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Abstract 

Policymaking during a pandemic can be extremely challenging. As COVID-19 is a new disease 
and its global impacts are unprecedented, decisions are taken in a highly uncertain, complex, 
and rapidly changing environment. In such a context, in which human lives and the economy are 
at stake, we argue that using ideas and constructs from modern decision theory, even informally, 
will make policymaking a more responsible and transparent process.  
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Introduction 

The coronavirus disease 2019 (COVID-19) pandemic exposes decision problems faced by governments 
and international organizations. Policymakers are charged with taking actions to protect their population 
from the disease while lacking reliable information on the virus and its transmission mechanisms, on the 
effectiveness of possible measures, and their (direct and indirect) health and socio-economic 
consequences. The rational policy decision would combine the best available scientific evidence–
typically provided by expert opinions and modeling studies. But in an uncertain and rapidly changing 
environment, the pertinent evidence is highly fluid, making it challenging to produce scientifically-
grounded predictions of the outcomes of alternative courses of action. 

A great deal of attention has been paid to how policymakers have handled uncertainty in the COVID-19 
response (1–6). Policymakers have been confronted with very different views on the potential outbreak 
scenarios stemming from divergent experts’ assessments or differing modeling predictions. In the face 
of such uncertainty, policymakers may respond by attempting to balance the alternative perspectives, 
or they may fully embrace one without a concern that this can vastly misrepresent our underlying 
knowledge base (7). This tendency to lock on to a single narrative–or more generally, this inability to 
handle uncertainty–may result in overlooking valuable insights from alternative sources, and thus in 
misinterpreting the state of the COVID-19 outbreak, potentially leading to suboptimal decisions with 
possibly disastrous consequences (2, 8–10). 

This paper argues that insights from decision theory provide a valuable way to frame policy challenges 
and ambitions. Even if the decision theory constructs are ultimately used only informally in practice, they 
offer a useful guide for transparent policymaking that copes with the severe uncertainty in sensible ways. 
First, we outline a framework to understand and guide decision-making under uncertainty in the COVID-
19 pandemic context. Second, we show how formal decision rules could be used to guide policymaking 
and illustrate their use with the example of school closures. These decision rules allow policymakers to 
recognize that they do not know which of the many potential scenarios is ‘correct’ and to act accordingly 
by taking precautionary and robust decisions, i.e., that remain valid for a wide range of futures and keep 
options open (11). Third, we discuss new directions to define a more transparent approach for 
communicating the degree of certainty in scientific findings and knowledge, particularly relevant to 
decision-makers managing pandemics.  

Decision under uncertainty 

The policymaker’s problem(s) The decision-making problem faced by a high-level government 
policymaker during a crisis like the COVID-19 pandemic is not trivial. In the first stage, when a new 
infectious disease appears, the policymaker may attempt to contain the outbreak by taking early actions 
to control onwards transmission (e.g., isolation of confirmed and suspected cases, contact tracing). If 
this phase is unsuccessful, policymakers face a second-stage decision problem that consists of 
determining the appropriate level, timing, and duration of interventions to mitigate the course of clinical 
infection. These interventions may include banning mass gatherings, closing schools, and more extreme 
‘lockdown’ restrictions.  

While these measures are expected to reduce the pandemic’s health burden by lowering the peak 
incidence, they also impose costs on society. For instance, they may have adverse impacts on mental 
health, domestic abuse, and job loss at a more personal level. Moreover, there are societal losses due 
to the immediate reduced economic activity coupled with a potentially prolonged recession and adverse 
impacts on longer-term health and social gradients. Policymakers must thus promptly cope with a 
complex and multi-faceted picture of direct and indirect, proximal and distal, health, and socio-economic 
trade-offs. In the acute phase of the pandemic, the trade-off between reducing mortality and morbidity 
and its associated socio-economic consequences may seem relatively straightforward. Still, once out of 
this critical phase, most trade-offs are difficult and costly. How should the policymaker decide when and 
how to introduce or relax measures in a justifiable way, not just from a health and economic perspective, 
but politically? The answer critically depends on the prioritization and balance of potentially conflicting 
objectives (12). 

Scientific evidence and the role of modeling Scientific knowledge is foundational to the prevention, 
management, and treatment of global outbreaks. Some of this evidence can be summarized in 
pandemic preparedness and response plans (at both international and national levels) or might be 
directly obtained from panels of scientists with expertise in relevant areas of research, such as 
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epidemiologists, infectious disease modelers, and social scientists. An essential part of the scientific 
evidence comes from quantitative models (13). Quantitative models are abstract representations of 
reality that provide a logically consistent way to organize thinking about the relationships among 
variables of interest. They combine what is known in general with what is known about the current 
outbreak to produce predictions to help guide policy decisions (14).  

Epidemiological models, e.g., (15, 16), have been used to guide decision-making by assessing what is 
likely to happen to the transmission of the virus if policy interventions –either independently or in 
combination– were put in place. Such public health-oriented models are particularly useful in the short 
term to project the direct consequences of policy interventions on the epidemic trajectory and to guide 
decisions on resource allocations (17). As the measures put in place also largely affect the economic 
environment, decision-makers must, at least implicitly, confront trade-offs in the health and non-health-
related economic consequences. To weigh these trade-offs necessarily requires more than 
epidemiological models. For example, health policy analysis models, such as computable general 
equilibrium models, are used to simultaneously estimate the direct and indirect impacts of the outbreak 
on various aspects of the economy, such as labor supply, government budgets, or household 
consumption (18). More recent integrated assessment models combine economics and epidemiology 
by incorporating simplified epidemiological models of contagion within stylized dynamic economic 
frameworks. Such models address critical policy challenges by explicitly modeling dynamic adjustment 
paths and endogenous responses to changing incentives. They have been used to investigate the 
optimal policy response or alternative macroeconomic policies’ effectiveness to the economic shocks 
due to the COVID-19 pandemic (19–22). However, these different modeling approaches do not formally 
incorporate uncertainty; instead, they treat it ex-post, for example using sensitivity analyses. 

Uncertainty Decisions within a pandemic context have to be made under overwhelming time pressure 
and amid high scientific uncertainty, with minimal quality evidence, and potential disagreements among 
experts and models. In the COVID-19 outbreak, there was uncertainty about the virus’s essential 
characteristics, such as its transmissibility, severity, and natural history (3, 23, 24). This state of 
knowledge translates into uncertainty about the system dynamics, which renders uncertain the 
consequences of alternative policy interventions, such as closing down schools or wearing masks in 
public. At a later stage of the pandemic, information overload becomes an issue, making it more difficult 
for the decision-maker to identify useful and good-quality evidence. The consequence is that, given the 
many uncertainties they are built on, no single model can be genuinely predictive in the context of an 
outbreak management strategy. Yet, if their results are used as insights providing potential quantitative 
stories among alternative ones, models can offer policymakers guidance by helping them understand 
the fragments of information available, uncover what might be going on, and eventually determine the 
appropriate policy response. The distinction between three layers of uncertainty–uncertainty within 
models, across models, and about models–can help the policymaker understand the extent of the 
problem (25–28).  

Uncertainty within models reflects the standard notion of risk: uncertain outcomes with known 
probabilities. Models may include random shocks or impulses with prespecified distributions. It is the 
modeling counterpart to flipping coins or rolling dice in which we have full confidence in the probability 
assessment.   

Uncertainty across models encompasses both the unknown parameters for a family of models or more 
discrete modeling differences in specification. Thus, it relates to unknown inputs needed to construct 
fully specified probability models. In the COVID-19 context, this corresponds for example to the 
uncertainty of some model parameters, such as how much transmission occurs in different age groups 
or how infectious people can be before they have symptoms. Existing data, if available and reliable, can 
help calibrate these model inputs. An additional challenge for the policymaker is the proliferation of 
modeling groups, researchers, and experts in various disciplines (epidemiology, economics, and other 
social sciences). Each of these provides forecasts and projections about the disease’s evolution and/or 
its socio-economic consequences. This uncertainty across models and their consequent predictions 
may be difficult to handle by policymakers, especially as one approach is not necessarily superior to 
another but simply adds another perspective (29). There is no single ‘view.’ Analysis of this form of 
uncertainty is typically the focal point of statistical approaches. Bayesian analyses, for instance, confront 
this via the use of subjective probabilities, whereas robust Bayesians explore sensitivity to prior inputs. 
Decision theory explores the ramifications of subjective uncertainty, as there might be substantial 
variation in the recommendations across different models and experts, reflecting other specific choices 
and assumptions regarding modeling type and structure.  
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Finally, as models are, by design, simplifications of more complex phenomena, they are necessarily 
misspecified, at least along some dimensions. For instance, they might not mention certain variables 
that matter, which modelers are or are not aware of, or they may be limited in the scope of functional 
relationships considered, unknown forms of specification and measurement errors, and so forth. 
Consequently, there is also uncertainty about the models’ assumptions and structures. It might 
sometimes be challenging, even for experts, to assess the merits and limits of alternative models and 
predictions*.  This is what we mean in our reference to uncertainty about models.   

How to make rational decisions under uncertainty?  

Now that we have characterized the elements of the decision problem under uncertainty (see Figure 1), 
the question remains on how to make the best possible decision? In other words, how should the 
policymaker proceed to aggregate the different (and usually conflicting) scientific findings, model results, 
and expert opinions–which are all uncertain by construction and by lack of reliable data–and ultimately 
determine policy? Insights from modern decision theory are of the most significant value at this stage. 
They propose normative guidelines and “rules," to help policymakers make the best, i.e., the most 
rational decision under uncertainty.  

How can formal decision rules be useful? The formal decision rules proposed by decision theorists 
are powerful, mathematically-founded† tools that relate theoretical constructs and choice procedures to 
presumably observable data. Making a decision based on such rules is equivalent to complying implicitly 
with a set of general consistency conditions or principles governing human behavior. During a crisis 
such as the COVID-19 pandemic, using decision theory as a formal guide will lend credibility to 
policymaking by ensuring that the resulting actions are coherent and defensible. To illustrate how 
decision theory can serve as a coherence test (31), imagine the case of a policymaker trying to 
determine what the best response to the current pandemic is. The decision-makers can make up their 
minds by whatever mix of intuition, expert advice, imitation, and quantitative model results they have 
available, and then check their judgment by asking whether they can justify the decision using a formal 
decision rule. Conceptually, it can be seen as a form of dialogue between the policymakers and decision 
theory, in which an attempt to justify a tentative decision helps to clarify the problem and, perhaps, leads 
to a different conclusion (32). Used this way, formal decision rules may help policymakers clarify the 
problem they are dealing with, test their intuition, eliminate strictly dominated options, and avoid 
reasoning mistakes and pitfalls that have been documented in psychological studies (e.g., confirmation 
bias, optimism bias, representativeness heuristic, prospect theory, etc.) (33).  

Finally, because committees might investigate how decisions were taken during the crisis, for example, 
about how lockdown measures were implemented and lifted, policymakers are held to account for the 
actions they took. A formal decision model can play an essential role in defending one's choice and 
generating ex-post justifiability. For example, it could help a policymaker, who had to decide which 
neighborhoods to keep under lockdown and which not, to explain the process that led to such decisions 
to citizens who might think they have not been treated fairly. 

Which decision rule to follow? As decision theory proposes a variety of different rules for decision 
making under uncertainty, the call for using decision theory begs the question, which rules to follow? 
The answer depends, in our opinion, on the society or organization in question. Decision theory should 
offer a gamut of models, and the people for whom decisions are made should find acceptable the model 
that is considered to “provide a justification” for a given decision. Thus, the answer ultimately depends 
on the policymakers’ characteristics, e.g., which conditions or behavioral principles they want to comply 
with, how prudent they want the policy to be, or what answer their constituency expects to receive. In 
Figure 2, we present a simple example of school closures’ decision problem during the COVID-19 
pandemic. We use this to demonstrate how distinct quantitative model outputs (some of which represent 
“best guesses” while others represent “reasonable worst-case”‡ possibilities) can be combined and used 
in formal decision rules, and what the resulting recommendations in terms of policy responses are.  

The policymaker’s problem consists in finding the right balance between protecting the health and 
preventing economic and social disruptions by choosing whether and for how long to keep schools 

                                                
* Note that another way to see this additional layer of uncertainty is as uncertainty over predictions of alternative 
models that have not been developed yet. 
† Typically, each of these rules results from an axiomatization (i.e., an equivalence result taking the form of a 
theorem that relates a theoretical description of decision-making to conditions on observable data (30)). 
‡ As these projections are typically premised on “reasonable” bounds in terms of their model inputs. 
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closed, given the scarce scientific evidence and the disagreement that may exist across model 
projections; possibly leading to significantly different policies. 

The decision rules that we present differ primarily in how they handle probabilities. According to the 
Bayesian view, which holds that any source of uncertainty can be quantified probabilistically, the 
policymaker should always have well-defined probabilities about the impacts of the measures taken. If 
they rely on quantitative model outputs or expert advice to obtain different estimates, then they should 
attach a well-defined probability weight to each of these and compute an average. Thus, in the absence 
of objective probabilities, the decision-makers have their own subjective probabilities to guide decisions.  

However, it may not always be rational to follow this approach (34–37). Its limitation stems from its 
inability to distinguish between uncertainty across models (which has an epistemic nature, and is due to 
limited knowledge or ignorance) and uncertainty within models (which as an aleatory nature, and is due 
to the intrinsic randomness in the world). In the response to the COVID-19 outbreak, the Bayesian 
approach requires the policymaker to express probabilistic beliefs (about the impact of a policy, about 
the correctness of a given model, etc.), without being told which probability it makes sense to adopt, nor 
being allowed to say “I don’t know”. Because of the disagreements that may exist across different model 
outputs, or expert opinions, another path may be to acknowledge one’s ignorance and relax the 
assumption that we can associate precise probabilities to any event. Modern decision theory proposes 
decision rules in line with this non-Bayesian approach. The axiomatic approach on which it is founded 
serves as an essential guide in understanding the merits and limitations of alternative ways to confront 
uncertainty formally.  While we do not see this theory as settling on a single recipe for all decision 
problems, it adds important clarity to the rationale behind alternative decision rules. 

Discussion The decision rules presented in Figure 2 are fully compatible with normative interpretations 
and could be particularly useful to design robust policies in this COVID-19 pandemic context. They 
assume that policymakers cope with uncertainty without reducing everything to risk, a pretension that 
tacitly presumes better information than they typically have. When exploring alternative courses of 
action, policymakers are necessarily unsure of the consequences. In such a context, sticking to the 
Bayesian expected utility paradigm not only requires substantive expertise (in weighting the pros and 
cons of alternative models) but also overshadows the policymaker’s reaction to the variability that may 
exist across models. While we focus, in Figure 2, on a subset of decision rules, which can be checked 
for logical consistency, it should be clear, however, that other criteria, such as minmax regret (38), also 
exist and have been used in some applied contexts (39, 40). As mentioned above, we believe that a 
decision criterion is also a matter of personal preferences, which should somehow be aggregated over 
the different individuals for whom the decisions are made. Thus, the examples used in this paper are 
inevitably subjective, too. 

We recognize the challenges in using decision theory when the decision-making process itself is 
complicated, and many participants are involved with potentially different incentives.  Nevertheless, we 
also see value to its use in less formal ways as guideposts to prudent decision-making and as a sensible 
way of framing the uncertainties in the trade-offs that policymakers are presented with.   

In this example, the decision problem setup has been deliberately kept to minimal complexity to focus 
on the decision theory aspects. In particular, the set of actions is here limited to a single intervention 
(the duration of the school closure). In reality, the decision problem would, of course, require a much 
higher dimensional space (e.g., selective local closures, school dismissal, etc.), the interaction with other 
social distancing measures, or the ability to integrate start and stop times. Along the same lines, time 
constraints, learning, and dynamic considerations have been assumed away for the sake of tractability. 
In reality, it should be clear that the existence of deadlines could restrict which actions are feasible so 
that different sets of actions may correspond to different timings.  

Similarly, as time passes, experts learn more about virus transmission and disease dynamics, which 
ultimately leads them to update their projections. Different “updating rules” allow incorporating such new 
information into the decision-making process. Our general message is the same as the one concerning 
the decision rules: the decision-maker should make her choice of the updating rule and be able to justify 
her decision based on this rule and the conditions that it does or doesn’t satisfy. Finally, for expositional 
simplicity, we also abstracted from concerns about model misspecification, while recognizing this to be 
an integral part of how decision-makers should view the alternative models or perspectives that they 
confronted.   
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Concluding remarks 

During a period of crisis, policymakers, who make decisions on behalf of others, may be required to 
provide a protocol that suggests a decision-theoretic model supporting their decisions. Decision theory 
can contribute to a pandemic response by providing a way to organize a large amount of potentially 
conflicting scientific knowledge and providing rules for evaluating response options and turning them 
into concrete decision-making.  
 
In this perspective, we have highlighted the importance of quantitative modeling to support policy 
decisions (the same recommendation has also been made in other public health contexts (40)). This 
use of models is common in different macroeconomic settings, including the assessments of monetary 
and fiscal policies.  Some may see quantitative modeling as problematic because it requires seemingly 
arbitrary subjective judgments about the correctness of the different model specifications, leading them 
to prefer qualitative approaches. Even qualitative methods cannot escape the need for subjective inputs, 
however. Restricting scientific inputs to be only qualitative limits severely potentially valuable inputs into 
prudent policymaking. Instead, we argue in favor of using quantitative models and data, including explicit 
information about our underlying knowledge's limits.  We propose decision rules that incorporate the 
decisionmaker's confidence in her subjective probabilities, thus rendering the decision-making process 
based on formal quantitative rules, both robust and prudent.  
 
In practical terms, ensuring that policy options are in line with formal decision rules could be achieved 
by having a decision analyst in the group of advisors to nurture a dialogue between policymakers and 
decision theory. This dialogue could clarify the trade-offs and encourage a more sanguine response to 
the uncertainties present when assessing the alternative courses of action and result in an improved 
policy outcome (31, 41).    

To make the decision-making process under uncertainty more efficient, we also suggest acknowledging 
and communicating the various uncertainties transparently (42). For example, illustrating, quantifying, 
and discussing the multiple sources of uncertainty may help policymakers better understand their 
choices’ potential impact. To this aim, modelers should provide all information needed to reconstruct the 
analysis, including information about model structures, assumptions, and parameter values. Moreover, 
the way uncertainty around these choices affects model results needs to be accurately communicated, 
such as systematically reporting uncertainty boundaries around the estimates provided (43). Scientific 
and policy advisors would then need to synthesize all this information (32) –coming from diverse sources 
across different disciplines, possibly of different quality–to help policymakers turning it into actionable 
information for decisions, while making sure the complete range of uncertainty (including within and 
across models) is clearly reported and understood properly (44, 45). 

One possible way to go is to enhance standardization by developing and adopting standard metrics to 
evaluate and communicate the degree of certainty in key findings. While several approaches have been 
proposed (46), insights could, for example, be gained from the virtues and the shortcomings of the 
reports of the Intergovernmental Panel on Climate Change (IPCC) (47). Another way is to develop 
further communication and collaboration between model developers and decision-makers to improve 
the quality and utility of models and the decisions they support (48). 

Finally, while policymakers are responsible for making decisions, they are also responsible for 
communicating to professionals and the public. The way individuals respond to advice and measures 
selected is as vital as government actions, if not more (3). Communication should thus be an essential 
part of the policy response to uncertainty. In particular, government communication strategies to keep 
the public informed of what we (do not (49)) know should balance the costs and benefits of revealing 
information (how much, and in what form) (50).  
 
As government strategies have been extensively debated in the media and models have become more 
scrutinized, one lesson learned from the COVID-19 management experience may be that policymakers 
and experts must increase their approaches’ transparency. Using the constructs from decision theory in 
policymaking, even in an informal way, will help ensure prudent navigation through the uncertainty that 
pervades this and possibly future pandemics. Being open about the degree of uncertainty surrounding 
the scientific evidence used to guide policy choices and allowing for the assumptions of the models used 
or for the decision-making process itself to be challenged is a valuable way of retaining public trust (51). 
At the same time, it is essential to counteract what is too often displayed by self-described experts who 
seek to influence policymakers and the public by projecting a pretense of knowledge that is likely to be 
false.      
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Figure 1: Overview of the decision problem under uncertainty 
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Figure 2.  
Case study: Decisions about school closures and their length during COVID-19 pandemic 

In this case study, we explore the problem of a policymaker having to make a decision about school closures and their length during the COVID-19 pandemic and illustrate 
the difference of policy prescribed by different decision rules.  

1. Context: By end of April 2020, 191 countries had implemented national school closures in response 
to the COVID-19 pandemic (52). Yet the effectiveness of such a measure is highly uncertain, due to the 
lack of data on the relative contribution of school closures to transmission control, and conflicting modeling 
results (53).  
2. The policymaker’s problem: Decisions about closures and their length involve a series of trade-offs. 
The policy assessment thus involves weighting the benefits and costs of alternative courses of action. On 
the one hand, school closures can slow the pandemic and its impact by reducing child-child transmission, 
thus delaying the pandemic peak that overwhelms health care services, and therefore ultimately reducing 
morbidity and associated mortality. If this is the case, such interventions bring clear health benefits for 
society and avoid unsustainable demands on the health system. On the other hand, school closure can have high direct and indirect health and socio-economic costs. 
For example, they may increase child-adult transmission, reduce the ability of healthcare and key workers to work, and thus reduce the capacity of healthcare (54, 55). 
The economic costs of lengthy school closures are also high (56–58), generated for example through absenteeism by working parents, loss of education, etc.  

3. Uncertainty: The evidence supporting national closure of schools in the COVID-19 pandemic context is very weak. In particular, evidence of COVID-19 transmission 
through child–child contact or through schools is not available at the time of decision (53). As a consequence, it is unclear whether school closures are effective in the 
COVID-19 pandemic (54). 

4. The formal decision problem 

 4.1 
Setup 

In this 
example, 
the policy 
action is 
to choose 
whether 
to and how long to close schools. The 
consequence includes both the benefits of 
the action (lives saved, reduction in future 
cases and beds needed, etc.) and its costs 
(reduction in education for children, health 
care workers, and other key workers not 
working, lives cost due to changes in 
disease dynamics, etc.). The 
consequence also depends on the 
realization of a state of the environment. 
For example, the way the number of 
deaths, beds, and cases is affected by 
school closures depends on the biology of 
the virus and baseline transmission 
dynamics, which are outside the decision-
maker’s control. The consequence 
function then relates actions and states to 
consequences. It can for example be the 
net benefit (benefits-costs) of school 
closures, expressed in monetary terms. 

 4.2 Model uncertainty 
As there is no evidence supporting school closures at the early 
stage of the COVID-19 pandemic, policymakers rely on different 
epidemiological model projections and/or the advice of experts to 
assess the effectiveness of the measure. For example, imagine 
three different projections.  
● The first projection (Model 1) is based on the only evidence we 

have, which is the one coming from influenza outbreaks for 
which the majority of transmission is between children (59). 
Closing schools is thus the biggest contributor to reducing 𝑅" 
to below 1 and it may be the only intervention that could do so. 
In this case, the benefit is proportional to the duration of school 
closure.  

● Alternatively, the second projection (Model 2) relies on some 
previous coronavirus outbreaks, for which evidence suggests 
minimal transmission between children (60). Here, 𝑅" cannot 
be reduced below 1, school closures do not affect the size of 
the epidemic, and therefore do not bring any benefits.  

● The third scenario (Model 3) projects that some child to child 
transmission happens so that closing schools contributes to 
reducing 𝑅" to below 1 and reduces the size of the epidemic. 
However, this only works in combination with other measures 
(61). Without it, 𝑅" would be above 1, but as an isolated 
measure school closure does not have such a big effect (15). 
Under this scenario, the effectiveness of school closures is 
important at the beginning but declines as time goes on.
   

Assuming there is no uncertainty regarding the costs of school 
closures, the collection of potential models characterizing a 
combination of health/economy environment,  𝑀 consists of three 
elements.   

4.3 Policy objective  
In view of the scarce evidence concerning the use and 
effectiveness of school closures during the COVID-19 
pandemic, as well as the disagreement that may exist 
across model projections and/or expert opinions, 
policymakers have to find the right balance between 
protecting the health and preventing economic and 
social disruptions. Choosing the appropriate length of 
this common-sense measure may be exceptionally 
challenging as lengthy school closures bear very high 
costs and can therefore substantially reduce any 
benefit to health systems and populations, whereas 
earlier relaxation of the measure increases the risk that 
transmission surged again, leading to a second peak. 
Preferences The choice made by the policymaker 
depends ultimately on her preferences, such as the 
degree to which she likes/dislikes uncertainty (62). 
These preferences are represented numerically via a 
decision rule V. The value 𝑉(𝑎) attained by selecting 
an action 𝑎 may be interpreted in welfare terms.  
Optimum Before making a decision, the policymaker 
knows all the elements of the decision problem. After 
the decision, she only observes the consequence of 
the intervention chosen. In formal terms, the objective 
of the policymaker is to select the action 𝑎( (in our case, 
the duration of school closures) that is optimal 
according to her preferences, in the sense that it is 
preferred to any other action available. 

4.4 Illustration 
The marginal benefit (MB) of school closure is constant and positive (model 1), null (model 2), or positive and decreasing with 
the duration of the measure (model 3). In contrast, the marginal cost (MC) is increasing.  
It is desirable to maintain the school closed as long as the MB outweighs the MC. So, if the ‘true’ MB was known, it would be 
easy to find the optimal duration of school closures: 0 if model 2 is the correct one, 10 if it is model 3, and 20 in the case of 
model 1.  Yet, in reality, there is a lot of uncertainty.  
 
5. Decision rules and optimal choices 
To address the epistemic uncertainty across models, the policymaker may follow different decision rules. These rules differ 

on whether the policymaker may quantify her belief about which is the correct model. If it exists, we let 𝜇(𝑚) be the policymaker’s subjective belief that 𝑚 is the true model. 

 5.1 Subjective Expected utility rule 
The expected utility has long been the standard 
way to consider rational decision making under 
uncertainty (63). We assume that a utility function 
u translates economic monetary consequences 
into utility levels. This function captures attitudes 
towards uncertainty within models. For each 
action 𝑎 and each model 𝑚+, we can compute the 
expected reward associated with a given action: 

5.2 Smooth ambiguity rule 
The smooth ambiguity criterion (65) proposes another way to 
distinguish attitudes toward uncertainty within and across 
models. It takes the form 𝑉,-.(𝑎) = ∑ 𝜙(𝑅(𝑎,𝑚))𝜇(𝑚)- ,  

where the concavity of 𝜙 reflects uncertainty aversion (i.e. 
being more averse to uncertainty across models than u within 
models). In our example, if the prior distribution is uniform, 

and 𝜙 is logarithmic, the optimal policy is 𝑎(=12 weeks. 

5.4 Multiple priors rules 
An alternative approach (68) relaxes the assumption 
that the policymaker can quantify uncertainty across 
models through a single probability distribution μ. 
Instead, because she does not have sufficient 
information, the policymaker may have multiple 
priors over the different models. The multiple priors 
decision rule is 𝑉-3(𝑎) = 𝑚𝑖𝑛

6∈8
∑ 𝑅(𝑎,𝑚)𝜇(𝑚)- , 

Children are infectious Children are not infectious
• Very high death toll (health care 
system overwhelmed)
• Very high socio-economic costs
• High death toll (health case system 
under stress due to a second wave after 
schools reopen)
• High socio-economic costs (due to the 
second wave)
• Moderate death toll (health care 
system operational)
• High socio-economic costs (workforce 
affected)

No school closures • Status quo

Short-term closures • Moderate socio-economic 
costs

Long-term closures • High socio-economic costs
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𝑅(𝑎,𝑚) = ∑ 𝑢:𝜚(𝑎, 𝑠)=𝑚(𝑠), .	 Given that 
different models exist, an expected reward is 
considered for each possible model. They are 
averaged according to the policymaker’s beliefs. 
The subjective expected utility criterion (64) is 
𝑉,"@(𝑎) = ∑ 𝑅(𝑎,𝑚)𝜇(𝑚)- . For example, if the 

prior distribution is uniform (i.e. 𝜇(1) =
𝜇(2)=𝜇(3) = 1

3
), and u is linear, the optimal 

policy is a 10-week closure.   

5.3 Maxmin rules 
The maxmin rule (66) is an extremely cautious rule that 
makes the decision-maker consider only the model providing 
the lowest expected reward. This is the case when the “worst” 
health/economy model is considered (i.e. model 1). Here, 
prior probabilities do not play any role when choosing the 
optimal policy. The maxmin criterion is written 𝑉-D-(𝑎) =
𝑚𝑖𝑛-	𝑅(𝑎,𝑚). In our example, the optimal policy is to keep 
the school closed for 20 weeks. A more general version of this 
rule, which is due to (67), consists in considering both the 
worst and the best possible models. In this case, the criterion 
is written 𝑉EF-D-(𝑎) = 𝛼	𝑚𝑖𝑛-	𝑅(𝑎,𝑚) + (1 −
𝛼)	𝑚𝑎𝑥-	𝑅(𝑎,𝑚), where α is the coefficient of pessimism.     

where C is the set of priors In contrast with the 
maxmin rule, this criterion considers the least 
favorable among all the subjective expected utilities 
determined by each prior μ. In our example, a 
particular prior distribution may be the uniform that 
gives equal weights, μ(m) = 1/3, to all the possible 
models, while another prior may not consider model 
2 to be plausible (in which case, some μ(2)=0). In 
this case, the multiple priors rule leads to an optimal 
policy of 13 weeks. Note, finally, that a more general 
version of this rule, where both the “max” and the 
“min” appear with weights α and 1 − α, is known as 
the α-maxmin multiple priors rule (69). 

 

Figure 2: Case study. School closures and their length during the COVID-19 pandemic. Details are 
provided in the SI. 


