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Abstract

While acoustic analysis methods have become a commodity in voice emotion research, experiments that attempt, not
only to describe, but to computationally manipulate expressive cues in emotional voice and speech have remained
relatively rare. We give here a non-technical overview of voice-transformation techniques from the audio signal
processing community that we believe are ripe for adoption in this context. We provide sound examples of what they can
achieve, examples of experimental questions for which they can be used, and links to open-source implementations.
We point at a number of methodological properties of these algorithms, such as being specific, parametric, exhaustive

and real-time, and describe the new possibilities that these open for the experimental study of the emotional voice.
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Introduction

A typical approach to study how humans and other animals
communicate emotions vocally uses acoustic analysis to
quantify the physical features of vocalizations, such as their
fundamental frequency (FO0), intensity, or spectrum, and seek
how they relate to the affect of the speaker (Bachorowski
and Owren 1995) or listener (for a review, see e.g. Scherer
2003; Juslin and Laukka 2003). Several well-known tools
exist in the community for this purpose, including PRAAT'
for speech data (Boersma and Weenink 2002), OpenSMILE”
(Eyben et al. 2013), MIRToolbox® for song and musical
data (Lartillot and Toiviainen 2007), and Sound Analysis
Pro* (Tchernichovski and Mitra 2004) or Seawave’® (Sueur
et al. 2008) for animal communication. The availability of
dedicated software has an important impact on research: it
gives access to audio signal processing techniques such as FO
extraction without needing a technical background; it helps
standardize the definition of vocal features, by providing
reference implementations (when one studies jitter while
referencing PRAAT, others know what is meant and how
to reproduce the work); and it provides an interdisciplinary
interface between the research that creates these tools and
the research that uses them, to share new techniques and new
research needs.
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One limitation of this methodology however is that it
is intrinsically correlational. Analysing large corpora of
speech or vocalizations to establish e.g. that happy voices
have statistically higher FOs, faster rate and more animated
intonations (Banse and Scherer 1996; for a recent review,
see Kamiloglu et al. 2019) do not allow us to conclude
that these features are biological signals that are causally
involved in either the decoding of these emotions. For
instance, it is now relatively well-described that smiling,
the bilateral contraction of the zygomatics facial muscles,
has perceivable acoustic consequences on the speaking voice
that can be heard, e.g., on the phone (Tartter and Braun

1994). How listeners recognize smiles in speech, however, is
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Figure 1. The confusing case of fundamental frequency in
smiled speech. Ohala (1980) demonstrated that the resonant
frequencies (formants) of a cylindrical clay model of the vocal
tract are lowered when the shape of a smile is carved into it (A,
middle), and that these new frequencies are similar to that of a
non-smiling, but shortened cylinder (A, bottom). He concluded
that smiling only has mechanistic consequences on the
resonances of the vocal tract filter (A). This is confirmed by the
fact that listeners are able to recognize smiled speech in both
pitched and non-pitched (whispered) vocalizations (B).
However, it is typical that speakers simultaneously raise their
pitch while smiling (C), and thus listeners use higher pitch as a
cue to identify smiled speech (D), even though it is not causally
implicated in smiling. The sole acoustic analysis of speech
corpora therefore cannot fully elucidate what cognitive
mechanisms are involved in how smile is communicated vocally.
Figure adapted from Ohala 1980; Tartter and Braun 1994;
Tartter 1980; Lasarcyk and Trouvain 2008.

remarkably complicated. On the one hand, physical models
show that labial spreading, which reduces vocal tract length,
has no mechanistic consequence on the FO of the glottal
source, but only on formant frequencies (Figure 1A; Ohala
1980; Drahota et al. 2008); and thus, listeners are able
to identify smiled speech in the whisper register (Figure
1B; Tartter and Braun 1994), which has no audible FO.
On the other hand, corpus analyses typically find strong
associations between smiled speech and FO (Figure 1C;
Tartter 1980; Barthel and Quené 2015), which suggests that
it is neurologically difficult for speakers to smile without
simultaneously raising their pitch; and thus, in the normal
register, listeners reliably use pitch as a cue to identify
smiled speech, even though it is not causally implicated
in its production (Figure 1D; Lasarcyk and Trouvain 2008;
El Haddad et al. 2015). It is therefore clear, in this field
of study like in any other (Casadevall and Fang 2008),
that correlation does not imply causation and that the sole
acoustic analysis of what is incidentally present in voice and
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speech may obfuscate the mechanisms with which emotions
are produced, or recognized (see Armstrong et al. 2019 for
a similar argument on the signaling of body size by low FO
voices).

Rather than describing them, one would like the ability
to manipulate the acoustic factors of interest in stimuli, in
order to confirm experimentally that they causally lead to
a change of behavior in the predicted direction when they
are perceived. The manipulation of acoustic cues provides an
approach complementary to corpus analyses, where the latter
can establish a relation between two phenomena (e.g. shifted
formants when people smile) and the former can be used to
build a model and test for their involvement in perception®
(see also Goldstone and Lupyan 2016). Yet, while analysis
tools are many, experiments that attempt to manipulate
acoustic dimensions computationally in complex stimuli
such as speech (Scherer 1972), music (Ilie and Thompson
2006), or animal vocalizations (Hienz et al. 2004) have been,
until recently, remarkably rare. Perhaps because acoustic
transformation tools are perceived to be too technical or of
unsufficient quality, a steady stream of research has even
preferred less flexible, but more ethologically-valid ways to
manipulate vocal characteristics, such as immersing animals
in heliox (Nowicki et al. 1989; Rand and Dudley 1993).

Two lines of research have significantly advanced the
quest for acoustic control and causal inference in voice and
speech research: vocal morphing and speech synthesis. On
the one hand, morphing —an algorithmic method to combine
two voices by interpolating their spectral features (Kawahara
and Matsui 2003) —, has allowed researchers to describe,
e.g., how formants are processed to represent vocal identity
(Latinus et al. 2013), whether averaged voices are perceived
2010) or whether
vocal emotion are perceived categorically (Laukka 2005).

as more attractive (Bruckert et al.

However, morphing is generally performed between voices
that differ in more than one acoustic dimension. For example,
two morphed vocal identities that differ in their fundamental
frequency, formant dispersion, and Harmonic-to-Noise Ratio
(HNR), will inevitably generate experimental conditions
where these acoustic features co-vary (Latinus et al. 2013).
On the other hand, speech synthesis —a vast family of
methods allowing to create artificial vocal stimuli from
scratch by specifying part or all of their physical parameters
(for a review, see e.g. Govind and Prasanna 2013; Malisz
et al. 2019) —, has been used e.g. to reveal that vocal

61t should be noted that transformation do not help to establish the
involvement of the cues in the production/expression of emotion; for this,
one has to manipulate the actual emotional state of the signalers (e.g.
Bachorowski and Owren 1995)



emotions can be recognised in isolated pitch contours
(Scherer and Oshinsky 1977), to compare the emotional
impact of various forms of non-linearities (Anikin 2019),
or test the effect of formant frequencies on the recognition
of smiled speech (Quené et al. 2012). While allowing
theoretically unlimited control over the physical properties
of the stimuli, synthesis methods have the caveat of of
decontextualising acoustic features (e.g. when replacing full
speech with isolated pitch contours) and may also suffer from
sonic artefacts (e.g. voices sounding robotic and artificial
- although see this article’s final prospective note on deep-
learning techniques).

In our view, voice transformation —the technique to
manipulate an original, natural vocal utterance in order
to alter a specific acoustic dimension —provides a useful
alternative’ to the morphing and synthesis approaches. By
giving experimenters the ability to predict how behavioral,
physiological or neural reactions vary depending on specific
acoustic changes, while leaving all other features unchanged,
transformations are well adapted to the nature of hypothesis-
driven experimental research. Furthermore, because of recent
improvements in vocal transformation algorithms, and their
increasing availability in the computer-science communities
(Stylianou 2009; Mohammadi and Kain 2017a), it may be
time to consider these technologies part of the toolbox of
vocal emotion researchers.

In this article, we review the neurological and acoustic
bases of emotional voice production, and show that there
are in fact well-established, high-quality algorithms that are
able to parametrically transform a prerecorded vocal signal
at all levels of the voice production pathway. We provide
sound examples from our own recent work that illustrate
these techniques, examples of experimental questions for
which they can be used, and links to open-source software
to replicate and extend these studies. Finally, we point at
a number of methodological properties of these algorithms,
such as being specific, parametric, exhaustive and real-time,
and describe the new possibilities, and questions, that these

entail for experimental research.

Voice transformations along the vocal
production pathway

Voice is produced when the expiratory airflow from the
lungs, generated by thoracic and abdominal muscles, sets
the vocal folds of the larynx into oscillations. This sound
wave, or glottal source, is resonated through the vocal tract,
filtered by oral articulators such as the tongue and lips

which amplify certain bands of energy (or formants) in its
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frequency spectrum, and is finally radiated from the mouth
and nose (Figure 2; Titze 1994). While the vibration of the
vocal folds is a passive process, their oscillatory properties,
the airflow that sets them into motion, and the resonance
characteristics of the vocal tract are all controlled by over 100
respiratory, laryngeal, and oro-facial muscles (Simonyan and
Horwitz 2011), whose motoneurons originate from the spinal
cord and brainstem.

In emotional vocalizations, neural control over these
muscles involve a hierarchy of cortical and subcortical
systems including the periaqueductal gray (PAG), anterior
cingulate cortex (ACC) and laryngeal motor cortex (LMC).
These subcortical and cortical influences on muscle actuators
at every stage of the vocal production pathway have different,
complementary effects on the final acoustic properties of the
vocal signals, and specific voice-transformation techniques
exist to reproduce these changes in ecological voice and

speech recordings.

Glottal source transformations

Changes in the subglottal pressure due to the contraction
of thoracic and abdominal muscles, which are controlled
from the anterior horn of the spinal cord, primarily lead
to modulations of voice intensity. At moderate intensities,
such as in e.g. happy, aroused voices compared to calm
or sad voices, the effect of the modulation is carried
linearly through the vocal pathway and can be simulated
with a simple scalar multiplication of the recording’s root
mean square (RMS) intensity (see e.g. Ilie and Thompson
2006) or, for arbitrary intensity profiles, a piece-wise linear
function as implemented e.g. in the reverse-correlation
toolbox CLEESE?® (Burred et al. 2019).

Increased airflow, such as in pain cries or anger shouts, but
also possibly altered neurological control over the laryngeal
muscles, such as in stress or anxiety, may drive the vocal
folds into non-linear/chaotic oscillatory regimes and, more
generally, change the shape and periodicity of glottal pulses,
which resulting in audible alterations of sound quality such
as roughness, noisiness or breathiness (Figure 2C). In voice
measurements, such non-linearities are often analysed in
terms of jitter and shimmer (cycle-to-cycle variations in

the period and amplitude of glottal pulses, respectively)

"Note that, strictly speaking, there is a technological overlap between voice
transformation and certain forms of (re-)synthesis techniques, which analyse
an original signal down to its generative parameters and then resynthesize
a variant of the signal by altering these parameters. We review some of
these techniques in the rest of the paper under the encompassing term of
transformation.

8http://forumnet.ircam.fr/product/cleese
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Figure 2. Neurological, anatomical and acoustic characteristics of the vocal production pathway. Voice is produced when the
expiratory airflow from the lungs sets the vocal folds of the larynx into oscillations (right). This sound wave, or glottal source, is
resonated through the vocal tract and filtered by oral articulators such as the tongue and lips (left) and is finally radiated from the
mouth and nose. Neural control at different levels of this pathway involve a hierarchy of cortical and subcortical systems including
premotor nuclei of the brainstem such as the nucleus ambiguus (Amb.), periaqueductal gray (PAG), anterior cingulate cortex (ACC)
and laryngeal motor cortex (LMC). Voice-transformation techniques exist to parametrically manipulate a prerecorded vocal signal at
all levels of the voice production pathway: vocal tract filter (A), pitch and intonation (B), and glottal source timbre (C).

and harmonic-to-noise ratio (HNR) Boersma and Weenink
(2002). Such modulations of vocal source quality are
important in emotional behaviors (Johnstone and Scherer
1999; Gobl and Chasaide 2010) and have been related, in
listeners, to subcortical processing by the amygdala (Arnal
et al. 2015).

Not all glottal source changes are easily simulated
with voice transformations. In theory, analysis-resynthesis
techniques can be used to, first, estimate the recording’s
series of glottal pulses (Degottex et al. 2013) and, then,
resynthesize the vocal signal from a manipulated series of
pulses with artificially-varied amplitude and period (Verma
and Kumar 2005; Ruinskiy and Lavner 2008; Bohm et al.
2008). However, these techniques rely on an explicit model
of pulse variability, which is typically learned from one or
several target examples of naturally rough voices (Bonada
and Blaauw 2013), and it is unclear how such predetermined
patterns should be selected for arbitrary voices. Moreover,
because of the computational complexity of the initial stage
of glottal source estimation, these techniques cannot operate
in real-time. Alternative approaches can also simulate
variations in pulse periodicity by overlapping randomly
time-shifted copies of the original recording (Loscos and
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Bonada 2004) or modulating it at a divider of FO to create
subharmonics, as implemented e.g. in the ANGUS toolbox °
(Gentilucci et al. 2019). However, these only allow exploring
a subset of all possible non-linearities (e.g. subharmonics,
but not biphonation in general), and vocal source spectrum
is one area of vocal production for which pure speech-
synthesis approaches, in which variability in the glottal
shape or periodicity can be specified explicitly (Brady 2005;
Anikin 2018), may provide more experimental control than
transformations.

Sound example S1: Female singing voice, first: original; second:
manipulated with subharmonics with the ANGUS toolbox (Gentilucci et al.

2019).

Note that, because vocal folds or analog anatomical
structures are present in a large number of species, source
non-linearities are not unique to human vocalizations but
are used as a signal of threat and alarm by a wide range
of animals, including primates (Fitch et al. 2002), but also
rodents (Blumstein and Recapet 2009), canids (Wilden et al.
1998), whales (Tyson et al. 2007), and birds (Fee et al. 1998).

9ttp://forumnet.ircam.fr/product/angus
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The use of glottal source transformations can therefore be

extended to the study of animal behavior.

Changes in the oscillatory properties of the vocal folds,
linked e.g. to their length and opening, are mostly controlled
by the intrinsic laryngeal muscles, innervated from the
vagal nerve originating in the nucleus ambiguus (Amb.)
of the medulla, and lead to modulations of vocal source
timbre (as above) but also, and perhaps most importantly,
of vocal FO (Figure 2B). A range of techniques exist to
manipulate FO. Simple algorithms, as used for example in
altered auditory feedback research (Hain et al. 2001) and
implemented in the DAVID toolbox ' (Rachman et al.
2018), are based on resampling or multiple delay lines (a
technique that introduces a small delay to an audio signal
in order to play it faster/slower, thus raising/lowering its
pitch, Dattorro 1997) and may alter vocal tract filtering or
formants unrealistically beyond small parametric changes.
State-of-the-art techniques that allow separating source and
filter information to avoid such artifacts are based on
reconstructions of the signal’s short-time Fourier transform
(STFT) at non-uniform rates, such as the Pitch Synchronous
Overlap and Add (PSOLA) method as implemented e.g. in
PRAAT (Boersma and Weenink 2002), the Phase-Vocoder
method (Moulines and Laroche 1995) as implemented
e.g. in CLEESE (Burred et al. 2019), or pitch-adaptive
analyses techniques such as the Adaptive Interpolation of
Weighted spectrum method as implemented in STRAIGHT"!
(Kawahara 1997). These transformation methods not only
allow raising or lowering the mean pitch of a recording,
which may correspond to a baseline change of valence
(Figure 3A, see e.g. Ilie and Thompson 2006), but can
also manipulate the difference between the instantaneous
and mean FQ to exaggerate or lessen variations, as seen for
example in fearful vs sad vocalizations (Figure 3B, see e.g.
Pell and Kotz 2011), create parametric FO contours such as
vibrato in anxious voices (Figure 3C, see e.g. Bachorowski
and Owren 1995), or local intonations at the start or end
of an utterance, as in surprised or assertive speech (Figure
3D, see e.g. Jiang and Pell 2017). In addition, most pitch-
shifting methods can also be used to manipulate the duration
or speech rate of utterances (a process known as time-
stretching), producing faster or slower speech in positive or
negative emotional states (Scherer and Oshinsky 1977).
Sound example S2: Male speech, first: original; second: pitch increased by
50 cents; third: pitch decreased by 50 cents; fourth: pitch modulated with a
8Hz vibrato. All transformations made with delay lines, using the DAVID
toolbox (Rachman et al. 2018).

Sound example S3: Female speech, first: original; second-six: random

pitch intonations, generated on 6 successive time-windows, using gaussian
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distributions centered at +0 cents, SD=+4200cents. All transformations
made with a phase-vocoder, using the CLEESE toolbox (Burred et al.
2019).

Sound example S4: Female speech, first: original; second-sixth: random
variations of speed rate, generated on 6 successive time-windows, using
gaussian distributions centered at £0%, SD=+£10% original duration. All
transformations made with a phase-vocoder, using the CLEESE toolbox

(Burred et al. 2019).

Vocal tract transformations

The shape and resonating characteristics of the vocal
tract, and thus, the spectral properties of the sound, are
modulated by the articulators of the supraglottal region (e.g.
lips, tongue, jaw), which are controlled by the oro-facial
motoneurons of the facial and trigeminal nuclei of the pons
(Figure 2A), but also by the extrinsic laryngeal muscles,
whose motoneurons originate from the hypoglossal nucleus
of the medulla and which have the ability to raise or lower
the position of the larynx within the neck (Titze 1994).
As for the glottal source, a number of techniques exist to
transform vocal tract characteristics, without altering other
aspects of vocal production. Simple techniques, such as the
PRAAT “Change Gender...” method (Boersma and Weenink
2002), exploit the side-effects of the resampling pitch-
shifting method to reduce or increase formant dispersion,
thus simulating changes in vocal tract length and physical
dominance (Boidron et al. 2016).

Other techniques enabling the manipulation of individual
formant frequencies include formant resynthesis methods
(Quené et al. 2012), spectral envelope manipulations by
frequency warping (Arias et al. 2018b) and neural networks
(Narendranath et al. 1995). While vocal tract characteristics
have been mainly studied in the context of speaker identity
(Mohammadi and Kain 2017b), recent work has suggested
they are also actively manipulated by emotional oro-facial
gestures such as those involved in the expression of disgust
(Chong et al. 2018) or smiling (Arias et al. 2018a).

Sound example S5: Female speech, first: original; second-sixth: random
variations of vocal tract filter, generated with spectral envelope frequency
warping using the CLEESE toolbox (Burred et al. 2019).

Sound example S6: Female speech, first & third: original; second & fourth:
formant shifted upwards to simulate smiling, generated with frequency

warping (Arias et al. 2018b).
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Figure 3. Four examples of pitch transformations on a single
recording of the sentence “/ would like a new alarm clock”,
produced by a male English speaker. The original pitch values
are presented in black and the transformed pitch values in
magenta. The speech waveform is shown on the x-axis and the
dotted line indicates the mean FO of the recording. (A) 100-cent
upward pitch shift, applied uniformly over time. (B) Exaggerated
pitch dynamics by a 15% increase of pitch values with respect
to the mean pitch. (C) Vibrato applied with a 100 cent depth and
a rate of 8.5 Hz. (D) Increasing pitch at the end of the utterance.

As for glottal source above, vocal tract transformations
are also relevant beyond human voice and speech, for
the study of animal communication. Formant dispersion
correlates with body size in rhesus macaque monkeys (Fitch
1997), and dominant frequency (that of the formant with
highest amplitude) inversely correlates with body size across
91 mammalian species (Bowling et al. 2017). Researchers
have used formant manipulations of animal vocalizations
in playback experiments to show e.g. that red deer stags
are more attentive and reply more to calls from bigger
conspecifics (Reby et al. 2005), or that female koalas spend
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more time attending to vocalizations simulating larger males
(Charlton et al. 2012).

Properties of voice transformations for
experimental research

Voice transformation techniques have a number of method-
ological properties that make them well suited for exper-
imental research, and allow experimental paradigms that
would not be otherwise possible with traditional analysis
methods or using actor-recorded vocalizations. We list and
comment here on a number of these properties, namely
that of specificity, parametricity, exhaustivity, and real-time
behavior. Despite their advantages for research, assessing
whether a given acoustic transformation possesses each of
these properties also brings a number of methodological and

theoretical difficulties, which we discuss below.

Specificity

Vocal behavior is highly multidimensional and, either for
anatomical or neural reasons, it is nearly impossible for
speakers to produce for instance only the pitch aspects
of a sad expression without simultaneously varying timbre
or duration, or timbre aspects without simultaneously
varying pitch (Figure 1). Co-variation of features in
naturalistic recordings means that one cannot conclusively
establish what acoustic property drive listeners’ emotional
evaluations. The ability to transform voice along specific
signal dimensions, such as pitch or timbre, while preserving
all other aspects of the original, opens the possibility to
create pairs of stimuli (original and transformed) that differ
only in one experimental factor. Comparing behavioral or
physiological measures within pairs thus allows controlling
for co-varying factors and identify causal relations that
would otherwise be missed in noise or, worse, spuriously
attributed to the wrong factor.

Figure 4A illustrates this situation with recent data
from Arias et al. (2018a), in which we manipulated 20
original male and female recordings with a vocal tract
transformation designed to simulate the acoustic effect of
smiling, and asked 35 participants to evaluate their perceived
happiness of the speaker. Each recording was transformed
into two variants, smiled and unsmiled versions, respectively
expanding or compressing formants by the same amount.
These two versions are thus two opposite transformations
relative to a neutral, non-manipulated stimulus. Because the
transformation did not affect glottal source properties, the
FOs of the original recordings were preserved by the two

transformations, and ranged from 117 to 300 Hz. While there
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for 20 male and female recordings, as a function of the recording’s mean pitch and sound manipulation : smile (dark green), neutral
(black), unsmile (light green); each dot represents one separate recording; black arrows link unsmile with smile transformations of
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(C) Difference of formant frequency (in cents) between smile (dark green) and unsmile (smile green) transformations and the
corresponding non-manipulated sound (formant 1: F1, formant 2: F2) ; asterisks indicate significant statistical difference between

the distributions, computed with paired t-tests (p<0.01)

was a main effect of the smile transformation on ratings
of perceived happiness within each triplet of recordings
(x%(12)=55.2, p=1.0e-12), variation of ratings across triplets
was much greater because of the varied phrase content
(positive vs negative semantics), prosody, speaker identity,
etc. of the original recordings. These variations would likely
mask the smaller yet remarkably consistent effect of vocal
tract properties if investigated with another experimental
design.

Caveat: Feature specificity is not a given in signal
processing, though. For instance, pitch shifting algorithms
based on harmonizers, as used in the altered vocal feedback
literature, do not attempt to separate glottal and vocal
tract characteristics and thus have side-effects on the
signal’s formants. Perhaps because of their technical nature,
these effects are not always properly acknowledged in the
psychological literature (e.g. “The harmonizer shifts all
frequencies, voice FO as well as formants, and thus the
shifted feedback signal sounds like a person’s normal voice
at a different FO (details of the pitch-shifting algorithm are a
trade secret of the manufacturer and are thus unavailable)”
- Hain et al. 2001), even though they may confound results
attributed to the manipulation. Ensuring the right level of
specificity, i.e. using traditional acoustic analysis methods
such as PRAAT to validate the absence of effect of the
transformation on vocal characteristics that could have a
confounding impact on the measures of interest, should
therefore be high on the agenda for researchers aiming to
adopt these methodologies. This will be greatly helped by
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the availability of open-source, validated software whose
possibilities and limitations are well-documented.

Parametricity
A common research question aims to compare how
emotional expressions are processed across stimulus

conditions, testing e.g. whether listeners perceive emotional
speech differently in their native or a foreign language
(Scherer et al. 2001; Pell et al. 2009), on familiar on non-
familiar speakers (Chen et al. 2016), male or female voices
(Bonebright et al. 1996), or even across speech and music
(Juslin and Laukka 2003). When using emotional stimuli
produced by actors, differences in decoding performance
across groups may arise either because of production or
perception differences. For instance, if French listeners have
difficulties processing emotional cues spoken by Japanese
speakers, it may be because their auditory representations
of the Japanese phonetic inventory are poor (a perception
effect, Dupoux et al. 1999), because one does not use
the same cues to express joy in Japanese and in French
(a production effect, Kitayama et al. 2006), or both.
Balanced designs, in which stimuli produced by more
than two culture groups are presented to all participants
cross-culturally, is a useful strategy to disentangle such
decoding and encoding differences: encoding differences
should result in poor recognition across non-native
groups, while decoding differences should result in
impaired recognition only for a given group, but across
stimuli from the other groups (Matsumoto 2002; Yoshie
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and Sauter 2019). Once an in-group advantage has
been established however, transformation tools that can
parametrically manipulate stimuli then become useful to
examine the causal mechanisms that underlie such cross-
cultural differences.

In programming language theory, parametricity is the
property of a function that can handle input values identically
without depending on their type (Pierce and Benjamin 2002).
We use the term here to describe the property of voice
transformations having a uniform acoustic effect regardless
of the characteristics of the original signal, their speaker,
content or culture. Parametricity opens the possibility to
create emotional voice stimuli which utilize exactly the
same prosodic cues in exactly the same manner (e.g. a
50-cent pitch increase in the first 2 seconds), and thus to
separate the effect of production and perception in inter-
group differences.

Data in Figure 4B illustrates this possibility by comparing
the effect of the same smile transformation on a variety
of recorded sentences by both male and female speakers.
Even though the acoustics of male and female utterances
widely differ, notably because of pitch dimorphism (Titze
1994), listeners’ ratings of speaker positivity in both smile
and unsmile transformations can be normalized with respect
to original ratings, which allows us to compare the effect
of identical cues between sexes. In the same experimental
logics, audio transformations have been used to compare
identical cues on speech, music and environmental sounds
(Ilie and Thompson 2006; Ma and Thompson 2015).
Caveat: As for specificity, a number of technical
considerations may reduce a given algorithm’s parametricity.
Some may result from algorithmic design choices. For
instance, because F0/pitch is ill-defined on unvoiced portions
of speech, pitch transformations, such as vibrato, are
often designed to only operate on voiced sections of the
signal, leaving transients untransformed. Transformations
like vibrato therefore rely on the availability of relatively
long voiced portions in phonemes (e.g., 250 ms for two
cycles of an 8-Hz-vibrato to be perceived) and, even if
specified with identical parameters, may not have as much
physical effect on speakers with a faster rather than slower
speech rate, or languages with a larger rather than smaller
consonant/vowel ratio (see e.g. the failed generalization
to Swedish in Rachman et al. 2018). Other breaches
of parametricity may result from algorithmic limitations.
Figure 4C illustrates this situation: despite the identical
transformation parameters, the smile transformation as

implemented in Arias et al. (2018a) unintentionally leads
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to smaller physical changes of formant frequency F2 (as
measured by PRAAT) in male voices than in female
voices, making the higher ratings of perceived smiliness
measured on transformed female voices difficult to attribute
to a purely perceptual effect. It is therefore crucial for
researchers to develop a technical understanding, as well
as the methodological know-how, to critically assess a

transformation’s parametricity.

Exhaustivity

Although the human vocal apparatus can produce many
different vocal sounds, languages generally use only a
small subset of these sounds, and these are not uniformly
distributed between and within languages (De Boer 2000).
Many psychophysical procedures, such as adaptive staircase
methods but also reverse correlation (Jack and Schyns 2017),
require presenting participants with random distributions of
stimuli in feature space, which is often impractical using
naturalistic vocalizations (Belin et al. 2017). With voice
transformations, experimenters can uniformly or adaptively
sample a large space of prosodic variations, e.g. all vibrato
frequencies between 1-10Hz, regardless of how common
these may be in actual behavior, and are thus able to draw
better inferences about how these features are processed.
For instance, in Ponsot et al. (2018), we used a phase-
vocoder transformation to generate more than 70,000
random prosodic variations from a single recording of the
word ’bonjour’ (hello), and used reverse correlation to
uncover participants’ mental representations of a dominant
or trustworthy way to pronounce that word. Similar
paradigms can be applied to study how healthy participants
and patients mentally represent emotional prosody, and
address e.g. emotion perception deficits in pathologies like

ASD or amusia.

Caveat: While their parameters can be explored exhaus-
tively, most transformation techniques do not implement
boundaries on what is or isn’t physiologically possible and
thus, beyond a certain parameter range, may not not sound
like authentic human speech. In addition, even within realis-
tic parameter ranges, transformations may generate artefacts,
such as unnatural timbres, doubling of FO or smearing of
transients, and give the transformed sound a robotic, artificial
tone. Even if the impact of artificiality on emotional judge-
ments remains unclear (Burleigh et al. 2013), one can rightly
question the ecological validity of behaviors measured in
response to such stimuli. While most artefacts can be avoided
with simple heuristics (e.g. basing parameters on the range of

variation measured in natural voices, or clipping sampling



distributions at £2SD), quantifying how natural, or easily
detectable, a given transformation sounds to participants can
be remarkably complicated. First, the acceptance of trans-
formed voice as authentic is heavily dependent on context.
For instance, transformations may be more easily detected in
situations where variants can be compared with the original
sound. Second, judgements of naturalness are multifaceted,
and likely incorporate evaluations of biological plausibility
(this doesn’t sound human), agentivity (this sound tampered
with), vocal or social typicality (no one in their right mind
would do this) or even semantics (it does not make sense
to say this with a happy voice). Future research will benefit
from more principled ways to measure transformation natu-

ralness and its impact on participants.

Real-time behavior

One typical way to study the role of emotional expressions
in social interactions is either to explicitly instruct social
partners to display a certain emotion (e.g. Tice 1992), or to
indirectly lead them to express it using a cover story (e.g.
Van Doorn et al. 2012). Because many voice-transformation
techniques allow real-time processing (typically, 50-100ms
latency for transformations based on phase-vocoder, Lee
et al. 2007), they open the possibility to control emotional
expression in continuous, real-time interactions (e.g. on the
phone) with no experimental demand, and possibly even
without participants’ awareness of the manipulation. For
instance, we have used a vocal tract transformation to
manipulate the perceived body size of mock patients calling
a medical call center simulator (Boidron et al. 2016), and
found that callers whose voice were perceived as indicative
of physical dominance obtained a higher grade of response, a
higher evaluation of medical emergency and longer attention
from physicians than callers with strictly identical medical
needs whose voice signaled lower dominance. Similar
paradigms can be used e.g. to study how congruent or
incongruent emotional expressions influence the outcome of
group decision-making, or group creativity.

In addition, some voice-transformation techniques, such
as those operating in the time-domain (Juillerat et al. 2008),
can be so fast that they can not only manipulate a social
partner’s voice without disrupting the flow of interaction,
but also manipulate the participant’s own voice without
disrupting their sensorimotor feedback (e.g. with less than
20ms latency between the original input voice and the
manipulated output). This opens the possibility to build
altered auditory feedback paradigms and test how e.g.
hearing one’s voice with a happier or sadder tone influences

one’s emotional experiences, judgments or decisions. For
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instance, we used a time-domain transformation of pitch
to modify participants’ voices in a happy or sad direction
as they read out an emotional neutral text, and found
that participants who heard themselves with emotionally
manipulated voices reported significantly different moods,
as well as elevated levels of skin conductance (Aucouturier
et al. 2016). Similar paradigms can be used to study e.g.
whether personal emotional memories can be re-encoded
with different valence when healthy participants or patients
hear themselves narrate them with a transformed tone of

voice.

Caveat: Once given the possibility to transform continuous
speech in real-time interactions, the immediate next question
concerns the contextual adaptation of transformations to
speech content. While transformation parametricity is
methodologicaly useful, applying the same pitch increase on
spoken sentences regardless of, say, their original prosody or
stress words (which are also marked with pitch - Pell 2001)
may create unnatural or misadaptative expressions, and it
is computationally unclear how to adapt transformations to
speech content, especially in a real-time context. In that
respect, voice transformations should not be considered
experimental materials, but experimental methods. They do
not replace actor-produced stimuli nor provide ready-made
expressions with which to study the impact of emotions on
behavior (in truth, transformed vocalizations may be less
intense, less natural and less well-recognized than natural
expressions, see e.g. Rachman et al. 2018). Rather, by
manipulating signal properties at all stages of the vocal
production pathway, they provide control over the physical
properties of the stimuli, bringing unprecedented precision
on the neurological, anatomical and acoustic components
of what makes voice and speech emotional, but leaving it
to the experimenter to construe how speakers and listeners
integrate these components with other aspects of affective
and cognitive processing.

A prospective note on deep learning
techniques

In recent years, artificial voices have become an integral
part of consumer electronic appliances (e.g. smart assistants,
car navigators, augmentative and alternative communication)
and the amount of funding private companies such as
Amazon, Google or Apple have injected into the speech
synthesis community has transformed the field into a fast-
paced and competitive domain. In just a few years, neural
machine learning (deep neural network, DNNs) operating on

waveform samples, as opposed to e.g. spectrogram features,
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has become the de-facto standard in voice synthesis (Oord
et al. 2016).

The DNN architecture, which directly models waveforms
using a neural network method trained with recordings of
real speech, provides superior acoustic quality for several
high-level vocal applications such as Text-to-Speech (Wang
et al. 2017) and speech enhancement (Pascual et al. 2017),
but also to generate expressive voices (Lee et al. 2017;
Akuzawa et al. 2018) or convert their emotions (Luo et al.
2017). However, although highly flexible, these systems have
so far failed to exhibit the level of parametric control that
we argue here is needed for experimental applications. First,
machine-learning speech generally emulates vocal patterns
learned from large sets of recordings where all vocal features
co-vary, and therefore typically lacks feature specificity
and exhaustivity. Second, deep-learning architectures do not
allow easy introspection into how information is represented
in the network, making it difficult to know what exact vocal
features are being manipulated and lacking interpretability.
As far as we know, these limitations have so far prevented
the application of DNNs for the kind of experimental work
reviewed here (although see Sun et al. 2019).

However, progress in the field is fast. One promising line
of research uses post-hoc, data-driven methods to reveal how
stimulus information is encoded into network layers (Hsu
et al. 2017). In the visual sciences, these methods have been
used to compare what visual features human and machine use
to achieve face classification (Xu et al. 2018), and similar
approaches could be used for speech. Another relevant
line of research aims to create DNN-based vocoders (Wu
et al. 2019), in which, like in traditional vocoders reviewed
above, speech synthesis can be controled with specific
pitch or duration parameters, while conserving the acoustic
performance of deep learning models. Finally, Generative
Adversarial Networks (GANSs), a special class of DNN
architecture capable of learning a deterministic mapping
from one style of stimulus to another (Goodfellow et al.
2014), are increasingly used to create visual transformations
(e.g. smiles Wang et al. 2018) and have also started to
be applied to speech transformations. For example, GANs
were recently used to transform a voice into its Lombard
counterpart (a particular type of vocal effort which makes the
voice more intelligible in background noise; Seshadri et al.
2019). All such advances open exciting new possibilities to
create emotional voice and speech transformations, which
will certainly find their way to the community in the

upcoming years.
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Conclusion

So far, the experimental study of emotional voice and speech
has largely relied on acoustic analyses of datasets of natural
emotional vocalisations, or the use of these recordings as
stimuli in experimental research. While natural vocalizations
have the advantage of being realistic and ecological,
they often vary in several acoustic dimensions, making
mechanistic conclusions difficult to establish. Yet, much is
known about the essential anatomic building blocks involved
in emotional vocal production (e.g. laryngeal muscle tension,
vocal fold oscillatory regime, oro-facial gestures). These
anatomic mechanisms are controlled by increasingly well-
identified neural structures and have specific, and to some
extent independent, acoustic consequences that can be
modeled computationally —because they have a physical

basis.

In this article, we reviewed a wide range of recent (or not-
so-recent) technologies that allow researchers to manipulate
specific acoustic features along the voice production
pathway. From the glottal source to the vocal tract, we
presented the acoustic consequence of each of the building
blocks of the vocal apparatus, as well as corresponding
acoustic models and transformation algorithms from the

signal-processing literature.

We suggest that using such transformations to control
the content of vocal stimuli in experimental research is a
promising line of work. This methodology allows researchers
to formulate and test computational predictions about
the behavioral, physiological and neural consequences of
specific acoustic changes, enabling them to draw strong,
causal links between the anatomic mechanisms involved in
voice production and their subsequent reactions in listeners.
Transformation technologies can easily be shared between
research groups, made open source, and deployed across
several types of studies (e.g. cross-linguistic, cross-species)
and auditory modalities, such as non-verbal behaviour,
speech and music. When possible, we gave here links to
some of these tools that are available freely, as well as
examples of studies that uses them, and hope that this list
will only be growing.

However, in order for these technologies to be useful in
an experimental context, they must deliver the proper type of
acoustic control. We identified four of such constraints. First,
in our view, transformations should be specific, i.e. transform
sound in a single acoustic dimension mirroring an isolated
anatomic mechanism (e.g. vocal fold saturation or zygomatic
muscle contraction). Second, transformations should be

parametric, i.e. have a uniform acoustic effect regardless
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of the original signal (e.g. semantic content, age, identity,
sex, species), thus allowing comparative studies. Third,
transformations should be exhaustive, i.e. unconstrained by
what speakers usually produce, but rather by what they can
produce, in order to reduce sampling bias for psychophysical
research. Finally, in an era where the study of social
interactions is at the top of the cognitive-science research
agenda, the community should favor transformations that can
operate in real-time. We hope that these recommendations
can be used as a ‘check-list’ for machine-learning and
signal-processing researchers involved in creating new vocal
transformations. If new tools, included those emerging from
the recent trend of deep-learning research, follow these
constraints, they will be more easily used for experimental
research..
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