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Abstract

The Tolman–Oppenheimer–Volkoff (TOV) equations are a partially uncoupled system of
nonlinear and non-autonomous ordinary differential equations which describe the structure of
isotropic spherically symmetric static fluids. Nonlinearity makes finding explicit solutions of
TOV systems very difficult and such solutions and very rare. In this paper we introduce the
notion of pseudo-asymptotic TOV systems and we show that the space of such systems is at least
fifteen-dimensional. We also show that if the system is defined in a suitable domain (meaning
the extended real line), then well-behaved pseudo-asymptotic TOV systems are genuine TOV
systems in that domain, ensuring the existence of new fourteen analytic solutions for extended
TOV equations. The solutions are classified according to the nature of the matter (ordinary or
exotic) and to the existence of cavities and singularities. It is shown that at least three of them
are realistic, in the sense that they are formed only by ordinary matter and contain no cavities
or singularities.

1 Introduction

Since the seminal work of Chandrasekhar, the axiomatization problem of astrophysics has been
neglected. In [1] the authors reintroduced the problem, showing that arbitrary clusters of stellar
systems experience fundamental constraints. In this paper we continue this work, focusing on a
specific class of stellar systems: the TOV systems.

In order to state precisely the question being considered and our main results, we recall some
definitions presented in [1]. A stellar system of degree (k, l) is a pair (p, ρ) of real functions, with p
piecewise Ck-differentiable and ρ piecewise C l-differentiable, both defined in some union of intervals
I ⊂ R, possibly unbounded. We usually work with systems that are endowed with an additional
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piecewise Cm-differentiable function M : I → R, called mass function. In these cases we say that
we have a system of degree (k, l,m). The space of all these systems is then

Ckpw(I)× C lpw(I)× Cmpw(I) ≡ Ck,l,mpw (I),

where Crpw(I) denotes the vector space of piecewise Cr-differentiable functions on I. A vector
subspace Stellark,l,mI of Ck,l,mpw (I) is called a cluster of systems of degree (k, l,m). Let Stellarl,mI
denote the subspace obtained from the cluster by forgetting the variable p.

We say that a system with mass function (p, ρ,M) is a TOV system if the Tolman–Oppenheimer–
Volkoff (TOV) equation holds

p′(r) = − G

(
ρ(r) + p(r)

c

)(
M(r) + 4πr3 p(r)

c2

)
r2
(
1− 2M(r)G

c2r

) (1)

where G and c are respectively Newton’s constant and the speed of light, which from now on we
will normalize as G = 1 = c (see [2]).

In a general cluster Stellark,l,mI we define a continuity equation as an initial value problem
M ′ = F (M,ρ, r) in Stellarl,mI × I with initial condition M(a) = Ma. Since the vector space of
piecewise differentiable functions is locally convex but generally neither Banach nor Fréchet [1, 3],
the problem of general existence of solutions for continuity equations is much more delicate [4, 5].
Therefore one generally works with continuity equations which are integrable. The classical example
is

M ′ = 4πr2ρ. (2)

Notice that if a system of degree (k, l,m) is endowed with (2), then m = l + 1. We define a
classical TOV system as a TOV system equipped with the classical continuity equation (for some
initial condition). Let TOVk,l

I be the cluster of stellar systems of degree (k, l, l + 1) generated by
(i.e, the linear span of) the classical TOV systems. We can now state the main problem:

Problem (classification of TOV clusters). Given I, k and l, determine the structure of TOVk,l
I as

a subspace of Ck,l,l+1
pw (I) for some fixed locally convex topology.

Since (0, 0) ∈ TOVk,l
I , this set is non-empty. Thus, the simplest thing one can ask about it is if

it is nontrivial. This means asking if for every given k, l there exists at least one nonzero pair (p, ρ)
for which equation (1) is satisfied when assuming (2). Before answering this question, notice that
by means of isolating ρ in (2) and substituting the expression found in (1) we see that the TOV
equation is of Riccati type [6, 7]:

p′(r) = A(r) +B(r)p(r) + C(r)p(r)2 (3)

where

A(r) = − M(r)M ′(r)

4πr4
(
1− 2M(r)

r

) , (4)

B(r) = −
(M ′(r)

r + M(r)
r2

)
1− 2M(r)

r

, (5)

C(r) = − 4πr

1− 2M(r)
r

. (6)
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Therefore, it is a nonlinear and non autonomous equation which, added to the fact that Ck,l+1
pw (I) is

only a locally convex space (so that the general existence theorems of ordinary differential equations
do not apply), makes it hard to believe that TOVk,l

I has a nontrivial element. Even so, if ρ is a
constant function, then (3) becomes integrable, showing that TOVk,l

I is at least one-dimensional [2].
There are some results [6, 7] allowing that, under certain conditions, a solution of a TOV equation
can be deformed into another solution, which may imply a higher dimension.

Remark 1. We point out that the generating theorem (P1) proved in [6, 7] implies that the TOV
cluster is invariant under specific perturbations. So, a natural question is if there exist I, k, l such
that TOVk,l

I is invariant under arbitrary perturbations. This is clearly false, because this would
imply that any stellar system is TOV. Instead, we can ask about invariance by arbitrary small
perturbations. Again, we assert that there are good reasons to believe that the answer is negative.
Indeed, when we say that a subset of a topological space is “invariant by small perturbations” we
are saying that it is actually an open subset. Thus, assuming invariance, we are saying that TOVk,l

I

is an open subset of Ck,l+1
pw (I) in our previously fixed locally convex topology. Now assume that the

locally convex topology is Hausdorff and that TOVk,l
I is finite-dimensional. Then the TOV cluster is

also a closed subset [8, 9]. Since topological vector spaces are contractible [8, 9], they are connected
and therefore a subset which is both open and closed must be empty or the whole space. But we
know that TOVk,l

I is at least one dimensional and does not coincide with Ck,l+1
pw (I). In sum, if there

exists some locally convex topology in which the TOV cluster is invariant by small perturbations,
then the following things cannot hold simultaneously:

• TOVk,l
I is finite-dimensional;

• the locally convex topology is Hausdorff.

However, both conditions are largely expected to hold simultaneously, leading us to doubt the
existence of a topology making TOVk,l

I an open set1.

Another way to get information about the TOV cluster is not to look at the TOV cluster directly,
but to analyze its behavior in some regime. For instance, if in (1) we expand 1/c in a power series and
discard all terms of higher order in c (which formally corresponds to taking the limit c→∞) we get a
new equation approximately describing the TOV equation. Therefore, studying the cluster Newtk,lI
of stellar systems satisfying this new equation (called Newtonian systems) we are getting some
information about the original TOV cluster. In fact, if we consider the subspace Polyk,lI ⊂ Newtk,lI
of Newtonian systems satisfying an additional equation p = γqρ+ a, with γ, c ∈ R and q ∈ Q, then
the Newtonian equation becomes a Lane-Emden equation, which has at least three independent
solutions (besides the constant ones), showing that Newtk,lI is at least four-dimensional [2, 11].

In this article we analyze the structure of TOVk,l
I in a limit other than the Newtonian one: we

work in the pseudo-asymptotic limit. Before saying what this limit is, let us first say what it is not.
We could think of defining a “genuine” asymptotic limit of TOV by taking the limit r →∞ in the
TOV equation (1) in a similar way as done for getting the Newtonian limit, trying to obtain a new
equation. In doing this we run into two obstacles:

1Actually, this is not a special property of the TOV equation, but a general behavior of the solution space of
elliptic differential equations [10]. The fact that TOV systems are modeled by an elliptic equation will be explored
in a work in preparation.
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1. differently of c (which is a parameter), r is a variable. Therefore, when taking the limit r →∞
we have to take into account the r →∞ behavior of all functions depending on r;

2. in order to get a new equation we have to fix boundary conditions for the functions, loosing
part of the generality.

Thus, for us, pseudo-asymptotic limit is not the same as a genuine asymptotic limit. Another
approach would be to work with an additional differential equation in C l+1

pw (I)× I, called a coupling
equation and given by

Λ(M,M ′,M (2), ...,M (s), r) = 0, (7)

where M (i) denotes the i-th derivative of M and 1 ≤ s ≤ l + 1 is the order of the equation. The
function Λ itself is called the coupling function that generates equation (7). Let us consider the
space Indl+1

Λ (I) of all C l+1-differentiable mass functions M such that, if they are solutions of the
coupling equation defined by Λ, then the corresponding TOV equation (3) is integrable. So, for every
coupling function Λ we have Indl+1

Λ (I) ⊂ TOVk,l
I motivating us to define some kind of “indirect”

asymptotic limit in TOV by taking the genuine asymptotic limit in (7). Again, we will have the
two problems described above, but now the lack of generality is much less problematic, since we
only need to consider boundary conditions for the single function M and its derivatives. Even so,
the pseudo-asymptotic limit is not the same as the indirect asymptotic limit.

Let us now explain what we mean by pseudo-asymptotic limit. A decomposition for the coupling
equation (7) generated by Λ is given by two other coupling functions Λ0 and Λ1 such that Λ =
Λ0 +Λ1. We say that a decomposition is nontrivial if Λi 6= 0 for i = 0, 1. A split decomposition of Λ
is a nontrivial decomposition such that Λ0 generates a linear equation and Λ1 generates a nonlinear
equation. We say that a split decomposition is maximal when both Λ0 and Λ1 do not admit split
decompositions. Not all coupling functions admit a maximal split decomposition, e.g, when Λ is
linear. When Λ admits such a decomposition we will say that it is maximally split. So, let Λ be
a maximally split coupling function. The pseudo-asymptotic limit of (3) relative to Λ is obtained
by taking the genuine asymptotic limit in the nonlinear part Λ1, added of the boundary condition
limr→∞ Λ1 = 0, and maintaining unchanged the linear part Λ0. In this case, the equation replacing
(1) is that generated by Λ0. This new equation can be understood as a formal “pseudo-limit” of Λ,
defined by

psdlim
r→∞

Λ = Λ0 + lim
r→∞

Λ1.

For a given maximally split coupling function Λ, let Psdl+1
Λ (I) denote the subspace of all mass-

functions M such that
lim
r→∞

Λ1(M(r),M ′(r), ...,M (s), r) = 0,

i.e, which belong to the boundary conditions for Λ, and such that they are solutions of the pseudo-
limit equation psdlimr→∞ Λ = 0. We can now state our main result.

Theorem 1.1. There exists I such that for every l there exists at least one maximally split coupling
function such that Psdl+1

Λ (I) is at least eleven-dimensional.

Generally, when we take a limit in a equation, the solutions of the newer equation are not
solutions of the older one. This is why we cannot use the existence of Newtonian systems to directly

4



infer the existence of new TOV systems. But the pseudo-asymptotic limit is different, precisely
because it is not a formal limit. Indeed, suppose M ∈ Psdl+1

Λ (I). Then by hypothesis it satisfies
Λ0. If in addition it satisfies Λ1 (instead of obeying only the boundary condition), then it satisfies
Λ and, therefore, it belong to TOVk,l

I . We will show that by means of modifying I in Theorem
1.1, many of the mass functions will actually satisfy Λ1, ensuring the existence of new integrable
TOV systems. More precisely, we will show that if a pseudo-asymptotic system has a well-behaved
extension to the extended real line R, then it is actually a extended TOV system, i.e, a TOV system
which instead of being defined in a union I of intervals of R, its mass-function, density and pressure
are all defined in R. In sum, we have the following corollary:

Corollary 1. The space TOV
∞,∞

of piecewise C∞-differentiable extended TOV systems is at least
eleven-dimensional.

The proof of Theorem 1.1 and its extrapolation to extended TOV systems will be done in Section
2.1 and in Section 2.2, respectively, by making use of purely analytic arguments. In Section 2.3 we
argue that Psd∞Λ (I) must have a higher dimension and we give two strategies that can be used to
verify this. In Section 3 we present a physical classification for the densities associated with mass
functions in Theorem 1.1 and, therefore, for the new extended TOV systems. We classify them
according to if they possess or not cavities/singularities and to if they are composed of ordinary
or exotic matter. In the process of classifying them we prove that they generally admit a topology
change phenomenon (similar to a phase transition), allowing us to improve Theorem 1.1 and Corol-
lary 1, showing that TOV

∞,∞
is at least fifteen-dimensional. We finish the paper in Section 4 with

a summary of the results.

2 Proof of Theorem 1.1

Before giving the proof of Theorem 1.1, let us emphasize that finding integrable TOV systems is a
nontrivial problem. Notice that the simplest way to find explicit solutions of the Riccati equation
is by choosing coefficients satisfying one of the following conditions:

1. C identically zero. In this case the equation becomes a linear homogeneous first order ODE,
which is separable.

2. A identically zero. Then the equation is of Bernoulli type and, therefore, integrable by quadra-
ture.

3. There are constants a, b, c ∈ R such that A(r) = a, B(r) = b and C(r) = c simultaneously. In
this case, the equation is separable.

Thus, recalling that TOV systems are described by a Riccati equation, we could think of applying
some of these conditions in (3). It happens that the coefficients of this Riccati equation are not
independent, but rather satisfy the conditions

4πr4

M(r)M ′(r)
A(r) =

r2

rM ′(r) +M(r)
B(r) =

1

4πr
C(r). (8)

Therefore, the first two possibilities are ruled out for making (3) trivial. Also, the third condition
along with (6) implies that

5



M(r) = r/2− 2πr2/c (9)

and M ′(r) is the corresponding linear polynomial. However, in (8) the above M(r) makes the A
term a quadratic polynomial, and the B term a rational function of degree 1, so the equality can
never hold.

2.1 The proof

Now we will prove Theorem 1.1.

Proof. We start by noticing that in [12] it was shown that if the coefficients of any Riccati equation
satisfy additional differential or integral conditions, then the nonlinearity of the starting equation can
be eliminated, making it fully integrable. Each class of conditions is parametrized by functions f :
I → R and real constants. Because the authors of [12] worked only with smooth Riccati equations,
they assumed f : I → R smooth. However, it should be noticed that in the general situation we
may have f ∈ Cmpw(I;R) or f ∈ Cm+1

pw (I;R), where m is the least order of differentiability of the
coefficients of the Riccati equation. Furthermore, from (4), (5) and (6) we see that m = l, where l
is the class of M .

In the following, we will use these additional equations in order to build maximally split coupling
functions. Precisely, one of the integral conditions presented in [12] is

A(r) =
f(r)−

[
B(r) + C(r)

[∫ f(s)−B2(s)
2C(s) ds− c1

]]2

4C(r)
, (10)

under which a explicit solution for Riccati equation (3) is given by

p(r) =
e
∫ r(B(s)+C(s)h(s)) ds

c0 −
∫ r
C(s)e

∫ s(B(φ)+C(φ)h(φ)) dφ ds
+
h(r)

2
(11)

where c0 is a constant of integration and

h(r) =

∫ r f(s)−B2(s)

2C(s)
ds− c1. (12)

Let us fix f(r) = B2(r) + 2g(r)C(r), where g : I → R is some integrable function. We will also take
c1 = 0. Let h(r) =

∫
g(s) ds. Using the coefficients of TOV equation (3), (10) becomes

M ′(r) +
M(r)M ′(r)

2πr3h(r)
−
(

2h′(r)

h(r)
− 1

r

)
M(r) + 2πr2h(r) +

rh′(r)

h(r)
= 0, (13)

which is a coupling equation of order 1. Notice that it is maximally split, with maximal splitting
decomposition given by

Λ0(M,M ′, r) = M ′ −
(

2h′(r)

h(r)
− 1

r

)
M + 2πr2h(r) +

rh′(r)

h(r)
(14)

Λ1(M,M ′, r) =
MM ′

2πr3h(r)
. (15)

6



Therefore, giving M and h such that lim
r→∞

Λ1(M,M ′, r) = 0, then M will automatically belong to

PsdkΛ(I). We found ten such pairs. They are obtained by regarding h as solutions of the differential
equation

F (r) = 2πr3h2(r) + r2h′(r), (16)

for different F : I → R, as organized in Table 1 of Appendix A. Only to illustrate the method, we
will show how the first row is obtained. The other rows are direct analogues, only involving more
calculations.

Recall that we are trying to find pairs (M,h) such that psdlimitr→∞ Λ = 0, i.e, such that
limr→∞ Λ1 = 0 and such that the coupling equation induced by Λ0 is satisfied. Suppose such a pair
was found. Then, by the linearity of Λ0, they become related (up to addition of a constant) by

M(r) =
h2(r)

r

(∫ r

1
−
s2
(
h′(s) + 2πsh2(s)

)
h3(s)

ds+ c2

)
(17)

where c2 is a integration constant. Taking F = 0 in (16) we see that it is solved for

h(r) =
1

π(r2 + c1/π)
, (18)

so that (17) becomes

M(r) =
c2h

2(r)

r
, (19)

whose derivative is

M ′(r) =
c2

(
2rh′(r)h(r)− h2(r)

)
r2

.

Thus Λ1 is given by the following expression, which clearly goes to zero as r →∞.

Λ1(M,M ′, r) = Λ1(r) =
c2

2h
2(r) (2rh′(r)− h(r))

2πr6
= −

c2
2

(
5πr2 − c1

)
2πr6 (c1 − πr2) 4

.

Defining (M,h) by (19) and (18), they will clearly satisfy the desired conditions, showing that
M ∈ PsdlΛ(I).

Now, notice that all involved functions are actually piecewise C∞, so that we can take l arbitrary.
On the other hand, the domains of the functions in Table 1 are different, but we can restrict them
to the intersection of the domains and then (since we are working with piecewise differentiable
functions) extend all of them trivially to the starting I. This finishes the proof of Theorem 1.1,
except by the fact that Table 1 contains ten linearly independent mass functions instead of the eleven
ones stated in Theorem 1.1. The one missing is just the well known constant density solution. For
completeness, let us show that it can also be directly obtained from our method. Indeed, by taking
f(r) = B2(r) in (10), writing c = 8π2c1/3, and using the coefficients of the TOV system, the
coupling equation (13) becomes

M ′(r) +
3M(r)M ′(r)

4πcr3
+
M(r)

r
+

4πcr2

3
= 0,

which has solution M(r) = 4πcr3/3, whose associated density is ρ(r) = c.
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Remark 2. In the construction, the motivation of the definition of h(r) in (11) is the control of
the integral term. By control, we mean that the h function is a integral of a integrable function g,
freely chosen.

Remark 3. A note on the differentiability of the pressure. From (11) we see that p ∈ Ck′pw(I), where
k′ is the minimum between the differentiability class of h and the class of M . The latter is ∞, as
obtained above, so that k′ is the class of h. But looking at Table 1 we see that the class of h is ∞
in each of the cases. Thus, p ∈ C∞pw(I).

2.2 Extending

In the last section we proved that there exists a subset I ⊂ R, which can be regarded as a disjoint
union of intervals, such that we have a maximally split coupling function Λ of order 1, whose
corresponding space of pseudo-asymptotic TOV systems Psd∞Λ (I) is at least eleven-dimensional.
As discussed in the Introduction, a pseudo-asymptotic TOV system does not need to be a TOV
system. Here we will show that by means of modifying I properly, i.e, by working on the extended
real line, we can assume that some of the pseudo-asymptotic systems that we have obtained really
define TOV systems.

Recall that if there exists a coupling function Λ such that a pseudo-asymptotic mass function
M satisfies not only the linear part Λ0 but also the nonlinear one Λ1, then M actually defines an
integrable TOV system. So, our problem is to analyze when the pseudo-asymptotic M obtained
in the last section satisfies the differential equation Λ1(M,M ′, r) = 0 for Λ1 given by (15). We
will give sufficient conditions on the general pseudo-asymptotic mass functions in order for this to
happen. That these conditions are satisfied for our mass functions will be a consequence of their
classification. The fundamental step is the following result from real analysis.

Lemma 2.1. Let f : I → R be continuous at a point a0 ∈ I and such that f(x)→ 0 when x→ a0.
Assume that there exists ε > 0 such that one of the following conditions is satisfied:

c1) f is non-negative and non-decreasing in (a0 − ε, a0];

c2) f is non-positive and non-increasing in [a0, a0 + ε).

Then there exists 0 < ε′ ≤ ε such that f is constant and equal to zero in (a0 − ε′, a0] in the first
case, and in [a0, a0 + ε′) in the second case.

Proof. Because f is continuous in a0 and f(x)→ 0 when x→ a0, we have f(a0) = 0. If f satisfies
the first condition, since f is non-decreasing, it follows that if x ≤ y in (a0−ε, a0], then f(x) ≤ f(y).
This means that for every x we have f(x) ≤ f(a0) = 0. But f is non-negative in (a0 − ε, a0], hence
we must have f(x) = 0 in this interval. For the second condition, an analogous argument will give
the result.

Now, recall that we can extend the real line R in two different ways: by adding a point at infinity
∞ or by adding both +∞ and −∞. In the first case we have the projectively extended real line R̂,
while in the second one we have the extended real line R. For the arithmetic construction of these
objects, see [13]. Topologically, both spaces acquire natural Hausdorff compact topologies: R̂ is the
one-point compactification of R and, therefore, is homeomorphic to the circle S1, while R is the
two-point compactification of R and has an order topology homeomorphic to [−1, 1] [14]. In this
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article we will use only R. One can think of the homeomorphism φ : R→ [−1, 1] as a rescaling of R
that brings the infinities closer together. This is similar to the idea of compactification of spacetime
used in the Penrose diagrams, with the difference that there the underlining topological space does
not become actually compact.

Notice that any piecewise continuous function f : I → R which is not oscillating in ±∞ admits
an extension f to R, as follows. We first extend it to R by defining f(x) = 0 when x /∈ I and then
take f(±∞) = limx→±∞ f(x). By definition, this extension is continuous at ±∞ 2. Now, recall
that the domain of any function is in one-to-one correspondence with its graph. Furthermore, if the
function is piecewise continuous, then this correspondence is actually a piecewise homeomorphism.
Thus, if f : I → R is any function as above, we have the commutative diagram below, where
f = φ ◦ f ◦ φ−1 is the rescaling of the extension f .

R �
� // R '

φ // [−1, 1]

I

f

OO

� � // R

f

OO

'
φ // [−1, 1]

f

OO

graph(f)

'

OO

// graph(f)

'

OO

'
ϕ // graph(f)

'

OO

(20)

From the above remarks and from Lemma 2.1 we get the following corollary:

Corollary 2. Let Λ be a maximally split coupling function, M a pseudo-asymptotic mass function
for the coupling function Λ and suppose that Λ1 is not oscillating in ±∞. If there exists 0 < ε ≤ 2

such that Λ1 satisfies condition (c1) (resp. (c2)) of Lemma 2.1, then there exists ε′ such that Λ1 is
zero in (1− ε, 1] (resp. in [−1,−1 + ε)).

Proof. By hypothesis Λ1 is not oscillating in ±∞, so that the extension Λ1 exists and it is continuous
at ±∞. The points ±∞ are mapped onto ±1 by φ, so that Λ1 is continuous at ±1. The result then
follows from Lemma 2.1.

Notice that starting with the TOV equation we can extend it to R and then rescale the infinities
by working at [−1, 1] via φ. All we have done in the previous section will work in the same
way. In particular, when finding situations in which Λ1 = 0 we are finding cases in which the
pseudo-asymptotic solutions of the extended TOV equation is a genuine solution of that extended
equation. Let TOV

∞,∞
denote the space of such solutions which are piecewise smooth, i.e, the space

of piecewise C∞-differentiable extended TOV systems.

Proposition 1. TOV
∞,∞

is at least eleven-dimensional.

Proof. Let us consider the pseudo-asymptotic mass functions M obtained in Section 2.1, whose
underlying density functions are in Table 1, so that Λ1 is given by (15), which depends on a function
h, also listed in Table 1. Writing (15) explicitly for each (M,h), as presented in Appendix B, we see
that Λ1 is not oscillating in ±∞, so that Λ1 and Λ1 are well-defined. From the commutativity of

2This clearly does not mean that f is continuous in the whole domain R, only piecewise continuous.
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diagram (20) we can analyze the graph of Λ1 looking at the asymptotic behavior of the graph of Λ1.
As we see in Appendix B, each Λ1 either becomes non-negative and non-decreasing when r → +∞
or non-positive and non-increasing when r → −∞, which means that the corresponding Λ1 have the
same behavior in a neighborhood sufficiently small of ±1. The result follows from Corollary 2.

Remark 4 (important remark). Let TOV∞,∞I,0 ⊂ TOV∞,∞I be the space of piecewise smooth TOV
systems which are not oscillating in ±∞. We have an inclusion

(·) : TOV∞,∞I,0 ↪→ TOV
∞,∞

, given by (p,M) = (p,M).

In Proposition 1 we got ten extended solutions. The remaining one is, again, the classic constant
solution, now regarded as an extended solution via the inclusion above. The important fact to have
in mind is that the reciprocal does not hold: an extended TOV solution when restricted to some
interval I of R is not necessarily a solution of the actual TOV equation in I. Indeed, if an extended
TOV system (p,M) depends explicitly on its behavior at ±, then when restricting to I the equation
will not be preserved, so that (p|I ,M |I) will not belong to TOV∞,∞I . Notice that this is exactly the
situation of Corollary 2, so that we cannot use Proposition 1 in order to get solutions of the actual
TOV equation.

2.3 Beyond

We proved Theorem 1.1 ensuring the existence of a coupling function Λ whose space Psd∞Λ (I) of
pseudo-asymptotic solutions is at least eleven-dimensional. In this section we show that it is at least
fifteen-dimensional and discuss why it is natural to believe that it has an even higher dimension.
The first assertion is due to the following reason:

1. Existence of critical configurations exhibiting phase transitions. Notice that the integrability
conditions of [12], such as (10), (21) and (22), depends on two constants c1 and c2. Conse-
quently, the pseudo-asymptotic solutions of the corresponding coupling equations also depend
on such constants. Let us write M1,2 to emphasize that M is a pseudo-asymptotic mass
function depending on c1 and c2. Now, recall that two mass functions M,N are linearly de-
pendent in PsdlΛ(I) if there exists a real number c such that M(r) = cN(r) for every r ∈ I.
This means that if the dependence of M1,2 on c1 (resp. c2) is not in the form M1,2 = c1M2

(resp. M1,2 = c2M1), then when varying c1 (resp. c2) we get at least two linearly inde-
pendent pseudo-asymptotic mass functions. These linearly independent mass functions can
be obtained by defining a new piecewise differentiable map M : I × R × R → R, such that
M(r, c1, c2) = M1,2(r), and then by studying its critical points. In typical cases (as for those
obtained in Section 2.1, i.e, for those whose density function is in Table 1) the functionM is
piecewise a submersion. Therefore, the pre-imagesM−1(c) are submanifolds Sc of R3 and the
linearly independent mass functions can be obtained by searching for topology changes in Sc
when c vary (in a similar way we search for phase transitions in a statistical mechanics system).
In the next section we will analyze the topology of the surface Sc corresponding to rows 1, 2
and 7 of Table (1), showing that they admit one, two and one topology changes, respectively.
This means that Theorem 1.1 and Corollary 1 can be improved, giving the theorem below.

Theorem 2.1. There exists a maximally split coupling function Λ such that Psd∞Λ (I) is at
least fifteen-dimensional. Furthermore, TOV

∞,∞
is at least fifteen-dimensional.
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The second assertion is suggested by the following reason:

2. Existence of other maximally split coupling functions. Recall that our starting point to get Λ
in (13) was the integral equation (10) obtained in [12] which when satisfied induces a solution
for the TOV equation. In [12], besides (10), other nine integral/differential equations playing
the same role are presented. Applying to these other nine equations a strategy analogous
to that used in (10) to obtain (13), allows us to obtain new coupling equations. We recall
that each integrability equation in [12] becomes parametrized by certain constants and by an
arbitrary function f . By making a suitable choice of f in the sixth and eighth cases of [12],
we see that the induced coupling equations coincide with (13). Explicitly, the sixth case is
given by

B(r) =
f3(r)−A(r)C(r)− C2(r)

[∫ f3(r)
2C(r) dr − c7

]2

2C(r)
[∫ f3(r)

2C(r) dr − c7

] (21)

where f3 ∈ Ck+1
pw (I) and c7 is a constant of integration. For the choice f3(s) = 2C(s)g(s),

where g ∈ Ck+1
pw (I), the induced coupling equation reduces to (13). Furthermore, the eighth

case is

B(r) =
1

f4(r)

[
C(r)

d

dr

(
f4(r)

C(r)

)
− f2

4 (r)

2
− 2A(r)C(r)

]
(22)

where f4 ∈ Ck+1
pw (I). If we choice f4(r) = h(r)C(r) again we get (13). Therefore, in view of

the methods developed in Section (2.1), equations (21) and (22) do not differ from (10). On
the other hand, we could not find f which makes the coupling equation induced by each of
the other seven cases equals to (13). This does not means that they will produce new pseudo-
asymptotic mass functions which will eventually define (via Corollary 2) new extended TOV
systems3. Even so, it suggests the possibility.

3 Classification

So far we have focused on getting new integrable extended TOV systems. In this section we will
work to give physical meaning to discovered systems. In order to do this, we propose a simple
classification of general stellar systems in which we will consider the new extended TOV systems.
Indeed, let (p, ρ) ∈ Ckpw(I)× C lpw(I) be a stellar system of degree (k, l). We say that it is

• ordinary (resp. exotic) in an open interval J ⊂ I if the density ρ is positive (resp. negative)
in each point of J . That is, ρ(r) > 0 (resp. ρ(r) < 0) for r in J ;

• without cavities if ρ has no zeros, i.e, ρ(r) 6= 0 for every r in I;

• without singularities if its domain is an open interval (0, R), where R can be ∞;

• smooth if it is without singularities and ρ ∈ C∞(I);

• realistic if it is smooth and ordinary in I.
3Indeed, many of the induced maximally split coupling equation have a nonlinear part which is really high non-

linear.
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A cavity radius of (p, ρ) is a zero of ρ. Similarly, a singularity of (p, ρ) is a discontinuity point
of ρ. So, (p, ρ) is without cavities (resp. without singularities) iff it has no cavity radius (resp.
singularity).

When looking at Table 1 it is difficult to believe that some of the stellar systems there described
are realistic. In fact, as can be rapidly checked, when defined in their maximal domain, these systems
are in fact unrealistic. But as we will see, when restricted to a small region, many of them becomes
realistic. This becomes more clear looking at Figure 1 below, which describe the classification of
certain rows of Table 1. In the schematic drawings, the filling by the grid is associated to exotic
matter, whereas the filling by the hexagons to ordinary matter. The dashed circles represents a
singularity radius and the dot circles a cavity radius.
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(a) Schematic Drawing of
Figure 2
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(b) Schematic Drawing of
Figure 3
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(c) Schematic Drawing of
Figure 4d
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(d) Schematic Drawing of
Figure 4e
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(e) Schematic Drawing of
Figure 5a
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(f) Schematic Drawing of
Figure 5b

Figure 1: Classification of some new pseudo-asymptotic TOV systems.

Notice that in order to do this classification we need to search for the zeros of the density
function, which will give the radii in which there is no matter inside the star. Suppose that we
found one of them, say ro. If ρ is continuous in that radius, then it is a cavity; otherwise, it is
a singularity. The fundamental difference between them is that continuity implies that ρ cannot
change sign in neighborhoods of ro. This means that a star containing only cavities is composed
either of ordinary matter or of exotic matter. On the other hand, stellar systems with singularities
may contain both ordinary and exotic matter.

The stellar systems considered in Table 1 have densities of the form ρ(r) = p(r)
q(r) log(o(r)), where

p, q and o are polynomials with integer or fractional powers. Singularities are identified with zeros of
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q, while cavities are given by zeros of p and o−1. The existence of real roots for a given polynomial
is strongly determined by its coefficients and, in the present situation, the coefficients of p, q and
o depend on two real parameters c1 and c2. We write p12, q12 and o12 in order to emphasize this
fact. We can then search for critical configurations, in which a small change of c1 and c2 produces a
complete modification of the system, as in a phase transition in statistical mechanics. The critical
configurations can be captured by defining new functions

P,Q,O : [0,∞)× R× R→ R

by P(r, c1, c2) = p12(r), and so on, which are piecewise submersions. The solution of Q is then an
algebraic submanifold Sp ⊂ R3, possibly with boundary, that completely determines the behavior
of the singular set of ρ12 when we vary c1 and c2. Similarly, the disjoint union of the solutions sets
of P and O − 1 also defines an algebraic submanifold Spo of R3 which determines the behavior of
the cavities when we vary c1 and c2.

Notice that a point (r, c1, c2) ∈ Sq is a critical singularity of ρ12 iff it admits topologically distinct
neighborhoods. Analogously, the critical cavities are given by points in Spo with non-homeomorphic
neighborhoods. Finally, the critical configurations of the stellar system with density ρ12 are the
points of Sq t Spo which are critical singularities or critical cavities. A manifold defined by the
inverse image of a function is locally homeomorphic to the graph of the defining function. This
means that a neighborhood for (r, c1, c2) is just a piece of the graph of P, Q or O − 1. Since the
topology of a graph changes only at an asymptote, zeros of Q with fixed (c1, c2) give the singularities,
while zeros with fixed (r, c2) and (r, c1) will give the critical singularities, and similarly for critical
cavities.

Having obtained singularities, cavities and critical configurations, the classification is completed
by determining the kind of matter, which can be done from graphical analysis. In next sections
we will apply this strategy to rows 1, 2 and 7 of Table 1. The row 1 will produce the schematic
drawings (1a) and (1b), while row 2 will produce (1c) and (1d), and row 7 will give (6g) and (1f).

3.1 Row 1 of Table 1

In this case the density function in given by

ρ(r, c1, c2) =
c2

(
c1 − 5πr2

)
4πr4 (πr2 − c1) 3

. (23)

Notice that c2 is a multiplicative constant, so that it will give linearly dependent solutions, leading
us to fix c2 = 1. This means that the singular set Sq is a submanifold of R2, while the set of cavities
Spo is a submanifold of R3 of the form S × R, with S ⊂ R2. More explicitly, singularities are given
by the solutions of the algebraic equation

4πr4(πr2 − c1)3 = 0, (24)

while cavities are determined by the solutions of

c1 − 5πr2 = 0 (25)

Both equations depend explicitly of c1. If c1 ≤ 0, the only singularity radius is the origin r = 0 and
there are no cavities. An example of this behavior is given by Figure 2, for c1 = 0:
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Figure 2: Plot of (23) for c1 = 0 and c2 = 1.

It then follows that, for our choice c2 = 1, the stellar system is composed only by exotic matter.
On the other hand, if c1 > 0, the singularities happen at r = 0 and at r0 =

√
c1/π, which is

the non-negative solution of πr2 − c1 = 0. The single cavity is given by the single positive root
r1 =

√
c1/5π of (25), which lies in the interval (0, r0) bounded by the singularities. Thus, the type

of matter inside (0, r0) may change, but it remains the same after crossing r0. In order to capture
this change of matter we analyze the sign of the derivative of ρ12 at r1. The derivative is

ρ′12(r) =
c2

(
c2

1 − 5c1πr
2 + 10π2r4

)
πr5 (πr2 − c1)4 (26)

and we see that ρ′12(r1) > 0. So, in that point, the star matter stops being exotic and becomes
ordinary. Moreover, we have limr→r0+ ρ12(r) = +∞ and limr→r0− ρ12(r) = −∞. It follows that in
(r0,∞) the star is composed of exotic matter. An example of this behavior is given by Figure 3,
where c1 = 7:

Figure 3: Plot of 23 for c1 = 7 and c2 = 1.

Now, solving (25) and (24) we see that for each given r0 there exists a single c1 making r0 a
critical configuration.

3.2 Row 2 of Table 1

We start by noticing that in the present case the density function can be written as

ρ12(r) = − Γ12(r)

8πr4 (r2 − 1) (−c1 + πr2 + π log (r2 − 1)) 3
(27)

14



where

Γ12(r) =− 2c1c2

(
r2 − 1

)
+ 3π2

(
r2 − 1

) (
πr2 − c1

)
×
[
log
(
r2 − 1

)]2 − 2π[c2

(
1− 5r2

)
r2

+ c2
1

(
r4 + 2r2 − 1

)
] + π

(
r2 − 1

)
×
[
2πc1

(
1− 3r2

)
+ 2

(
c2

1 + c2

)
+ π2

(
3r4 − 1

)]
× log

(
r2 − 1

)
− π2c1

(
3r6 − 13r4 + r2 + 1

)
+ π3

(
r2 − 1

) [
log
(
r2 − 1

)]3
+ π3

(
r8 − r6 − 5r4 + r2

)
. (28)

The function ρ12 depends non-trivially on both variables c1 and c2 only in Γ12, so that a priori
its singular set and its set of zeros are arbitrary submanifolds of R3 and R2, respectively, and
therefore we may expect many critical configurations. The interval [0, 1] is clearly singular, while
the singularities for r > 1 are determined by solutions of the equation

−c1 + πr2 + π log
(
r2 − 1

)
= 0.

We assert that for each fixed c1 there is precisely one solution. In other words, we assert that the
singular set is diffeomorphic to ([0, 1] × R) t R. Indeed, let Y : [0,∞) × R → R be the piecewise
differentiable function

Y (r, c1) = −c1 + πr2 + π log
(
r2 − 1

)
. (29)

Clearly, there are r0 and r1 such that Y (r0, c1) < 0 and Y (r1, c1) > 0. But, the derivative of Y (r, c1)
in the direction of r is always positive for r > 1. If fact, if r > 1, then

∂Y

∂r
(r, c1) =

2r(r2 + π − 1)

r2 − 1
> 0.

Consequently, Y has a single zero in r > 1 corresponding to the unique singularity of ρ12 in this
interval. Moreover, for any r0 > 1, we can set the constant c1 appropriately so that r0 corresponds
the singularity. In fact, just set

c1 = πr2
0 + π log

(
r2

0 − 1
)
.

The cavities of ρ12 in (27) are given by zeros of Γ12. Differently of the previous case, we cannot
isolate any of the variables, so that Spo ⊂ R3 will have complicated topology. We assert that the
manifold of critical configurations is R2. Indeed, if we fix c1 and vary c2 we do not find any change
of topology, while if we fix c2, say c2 = 1, we find two critical points, approximately at c1 = 1, 7
and at c1 = 4, 6, as shown in Figure 4.

3.3 Row 7 of Table 1

Previously we studied a stellar system with discrete critical configurations and another with a
continuum of critical configurations. In both cases, graphical analysis were used to identify the
critical configurations. Here we will discuss a third system, whose special feature is to show that
even when we have an analytic expression for cavities and singularities, a graphical analysis is
fundamental to complete the classification.
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(a) c1 = 1 (b) c1 = 1.6

(c) c1 = 1.8 (d) c1 = 4.5 (e) c1 = 4.7

Figure 4: Plot of (27) for different values of c1 and constant c2 = 1.

The density function is now of the form

ρ(r, c1, c2) = f(r, c1, c2)/q(r, c1), (30)

where f is a linear combination of polynomials and logarithmic functions, depending on both pa-
rameters c1 and c2. We will focus on singularities, so that only the expression of q matters. It is
the polynomial

q(r, c1) = 12πr2(−c1r + πr3 + 1)3.

Because c2 does not affect q we see that the singular set is a submanifold of R2. For each
fixed c1 the complex roots of q can be written analytically with help of some software (we used
Mathematicar). They are r0 = 0, with multiplicity two, and

r1 =

3
√

2
(√

81π − 12c3
1 − 9

√
π
)

2/3 + 2 3
√

3c1

62/3
√
π 3

√√
81π − 12c3

1 − 9
√
π

(31)

r2 =

3
√

2 6
√

3
(
−1 + i

√
3
) (√

81π − 12c3
1 − 9

√
π
)

2/3 − 2
(√

3 + 3i
)
c1

2 22/335/6
√
π 3

√√
81π − 12c3

1 − 9
√
π

(32)

r3 =

3
√

2 6
√

3
(
−1− i

√
3
) (√

81π − 12c3
1 − 9

√
π
)

2/3 − 2
(√

3− 3i
)
c1

2 22/335/6
√
π 3

√√
81π − 12c3

1 − 9
√
π

, (33)

each of them with multiplicity three. Our stellar system then have singularities only for the values
c1 such that some of the radii above are real and non-negative. One can be misled to think that
r1 corresponds to a real zero iff c1 ≤ 3

√
81π
12 ≈ 2.77. Although c1 ≈ 2.77 is clearly a critical

configuration, a graphical and numerical analysis shows that r1 is always real. In order to see this,
we compare in Figure 5 the density function for c1 = 5 > 2.77 and c1 = 1 < 2.77.

Although Figure (5a) seems physically interesting, it is not: a numerical evaluation shows that
r1(c1) ≈ −0.84, so that despite being real, it is negative. In turn, Figure (5b) should appear
strange: it contains two nonzero real roots while the analytic expressions above suggest that there
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(a) c1 = 1 (b) c1 = 5

Figure 5: Plot of (30) of c1 and constant c2 = 1.

is at most one non-null real root. Again, a numerical evaluation gives r1(c1 = 5) ≈ 1.15, r2(c1 =
5) ≈ −1.35 + 1.69× 10−21i and r3(c1 = 5) ≈ 0.21− 4.24× 10−22i. So, we see that when c1 grows,
the imaginary parts of the roots r2 and r3 become increasingly smaller, allowing us to discard them.
Thus, c1 ≈ 2.77 determines a critical configuration such that for c1 < 2.77 there are no singularities
and for c1 > 2.77 there are two of them.

4 Summary

In this paper we considered the problem of classifying the stellar systems modeled by the piece-
wise differential TOV equation (1). We began by introducing the problem in the general context
presented in [1], allowing us to formalize the problem as the determination of the structure of
TOVk,l

I as a subspace of Ck,l,l+1
pw (I) relative to some locally convex topology. We showed that

this subspace is generally not open if the topology is Hausdorff. We introduced another subspace
Psdl+1(I) ⊂ Ck,l,l+1

pw (I) of pseudo-asymptotic systems and we showed that for l = ∞ this space is
at least fifteen-dimensional and that there are good reasons to believe that its dimension is larger.
We then considered extended TOV systems, which are TOV systems defined on the extended real
line R, and we showed that if a pseudo-asymptotic systems has a nice behavior when extended to
R, then it is actually a extended TOV system, leading us to conclude that the space TOV

∞,∞
of

all of them is at least fifteen-dimensional. We presented a method of classification of these solu-
tions, applying it to some of them, allowing us to show that there are new pseudo-asymptotic TOV
systems consisting only of ordinary matter and that contain no cavities or singularities.
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A Table of Solutions

Function F (r) (Eq. 16) h(r) ρ(r)

0 1
πr2−c1

c2

(
c1−5πr2

)
4πr4(πr2−c1)3

h′(r)
1

−c1+πr2+π log(r2−1)

[−2c1c2
(
r2 − 1

)
+ 3π2

(
r2 − 1

) (
πr2 − c1

) [
log
(
r2 − 1

)]2
−2π

(
c2
(
1− 5r2

)
r2 + c21

(
r4 + 2r2 − 1

))
+ π

(
r2 − 1

)
×
(
2πc1

(
1− 3r2

)
+ 2

(
c21 + c2

)
+ π2

(
3r4 − 1

))
log
(
r2 − 1

)
−π2c1

(
3r6 − 13r4 + r2 + 1

)
+ π3

(
r2 − 1

) [
log
(
r2 − 1

)]3
+π3

(
r8 − r6 − 5r4 + r2

)
] : [8πr4

(
r2 − 1

)
×
(
−c1 + πr2 + π log

(
r2 − 1

))
3]

rh′(r)
1

−c1+πr2+2πr+2π log(r−1)−3π

[60π2(r − 1)
(
9c1 + π

(
8r3 − 9r2 − 18r + 31

))
log2(r − 1)

+30π
(
c21

(
4r4 − r3 − 3r2 + 17r − 11

)
− 3c2

(
5r3 + r2 − 5r + 3

))
+2π(r − 1)[−30πc1

(
8r3 − 9r2 − 18r + 31

)
− 90

(
c21 + c2

)
+π2

(
24r5 + 135r4 − 1460r3 + 390r2 + 1860r − 1669

)
]

× log(r − 1)− π2c1[24r
6 + 111r5 − 1595r4 + 1850r3 + 1470r2

−3529r + 1669] + 90c1c2(r − 1) + π3[9r7 − 115r6 − 803r5

+4465r4 − 3365r3 − 3529r2 + 5375r − 2037]

−360π3(r − 1) log3(r − 1)] : [360π(r − 1)r4[−c1 + π
(
r2 + 2r − 3

)
+2π log(r − 1)]3]

h2(r) r
−c1r+πr3+1

−πr3(10c1r+15c2+7)+3
(
−c1r+5πr3−1

)
log(r)+3(c1(c2+3)r+c2−1)+2π2r6

12πr2(−c1r+πr3+1)3

rh2(r)
1

−c1+πr2−log(r)

[−3π (c1 − 1) r4 −
(
2c21 − 3c1 + 20πc2 + 2

)
r2

+
(
(3− 4c1) r

2 + 4c2 − 3πr4
)
log(r) + 4 (c1 + 2) c2 + π2r6

−2r2 log2(r)] : [−16πr4
(
c1 − πr2 + log(r)

)
3]

r2h2(r) 1
−c1+πr2−r

− (8πc1−15)r5−45c1r
4−40c21r

3+300πc2r
2−180c2r−60c1c2+9πr6

240πr4(c1−πr2+r)3

r3h2(r) 2
−2c1+2πr2−r2

7(2π−1)c1r
6−18c21r

4+15(1−2π)c2r
2+6c1c2−(1−2π)2r8

12πr4((2π−1)r2−2c1)3

h2(r)
r

2r2

−2c1r
2+2πr4+1

[
(
−2c1r2 + 2πr4 + 1

) (
4c1r

2 + 3c2r
2 + 12c1r

2 log(r)− 10πr4 + 1
)

−2
(
8πr3 − 4c1r

) (
c2r

3 + 4c1r
3 log(r)− 2πr5 + r

)
]

: [4πr2
(
−2c1r2 + 2πr4 + 1

)
3]

r1/2h2(r)
√
r

−c1
√
r+πr5/2+2

−7c21r
3/2−34πc1r

7/2−105πc2r
2+42c1r+21c1c2+9π2r11/2+126πr3−84

√
r

84πr5/2
(
−c1
√
r+πr5/2+2

)
3

r3/4h2(r)
4√r

−c1 4√r+πr9/4+4
[440c1r

7/4 − 525πc2r
9/4 − 118πc1r

4 − 45c21r
2 + 105c1c2 4

√
r

−210c2 − 1120r3/2 + 616πr15/4 + 35π2r6]

: [420πr7/2
(
−c1 4
√
r + πr9/4 + 4

)
3]

Table 1: Solutions of the coupling equation (13) in the pseudo-asymptotic limit.
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B Graphs of some of the Λ1 associated to Table 1

-10 -5 5 10

-0.00008

-0.00006

-0.00004

-0.00002

(a) Λ1 for the first row (b) Λ1 for the second row (c) Λ1 for the third row

(d) Λ1 for the fourth row (e) Λ1 for the fifth row (f) Λ1 for the sixth row

(g) Λ1 for the eighth row (h) Λ1 for the ninth row (i) Λ1 for the tenth row

Figure 6: Graphs of some of the functions Λ1 associated with the rows of Table 1

Acknowledgements

Y. X. Martins and L. F. A. Campos were supported by CAPES and CNPq, respectively. The
authors thank the referee for the careful reading and for clarifying some mistakes.

References

[1] Y. X. Martins, D. S. P. Teixeira, L. F. A. Campos and R. J. Biezuner, Constraints between
equations of state and mass-radius relations in general clusters of stellar systems, Phys. Rev. D
99, n. 2, 023007 (2019).

[2] S. Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory of
Relativity, John Wiley & Sons, 1972.

[3] G. Beer and J. Vanderwerff, Structural Properties of Extended Normed Spaces, J. Set-Valued
Var. Anal 23, 613-630 (2015).

19



[4] S. G. Lobanov and O. G. Smolyanov, Ordinary differential equations in locally convex spaces,
Russian Mathematical Surveys 49, n. 3.

[5] R. Lemmert, On ordinary differential equations in locally convex spaces, Nonlinear Analysis:
Theory, Methods & Applications, 10, n. 12, 1385-1390, (1986).

[6] P. Boonserm, M. Visser and S. Weinfurtner, Generating perfect fluid spheres in general relativity,
Phys.Rev. D71, 124037 (2005).

[7] P. Boonserm, M. Visser and S. Weinfurtner, Solution generating theorems for the Tolman-
Oppenheimer-Volkov equation Phys. Rev. D 76, 044024 (2007).

[8] W. Schaeffer, Topological Vector Spaces, Graduate Texts in Mathematics 3, Springer, 1999.

[9] F. Treves, Topological Vector Spaces, Distributions and Kernels, Pure and Applied Mathematics,
Vol. 25, Academic Press, 2016.

[10] M. E. Taylor, Partial Differential Equations I, Applied Mathematical Sciences 115, Springer,
1996.

[11] Horedt, G. P., Polytropes: Applications in Astrophysics and Related Fields, Kluwer Academic
Publisher, 2004.

[12] T. Harko, F. S. N. Lobo and M. K. Mak, Analytical solutions of the Riccati equation with
coefficients satisfying integral or differential conditions with arbitrary functions Univ. J. Appl.
Math. vol.2, 109-118 (2014).

[13] D. A. Charalambos and O. Burkinshaw, Principles of Real Analysis, Academic Press, 1998.

[14] J. L. Kelley, General Topology, Graduate Texts in Mathematics 27, Springer, 1975.

20


	1 Introduction
	2 Proof of Theorem ??
	2.1 The proof
	2.2 Extending
	2.3 Beyond

	3 Classification
	3.1 Row 1 of Table ??
	3.2 Row 2 of Table ??
	3.3 Row 7 of Table ??

	4 Summary
	A Table of Solutions
	B Graphs of some of the 1 associated to Table ??

