers b1(M) and b3(M) are zero, so that χ(M) = b2(M)+2. As a consequence,
if we add the (mild) condition H2(M ;R) ≃ 0 on the hypothesis of Corollary 3.4 we conclude that
M must be a K3-surface!
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The last theorem was obtained as a consequence of Theorem 3.3 and of Berger’s classification
theorem. So, this is a geometric obstruction result for extended-linear EHP theories. However, due
to Theorem 3.4 and Corollary 3.3 we can get exactly the same result for the geometric and algebraic
duals of linear EHP. The same result does not hold for the actual linear EHP theories, because
there is no analogue of Theorem 3.3 or Corollary 3.3 for them, as emphasized in Remark 3.4.

On the other hand, Berger’s theorem remains valid, allowing us to get an obstruction result for
linear EHP theories independently of the previous ones. Indeed, recall that (as pointed in Remark
3.3) we can always associate a canonical (extended-linear) theory to a given linear one. Let us
define a torsionless liner EHP theory as that obtained by restricting a linear theory to the space
of connections such that the corresponding canonical theory is a torsionless extended-linear EHP
theory in the sense introduced above. We then have the following:

Theorem 3.6. Let P → M be a k-proper G-bundle over a n-manifold M endowed with a group
structure reduction H →֒ G. If H is a k-group, then k1 = k and ki>1 = 0. Furthermore, a
torsionless linear EHP theory for this reduction is nontrivial only if one of the following conditions
is satisfied

(B1’) k is even and M contains a Kähler Berger k-manifold;

(B2’) k is divisible by 4 and M contains a quaternionic-Kähler Berger k-manifold;

(B3’) k = 7 and M contains a Berger k-manifold with a G2-structure.

Proof. The proof follows the same lines of the last theorem, except by the first argument, which
makes explicit use of Theorem 3.3.

The above results are about different versions of torsionless gauge EHP theories. By this we
mean that no requirement was made on e. We close this section remarking that if we work not on
the gauge context, but on the Cartan context (in the sense that e is a pointwise isomorphism), then
there is a physical appeal for working with torsionless connections.

Indeed, recall that by the very abstract definition, a classical theory is given by an action
functional S : Conf → R defined on some space of configurations. The interesting classical theories
are those in that Conf has some kind of “smooth structure” relative to which S can be regarded
as a “smooth function” and, as such, has a “derivative”. In such cases, there exists a distinguished
subspace Cut(S) ⊂ Conf constituted by the “critical points” of S. This is the phase space of the
underlying classical theory, which contains all configurations which a priori can be observed in
nature.

If S is now the action of EHP theory, we find that the phase space is determined by the pairs
(e, ω) which satisfy the equations

f
n−2
∗ e f∗ Ω+

Λ

(n− 1)!
f

n
∗ e = 0 and f

n−2
∗ e fΘω = 0

simultaneously, where (once again) f∗ must be interpreted as f or f⋊ depending if we are in the
linear or in the extended-linear context. The first of these equations is just an analogue of Einstein’s
equations. The second, in turn, if we are working with Cartan connections, reduces to Θω = 0, i.e,
to the “torsionless” condition previously used.
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4 Abstract Obstructions

Until this moment we considered EHP theory for group structure reductions H →֒ G other than
O(n− 1, 1) →֒ Iso(n− 1, 1), where G could be an arbitrary linear group or some semidirect product
R
k
⋊ H. In other words, we realized gravity, as modeled by EHP theories, in other geometries

than Lorentzian geometry. We then showed that for certain classes of geometries the corresponding
theory is actually trivial, meaning that we have geometric obstructions.

In Subsection 4.1 we will generalize EHP theories even more by replacing the algebras h and
g, which are induced by the Lie groups G and H, by general (not necessarily satisfying PI’s)
algebras. We call these theories algebra-valued EHP theories6. One motivation to consider this
new generalization is the following. In the previous extended-linear context, a group reduction
H →֒ R

n
⋊ H on a manifold M is (as discussed in the beginning of Subsection 3.5) a geometry

modeled by some kind of tensor t in M . A global symmetry of (M, t) is an automorphism in
the category of H-structures, i.e, a difeo such that f∗t = t. If we apply this to the canonical
geometric model (Rn, t) we see that its group of global symmetries Aut(Rn, t) is precisely R

n
⋊H.

Therefore, the algebra (Rn
⋊ h,f⋊) takes the role of the associative algebra of infinitesimal global

symmetries of the canonical geometric model, which is where the reductive connections for the
reduction H →֒ R

n
⋊H take values.

It happens that in many physical situations we have more hidden/internal/worldsheet symme-
tries, so that the full algebra of infinitesimal symmetries has a more abstract structure than just an
associative algebra, leading us to consider “reductive connections with values in arbitrary algebras”.
Once the notion of algebra-valued EHP theoriesis introduced, we show that the previous obstruction
results (Theorem 3.3), hold ipsis litteris in this new abstract context.

A typical situation in that the full algebra of infinitesimal symmetries is not just an associative
algebra is when the underlying “canonical geometric model” is not a cartesian space R

n endowed
with a tensor, but actually a supercartesian space R

n|m endowed with a supertensor. Indeed, in this
case the algebra of infinitesimal symmetries inherits a Z2-graded algebra structure. This motivates
us to analyze the effects of gradings in the obstruction results, which is done in Subsection 4.2.

Notice that if the pair (Rn, tn) describes geometry, the pair (Rn|m, tn|m) describes supergeometry.
Therefore, it would be natural to consider not only “EHP with values in superalgebras”, but actually
“super EHP theories”. Closing the section, in Subsection 4.3 we present an approach to the notion
of “reductive graded-connection”, allowing us to define “graded EHP theories”, and we show how to
extend the obstruction results to this context.

4.1 Algebra-Valued Gravity

We start by recalling that a reductive connection in P for H →֒ G is a g-valued 1-form ∇ which
decomposes as ω+ e, where ω is a h-valued 1-form and e is a g/h-valued 1-form (not necessarily an
isomorphism, due to previous discussion). Notice that it is completely determined by the pair (ω, e)
and by the vector space decomposition g ≃ h⊕ g/h, a fact that was already used in Subsection 3.4.
In typical cases g is actually a splitting extension (the previous extended-linear context) or H ⊂ G
is a normal subgroup (previous linear context), so that both h and g/h acquire algebra structures.

6We could call such theories algebraic EHP theories, but this nomenclature would suggest that exactly as EHP
theories are about connections, “algebraic EHP” should be about “algebraic connections”. The problem is that the
notion of “algebraic connection” actually exists in the literature [9, 23, 13], being applied in a more general context.
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This leads us to the following generalization: given an R-algebra (A, ∗) endowed with a vector
space decomposition A ≃ A0 ⊕ A1, where A0 and A1 have algebra structures ∗0 and ∗1 (not
necessarily subalgebras of A), we define an A-connection in a manifold P as an A-valued 1-form ∇
in P which is reductive respective to A ≃ A1 ⊕A0. In }

{kmore concrete terms, it is an A-valued 1-form ∇ which is written as ∇ = ω + e, where ω
and e take values in A1 and A0, respectively. The curvature of ω is the 2-form Ω = dω + ω ∧1 ω
in A1, where ∧1 is the product induced by ∗1. Similarly, the torsion of ω is the A-valued 2-form
Θω = de+ ω ∧∗ e. Some related concepts are considered in [6, 7].

With these structures in hand we can generalize gauge EHP theories (about g-valued connec-
tions) to algebra-valued EHP theories (about A-connections in the above sense). Indeed, given a
spacetime manifold M , this generalization is obtained following the following steps:

1. consider some analogue of the Hilbert-Palatini forms (13);

2. show that this Hilbert-Palatini form induces a corresponding form in M with values in some
bundle;

3. turn this bundle-valued form into a real-valued form;

4. define the action functional as the integral over M of this real-valued form.

In order to do the second step, the immediate idea is to select a FABS, say defined on a subcategory
C ⊂ BunM ×AlgR, as in Section 2.5. However, in order to realize the first step we need to work
with FABS fulfilling certain “invariance property”: we say that a FABS on C is invariant by a
functor I : C → ZAlgR if

(a) for all (P,A) ∈ C the corresponding I(P,A) is an ideal of S(P ;A), so that we can take the
quotient functor S/I and we have a natural transformation π : S ⇒ S/I;

(b) there exists another functor J : C → ZAlgR such that J(P,A) is an ideal of Λ(M ;EA) and
whose projection we denote by π′;

(c) there exists a natural transformation ′ : S/I ⇒ Λ(M ;−)/J such that ′ ◦ π = π′ ◦ , i.e, the
diagram below commutes for every (P,A).

S(P,A)

π(P,A)

��

(P,A) // Λ(M ;EA)

π′
(P,A)

��
S(P,A)/I(P,A)

′
(P,A)

// Λ(M ;EA)/J(P,A)

(20)

Returning to the first step, notice that a priori the algebras A and A1 may not be associative, so
that due to ambiguities we cannot simply replace “f” by “∧∗” and “∧0” in (13) to get an A-valued
version of αHP ; instead, we should take into account all possibilities simultaneously. This can be
done as follows. Recall the “associativity-like” polynomials

(x1 · ... · (xs−2 · (xs−1 · xs))), (((x1 · x2) · (x3 · x4)) · ... · xs), etc.,
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which were introduced in Subsection 2.3 in order to describe nilpotency and nil properties as PI’s.
Due to the structure of the Hilbert-Palatini forms, we are interested in the more specific polynomials

(x · ... · (x · (x · y))), etc. and (x · ... · (x · (x · x))), etc. (21)

When evaluated at Λ(P ;A), the set of these polynomials generates an ideal I(P,A) and the idea is
to consider FABS which are invariant by it.

More precisely, given a bundle P → M over a manifold M and an algebra A endowed with
vector space decomposition A ≃ A0 ⊕A1, we say that a FABS over M , defined in C, is compatible
with the given data if

(a) the pair (P,A) belongs to C;

(b) each possibility of defining αn,Λ (i.e, the evaluation of each polynomial (21) in each A-
connection) belongs to S(P,A);

(c) the FABS in question is invariant by I, as defined above.

Considering FABS satisfying (a)-(c) we realize the first two steps needed to define “algebra-valued
EHP theory”. In order to realize the third step, we need something like a “trace”. A trace transfor-
mation for a FABS on C invariant by I is a natural transformation tr between Λ(M ;E−)/J and
the constant functor in Λ(M ;R). In other words, it is a rule that assigns (in a natural way) a map
of graded-algebras tr(P,A) : Λ(M ;EA) → Λ(M ;R) to every pair (P,A) ∈ C.

Now, we can finally define what is an EHP theory in the general algebraic setting. Given a
principal bundle P → M , an algebra A and a vector space decomposition A ≃ A0 ⊕ A1, choose
a compatible FABS endowed with a trace transformation. The corresponding A-valued inhomoge-
neous7 EHP theory in P is the classical theory whose configuration space is the space of all reductive
A-connections in P and whose action functional is given by (we omit the subscripts in the maps π,
j′ and tr in order to simplify the notation)

Sn,Λ[e, ω] =

∫

M

tr(′(π(αHP ))),

where αHP ∈ S(P,A) is any “Hilbert-Palatini”-type form, say

αHP = (e ∧∗ ...(∧∗(e ∧∗ (e ∧∗ Ω))) +
Λ

(n− 1)!
(e ∧∗ ...(∧∗(e ∧∗ (e ∧∗ Ω))).

Notice that we recover the gauge linear EHP theories discussed previously by taking A as a
matrix Lie algebra g and considering the adjoint FABS endowed with the classical trace map.
Therefore, at least in this restricted domain we have obstruction Theorems 3.1, 3.3 and 3.4. These
results remain valid if:

1. we replace the adjoint FABS by any other compatible FABS (indeed, due to the linearity of
the FABS, once one shows that αHP = 0 it immediately follows that the bundle-valued form
′(π(αHP )) is also trivial independently of the FABS chosen);

2. we replace the classical trace by any other trace transformation (also due to the linearity of
trace transformations);

7The corresponding A-valued homogeneous EHP theory is defined analogously.
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3. we replace the algebra g by any other algebra A endowed with a vector space decomposition
A ≃ A0⊕A1 (this follows from the structure of the proofs of Theorems3.1, 3.3 and 3.4, which
in essence depends only on general algebraic hypotheses on the decomposition g ≃ g/h⊕ h).

Summarizing: the obstruction theorems hold not only in the domain of matrix algebras, adjoint
FABS and classical trace, but also for arbitrary algebras, arbitrary compatible FABS and arbitrary
trace transformations. Concretely, we have the following general obstruction theorem whose proof
is in essence Remarks 1-3 above.

Theorem 4.1. Let M be an n-dimensional spacetime and P → M be a bundle and (A, ∗) an algebra
endowed with a vector space decomposition A0 ⊕A1 fulfilling one of the following conditions

(A1 ) the algebra (A0, ∗0) is a (k, s)-solv subalgebra8 (A, ∗);

(A2 ) (A, ∗) is itself (k, s)-solv.

If n ≥ k + s + 1, then for any compatible FABS and any trace transformation, the corresponding
inhomogeneous A-valued EHP theory equals the homogeneous ones. If n ≥ k + s + 3, then both
theories are trivial.

4.2 Graded-Valued Gravity

Here we shall indicate how the previous discussion can be extended to the case when the background
algebra A is itself graded (for more details see [27]). Given a monoid m, let P → M be a principal
bundle and A be a m-graded real algebra. For any vector space decomposition A ≃ A0⊕A1 where Ai

are algebras, we define a connection in P with values in the graded algebra A exactly as previously:
as a A-valued 1-form ∇ in P which writes as ∇ = e + ω for e : TP → A0 and ω : TP → A1.
The only difference is that now the m-grading of A induces a corresponding grading in each Ai by
⊕mAm

i , where Am
i = Ai ∩Am, which means that locally we can write e and ω as

e =
∑

mem and ω =
∑

m

ωm,

where em : TP → Am
0 and ω : TP → Am

1 are just the projections of e and ω onto the corresponding
Am

i .
In order to extend FABS to this graded context we notice that if A is m-graded, then the algebra

of A-valued exterior forms Λ(P ;A) is (Z × m)-graded. On the other hand, an algebra bundle EA

whose typical fiber is A is not necessarily m-graded, because the pointwise decomposition may
not vary continuously to allow us to globally decompose EA as ⊕mEAm . Therefore, in order to
incorporate graded-algebras it is enough to work with “graded FABS” characterized by the following
diagram:

8We can forget the subalgebra hypothesis by modifying a little bit the ideal I(P,A) used to define the notion of
“compatible FABS”.
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For a chosen bundle P → M and a m-graded algebra A ≃ A0⊕A1, we define a compatible graded
FABS exactly as in the last subsection. Notice that now the natural transformation ı : S ⇒ Λ is
(Z×m)-graded, while  : S ⇒ Λ(M ;E−) remains Z-graded (due precisely to the fact that EA may
not be m-graded). In particular, the diagram (20) remains in ZAlgBunM . This means that the
trace transformation that we need to consider is also only Z-graded, as previously. For every such
compatible graded FABS endowed with a trace transformation tr we define the corresponding A-
valued inhomogeneous EHP theory as the classical theory whose configuration space is the collection
of all A-valued connections in P , and whose action functional is given by

Sn,Λ[e, ω] =

∫

M

tr(′(π(αHP ))). (22)

Thus, up to minor modifications everything works as in the last subsection. The crux of these
“minor modifications” is that we can now locally decompose e and ω. This allows us to get a
stronger version of Theorem 4.1 following the same strategy used to get Theorem 3.3 from Theorem
3.1. Indeed, consider the following conditions about the vector space decomposition A ≃ A0 ⊕A1:

(G1) (A0, ∗0) is a subalgebra and each Aj
0 = Ai ∩ A0 is a (kj , sj)-weak solvable subspace of A0

(recall definition in Remark 2.5).

(G2) restricted to each Aj the algebra A is (kj , sj)-weak solvable.

We can now prove

Theorem 4.2. Let M be an n-dimensional spacetime, P → M be a bundle and (A, ∗) be a m-graded
algebra endowed with a vector space decomposition A0 ⊕A1 fulfilling conditions (G1) or (G2)above.
Furthermore, let (k, s) be the minimum of (kj , sj). If n ≥ k + s+ 1, then for any compatible FABS
and any trace transformation, the corresponding inhomogeneous A-valued EHP theory equals the
homogeneous ones. If n ≥ k + s+ 3, then both theories are trivial.

Proof. The proofs for (G1) and (G2) are very similar, so that we will only explain the (G1) case.
Once again, since everything is linear and grading-preserving, it is enough to prove that αHP = 0
for some representative Einstein-Hilbert form. Particularly, we can prove for

αHP = ∧n−2
∗ e ∧∗ Ω+

Λ

(n− 1)!
∧n
∗ e.

Under the hypothesis, we can locally write e =
∑

m em with em : TP → Am
0 . From condition (G1)

each Am
0 is a weak (km, sm)-solvable subspace, so that it writes as a sum Am

0 = ⊕iV
m
i of weak
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(km, sm)-nilpotent subspaces, which means, in particular, that we can write em =
∑

i e
m
i locally

and, therefore, e =
∑

m

∑

i e
m
i . Consequently, for every l we have ∧l

∗e = pl(e
m1
i1

, ..., eml

il
) for some

polynomial of degree l. If we now consider the minimum (k, s) (over m) of (km, sm), the fact that
each Am

0 is weakly (km, sm)-nilpotent then implies ∧k+s+1
∗ e = 0. The remaining steps in the proof

are identical to every other given in the previous theorems.

4.3 Graded Gravity

The last section was about “gauge theories with values in graded algebras”. We would like to work
not only with graded algebras but in the “full graded context”, i.e, with genuine graded gauge
theories (particularly, with graded EHP theories). A reductive A-valued gauge theory is about A-
valued connections, i.e, 1-forms ∇ : TP → A which are reductive respective to some decomposition
A ≃ A0 ⊕ A1. So, “graded gauge theories” should be about “A-valued graded connections”. There
are many approaches to formalize the notion of “graded connection”. For instance, we have:

1. Quillen superconnections [32], which are defined as operators on graded vector bundles over
a non-graded manifold;

2. connections on graded manifolds in the spirit of Kostant-Berezin-Leites, which are defined for
graded principal bundles P → M over graded manifolds [40];

3. connections on principal ∞-bundles, which can be applied in the domain of any cohesive ∞-
topos (particularly in the ∞-topos of formal-super-smooth manifolds), where the notion of
differential cohomology can be axiomatized and a ∞-bundle with connection is defined as a
cocycle of such cohomology [14, 35, 38].

Here we will not work with any of the models above. Instead, given am-graded algebra A, we assume
that the bundle TP is also m-graded (in the sense that it decomposes as a sum of vector bundles
TP ≃ ⊕mEm) and we define an A-valued graded connection in P of degree l as a smooth 1-form
∇ : TP → A which has degree l, meaning that it decomposes as a sequence of usual vector-valued
1-forms ∇m : Em → Am+l. Particularly, for us the reductive graded connections are those that can
be written as ∇ = e+ ω, where each e and ω can themselves be decomposed as maps of degree l

em, ωm : Em → Am+l, with em + ωm = ∇m.

With the notion of “reductive graded connections of degree l”, we can define “graded EHP theories
of degree l” in a natural way. Indeed, chosen a m-graded FABS, the corresponding m-graded A-
valued EHP theory of degree l is the classical theory given by the action functional (22) restricted
to the class of graded connections of degree l.

Remark 4.1. If we think of A as a graded-algebra describing the infinitesimal symmetries of the
theory and if we interpret the graded structure of the bundle TP as induced by the different flavors of
fundamental objects of the theory, then it is more natural to consider the connections of degree zero,
because they will map each piece Em into each corresponding subspace of infinitesimal symmetries
Am. On the other hand, in some situations (say in the BV-BRST formalism, where we have ghosts,
anti-ghosts and anti-fields) we need to work with “shifted symmetries”, meaning that degree l > 0
graded connections should also have some physical meaning.
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Now, let us focus on the geometric obstructions of the A-valued EHP theory that appear in the
full graded context. First of all, notice that to give a morphism f : A′ → A of degree l between two
graded algebras is the same as giving a zero degree morphism f : A′ → A[−l], where A[−l] is the
graded algebra obtained shifting A. Consequently, the obstructions of a degree l graded A-valued
EHP theory are just the obstructions of degree zero graded A[−l]-valued EHP theory, so that it is
enough to analyze theories of degree zero.

The core idea of the proof of Theorem 4.2 was to use that A is graded and the hypothesis (G1)
or (G2) in order to conclude that ∧k+s+1

∗ e = 0. More precisely, the grading of A was needed in
order to write e as e ≃

∑

m em, with em : TP → Am
0 , while the “solvability hypothesis” (G1) or

(G2) allowed us to decompose each em as em = ⊕ie
m
i , so that e = ⊕i,memi . The hypothesis (G1) or

(G2) was then used once again to wield ∧k+s+1
∗ e = 0.

If we assume that TP is a graded bundle, so that TP ≃ ⊕mEm, and if e has degree zero,
then the only change in comparison to the previous “partially graded” context is that instead of
decomposing e as a sum

∑

m em, we can now write it as a genuine direct sum e = ⊕mem, with
em : Em → A0 ∩ Am. Therefore, under the same hypothesis (G1) or (G2), for theories of degree

zero we get exactly the same obstruction results. Due to the argument of the last paragraph we
then have the following general obstruction result, which applies for graded theories of arbitrary
degree.

Theorem 4.3. Let M be an n-dimensional spacetime, P → M be a bundle such that TP is m-
graded and (A, ∗) be a m-graded algebra endowed with a vector space decomposition A0 ⊕A1. Given
l ≥ 0, assume that A[−l] satisfies condition (G1) or (G2). Furthermore, let (k, s) be the minimum
of (kj , sj). If n ≥ k + s + 1, then for any compatible graded FABS and any trace transformation,
the corresponding inhomogeneous A-valued graded EHP theory of degree l equals the homogeneous
ones. If n ≥ k + s+ 3, then both theories are trivial.

Assume that the m-graded algebra A is bounded from below, meaning that m has a partial
order ≤ and that there is mo ∈ m such that Am ≃ 0 if m < mo. Consider a m-graded theory
of degree l taking values in that kind of algebra. In order to apply the last theorem we need to
verify one of conditions (G1) or (G2). Such conditions are about A[−l]. This algebra has grading
A[−l]m = Am+l. Because A is bounded, the first solvability condition falls on Amo+l, i.e, no
condition is needed between mo and mo+ l. This is, in essence, the new phenomenon obtained when
we work with “full graded theories” in the sense introduced above. As a corollary:

Corollary 4.1. In the same notation of the last theorem, assume that A is bounded from below and
from above, respectively in degrees mo and m1. If l does not divide m1 −m0, then (G1) and (G2)
are automatically satisfied and, therefore, for any graded bundle P the corresponding graded EHP
theory of degree l is trivial. Otherwise, i.e, if m1 −m0 = k.l for some k, then conditions (G1) and
(G2) need to be fulfilled exactly for k terms.

A particular consequence is the following:

Corollary 4.2. Let A ≃ A0⊕A1 be a Z2-graded algebra, endowed with a vector space decomposition
A ≃ A0⊕A1, where Ai is not necessarily Ai and A0 is a subalgebra of A. If A0∩A1 is a weak (k, s)-
solvable subspace of A0, then any A-valued Z2-graded EHP theory of degree one over a n-dimensional
spacetime M is trivial if n ≥ k + s+ 3.

Examples will be explored in next section.
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4.4 Some Speculation

When we look at the previous obstruction theorems, all of them (except Theorem 3.5) were conceived
as abstractions of a single “fundamental obstruction theorem”, namely Theorem 3.1, introduced in
the most concrete situation: the linear/matrix context. Despite the fact that “derived obstruction
theorems” hold in more abstract contexts, they are very closely related to the first one, in that they
require the same kind of hypothesis on the underlying algebra: a “solvability condition”. Further-
more, the more abstract the context is, the weaker the required “solvability condition” is. Indeed,
Theorem 3.1 (for linear EHP theories) requires “(k, s)-nil condition”, while Theorem 3.3 (for gauge
EHP theories) requires “(k, s)-solv condition”. Furthermore, Theorem 4.1 (for arbitrary A-valued
EHP theories) requires “partially (k, s)-solv condition”, in the sense that A ≃ A0 ⊕ A1, with A0

(k, s)-solv, and Theorem 4.2 (for arbitrary graded-valued EHP theories) requires “locally (k, s)-solv
condition”, meaning that each Am

0 is weak (k, s)-solvable.
On the other hand, the same strategy used here can a piori be applied to get geometric ob-

structions for any classical theory (Conf, S) whose space of configurations Conf is some class of
algebra-valued smooth forms. Let us call such theories smooth forms theories. However, recall that
our strategy here was based in working first in the “linear context”, where we identify a “funda-
mental algebra condition”. Then, abstracting the context we could consider weaker conditions than
the “fundamental” one. Therefore, in order to use this strategy in other results we need to find a
corresponding “fundamental algebra condition”. This leads us to speculate:

Conjecture (roughly). Any smooth forms theory admits a fundamental algebraic condition.

For instance, in the way that it is stated, it is easy to verify that this conjecture is true for
“polynomial smooth forms theories”, i.e, for theories whose configuration space is Conf = Λ(P ;A),
for some algebra A endowed with a vector space decomposition A ≃ A1⊕ ...⊕Ak, and whose action
functional is

S[α1, ..., αk ] =

∫

M

(ps(α1, ..., αk)),

where  is some FABS and ps is a polynomial of degree s in Λ(P ;A). Indeed, the desired condition
is that ps be a PI of A. Now, notice that EHP theories are “polynomial smooth forms theories
of degree” in the above sense. Therefore, they have a “fundamental algebra condition” given by
the vanishing of ps. This is a nilpotent condition, which is much stronger than the (k, s)-solv
condition previously established. This teaches us that the same smooth forms theory may admit
two fundamental algebraic conditions, leading us to search for the optimal one:

Conjecture (roughly). Any smooth forms theory admits an optimal fundamental algebraic condi-
tion.

We can go further and ask if there is some kind of “universal algebraic condition”. More precisely,
suppose a collection C of smooth forms theories satisfying last conjecture is given. Given two of those
theories, if the optimal algebraic condition of one is contained in the optimal algebraic condition of
the other, then both can be simultaneously trivialized. If this is not the case, the union of those
optimal conditions will clearly trivialize them simultaneously. But, the union of optimal conditions is
not necessarily the optimal one. This leads us to define the optimal fundamental algebraic condition
of C as the weaker algebraic condition under which each classical theory in C becomes trivial, and
to speculate its existence:
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Conjecture (roughly). Any collection C of smooth forms theories admits an optimal fundamental
algebraic condition.

5 Examples

In the present section we will give realizations of the obstruction theorems studied previously. Due
to the closeness with the genuine Lorentzian EHP theory, our focus is on the “concrete context”,
meaning that we will give many examples of “concrete geometries” which realize the obstruction
theorems of Section 3. Even so, some examples for the “abstract context” of Section 4 will also be
given.

5.1 Linear Examples

We start by considering the “fully linear” context of Subsection 3.1, i.e, EHP theories defined on a
G-principal bundle P → M respective to a group reduction H →֒ G, where G is a linear group and
M is a smooth n-manifold. The objects of interest are the classical reductive Cartan connections
on P , i.e, pairs (e, ω) of 1-forms such that e takes values in g/h and ω takes values in h. It follows
from Corollary 3.1 and Theorem 3.4 that if n ≥ 6 and

(E1) H ⊂ G is normal, with g/h ⊂ so(k1)⊕ ...⊕ so(kr), then the corresponding gauge EHP theory
is trivial;

(E2) h ⊂ so(k1)⊕ ...⊕ so(kr), then the geometric/algebraic dual EHP theories are trivial;

(E3) g ⊂ so(k1)⊕ ...⊕ so(kr), then both EHP and the dual theories are trivial.

Conditions (E2) and (E3) are immediately satisfied if we identify k-groups, i.e, Lie subgroups of
SO(k1)× ...×SO(kr), or, equivalently, Lie subalgebras of so(k1)⊕ ...⊕so(kr). Indeed, if A is a such
subgroup, then the EHP theory for A →֒ GA, where GA is any matrix extension of A, obviously
satisfies (E2), so that if n ≥ 6 the dual theories are trivial. On the other hand, if we consider EHP
theories for reductions H →֒ A, then (E3) is clearly satisfied and in dimension n ≥ 6 both the dual
and the actual EHP theory are trivial.

Some obvious examples of subgroups of A ⊂ SO(k), are given in the table below. Except for
Spin(4) →֒ O(8), which arises from the exceptional isomorphism Spin(4) ≃ SU(2)×SU(2), all the
other inclusions already appeared in Subsection 3.5. Let us focus on condition (E2). In this case
we can think of each element of Table 3 as included in some GL(k;R), i.e, as a G-structure on a
manifold and then as a geometry (recall Table 2).

(n, k) (1, k) (2, k) (4, k) (1, 7) (1, 8)

H ⊂ O(n, k) SO(k) U(k) Sp(k) G2 Spin(4)

U(k) SU(k) Sp(k) · Sp(1) Spin(7)

Table 3: First classical examples of geometric obstructions

We could get more examples by taking finite products of arbitrary elements in the table. In
terms of geometry, this can be interpreted as follows. Recall that a regular distribution of dimension
k on an n-manifold can be regarded as a G-structure for G = GL(k)×GL(n−k). Therefore, we can
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think of a product O(k)×O(n−k) as a regular distribution of Riemannian leaves on a Riemannian
manifold, U(k)× U(n− k) as a hermitan distribution, and so on.

Other special cases where condition (E2) applies are in table below. In the first line, O(k, k) is
the so-called Narain group [28], i.e, the orthogonal group of a metric with signature (k, k), whose
maximal compact subgroup is O(k)×O(k). Second line follows from an inclusion similar as U(k) →֒
O(2k), first studied by Hitchin and Gualtieri [16, 15, 17], while the remaining lines are particular
cases of the previous ones. The underlying flavors of geometry arose from the study of Type II
gravity and Type II string theory [8, 21]. That condition (E2) applies for the second and third lines
follows from the fact that complexifying U(k, k) →֒ O(2k, 2k) we obtain U(k, k) →֒ O(4k;C), as
will be discussed in the next section.

G H geometry

O(k, k) O(k)×O(k) Type II

O(2k, 2k) U(k, k) Generalized Complex

O(2k, 2k) SU(k, k) Generalized Calabi-Yau

O(2k, 2k) U(k)× U(k) Generalized Kähler

O(2k, 2k) SU(k)× SU(k) Generalized Calabi

Table 4: More examples of classical geometric obstructions

About these two tables, some remarks:

1. Table 3 contains any “classical” flavors of geometry, except symplectic geometry. The reason
is that the symplectic group Sp(k;R) is not contained in some O(r). But this does not mean
that condition (E2) cannot be satisfied by symplectic geometry. Indeed, generalized complex
geometry contains symplectic geometry [15], so that Table 4 implies that symplectic geometry
fulfill condition (E2).

2. We could create a third table with “exotic k-groups”, meaning that a priori they are not related
to any “classical geometry”, so that they describe some kind of “exotic geometry”. For instance,
in [30] all Lie subgroups H ⊂ O(k) satisfying

(k − 3)(k − 4)

2
+ 6 < dimH <

(k − 1)(k − 2)

2

were classified and in arbitrary dimension k there are fifteen families of them. Other exotic
(rather canonical, in some sense) subgroups that we could add are maximal tori. Indeed,
both O(2k) and U(k) have maximal tori, say denoted by TO and TU , so that the reductions
TO →֒ O(2k) and TU →֒ U(k) will satisfy condition E2. More examples of exotic subgroups
to be added are the point groups, i.e, H ⊂ Iso(Rk) fixing at least one point. Without loss of
generality we can assume that this point is the origin, so that H ⊂ O(k). Here we have the
symmetric group of any spherically symmetric object in R

k, such as regular polyhedrons and
graphs embedded on S

k−1.

3. If we are interested only in condition (E2), then the tables above can be enlarged by including
embeddings of O(k1) × ... × O(kr) into some other larger group G̃. Indeed, in this condition
it only matters that H is a k-group. Particularly, O(k) admits some exceptional embeddings
(which arise from the classification of simple Lie algebras), as in the table below [44].
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k 3 9 10 12 16

O(k) →֒ G2 F4 E6 E7 E8

Table 5: Exceptional embbedings of orthogonal groups.

Due to the above discussion, Tables 3 and 4, as well as the possible “table of exotic k-groups”, are
not only a source of examples for condition (E2), but also for condition (E3). Indeed, we can just
consider G in condition (E3) as some “H” in the tables and take an arbitrary H ⊂ G. This produces
a long list of examples, because G/H is a priori an arbitrary homogeneous space subject only to the
condition that G is a k-group. In geometric terms, if a geometry fulfills condition (E2), then any
induced “homogeneous geometry” fulfills (E3). On the other hand, differently from what happens
with condition (E2), Table 5 cannot be used to get more examples of condition (E3). Indeed, if
H →֒ G is a reduction fulfilling (E3) and G →֒ G̃ is an embedding, then H →֒ G̃ fulfills (E3) iff it
is satisfied by G →֒ G̃ (see diagram below).

H 44�

� // G �

� // O(k1)× ...×O(kr)
�

� // G̃

Let us now analyze condition (E1). First of all we notice that it is very restrictive, because
we need to work with reductions H →֒ G in which H ⊂ G is normal. For instance, in the typical
situations above, H is not normal. Even so, there are two dual conditions under which H →֒ G
fulfills (E1): when G is a k-group with G/H ⊂ G and, dually, when H is k-group with G/H ⊂ H.
In the first situation, we are just in condition (E3) for G/H →֒ G, while in the second we are in
condition (E3) for G/H →֒ H. Therefore, there are not many new examples here.

Conclusion. Assume n ≥ 6. So, for any compatible FABS:

1. geometric/algebraic dual EHP is trivial in each geometry modeled by tables above;

2. the actual gauge EHP is trivial in each homogeneous geometry associated to the first two tables
above.

5.2 Extended-Linear Examples

In the last subsection we constructed explicit examples of geometric obstructions for linear EHP
theories and their duals. Let us now consider extended-linear theories. This means that we will
work with bundles P → M structured over R

k
⋊ H, where H is a linear group and M is a n-

dimensional smooth manifold. Furthermore, we will take into account reductive connections for the
group reduction H →֒ R

k
⋊H. Our obstruction theorem is now Corollary 3.3, which implies that

if n ≥ 6 and

• h ⊂ so(k1)⊕ ...⊕ so(kr), then EHP action and its duals are trivial.

Notice that this is exactly the same condition as (E2). This means that if we are working in the
extended-linear context, in dimension n ≥ 6 EHP theory cannot be realized in any geometry of the
last subsection.
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Remark 5.1. Recall that it is in the extended-linear context, with P = FM , that “abstract EHP
theory” becomes very close to the concrete one, in that the geometries of the last subsection really
describe geometries (in the most classical sense, in terms of tensors) on the manifold M . Therefore,
the fact that EHP is trivial in a lot of situations is a strong manifestation that the geometry of
gravity is very rigid, especially in higher dimension.

5.3 Cayley-Dickson Examples

In the last two sections we presented obstructions to the realization of linear/extended-linear (dual)
EHP theories in commonly studied geometries, as well as in some “exotic” geometries. Here we would
like to show that there are also obstructions for less studied (and some never studied in detail) kinds
of geometry. So, for now, let (A, ∗) be an arbitrary R-algebra and let Matk×l(A) be the R-module of
k× l matrices with coefficients in A. The multiplication of A induces a corresponding multiplication

· : Matk×l(A)×Matl×m(A) → Matk×l(A).

In particular, for k = 0 = m we see that for every l we have a bilinear map

b : Al ×Al → A, given by b(x, y) = x1 ∗ y1 + ...+ xl ∗ yl.

where we used the identifications

Mat0×l(A) ≃ Al ≃ Matl×0(A) and Mat0×0(A) ≃ A.

Remark 5.2. The bilinear map above is symmetric iff the algebra A is commutative. Furthermore,
its non-degeneracy depends on whether A has zero divisors or not, and a priori it is not possible to
ask about its positive definiteness, because it takes values in A and not in R. Thus, it is not an
inner product in Mat0×l(A). But, if we choose A = R, then it is the standard inner product of Rl.
Now, assume that A is endowed with an involution (−) : A → A. In this case, it can be combined
with b to get a sesquilinear map s in Al, as in the diagram below.

Al ×Al

s

55
(−)

l
×id // Al ×Al b // A

Explicitly,
s(x, y) = x1 ∗ y1 + ...+ xl ∗ yl.

We can now consider the subspace of all l× l matrices M ∈ Matl×l(A) with coefficients in A which
preserve the sesquilinear form s, in the sense that s(Mx,My) = s(x, y). We say that these are the
unitary matrices in A, respective to the involution s induced by the involution (−), and we denote
this set by U(k;A). If the involution is trivial (i.e, the identity map), then call them the orthogonal
matrices in A, writing O(k;A) to denote the corresponding space.

Example 5.1. If we consider A = R,C and the trivial involution we get, respectively, the real
and the complex orthogonal groups O(k) and O(k;C). If we consider the canonical involution of
C, we get the unitary group U(k), while if we consider H with its canonical involution we get the
quaternionic unitary group U(k;H), which already have appeared in Tables 2 and 3 with the more
used notation Sp(k).
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The last example leads us to compare different unitary groups of involutive algebras which are
related by the Cayley-Dickson construction discussed in Example 2.1. Indeed, recall that this con-
struction takes an involutive algebra A and gives another involutive algebra CD(A) with weakened
PI’s. As an R-module, the newer algebra is given by a sum A⊕ A of “real” and “imaginary” parts.
We have an inclusion A →֒ CD(A), obtained by regarding A as the real part, which induces an
inclusion into the corresponding unitary groups U(k;A) →֒ U(k; CD(A)). This inclusion can be
extended in the following way

U(k;A) →֒ U(k; CD(A)) →֒ U(2k;A),

defined by setting the “real part” and the “imaginary part” as diagonal block matrices. Iterating we
see that for every k and every l there exists an inclusion

U(k; CDl(A)) →֒ U(2lk;A). (23)

Example 5.2. If we start with A = R endowed with the trivial involution, the first inclusion is
U(k) →֒ O(2k), which describes complex geometry. The next iteration gives Sp(k) →֒ O(4k), which
is quaternionic geometry. These are precisely the first lines of Table 3, but we can continue getting
octonionic geometry, sedenionic geometry, etc.

Recalling that geometry can be regarded as the inclusion of Lie groups H →֒ G, with the previous
examples in ours minds, the idea is to think of inclusion (23) as some flavor of geometry, which we
could name Cayley-Dickson geometry in A, of order l. But, this makes sense only if the unitary
groups in (23) are Lie groups. We notice that this is the case at least when A is finite-dimensional,
as it will be sketched now.

The idea is to reproduce the proof that the standard unitary/orthogonal groups U(k) and O(k)
are Lie groups. The starting point is to notice that the involution of A induces an involution in
Matk×k(A), defined by the following composition, where t is the transposition map.

Matk×k(A)

(−)†

22
t // Matk×k(A)

(−) // Matk×k(A)

We then notice that a k × k matrix M with coefficients in A is unitary respective to s iff M is
invertible with M−1 = M †, i.e, iff M · M † = 1k = M † · M . Since (−) : A → A is an algebra
morphism, we have the usual property (M ·N)† = M † ·N †, allowing us to characterize the unitary
matrices as those satisfying M ·M † = 1k. Therefore, defining the map

f : Matk×k(A) → Matk×k(A) by f(M) = M ·M †,

in order to proof that U(k;A) is a Lie group it is enough to verify that the above map is, in some
sense, a submersion (which will give the smooth structure) and that the multiplication and inversion
maps are “smooth”. It is at this point that we require that A to be finite-dimensional.

Now, we can return to the context of Geometric Obstruction Theory. Taking A = R, for every
k and l the discussion above gives a sequence of Lie group inclusions

U(k; CDl(R)) // · · · // U(2l−3k;O) // U(2l−2k;H) // U(2l−1k;C) // O(2lk)
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which imply that (in spacetime dimension n ≥ 6) EHP theory and its duals are trivial for each
of these geometries (because they satisfy (E2)). In sum, Table 3 can be augmented to include
Cayley-Dickson geometries in R of arbitrary order, as shown below.

G H geometry

R
k
⋊H O(k) Riemannian

R
2k

⋊H U(k;C) hermitean

R
4k

⋊H U(k;H) quaternionic

R
8k

⋊H U(k;O) octonionic

R
16k

⋊H U(k;S) sedenionic
...

...
...

R
2lk

⋊H U(k; CDl(R)) real CD of order l
...

...
...

Table 6: Extended examples of concrete geometric obstructions

In Subsections 5.1 and 5.2 we showed that EHP theory cannot be realized in the most classical
flavors of geometry. These, however, constitute a finite amount. As a corollary of the construction
above, we now know that EHP theory is actually trivial in an infinite number of geometries:

Corollary 5.1. In dimension n ≥ 6, the EHP theory and its duals cannot be realized in an infinite
number of geometries.

Table 6 can, in turn, be extended in three different directions:

1. by adding distinguished subgroups. For every involutive algebra A we can define the subgroup
SU(k;A) ⊂ U(k;A) of those matrices whose determinant equals the identity 1 ∈ A. When
A is finite-dimensional, it will be a Lie subgroup, allowing us to include SU(k; CDl(R)) for
every l ≥ 0 in Table 6. This means that if a geometry belongs to the “table of obstructions”,
then its “oriented version” belongs too;

2. by replacing the base field. Notice that condition h ⊂ so(k1) ⊕ ... ⊕ so(kr) was used above
only in order to have α f α = 0 for every even-degree h-valued form, i.e, to ensure that h is
(k, 1)-nil for each k even. In turn, the condition αfα = 0 is satisfied exactly because so(n) is
an algebra of skew-symmetric matrices. But this remains valid for the Lie algebra so(n;A) of
SO(n;A), independently of the involutive algebra. This means that we can replace R by any
algebra A in Table 6. New interesting examples that arise from this fact are the following.
For given p, q > 0, there is no k such that O(p, q) ⊂ O(k), so that a priori we cannot add
O(p, q) to Table 6. On the other hand, after complexification, i.e, after replacing R by C we
have O(p, q) ⊗R C ≃ O(p + q) ⊗R C for every p, q ≥ 0, so that they immediately enter in
the “obstruction table”. This means that we can add to Table 6 “complex semi-Riemannian
geometry” and, similarly, “quaternionic semi-Hermitean geometry”, and so on.

3. by making use of Lie theory. The condition that we need is on the Lie algebra level. It
happens that in general there are many groups with the same algebra. Therefore, once we
find a Lie group whose algebra fulfills what we need, we can automatically add to our “table
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of obstructions” every other Lie group that induces the same algebra. In particular, we can
double the size of our current table by adding the universal cover (when it exists) of each
group. For instance, in Tables 3 and 6 the spin groups Spin(4) and Spin(7) were added due
to exceptional isomorphisms on the level of Lie groups. Now, noticing that for k > 2 (in
particular for k = 4, 7) Spin(k) is the universal cover of SO(k), we can automatically add
all theses spin groups to our table, meaning that the dual EHP cannot be realized in “spin
geometry”. Similarly, we can add the universal coverings of the (connected component at
the identity of) U(k; CDl(R)). We can also add the universal cover of the symplectic group
Sp(k;R), usually known as the metapletic group. Therefore, dual EHP cannot be realized in
“metapletic geometry” too.

Up to this point we gave examples which extend Table 3. We notice, however, that Table 4 can also
be extended. Indeed, for every A we have the inclusion U(k, k; CD(A)) ⊂ O(2k; 2k,A), so that by
iteration we get

U(k, k; CDl(A)) ⊂ O(2lk; 2lk,A). (24)

For A = R and l = 1 this model generalized complex geometry, leading us to say that the
inclusion above models “generalized Cayley-Dickson geometry in A of degree l”. For instance, if
we take A = R and l = 2 this becomes generalized quaternionic geometry, which is a poorly
studied theory, started with the works [31, 10] . For l = 3, 4, ... it should be “generalized octonionic
geometry”, “generalized sedenionic geometry”, and so on. The authors are unaware of the existence
of substantial works on these theories.

When tensoring inclusion (24) with CDl(A) we get

U(k, k; CDl(A)) ⊂ O(2lk; 2lk,CDl(A)) ≃ O(2lk + 2lk; CDl(A)),

so that condition 2 above implies that, independently of the present development of abstract gen-
eralized Cayley-Dickson geometries, EHP theory (and its duals) is trivial in each of them.

Conclusion: In dimension n ≥ 6 and for any FABS, extendend-linear EHP theory and its duals
cannot be realized in a lot of geometries, which include:

1. real Cayley-Dickson geometries of all orders, their “connected components of the identity” and
their universal covering geometries;

2. generalized Cayley-Dickson geometries of all orders;

3. the exceptional geometry G2.

5.4 Partially Abstract Examples

The last examples were considered “concrete” because the algebras underlying them are matrix
algebras over the real numbers. So, in order to give non-concrete examples it is enough to work
with algebras which are not matrix algebras “and/or” which have coefficient rings other than R. Let
us call the “or” examples partially abstract examples.

The interesting part of the partially abstract situations is that we can give abstract examples
of obstructions without using the abstract theorems of Section 4. For instance, some obstructions
for non-real matrix algebras where actually given in last subsection in “by replacing the base-field”.
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Indeed, there we considered situations in which the new field K arises as an extension of R and
the matrix algebra A(k;K) in consideration is indeed a scalar extension A(k;K) = A(k;R) ⊗R K.
But, since R is characteristic zero, it follows that every extension K ⊃ R is also characteristic zero,
allowing us to ask: can we give examples when K has prime characteristic?

In [3] necessary and sufficient conditions were given under which arbitrary orthogonal groups
O(q,K), where q : V → K is a positive-definite quadratic form on a finite-dimension K-space q
and ch(K) 6= 2, admit an embedded maximal torus T(q;K). Independently of the quadratic space
(V, q), the corresponding orthogonal group is a Lie group and, as in the real case, the algebra o(q;K)
is (2, 1)-nil. Therefore, under the conditions of [3], EHP theory cannot be realized in any of these
“toroidal geometries” T(q;K) →֒ O(q;K). Notice that for K = R the same result appeared in 5.1 as
a “exotic linear example”.

5.5 Fully Abstract Examples

Finally, we give “abstract examples” of geometries in which EHP theory cannot be realized. First we
deal with algebra-valued geometry, with graded geometry considered in the sequence. This means
that we work with a bundle P → M endowed with A-valued connections ∇ : TP → A, where A is
a graded am-graded algebra A ≃ ⊕mAm. The obstruction theorems are now Theorems 4.1, 4.2 and
4.3. In summary, if

(F1) the algebra A admits a vector space decomposition A ≃ A0⊕A1, where A0 is a subalgebra such
that each Am

0 = A0 ∩ Am is a weak (km, sm)-solvable subspace, then EHP theory is trivial in
dimension n ≥ k + s+ 1, where (k, s) = min(km, sm).

The most basic examples are those for m = 0 and A1 = 0, i.e, the non-graded setting with
A itself (k, s)-solv. As discussed in Subsections 2.3 and 2.4, there are many natural examples of
(k, s)-solv algebras, e.g, any Lie algebra is (k, 1) for any even k. As a consequence, in dimension
n ≥ 4, any Lie algebra valued EHP theory is trivial. In particular, EHP theories with values in the
Poincaré group iso(n− 1, 1) are trivial. But, iso(n− 1, 1)-valued EHP theory is just classical EHP
theory, thus we conclude that General Relativity does not makes sense in dimension n ≥ 4, which
is absurd. We made a similar mistake in Example 2.3: while the classical EHP theory and the
iso(n− 1, 1)-valued EHP theory take values in the same vector space, at the same time that their
action functionals have the same shape, the algebra (and, therefore, its properties) used to define
the corresponding wedge product is totally different. Indeed, in the discussed cases, the exterior
products f⋊ and [∧], respectively.

If we now allow m to be nontrivial, but with A1 = 0, then condition (5.5) is satisfied if each
Am is a weak (km, sm)-solvable subespace. In particular, it remains satisfied if A is itself (k, s)-
solv. It happens that not only Lie algebras are solv (2, 1)-nil, but also a class of graded Lie algebras.
Consequently, EHP theories are also trivial in the domain of graded Lie algebras. One can generalize
even more thinking in EHP theories with values in Lie superalgebras and in graded Lie superalgebras.
Indeed, a m-graded Lie superalgebra g is just a m-graded Lie algebra whose underlying PI’s (i.e,
skew-commutativity and Jacobi identity) hold in the graded sense. Particularly, this means that
the Z2-grading writes g ≃ g0 ⊕ g1, with g0 a m-graded Lie algebra and, therefore, (2, 1)-nil. It then
follows that g satisfies condition F1. Summarizing, EHP theories cannot be realized in any “Lie
algebraic” context.

Graded Lie Superalgebras are the first examples of algebras satisfying (F1) with A1 6= 0, but
they are far from being the only one. Indeed, when we look at a decomposition A ≃ A0⊕A1, where
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A0 is a subalgebra, it is inevitable to think of A as an extension of A1 by A0, meaning that we have
an exact sequence as shown below. If A0 is (k, s)-solv, then (F1) holds. This can be interpreted as
follows: suppose that we encountered an algebra A1 such that EHP is not trivial there. So, EHP
theory will be trivial in any (splitting) extension of A1 by a (k, s)-solv algebra.

0 // A0
// A // A1

// 0

In particular, because (Rk,+) is abelian and, therefore, (1, 1)-nil, any algebra extension by
R
k will produce a context in which EHP theory is trivial. For instance, recall the extended-linear

context, which was obtained taking splitting extensions of matrix algebras by R
k. Thus, EHP theory

is trivial in every extended-linear context, so that classical EHP is trivial. This implies tha GR is
trivial, showing that we made another mistake. Once again, the mistake resides on the underlying
“wedge products”: the wedge product induced on an algebra extension by the abelian group (Rk,+) is
not the wedge product f⋊ studied in Subsection 2.2. Indeed, f⋊ does not take the abelian structure
of Rk into account.

Another example about extensions is as follows: the paragraph above shows that abelian ex-
tensions of nontrivial EHP theories are trivial, but what about “super extensions”? They remain
trivial. Indeed, being a Lie superalgebra, the translational superalgebra R

k|l (the cartesian super-
space, regarded as a Lie superalgebra) is (2, 1)-nil, so that any algebra extension by it is trivial.

Finally, let us say that we can also consider “fully exotic abstract examples” meaning geometries
modeled by algebras fulfilling (F1), but that have no physical meaning. Just to mention, in [39]
the authors build “mathematically exotic” examples of nilpotent algebras, which fulfill (F1). If, for
any reason, one tries to model gravity as EHP with values in those algebras, one will find a trivial
theory.

6 Conclusion

In this notes, based on [26], we considered EHP action functional in different contexts and
we gave obstructions to realize gravity (modeled by these EHP actions) in several geometries. In
particular, we showed that EHP cannot be realized in almost all “classical geometries”, including
Riemannian geometry, hermitean geometry, Kähler geometry, generalized complex geometry and
many extensions of them, as well as some exceptional geometries, such as G2-geometry. We also
introduced the notions of geometric/algebraic duals of an EHP theory and we have show that many
obstructions also affect them. A physical understanding of these “dual theories” is desirable.

In this process of finding geometric obstructions for EHP theories, we identified a “general
obstruction”, corresponding to a “solvability condition” on the underlying algebra, which led us
to speculate on the existence of a “general obstruction” for each gauge theory and of a “universal
obstruction”, unifying all such “general obstructions”.

The speculations and the obstruction theorems developed here are independent of the choice
of a Functional Algebra Bundle System, a concept conceived in the present work, which codifies
the data necessary to pass from A-valued forms on a bundle P → M to bundle-valued forms on
M . A specific study of the category of these objects is desirable (we have some work in developing
stage [27]). For instance, which kind of limits/colimits exist in such category? It has at least initial
objects (corresponding to universal FABS)?

We believe that the main contribution of the present work is to clarify that when working with
classical theories defined by algebra-valued differential forms, one needs to be very careful about the
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“wedge products” used in the action funcional, given that the properties of the underlying algebra
deeply affect the properties of the corresponding wedge product.
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