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Estimation of surface area

We study the problem of estimating the surface area of the boundary ∂S of a sufficiently smooth set S ⊂ R d when the available information is only a finite subset Xn ⊂ S. We propose two estimators: the first makes use of the Devroye-Wise support estimator. It is based on Crofton's formula, which, roughly speaking, states that the d -1 dimensional surface area of a smooth enough set is the mean number of intersections of randomly chosen lines. For that purpose we propose an estimator of the number of intersections of such lines with support based on the Devroye-Wise support estimators. The second surface area estimator makes use of the α-convex hull of Xn, denoted by Cα(Xn). More precisely, it is the (d -1)-dimensional surface area of Cα(Xn), denoted by |Cα(Xn)| d-1 , which is proven to converge to the (d -1)-dimensional surface area of ∂S. Moreover, |Cα(Xn)| d-1 can be computed using Crofton's formula.

, and no convergence rates are given.

, a convergence rate of order (log(n)/n) 1/(d+1) is achieved, under stronger assumptions. In [29] a very nice fully data-driven method, based on the Delaunay triangulation, is proposed under an homogeneous point process sampling scheme. The asymptotic rate of convergence of the variance is given, but there is no global convergence rate because no result is obtained for the bias. Lastly, in [41], a parameterfree procedure, based on the Voronoi triangulation, is proposed, and a rate of convergence of order λ -1/d is obtained, under a Poisson Point Process (PPP) sampling scheme (where λ is the intensity of the PPP).

Introduction 1.On surface area and length estimation

The estimation of surface areas has been extensively considered in stereology (see, for instance, [START_REF] Baddeley | Estimation of surface area from vertical sections[END_REF][START_REF] Baddeley | Stereology for Statisticians[END_REF] and [START_REF] Gokhale | Unbiased estimation of curve length in 3D using vertical slices[END_REF]). It has also been studied as a further step in the theory of nonparametric set estimation (see [START_REF] Pateiro-López | Length and surface area estimation under smoothness restrictions[END_REF]), and has practical applications in medical imaging (see [START_REF] Cuevas | A nonparametric approach to the estimation of lengths and surface areas[END_REF]). In addition, the estimation of a surface area is widely used in magnetic resonance imagining techniques, see [START_REF] Güney | Surface Area Estimation: A Brief Review[END_REF].

The three-and two-dimensional cases are addressed in [START_REF] Berrendero | A geometrically motivated parametric model in manifold estimation[END_REF], which proposed parametric estimators when the available data are the distances to S, from a sample outside the set, but at a distance smaller than a given R > 0.

The 2-dimensional case has many important applications. This is also true of the three dimensional case. For instance, surface area is an important biological parameter in organs such as the lungs, see for instance [START_REF] Sarabia-Vallejos | Three-Dimensional Whole-Organ Characterization of the Regional Alveolar Morphology in Normal Murine Lungs Frontiers in Physiology[END_REF]. The higher

Roadmap

When S ⊂ R d is a compact set, we aim to estimate its surface area, i.e. the (d -1)-Hausdorff measure of its boundary ∂S.

We propose two surface area estimators, at any finite dimension, when the available data is only a finite set X n ⊂ S. In this setting the two dimensional case has been mostly studied. Assuming that X n is an iid sample, the convex case was first addressed in [START_REF] Bräker | On the area and perimeter of a random convex hull in a bounded convex set[END_REF] (using Crofton's formula). Later on, under the αconvexity assumption, [START_REF] Arias-Castro | On estimating the perimeter using the alpha-shape[END_REF] obtained the convergence of the α-shape's perimeter to the perimeter of the support and the associated convergence rates are derived. When the data are given by a trajectory from a reflected Brownian motion, (with or without drift), a consistency result is obtained in Theorem 4 in [START_REF] Cholaquidis | Set estimation from reflected Brownian motion[END_REF].

Crofton's formula, proved in 1868 for convex subsets of R 2 , and extended to arbitrary dimensions (see [START_REF] Santaló | Integral Geometry and Geometric Probability[END_REF]), says that the surface area of ∂S equals the integral of the number of intersections with ∂S of lines in R d (see Equations ( 3) and (4) for explicit versions of Crofton's formula for d = 2 and d ≥ 2, respectively).

As previously announced, we will propose two different estimators for the surface area. One of them uses the Devroye-Wise support estimator

Ŝεn (X n ) = ∪ n i=1 B(X i , ε n ) (1)
see [START_REF] Devroye | Detection of abnormal behavior via nonparametric estimation of the support[END_REF], and the other one uses the α-convex hull support estimator

C α (X n ) = {x:d(x,Xn)≥α} B(x, α) c (2) 
see [START_REF] Rodríguez-Casal | Set estimation under convexity type assumptions[END_REF], where n is the cardinality of X n , ε n → 0 as n → ∞ and B(x, α) c denotes the complement of the open ball in R d centred at x, of radius α > 0.

The surface area estimator we propose based on Devroye-Wise support estimator is not just a plug-in method, because in general the number of intersections of a line with ∂ Ŝεn (X n ) may not converge to the number of intersections of that line with ∂S. We prove that this estimator converges at a rate proportional to d H (X n , S) 1/2 (where d H denotes the Hausdorff distance). This rate can be improved to d H (X n , S) when adding a reasonable assumption on the shape of ∂S. These rates are known when X n is an iid sample, see Corollary 2.

To estimate the surface area when the support estimator is C α (X n ), we first extend the results in [START_REF] Cuevas | On statistical properties of sets fulfilling rolling-type conditions[END_REF]. More precisely, we prove that, in any dimension, the surface area of the hull's boundary, i.e. |∂C α (X n )| d-1 , converges to |∂S| d-1 . This result is interesting in itself, but, in practice, it is difficult to compute |∂C α (X n )| d-1 , especially for dimension d > 2. However, we will see that, by means of Crofton's formula, it can be easily estimated, via the Monte Carlo method.

These results can be applied to many deterministic or random situations, to obtain explicit convergence rates. We focus on two random situations: the case X n = {X 1 , . . . , X n } of iid drawn on S (with a density bounded from below by a positive constant), and the case of random trajectories of reflected diffusions on S. In particular, we provide convergence rates when the trajectory is the result of a reflected Brownian motion (see [START_REF] Cholaquidis | Set estimation from reflected Brownian motion[END_REF][START_REF] Cholaquidis | Level sets and drift estimation for reflected Brownian motion with drift[END_REF]). This last setting has several applications in ecology, where the trajectory is obtained by recording the location of an animal (or several animals) living in an area S, which is called its home range (the territorial range of the animal), and X t represent the position at time t transmitted by the instrument (see for instance [START_REF] Baíllo | A survey and a new selection criterion for statistical home range estimation[END_REF][START_REF] Cholaquidis | Set estimation from reflected Brownian motion[END_REF][START_REF] Cholaquidis | Level sets and drift estimation for reflected Brownian motion with drift[END_REF], and references therein).

The rate of convergence of the surface area estimator, based on Ŝεn (X n ), when X n is an iid sample, is of order n -1/2d , which can be improved to n -1/d , depending on the assumptions on the smoothness of ∂S.

With the estimation of the support that uses the α-convex hull, when X n is an iid sample, we obtain a rate of order n -2/(d+1) .

The rest of this paper is organized as follows.

In Section 2, we introduce: 1) the notation. 2) Crofton's formula, first for dimension two and then for the general case. 3) The main geometric restrictions required in one of the main theorems. Section 3 introduces the surface area estimator based on Devroye-Wise support estimator. Main results regarding this estimator are stated in subsection 3.3. The computational aspects of this estimator are studied in subsection 3.4. The approach based on the α-convex hull is introduced in Section 4. A discussion of the rates of convergence is given in Section 5. An algorithm based on the Monte Carlo method for the estimator based on the α-hull is introduced in Section 6. Lastly, Section 7 treates the performance of our estimator in a simulation study. All proofs are deferred to the Appendix.

Background

Notations

Given a set S ⊂ R d , we denote by S, S and ∂S the interior, closure and boundary of S, respectively, with respect to the usual topology of R d . We also write diam(S) = sup (x,y)∈S×S ||x -y||. The parallel set of S of radius ε is

B(S, ε) = {y ∈ R d : inf x∈S y -x ≤ ε}. If A ⊂ R d is a Borel set, then |A| d denotes its d-dimensional Lebesgue measure. When A ⊂ R d is a (d -1)-dimensional manifold, then |A| d-1 denotes its (d -1)-Hausdorff measure.
We denote by B(x, ε) the closed ball in R d , of radius ε, centred at x, and

ω d = |B d (x, 1)| d . Given two compact non-empty sets A, C ⊂ R d , the Hausdorff distance between A and C is defined by d H (A, C) = inf{ε > 0 : such that A ⊂ B(C, ε) and C ⊂ B(A, ε)}. The (d -1)-dimensional sphere in R d is denoted by S d-1 , while the half- sphere in R d is denoted by (S + ) d-1 , i.e. (S + ) d-1 = (R d-1 × R + ) ∩ S d-1
. Given M a sufficiently smooth (d -1)-manifold and x ∈ M , the affine tangent space of M at x is denoted by T x M . When S ⊂ R d is regular (i.e. compact and satisfying S = S), and has a C 1 regular boundary ∂S, then for any x ∈ ∂S we can define η x the outward normal unit vector at x, that is, the unit vector of (T x ∂S) ⊥ such that, for t > 0 small enough, x + tη x ∈ S c .

Given a vector θ ∈ (S + ) d-1 and a point y, r θ,y denotes the line {y + λθ, λ ∈ R} = y + Rθ. If y 1 and y 2 are two points in r θ,y , then y i = y + λ i θ; with a slight abuse of notation, we write y 1 < y 2 when λ 1 < λ 2 .

Crofton's formula

In 1868, Crofton proved the following result (see [START_REF] Crofton | On the theory of local probability, applied to straight lines drawn at random in a plane: The methods used being also extended to the proof of certain new theorems in the integral calculus[END_REF]): given a convex set in the plane, whose boundary is denoted by γ, then its length |γ| 1 can be computed by

|γ| 1 = 1 2 π θ=0 +∞ p=-∞ n γ (θ, p)dpdθ, (3) 
n γ (θ, p) being the number of intersections of γ with the line r θ * ,θp , where θ * ∈ (S + ) 1 is orthogonal to θ, and dpdθ is the 2-dimensional Lebesgue measure, see Figure 1. This result has been generalized to compact (not necessarily convex) sets in R d for any d > 2, and also to Lie groups, see [START_REF] Santaló | Integral Geometry and Geometric Probability[END_REF].

Figure 1: The function n γ counts the number of intersections of γ with the line r θ * ,θp determined by θ and p.

To introduce the general Crofton formula in R d for a compact (d -1)dimensional manifold M , let us define first the constant

β(d) = Γ(d/2)Γ((d + 1)/2) -1 π -1/2 ,
where Γ stands for the well known Gamma function. Let θ ∈ (S + ) d-1 . Then, θ determines a (d -1)-dimensional linear space θ ⊥ = {v : v, θ = 0}. Given y ∈ θ ⊥ , let us write n M (θ, y) = #(r θ,y ∩ M ), where # is the cardinality of the set, see Figure 2. It is proved in [START_REF] Federer | Geometric Measure Theory[END_REF] (see Theorem 3.2.26) that if M is a (d -1)-dimensional rectifiable set, then the integralgeometric measure of M (which will be denoted by I d-1 (M ), and is defined by the right-hand side of ( 4)) equals its (d -1)dimensional Hausdorff measure, i.e.

|M | d-1 = I d-1 (M ) = 1 β(d) θ∈(S + ) d-1 y∈θ ⊥ n M (θ, y)dµ d-1 (y)dθ. (4) 
The measure dθ is the uniform measure on (S + ) d-1 (with total mass 1) and µ d-1 the d -1 dimensional Lebesgue measure.

Restrictions on the shape

We will now recall some well-known restrictions that are put on the shape in set estimation. Definition 2.1. For α > 0, a set S ⊂ R d is said to be α-convex if S = C α (S), where C α (S) is the α-convex hull of S, defined in (2), replacing X n by S.

When S is α-convex, a natural estimator of S from a random sample X n of points (drawn from a distribution with support S), is C α (X n ), see [START_REF] Rodríguez-Casal | Set estimation under convexity type assumptions[END_REF]. Definition 2.2. A set S ⊂ R d is said to satisfy the outside α-rolling condition if for each boundary point s ∈ ∂S there exists an x ∈ S c such that B(x, α) ∩ ∂S = {s}. A compact set S is said to satisfy the inside α-rolling condition if S c satisfies the outside α-rolling condition.

Following the notation in [START_REF] Federer | Curvature measures[END_REF], let Unp(S) be the set of points x ∈ R d with a unique projection on S. Definition 2.3. For x ∈ S, let reach(S, x) = sup{r > 0 : B(x, r) ⊂ Unp(S) . The reach of S is defined by reach(S) = inf reach(S, x) : x ∈ S , while S is of positive reach if reach(S) > 0.

Remark 1. Throughout this paper we assume that ∂S is the boundary of a compact set S ⊂ R d such that S = S. We also assume that S fulfills the outside and inside α-rolling conditions, and then ∂S is rectifiable (see Theorem 1 in [START_REF] Walther | On a generalization of Blaschke's rolling theorem and the smoothing of surfaces[END_REF]). From this it follows that I d-1 (∂S) = |∂S| d-1 < ∞, which implies (by (4)) that, except for a set of measure zero with respect to dµ d-1 (y)dθ, any line r θ,y meets ∂S a finite number of times: n ∂S (θ, y) < ∞. From Theorem 1 in [START_REF] Walther | On a generalization of Blaschke's rolling theorem and the smoothing of surfaces[END_REF], it also follows that ∂S is a C 1 manifold, which allows us for each x ∈ ∂S, to define its unit outward normal vector η x .

For the estimator of the surface area based on the Devroye-Wise estimator we will assume that ∂S satisfies a technical hypothesis, referred to as (C, ε 0 )regularity.

Definition 2.4. Let E θ (∂S) = {x ∈ ∂S, η x , θ = 0}. The image of E θ (∂S) by the orthogonal projection onto θ ⊥ is denoted by F θ = π θ ⊥ (E θ (∂S)) (which for non-degenerate cases is a (d -2)-dimensional submanifold of θ ⊥ ).
We also denote by B(F θ , ε) its parallel set of radius ε.

Define, for ε > 0,

ϕ θ (ε) = θ ⊥ ∩ B(F θ , ε) d-1 .
• We will say that ∂S is (C, ε 0 )-regular if for all θ and all ε ∈ (0, ε 0 ), ϕ θ (ε) exists and ϕ θ (ε) ≤ C.

• If ∂S is (C, ε 0 )-regular for some ε 0 > 0, we will say that ∂S is C-regular.

Once the rolling balls condition is imposed, we will show through some examples in Figure 3 that the (C, ε 0 )-regularity of the boundary is quite mild.

(a) The first set, presented in Figure 3, is a unit square with 'round angles'.

For all θ,

F θ = π θ ⊥ (E θ (∂S)) = {x 1 (θ), x 2 (θ)} with ||x 1 (θ) -x 2 (θ)|| ≥ 1.
Thus for ε < 1/2, and for all θ, ϕ θ (ε) = 4ε and is thus ∂S is (4, 0.5)-regular (in particular 4-regular).

(b) The second set, presented in Figure 4, is a 2-dimensional 'peanut' made of 4 circular arcs. For all θ and ε small enough, we have ϕ θ (ε) = 2c θ ε where c θ is the number of connected components of F θ , which is less than 6, from which it follows that S has a 12-regular boundary.

(c) The third set, presented in Figure 5, is the surface of revolution generated by (b). Here we have that for all θ, E θ is a 1-dimensional manifold with less than 3 connected components. The maximal length of a component is bounded by L, the length of the maximal perimeter (shown in blue in the figure). The reach of each E θ is (uniformly in θ) lower bounded by α > 0. All these assertions allow claiming that ∂S is 6L-regular.

(d) The rolling ball condition is not sufficient to guarantee the (C, ε 0 )-regularity of the boundary: this fails if, for instance, S is such that ∂S = S 1 ∪ S 2 ∪ S 3 ∪ S 4 (see Figure 6) with: It can easily be proved that such a set satisfies the rolling ball condition for any r 0 ≤ 1/80 but ϕ 0 (ε) → +∞ when ε → 0 which implies that ∂S is not C-regular.

S 1 = {(x, 1 + (500)(x 2 -1) 10 x 5 sin(1/x)), x ∈ [-1, 1] \ {0}} ∪ {(0, 1)}; S 2 = {(x, -1 -(500)(x 2 -1) 10 x 5 sin(1/x)), x ∈ [-1, 1] \ {0}} ∪ {(0, -1)}; S 3 = {(1 + cos(θ), sin(θ)), θ ∈ [-π/2, π/2]};
For the Devroye-Wise type estimator we will also show that the convergence rate can be quadratically improved if we additionally assume that the number of intersections between any line and ∂S is bounded from above (this excludes the case of a linear part in ∂S such as in Figure 3). Definition 2.5. Given S ⊂ R d , we say that ∂S has a bounded number of linear intersections if there exists an N S such that for all θ ∈ (S + ) d-1 and y ∈ θ ⊥ , n ∂S (θ, y) ≤ N S .

Remark 2. The previous definition can be replaced with a weaker requirement, by asking that ∂S has a bounded number of linear insersections for almost all line with respect to µ d-1 (y)dθ, and the corresponding results remain true. where Ŝ is an estimator of S. There are different kinds of set estimators, depending on the geometric restrictions imposed on S and the structure of the data (see [START_REF] Cholaquidis | Set estimation from reflected Brownian motion[END_REF][START_REF] Devroye | Detection of abnormal behavior via nonparametric estimation of the support[END_REF] and references therein). One of the most studied in the literature, which is also universally consistent, is the Devroye-Wise estimator (see [START_REF] Devroye | Detection of abnormal behavior via nonparametric estimation of the support[END_REF]), introduced in (1). This all-purpose estimator has the advantage that it is quite easy to compute the intersection of a line with its boundary, as follows: Given a line r θ,y , we can compute Y i = ∂B(X i , ε n ) ∩ r θ,y , and then Z i = {y ∈ Y i , d(y, X n ) ≥ ε n }, so we have that, with probability one,

∪ i Z i = r θ,y ∩ ∂ Ŝεn (X n ).
Indeed, suppose, on the contrary, that there exists a z ∈ ∪ i Z i and z ∈ Sεn .

Then we have d(z,

X n ) = ε n and z ∈ H{X i , d(X i , z) = ε n } (where H(E)
is the convex hull of E). Thus, there are at least d + 1 observations on the same hypersphere of given radius ε n , but this event has probability 0, see [START_REF]Set estimation under convexity type restrictions[END_REF].

We conjecture that the plug-in estimator |∂ Ŝεn (X n )| d-1 satisfies the following:

1. If ε n < d H (X n , S), then ∂ Ŝεn (X n ) does not converge to ∂S and |∂ Ŝεn (X n )| d-1 does not converge to |∂S| d-1 . 2. If ε n = d H (X n , S), then ∂ Ŝεn (X n ) converges to ∂S with the best possible rate but |∂ Ŝεn (X n )| d-1 does not converge to |∂S| d-1 but greatly overesti- mates it. 3. If ε n d H (X n , S) and ε n → 0, then ∂ Ŝεn (X n ) converges to ∂S and |∂ Ŝεn (X n )| d-1 converges to |∂S| d-1 but we can expect that the rate is greater than ε n (namely ||∂ Ŝεn (X n )| d-1 -|∂S| d-1 | ≥ O(ε n ) d H (X n , S)
). Indeed if S fulfills the outside and inside rolling ball conditions, then for n large enough we have that

B(S, ε n -d H (X n , S)) ⊂ Ŝεn (X n ) ⊂ B(S, ε n ), which in turn gives that ||∂ Ŝεn (X n )| d-1 -|∂S| d-1 | ≥ O(ε n ) d H (X n , S).

A surface estimator based on the Devroye-Wise estimator

The aim of this section is to propose an estimator for the surface area based on the Devroye-Wise support estimator and Crofton's formula. It can attain a convergence rate of order d H (X, S). The whole procedure is defined for any set X, not necessarily finite, because we will apply our estimator to the case in which X is the trajectory of a Brownian motion. If X is not finite, then for a given ε > 0, we write Ŝε (X) = B(X, ε). The procedure replaces n ∂S (θ, y) by nε,X (θ, y) introduced in Definition 3.1, and then integrates n ,X (θ, y) as in Crofton's formula, see [START_REF] Arias-Castro | On estimating the perimeter using the alpha-shape[END_REF]. We will prove that (see Remark 4), by the (C, ε 0 )regularity of the boundary, with probability one r θ,y is not included in any (d -1)-dimensional affine tangent space (tangent to ∂S). Then n ∂S (θ, y) = 2k S (θ, y) where k S (θ, y) is the number of connected components of r θ,y ∩ S.

Definition 3.1. Let ε be a positive real number, and X ⊂ S a set (not necessarily finite). Consider a line r θ,y . If Ŝε (X) ∩ r θ,y = ∅, define nε,X (θ, y) = 0. If not, then:

• denote by I 1 , . . . , I m the connected components of Ŝε (X) ∩ r θ,y . Order this sequence in such a way that

I i = (a i , b i ), with a 1 < b 1 < • • • < a m < b m .
• If for some consecutive intervals I i , I i+1 , . . . , I i+ , for all a i < λ < b i+ and t = θ + λy ∈ r θ,y , d(t, X) ≤ 4ε, define A i = (a i , b i+ ).

• Let j be the number of disjoint open intervals A 1 , . . . , A j that this process ended with. Then define nε,X (θ, y) = 2j.

To roughly summarize this, we consider the connected components of Ŝε ∩r θ,y and 'link or glue' the ones that are in the same connected component of Ŝ4ε ∩r θ,y . In the sequel, we will refer to this process as the gluing procedure.

To gain some insight into the relation between nε,X (θ, y) and n ∂ Ŝε(X) (θ, y), observe that nε,X (θ, y) ≤ n ∂ Ŝε(X) (θ, y). We also have that nε,X (θ, y) ≤ n ∂ Ŝ4ε(X) (θ, y).

Indeed, let C 1 , . . . , C K be the connected components of r θ,y ∩ Ŝ4ε and note that:

1. For each j there exists an index i such that

I j ⊂ C i . 2. If d(C i , X) > ε for all j, we have that I j ∩ C i = ∅. 3. If d(C i , X) ≤ ε,
there exists an I j ⊂ C i and all the I j such that I j ⊂ C i are glued by the proposed procedure. Thus there exists a unique j such that A j ⊂ C j .

Our first proposed estimator is

Îd-1 (X, ε) = 1 β(d) θ∈(S + ) d-1 y∈θ ⊥ nε,X (θ, y)dµ d-1 (y)dθ. (5) 
Under the assumption that ∂S has a bounded number N S of linear intersections (see Definition 2.5), we will consider, for a given

N 0 ≥ N S , ÎN0 d-1 (X, ε) = 1 β(d) θ∈(S + ) d-1 y∈θ ⊥ min(n ε,X (θ, y), N 0 )dµ d-1 (y)dθ.

Main results on the Devroye-Wise based estimator.

Theorem 3.2. Let S ⊂ R d be a compact set fulfilling the outside and inside α-rolling conditions. Assume also that S is (C, ε 0 )-regular for some positive constants C and ε 0 . Let

X n = {X 1 , . . . , X n } ⊂ S. Let ε n → 0 be such that d H (X n , S) ≤ ε n . Then Îd-1 (X n , ε n ) = |∂S| d-1 + O( √ ε n ). (6) 
Moreover, for n large enough,

|O( √ ε n )| ≤ 4Cdiam(S) 3β(d) √ α √ ε n .
The idea of the proof of Theorem 3.2 consists on proving that for the lines that are 'far enough' (fulfilling L(ε) for some ε > 0) from the tangent spaces, our algorithm allows a perfect estimation of n ∂S (θ, y). For the rest of the lines we will prove in Corollary 5 that, under (C, 0 )-regularity, the integral of nεn,Xn (θ, y) on the set of these lines, is bounded from above by C ε 1/2 n , C being a positive constant. Roughly speaking, a line fulfilling condition L(ε), does not not met the estimator ∂ Ŝ n too many times. From Theorem 3.2 and Theorem 4 in [START_REF] Cuevas | On boundary estimation[END_REF], we can obtain the rate of convergence for the iid case: Corollary 1. Let S ⊂ R d be a compact set fulfilling the inside and outside α-rolling conditions. Assume also that S is (C, ε 0 )-regular for some positive constants C and ε 0 . Let X n = {X 1 , . . . , X n } be the set of observations of an iid sample of X with distribution P X supported on S. Assume that P X has density f (w.r.t. µ d ) bounded from below by some c > 0. Let ε n = C (ln(n)/n) 1/d and C > (6/(cω d )) 1/d . Then with probability one, for n large enough,

Îd-1 (X n , ε n ) = |∂S| d-1 + O ln n n 1 2d
.

As mentioned in Section 5.2 in [START_REF] Cuevas | On boundary estimation[END_REF], if ε n = 2 max i min j =i ||X i -X j ||, then with probability one, for n large enough, ε n ≤ 2d H (X n , S), which together with Corollary 1, entails that, with the aforementioned choice for ε n , our proposal is fully data driven, for the iid case.

If the number of linear intersections of ∂S is assumed to be bounded by a constant N S , the use of min(n εn , N 0 ) (for any N 0 ≥ N S ) allows us to obtain better convergence rates. Theorem 3.3. Let S ⊂ R d be a compact set fulfilling the outside and inside α-rolling conditions. Assume also that S is (C, ε 0 )-regular for some positive constants C and ε 0 , and that the number of linear intersections of ∂S is bounded by

N S . Let X n = {X 1 , . . . , X n } ⊂ S. Let ε n → 0 be such that d H (X n , S) ≤ ε n and N 0 ≥ N S . Then ÎN0 d-1 (X n , ε n ) = |∂S| d-1 + O(ε n ). Moreover, for n large enough, |O(ε n )| ≤ 4C(N 0 + N S )ε n /β(d).
As before, we give the convergence rate associated to the iid setting and the reflected Brownian motion hypothesis as two corollaries of Theorem 3.3.

Corollary 2. Let S ⊂ R d be a compact set fulfilling the inside and outside α-rolling conditions. Assume also that S is (C, ε 0 )-regular for some positive constants C and ε 0 and that ∂S has a bounded number of linear intersections. Let X n = {X 1 , . . . , X n } be the set of observations of an iid sample with distribution P X , supported on S. Assume that P X has density f (w.r.t. µ d ) bounded from below by some c > 0.

Let ε n = C (ln(n)/n) 1/d and C > (6/(cω d )) 1/d .
Then with probability one, for n large enough,

ÎN0 d-1 (X n , ε n ) = |∂S| d-1 + O ln(n) n 1 d
.

Here again the choice of ε n = 2 max i min j ||X i -X j || is suitable, but now, the price to pay is the selection of the parameter N 0 .

In a more general setting, the conclusion of Theorem 3.3 holds when the set of points X n is replaced by the trajectory X T of any stochastic process {X t } t>0 included in S, observed in [0, T ], such that d H (X T , S) → 0 as T → ∞. Observe that the estimator ÎN0 d-1 (X, ε) is well defined even when X T is not a finite set, see Definition 3.1. We will assume that S is bounded with connected interior and ∂S is C 2 . This is the case (for example) of some reflected diffusions and in particular the reflected Brownian motion (RBM). This has been recently proven in Corollary 1 in [START_REF] Cholaquidis | Set estimation from reflected Brownian motion[END_REF], for RBM without drift (see also [START_REF] Cholaquidis | Level sets and drift estimation for reflected Brownian motion with drift[END_REF] and [START_REF] Cholaquidis | Home range estimation under a restricted sampling scheme[END_REF] for the RBM with drift). The definition of an RBM with drift is as follows: Given a ddimensional Brownian motion {B t } t≥0 departing from B 0 = 0 and defined on a filtered probability space (Ω, F, {F t } t≥0 , P x ), an RBM with drift is the (unique) solution to the following stochastic differential equation on S:

X t = X 0 + B t - 1 2 t 0 ∇ f (X s )ds - t 0 η Xs ξ(ds), where X t ∈ D, ∀t ≥ 0,
where the drift, ∇ f (x), is given by the gradient of a function f , and is assumed to be Lipschitz, {ξ t } t≥0 is the corresponding local time, i.e. a one-dimensional continuous non-decreasing process with ξ 0 = 0 that satisfies ξ t = t 0 I {Xs∈∂S} dξ s . Since the drift is given by the gradient of a function and S is compact, we have that its stationary distribution has a density bounded from below by a constant. Corollary 3. Let S ⊂ R d be a non-empty compact set with connected interior such that S = S, and suppose that S fulfills the outside and inside α-rolling conditions. Assume also that S is (C, ε 0 )-regular for some positive constants C and ε 0 and that the number of linear intersections of ∂S is bounded by N S . Let X T ⊂ S be as before. Then, with probability one, for T large enough,

ÎN0 d-1 (X T , ε T ) = |∂S| d-1 + o ln(T ) 2 T 1 d
, where ε T = o((ln(T ) 2 /T ) 1/d ).

The algorithm

We will now describe an algorithm to compute nε,Xn (θ, y) for a given (θ, y), when the input is a finite set of n elements and ε > 0. For a reflected diffusion, we take X n ⊂ X T to be a dense enough subset of n points. Observe that this is not restrictive since X T is stored as a finite set of points in a computer.

1. For each i, compute

d i := d(r θ,y , X i ) = ||X i -y|| 2 -X i -y, θ 2 .
2. Compute the connected components I i of r θ,y ∩ Ŝε (X n ) according to the following steps: Initialize the list of the extremes of these intervals by listz= ∅ and listl= ∅. Then, for i = 1 to n:

• If d i = ε, then N i = 1, 1 = X i -y, θ and z 1 = B(X i , ε) ∩ r θ,y = y + 1 θ • If d i < ε, then N i = 2 and compute 1 = X i -y, θ -ε 2 -d 2 i and 2 = X i -y, θ + ε 2 -d 2 i . Then z 1 = y + 1 θ and z 2 = y + 2 θ such that {z 1 , z 2 } = B(X i , ε n ) ∩ r θ,y . • For j = 1 to N i : if d(z j , X n ) ≥ ε, do listz=listz∪{z j } and listl=listl∪{ j }.
From the comments at the beginning of subsection 3.1, we know that, with probability one, listz equals r θ,y ∩ ∂ Ŝε .

• Sort listl. With probability one, listl has an even number, 2m, of elements (see the comments at the beginning of subsection 3.2), and define a i and b i such that 2(i-1)+1 = a i , 2i = b i (which correspond to the a i and b i in Definition 3.1 i.e. (a i , b i ) are the connected components of r θ,y ∩ Ŝε (X)).

3 Obtain the a i and b i such that I i = (a i , b i ) are the connected components of Ŝ4ε (X n ) ∩ r θ,y by using the same procedure.

4. Lastly, compute nε,X (θ, y), as follows: initialization nε,Xn (θ, y) = m.

For i = 1 to m -1:

• If there exists k such that (b i , a i+1 ) ⊂ I k , then:
nε,Xn (θ, y) = nε,Xn (θ, y) -1.

5. nε,Xn (θ, y) = 2n ε,Xn (θ, y).

4 The approach based on the α-convex hull 4.1 The estimator based on the α -hull assuming the αrolling ball condition

In [START_REF] Arias-Castro | On estimating the perimeter using the alpha-shape[END_REF] it was proved that, in dimension two, under some regularity assumptions, the length of the boundary of the α-shape of an iid sample converges to the length of the boundary of the set. The α-shape has the very good property that its boundary is very easy to compute, and hence so is its surface measure. Unfortunately we are not sure that the results can be extended to higher dimensions. Nevertheless, considering the α-convex hull (which is quite close to the α-shape) allows extending the results on the surface measure to any dimension.

The following deterministic theorem states that, for all 0 < α < α, the surface measure of the boundary of the α -convex hull X n ⊂ S converges to |∂S| d-1 with a rate that depends on d H (∂C α (X n ), ∂S).

Theorem 4.1. Let S ⊂ R d be a compact set such that ∂S is a (d -1)- dimensional C 2 manifold with reach α > 0. Let α < α be a positive constant and let X n ⊂ S be a finite set such that d H (X n , S) < 1 2 αα α+α and d H (∂C α (X n ), ∂S) ≤ ε n with ε n ≤ min αα 16(α + α ) , 1 (d -1)α .
Then 1. π ∂S : ∂C α (X n ) → ∂S (where π ∂S (x) denotes the projection onto ∂S) is one to one, and

2. |∂S| d-1 -|∂C α (X n )| d-1 ≤ (d -1) 3 2 α + 32 α+α αα ε n (1 + o(1)).
As previously, we can deduce from the deterministic theorem and results in [START_REF] Arias-Castro | On estimating the perimeter using the alpha-shape[END_REF] the convergence rates under the iid assumption.

Corollary 4. Let S ⊂ R d be a compact set such that ∂S is a (d-1)-dimensional C 2 manifold with reach α > 0. Let X n = {X 1 , . . . , X n } be an iid sample of X with distribution P X supported on S. Assume that P X has density f (w.r.t. µ d ) bounded from below by some c > 0. Suppose α < α. Then with probability one, for n large enough,

|∂S| d-1 -|∂C α (X n )| d-1 = O ln(n) n 2 d+1
.

In this case we do not need the additional hypothesis of (C, ε 0 )-regularity; the convergence rate is far better than the one given in Theorem 3.2, where the price to pay is the computational cost when d increases. Indeed, as detailed in next section the computation of the α-convex hull requires to start by the computation of the Delaunay complex . With regard to the parameter selection α , a fully data driven (but computationally expensive) method is proposed in [START_REF] Rodríguez-Casal | Extent of occurrence reconstruction using a new data-driven support estimator[END_REF].

Computation with the use of Crofton's formula

Unfortunately, the explicit computation of |∂C α (X n )| d-1 is very difficult. However, from the results in Lemma 8.7 we derive that we can make use Crofton's formulae and the Monte Carlo method to estimate |∂C α (X n )| d-1 . This, as we will see, is based on the fact that the computation of ňα (θ, y) := n ∂Cα(Xn) (θ, y) is feasible. It requires first the computation of the α-convex hull, as well as the convex hull, of X n . Recall that the convex hull H(X n ) of X n is equal to the intersection of a finite number of half-spaces H(X n ) = In [START_REF] Edelsbrunner | On the shape of points in the plane[END_REF] it is proved, for dimension 2, but mentioned that the generalization is not difficult, that C α (X n ) c is the union of a finite number of balls and the aforementioned half-spaces. The centres O i of these balls, and their radii r i , are obtained by computing the Delaunay complex. The computational cost of the Delaunay complex being the main part of the computational cost of our algorithm, which is defined as follows:

1. Compute all the Delaunay simplices σ i = H({X i1 , . . . , X i d+1 }), i.e. those such that B(O i , r i ) ∩ X n = ∅ and ∂B(O i , r i ) is the sphere circumscribed to X i1 , . . . , X i d+1 . Compute the faces of the boundary of the α -shape (see [START_REF] Edelsbrunner | On the shape of points in the plane[END_REF]), which are the f i = H({X i1 , . . . , X i d }) such that there exists a unique j ≥ K + 1 such that f i ⊂ σ j .

Also compute Ω i (resp. ρ i ), which is the center (resp. radius) of the sphere (a) f i is a face of ∂H(X n ), i.e. there exists j such that f i ⊂ H j . Then define w i = u j .

(b) f i is not a face of ∂H(X n ), thus there exists j ≤ K such that Define

f i ⊂ σ j . Then define w i = (O j -O j )/||O j -O j ||, with j ≥ K + 1 such that f i ⊂ σ j .
B - i = B(Ω i + α 2 -ρ 2 i w i , α ). Then C α (X n ) c = i H c i ∪ i B - i ∪ i B + i . (7) 
To simplify notation, we write C α (X n ) c = i B i . Observe that if the line r θ,y is chosen at random (w.r.t. dµ d-1 dθ), with probability one we have r θ,y ∩ ∂B i contains less than three points.

Initialize list=∅. Then: for each i,

• compute r θ,y ∩ ∂B i .
• For all z ∈ r θ,y ∩ ∂B i , if for all j z / ∈ Bj , then do list=list∪{z}.

then ň(θ, y) = #list.

5 Discussion of the rates of convergence

In Corollary 4 we obtained the same convergence rate as the one provided in [START_REF] Arias-Castro | On estimating the perimeter using the alpha-shape[END_REF] for d = 2, conjectured as suboptimal. As mentioned in [START_REF] Arias-Castro | On estimating the perimeter using the alpha-shape[END_REF], if the measure of the symmetric difference between S and an estimator Ŝn is bounded by ε n , we can only expect that plug-in methods allow estimating |∂S| d-1 with a convergence rate ε n . Thus, in the iid setting, the estimator defined by (6) (respectively [START_REF] Baíllo | A survey and a new selection criterion for statistical home range estimation[END_REF] to ( 9)) can be seen as 'optimal' relative to the use of the Devroye-Wise support estimator (respectively the α-convex hull support estimator), since they achieve the best possible convergence rates for those estimators. This is nevertheless far from being optimal: the minimax rate is conjectured to be n -d+3 2d+2 , which is the minimax rate for the volume estimation problem (see [START_REF] Arias-Castro | Minimax estimation of the volume of a set under the rolling ball condition[END_REF]), and in [START_REF] Kim | Estimation of smooth functionals in image models[END_REF] it is proved that the minimax rate is the same for the volume estimation problem and the surface area estimation problem (at least in the image setting, which usually extends to the iid setting). Unfortunately, attaining this optimal rate for the surface area estimation problem is much more involved, even in the easier setting with data uniformly drawn in S and S c with perfect identification: no estimator attaining this rate has been proposed yet.

Integralgeometric estimations via a Monte Carlo method and numerical experiments

To estimate the surface area with a Monte Carlo method, we propose the following classical procedure. Generate a random sample θ 1 , . . . , θ k uniformly distributed on (S + ) d-1 . For each i = 1, . . . , k, draw a random sample ℵ i = {y i 1 , . . . , y i } uniformly distributed on [-L, L] d-1 ⊂ θ ⊥ i , independent of θ 1 , . . . , θ k , where L = max j=1,...,n ||X j ||. Then, the estimators are given by

Î( ,k) d-1 (∂S) = (2L) d-1 β(d) 1 k k i=1 j=1 nεn,Xn (θ i , y i j ) (8) Î( ,k,N0) d-1 (∂S) = (2L) d-1 β(d) 1 k k i=1 j=1 min(n εn,Xn (θ i , y i j ), N 0 ) (9) Ǐ( ,k) d-1 (∂S) = (2L) d-1 β(d) 1 k k i=1 j=1 ňr (θ i , y i j ). ( 10 
)
7 Simulation study

The performance of ( 8) and ( 10) is shown through a simulation study. We consider the sets S d = B d (O, 1) \ Bd (O, r) for d = 2, 3 and r = 0.5, 0.6, 0.7, 0.8 and 0.9. On each set we draw n iid random vectors supported on S d , whose common distribution is X = RZ, R being a real valued random variable uniform on [0, r] and Z a random vector (independent of R), supported on the d -1 dimensional sphere.

We choose k = 4000 and = 1, at equation ( 8) and the same for [START_REF] Berrendero | A geometrically motivated parametric model in manifold estimation[END_REF]. The random lines were generated as before. For both estimators the samples sizes were n = 50, 100, 200, 500, 1000, 2000 and 4000, and in all cases we considered uniformly distributed random vectors on S d . For [START_REF] Baddeley | Estimation of surface area from vertical sections[END_REF] we computed the parameter ε n as follows: for each sample point we computed the distance to it's closest point in the sample. Then we choose the third quantile of these n distances. For [START_REF] Berrendero | A geometrically motivated parametric model in manifold estimation[END_REF] we estimated the parameter α with the data-driven estimator proposed in [START_REF] Rodríguez-Casal | Extent of occurrence reconstruction using a new data-driven support estimator[END_REF].

Let us define

E DW i = Î(1,1000) d-1 (∂S) -|S d | d-1 |S d | d-1 (11) 
and

E CH i = Ǐ(1,1000) d-1 (∂S) -|S d | d-1 |S d | d-1 (12) 
In Figure 13 we show, for each d and r, 10 black curves corresponding to 10 replications of [START_REF] Bräker | On the area and perimeter of a random convex hull in a bounded convex set[END_REF] It is also shown in red 10 replications of [START_REF] Burt | Territoriality and home range concepts as applied to mammals[END_REF]. For the first three values of r 0 the estimators behave similarly, while for the last two ones the estimator ( 8) outperforms [START_REF] Berrendero | A geometrically motivated parametric model in manifold estimation[END_REF]. The idea is to consider separately two subsets of the set of lines that intersect ∂ Ŝεn (X n ):

1. If a line r θ,y = y + Rθ is 'far enough' (fulfilling condition L(ε) for some ε > 0, see Definition 8.1) from the tangent spaces, then our algorithm allows a perfect estimation of n ∂S (θ, y), see Lemma 8.5.

2.

Considering the set of lines that are not 'far enough' from the tangent spaces (denoted by A εn (θ)), see Definition 8.1), Corollary 5 states that, under (C, 0 )-regularity, the integral of nεn,Xn (θ, y) on A εn (θ) is bounded from above by C ε

1/2
n , C being a positive constant. Theorem 3.3 states that the previous bound can be improved to C ε n , under (C, 0 )-regularity, if ∂S has a bounded number of linear intersections.

Condition L(ε)

We now define the two sets of lines to be treated separately: The lines that are 'far' from an affine tangent space, and the lines that are 'close to being tangent' to ∂S. More precisely, recall that under the rolling ball hypothesis, the unit outer normal vector η x at x is well defined (see Remark 1). Now we define the collection of all the affine (d -1)-dimensional tangent spaces. Definition 8.1. Let ε ≥ 0. A line r θ,y = y + Rθ fulfills condition L(ε) if y is at a distance larger than 4ε from all the affine hyper-planes w + η ⊥ ∈ T S satisfying η, θ = 0, i.e. for all x ∈ ∂S such that η x , θ = 0 we have that d(y, x+η ⊥ x ) > 4ε For a given θ, we define A ε (θ) = y ∈ θ ⊥ : ||y|| ≤ diam(S) and r θ,y does not satisfy L(ε) .

T S = {x + (η x ) ⊥ : x ∈ ∂S},
Remark 3. Notice that θ (y) = min x∈E θ (∂S) d(y, x + η ⊥
x ) is well defined because E θ is compact and x → η x is a continuous function, due to the regularity of ∂S. Moreover, if y ∈ θ ⊥ , then θ (y) = d(y, F θ ) and, as a consequence, for all t ∈ (0, d(y, F θ )/4), r θ,y satisfies the condition L(d(y, F θ )/4 -t).

Some useful lemmas

Lemma 8.2. Let S be a compact set fulfilling the outside and inside α-rolling conditions. Let r θ,y be a line that fulfills condition L(0) and r θ,y ∩ ∂S = ∅. Then r θ,y intersects ∂S in a finite number of points.

Proof. Because S fulfills the outside and inside α-rolling conditions, Theorem 1 in [START_REF] Walther | On a generalization of Blaschke's rolling theorem and the smoothing of surfaces[END_REF] implies that for any x ∈ ∂S, the affine (d -1)-dimensional tangent space T x ∂S exists. If r θ,y fulfills L(0), then r θ,y is not included in any hyper-plane tangent to S. Suppose that ∂S ∩ r θ,y is not finite. Then, by compactness, one can extract a subsequence t n ∈ ∂S ∩ r θ,y that converges to y ∈ ∂S ∩ r θ,y .

1. Because t n and y are in r θ,y , we have that, for all n, (t n -y )/||t n -y || = ±θ. ).

Because

These two facts imply that θ ∈ T y ∂S, which contradicts the assumption that r θ,y is not included in any hyper-plane tangent to S.

Lemma 8.3. Let S ⊂ R d be a compact set fulfilling the outside and inside αrolling conditions. Let ε > 0 be such that ε < α/4 and ν = 2[2ε(α -2ε)] 1/2 . For any line r θ,y fulfilling condition L(ε) and r θ,y ∩ ∂S = ∅, we have that r θ,y meets ∂S at a finite number of points t 1 , . . . , t k , where t i+1 -

t i ≥ 2ν for all i = 1, . . . , k -1. Consequently, if ε < α/4, then k = #(r θ,y ∩ ∂S) ≤ diam(S)ε -1/2 /(4 √ α).
Proof. If a line fulfills condition L(ε), then it fulfills condition L(0), consequently, the fact that r θ,y intersects ∂S in a finite number of points follows from Lemma 8.2. Let us denote by t 1 < • • • < t k the intersection of r θ,y with ∂S.

Let us denote by η ti and η ti+1 the outer normal vectors at t i and t i+1 , respectively. We have two cases: the open interval (t i , t i+1 ) ⊂ S c or (t i , t i+1 ) ⊂ S. Let us consider the first case (the proof for the second one is similar).

Because (t i , t i+1 ) ⊂ S c and S fulfills the inside α-rolling condition on t i , there exists a z ∈ S such that t i ∈ ∂B(z, α) and B(z, α) ⊂ S. In particular, B(z, α) ∩ (t i , t i+1 ) = ∅, which implies η ti , θ ≥ 0.

Reasoning in the same way but with t i+1 , we get η ti+1 θ ≤ 0. Given that r θ,y is not included in any tangent hyperplane, we have that η ti , θ > 0 and η ti+1 , θ < 0.

If, for some i, t i+1 -t i < 2ν, then, by Theorem 3.8 in [START_REF] Colesanti | Geometric and isoperimetric properties of sets of positive reach in E d[END_REF], there exists a curve γ : [0, 1] → ∂S such that γ(0) = t i , γ(1) = t i+1 and d(γ(t), r θ,y ) ≤ 4ε for all t. We also have the inside and outside α-rolling conditions, something which implies that x → η x is Lipschitz (see Theorem 1 in [START_REF] Walther | On a generalization of Blaschke's rolling theorem and the smoothing of surfaces[END_REF]). From η ti , θ > 0 and η ti+1 , θ < 0, it follows that there exists an s 0 ∈ (0, 1) such that η γ(s0) , θ = 0, which contradicts the hypothesis that y is at a distance larger than 4ε from all the (d-1)-dimensional hyperplanes tangent to S. This proves that t i+1 -t i ≥ 2ν for all i = 1, . . . , k -1.

Lemma 8.4. Let S ⊂ R d be a compact set fulfilling the outside and inside αrolling conditions, with a (C, ε 0 )-regular boundary. Then for all ε ≤ min{ε 0 , α}/4,

θ∈(S + ) d-1 y∈Aε(θ) n ∂S (θ, y)dµ d-1 (y)dθ ≤ 2C diam(S) √ α √ ε.
Moreover, if ∂S has bounded number of linear intersections, then

θ∈(S + ) d-1 y∈Aε(θ) n ∂S (θ, y)dµ d-1 (y)dθ ≤ 4CN S ε. ( 13 
)
Proof. Observe that

θ∈(S + ) d-1 y∈Aε(θ) n ∂S (θ, y)dµ d-1 (y)dθ = θ∈(S + ) d-1 4ε =0 {y∈θ ⊥ :d(y,F θ )= } n ∂S (θ, y)dµ d-2 (y)d dθ.
According to Remark 3 if y ∈ θ ⊥ : d(y, F θ ) = , then, for all t ∈ (0, ), r θ,y fulfills L( /4 -t) . From the proof of the previous lemma, it follows that for any y ∈ θ ⊥ with d(y, F θ ) = and < 4ε, and any t ∈ (0, /4)

n ∂S (θ, y) ≤ diam(S)( /4 -t) -1/2 /(4 √ α).
Hence, with t → 0 we obtain n ∂S (θ, y) ≤ diam(S)( ) -1/2 /(2 √ α), from which:

θ∈(S + ) d-1 4ε =0 {y∈θ ⊥ :d(y,F θ )= } n ∂S (θ, y)dµ d-2 (y)d dθ = ≤ θ∈(S + ) d-1 4ε =0 {y∈θ ⊥ :d(y,F θ )= } 1 2 diam(S)(α ) -1/2 dµ d-2 (y)d dθ ≤ θ∈(S + ) d-1 4ε =0 1 2 diam(S)(α ) -1/2 {y∈θ ⊥ d(y,F θ )= } dµ d-2 (y)d dθ ≤ θ∈(S + ) d-1 4ε =0 1 2 diam(S)(α ) -1/2 | y ∈ θ ⊥ : d(y, F θ ) = | d-2 d dθ.
By the definition of ϕ θ ,

y ∈ θ ⊥ : ≤ d(y, F θ ) ≤ + d d-1 = ϕ θ ( + d ) -ϕ θ ( ).
From the (C, ε 0 )-regularity of ∂S and the mean value theorem we obtain

y ∈ θ ⊥ : d(y, F θ ) = d-2 ≤ sup ε∈(0,4ε0) ϕ θ (ε) ≤ C, which implies θ∈(S + ) d-1 y∈Aε(θ) n ∂S (θ, y)dµ d-1 (y)dθ ≤ θ∈(S + ) d-1 4ε =0 C 1 2 diam(S)(α ) -1/2 d dθ ≤ 2C diam(S) √ α √ ε.
Applying exactly the same reasoning, under the hypothesis of the boundedness of the number of linear intersections for ∂S, we get

θ∈(S + ) d-1 y∈Aε(θ) n ∂S (θ, y)dµ d-1 (y)dθ ≤ θ∈(S + ) d-1 4ε =0 CN S d dθ ≤ 4CN S ε.
Remark 4. If in the proof of Lemma 8.4 we take = 0, we obtain that the measure of the set of lines belonging to some half-space tangent to ∂S is 0. Lemma 8.5. Let S be a compact set fulfilling the outside and inside α-rolling conditions. Let X n = {X 1 , . . . , X n } ⊂ S. Let ε n → 0 be such that d H (X n , S) ≤ ε n . Let r θ,y = y + Rθ be any line fulfilling condition L(ε n ). Then, for n large enough so that 4ε n < α, n ∂S (θ, y) = nεn,Xn (θ, y).

Proof. Throughout this proof we will use the following notation when r θ,y ∩∂S = ∅. Let t 1 < . . . < t 2k be the intersection of r θ,y with ∂S. This set is finite due to Lemma 8.2 and is an even number because condition L(ε n ) is fulfilled. Also [t 2(i-1)+1 , t 2i ] ⊂ S for all i = 1, . . . , k and (t 2i , t 2i+1 ) ⊂ S c for all i = 1, . . . , k -1.

First, we will prove that nεn,Xn (θ, y) ≥ n ∂S (θ, y).

If r θ,y ∩ ∂S = ∅, then inequality ( 14) holds. Assume r θ,y ∩ ∂S = ∅. We will now prove that if (t i , t i+1 ) ⊂ S c , then: ∃s ∈ (t i , t i+1 ) such that d(s, S) > 4ε n .

(

) 15 
Because S fulfills the inside α-rolling condition on t i , there exists a

z i ∈ S such that t i ∈ ∂B(z i , α) and B(z i , α) ⊂ S. Since B(z i , α) ∩ (t i , t i+1 ) = ∅, it follows that η ti , θ ≥ 0 (recall that η ti = (t i -z i )/α and t i+1 -t i = ||t i+1 -t i ||θ).
Reasoning in the same way but with t i+1 , η ti+1 , θ ≤ 0. By condition L(ε n ), we obtain η ti , θ > 0 and η ti+1 , θ < 0.

Suppose that for all t ∈ (t i , t i+1 ) we have d(t, ∂S) ≤ 4ε n . Take n large enough so that 4ε n < α. Because S fulfills the outside and inside α-rolling conditions, by Lemma 2.3 in [START_REF] Pateiro-López | Surface area estimation under convexity type assumptions[END_REF], ∂S has positive reach greater than α. Then, by Theorem 4.8 in [START_REF] Federer | Curvature measures[END_REF], γ = {γ(t) = π ∂S (t), t ∈ (t i , t i + 1)}, the orthogonal projection onto ∂S of the interval (t i , t i+1 ) is well defined and is a continuous curve in ∂S. By Theorem 1 in [START_REF] Walther | On a generalization of Blaschke's rolling theorem and the smoothing of surfaces[END_REF], the map from ∂S to R d x → η x is Lipschitz. Thus, t → η γ(t) , θ is a continuous function of t for all t ∈ (t i , t i+1 ), which, together with ( 16), ensures the existence of an s ∈ (t i , t i+1 ) such that d(s, γ(s)) ≤ 4ε n and θ ∈ η ⊥ γ(s) , which contradicts the assumption that r θ,y fulfills condition L(ε n ). This proves [START_REF] Cholaquidis | Home range estimation under a restricted sampling scheme[END_REF].

From [START_REF] Cholaquidis | Home range estimation under a restricted sampling scheme[END_REF] we easily obtain (since s ∈ S c and

X n ⊂ S) that if (t i , t i+1 ) ⊂ S c , then: ∃s ∈ (t i , t i+1 ) such that d(s, X n ) > 4ε n . ( 17 
)
To conclude ( 14) let us write, for i = 1, . . . , k, I i = [t 2(i-1)+1 , t 2i ] for the connected components of S ∩ r θ,y . Since d H (X n , S) < ε n , S ⊂ Ŝεn (X n ). Then, for i = 1, . . . , k, there exists a j such that I i ⊂ I j , I j being a connected component of Ŝεn ∩ r θ,y . Note now that (17) ensures that, for all i = i , if I i ⊂ I j and I i ⊂ I j then I j and I j are not in the same connected component of Ŝ4εn (X n ) thus they are not glued, and then nεn,Xn (θ, y) ≥ n ∂S (θ, y). Next, we will prove the opposite inequality, nεn,Xn (θ, y) ≤ n ∂S (θ, y).

(

) 18 
Assume first r θ,y ∩ ∂S = ∅. Consider t * ∈ (t i , t i+1 ) ⊂ S c and t * ∈ Ŝεn (X n ). Equation ( 18) will be derived from the fact that (t * , t i+1 ] ⊂ Ŝ4εn (X n ) ∩ r θ,y or [t i , t * ) ⊂ Ŝ4εn (X n ) ∩ r θ,y and thus the connected component of Ŝεn (X n ) ∩ r θ,y that contained t * is glued with the one that contains [t i-1 , t i ] or with the one that contains [t i , t i+1 ].

Introduce ψ(t) : (t i , t i+1 ) → R defined by ψ(t) = d(t, ∂S). Consider the points t ∈ (t i , t i+1 ) such that d(t, ∂S) < α, and let p t ∈ ∂S be such that ||p t -t|| = d(t, ∂S). By item (3) in Theorem 4.8 in [START_REF] Federer | Curvature measures[END_REF], ψ (t) = η pt , θ . Let X j be the closest observation to t * (recall that because t * ∈ Ŝεn (X n ), we have ||X j -t * || ≤ ε n ). Now, because there exists a point p * ∈ [t * , X j ] ∩ ∂S, we obtain that ψ(t * ) ≤ ε n and, because r θ,y fulfils L(ε n ), η p t * , θ = 0.

Assume that, for instance, η p t * , θ < 0. Then ψ(t * ) ≤ ε n and ψ (t * ) < 0. Suppose that there exists a t ∈ (t * , t i+1 ) such that ψ(t ) ≥ ε n and consider t = inf{t > t * , ψ(t ) ≥ ε n }. Then for all t ∈ (t * , t ), we have ψ(t) ≤ ε n < α, and thus ψ is differentiable on this interval (using again item (3) of Theorem 4.8 in [START_REF] Federer | Curvature measures[END_REF]). From the fact that ψ(t ) ≥ ψ(t * ) and ψ (t * ) < 0 we deduce that there exists a t ∈ (t * , t ) such that ψ ( t) = 0, which contradicts L(ε n ) because ψ( t) ≤ ε n . To summarize, we have shown that if η p t * , θ < 0, then for all t ∈ (t * , t i+1 ) we have that d(t, ∂S) ≤ ε n , and thus (t

* , t i+1 ) ⊂ Ŝ2εn (X n ) ⊂ Ŝ4εn (X n ). Symmetrically, if η p t * , θ > 0, then (t i , t * ) ⊂ Ŝ2εn (X n ) ⊂ Ŝ4εn (X n ).
Thus we now have that if r θ,y ∩ ∂S = ∅, then nεn,Xn (θ, y) ≤ n ∂S (θ, y). Now we are going to prove that for a line r θ,y fulfilling condition L(ε n ) we can not have r θ,y ∩ ∂S = ∅ and nεn,Xn (θ, y) > 0. Reasoning by contradiction, upon assuming that r θ,y ∩ ∂S = ∅ and nεn,Xn (θ, y) > 0, we have that 0 < min{||x -y||, x ∈ r θ,y , y ∈ S} ≤ ε n . Now the regularity condition also gives that if this minimum is realized for x * and y * we have y * ∈ ∂S and θ ∈ T y * ∂S, which contradicts condition L(ε n ). Lemma 8.6. Let S ⊂ R d be a compact set fulfilling the outside and inside α-rolling conditions. Let X n ⊂ S and suppose ε n → 0 is a sequence such that d H (X n , S) ≤ ε n , while r θ,y = y + Rθ and A 1 , . . . , A k are the sets in Definition 3.1, A i = (a i , b i ) for i = 1, . . . , k. Now suppose that the sets are indexed in such a way that a 1 < b 1 < a 2 < . . . < b k . Then for all i = 2, . . . , k, we have that

||a i -b i-1 || > 3 √ ε n α and for all i = 1, . . . , k, ||b i -a i || > 3 √ ε n α, for n large enough so that 3 √ αε n < α/2, which implies nεn,Xn (θ, y) ≤ diam(S) 3 √ α ε -1/2 n .
Proof. Assume by contradiction that for some i,

||a i -b i-1 || ≤ 3 √ ε n α. By construction, [b i-1 , a i ] ⊂ Ŝεn (X n ) c ⊂ S c . Because a i and b i are on ∂ Ŝεn (X n ), we have d(a i , X n ) = d(b i-1 , X n ) = ε n . The projection π S : [b i-1 , a i ] → ∂S is uniquely defined because ∂S has reach at least α and d(t, ∂S) ≤ d(t, a i ) + d(a i , ∂S) ≤ ||a i -b i-1 || + d(a i , X n ) for all t ∈ (b i-1 , a i ), ||a i -b i-1 || ≤ 3 √ ε n α < α/2 and d(a i , ∂S) ≤ ε n ≤ α/2. Moreover, π S is a continuous function. Hence max x∈[bi-1,ai] ||x -π S (x)|| ≥ ε n -d H (S, X n )
, and the maximum is attained at some x 0 ∈ [b i-1 , a i ]. First, we show that ||x 0 -π S (x 0 )|| ≥ 3ε n . Indeed, suppose by contradiction that for all t ∈ (b i-1 , a i ), d(t, ∂S) ≤ 3ε n . Then d(t, X n ) ≤ 4ε n , which contradicts the definition of the points a i and b i . The fact that ||x 0 -π S (x 0 )|| ≥ 3ε n > d(a i , S) = d(b i-1 , S) guarantees that x 0 ∈ (b i-1 , a i ) and that η 0 , the outward unit normal vector to ∂S at π S (x 0 ), is normal to θ.

Let z 0 = π S (x 0 ) + η 0 α. Observe that d(a i , S) ≤ ε n and d(b i-1 , S) ≤ ε n . From the outside α-rolling condition at π S (x 0 ), ||x 0 -π S (x 0 )|| ≤ α and using the fact that η 0 is normal to θ, we have (see Figure 14)

r θ,y ∩ B(z 0 , α -ε n ) ⊂ [b i-1 , a i ],
which implies, see Figure 14, that

||a i -b i-1 || ≥ 2 (α -ε n ) 2 -(α -) 2 , where = d(x 0 , π S (x 0 )). Therefore, ||a i -b i-1 || ≥ 2 ( -ε n )(2α --ε n ). ( 19 
)
If we bound ≥ 3ε n and use the fact that = o(1), which follows from

≤ ||b i-1 -a i || + ε n ≤ 3 √ ε n α + ε n , then we get, from (19) 
,

||a i -b i-1 || ≥ 2 2ε n (2α --ε n ) = 2 4ε n α(1 + o(1))) = 4 √ αε n (1 + o(1)),
and for n large enough this contradicts ||a i -b i-1 || ≤ 3 √ αε n . Then, the number Figure 14:

||a i -b i-1 || ≥ 2 (α -ε n ) 2 -(α -) 2 , where = d(x 0 , π S (x 0 )).
of disjoint intervals A i is bounded from above by diam(S)/(3 √ ε n α). The proof that for all i = 1, . . . , k, ||b i -a i || > 3 √ ε n α follows the same ideas, we will give a sketch of the proof. Let b i > a i (recall that we ordered the points

a 1 < b 1 < . . . < a k < b k ) be such that ||a i -b i || ≤ 3 √ ε n α. Proceeding as before, max x∈[ai,bi] ||x -π S (x)|| ≥ 3ε n and it is attained at some x 0 ∈ (a i , b i ).
Let z 0 = π S (x 0 ) -η 0 α, with η 0 being the outward unit normal vector to ∂S at π S (x 0 ). Then r θ,y ∩ B(z

0 , α) ⊂ [a i , b i ] since i , b i ] / ∈ B(z 0 , α) and B(z 0 , α) ⊂ S. From r θ,y ∩ B(z 0 , α) ⊂ [a i , b i ] it follows as before that ||a i -b i || ≥ 4 √ ε n α, which is a contradiction. Lastly, nεn,Xn (θ, y) ≤ diam(S)/(3 √ ε n α).
Corollary 5. Let S ⊂ R d be a compact set fulfilling the outside and inside α-rolling conditions and with a (C, ε 0 )-regular boundary. For n large enough so that 3 √ αε n < min(α/2, ε 0 ), we have

θ y∈Aε n (θ) nεn,Xn (θ, y)dµ d-1 (y)dθ ≤ C diam(S) 3 √ α √ ε n . 8.1.3 Proof of Theorem 3.2
Without loss of generality, we can assume that 0 ∈ S. Recall that for θ ∈ (S + ) d-1 , A εn (θ) is the set of all y ∈ θ ⊥ such that ||y|| ≤ diam(S) and r θ,y does not fulfill L(ε n ). First, from Lemma 8.5, we have that

||∂S| d-1 -Îd-1 (X, ε)| is bounded from above by 1 β(d) θ∈(S + ) d-1 y∈Aε n (θ)
|n εn,Xn (θ, y) -n ∂S (θ, y)|dµ d-1 (y)dθ, which is bounded from above by

1 β(d) θ∈(S + ) d-1 y∈Aε n (θ) nεn,Xn (θ, y)dµ d-1 (y)dθ+ 1 β(d) θ∈(S + ) d-1 y∈Aε n (θ)
n ∂S (θ, y)dµ d-1 (y)dθ. Now, by Corollary 5 and Lemma 8.4, we get that

||∂S| d-1 -Îd-1 (X, ε)| ≤ 7Cdiam(S) 3β(d) √ α √ ε n ,
for n large enough.

Proof of Theorem 3.3

The proof of Theorem 3.3 is basically the same as the previous one. Since N 0 ≥ N S Lemma 8.5 ensures that, for all r y,θ not in A εn (θ), min(n(θ, y), N 0 ) = n ∂S (θ, y), for n large enough that 4ε n < α. Thus we still have, for n large enough,

||∂S| d-1 -ÎN0 d-1 (∂S)| is bounded from above 1 β(d) θ∈(S + ) d-1 y∈Aε n (θ) n ∂S (θ, y)dµ d-1 (y)dθ+ 1 β(d) θ∈(S + ) d-1 y∈Aε n (θ) N 0 dµ d-1 (y)dθ.
Now, by applying [START_REF] Cholaquidis | Set estimation from reflected Brownian motion[END_REF] for the first part and a similar calculation for the second part, we get that

||∂S| d-1 -ÎN0 d-1 (∂S)| ≤ 4C(N S + N 0 ) β(d) ε n , (20) 
for n large enough.

Proof of Corollary 3

By Corollary 1 in [START_REF] Cholaquidis | Home range estimation under a restricted sampling scheme[END_REF], we know that, with probability one, for T large enough, d H (X T , S) ≤ ε T → 0, where ε T = o((ln(T ) 2 /T ) 1/d ). Let X n = {X t1 , . . . , X tn } be a discretization of X T such that t i -t i-1 = T /n and t n = T . Put ε n = d H (X n , S); then ε n ≥ ε T . It is clear that, for a fixed T , ε n decreases to ε T as n → ∞. To emphasize the dependence on the set, we will write ÎN0 d-1 (∂S, X n ) for the estimator based on X n , and ÎN0

d-1 (∂S, X T ) for the estimator based on X T (both defined using Definition 3.1). Then by [START_REF] Cuevas | On statistical properties of sets fulfilling rolling-type conditions[END_REF], to prove Corollary 3 it is enough to prove ÎN0 d-1 (∂S, X n ) → ÎN0 d-1 (∂S, X T ) as n → ∞, for arbitrary fixed T . Fix θ and y. It is clear that n(θ, y)(∂S, X n ) → n(θ, y)(∂S, X T ) as n → ∞, and so Corollary 3 follows by the dominated convergence theorem, using the fact that min{n(θ, y), N 0 } ≤ N 0 .

Proofs for the estimator based on the α-hull

Theorem 4.1 will be easily obtained from the two following geometric lemmas and Theorem 3 in [START_REF] Rodríguez-Casal | Set estimation under convexity type assumptions[END_REF].

Here we need to introduce some new notation. If f is a function, then ∇ f (x) denotes its gradient and H f its Hessian matrix. Given two sets C, D ⊂ R d , we write C ≈ D if there exists an homeomorphism between C and D. In what follows, M ⊂ R d will be a compact set, and C 2 a (d -1)-dimensional manifold (with or without boundary). Then for all x in M , there exists an r x > 0 such that either i) for all r ≤ r x , B(x, r) ∩ M ≈ Bd-1 (0, 1), or ii) for all r ≤ r x , B(x, r) ∩ M ≈ Bd-1 (0, 1) ∩ {(x 1 , . . . , x d-1 ) : x 1 ≥ 0}.

The set of points satisfying condition i) constitute int(M ), while the set of points satisfying ii) constitute ∂M . We have that ∂M is a (d -2)-dimensional manifold without boundary and, as a consequence, |∂M | d-1 = 0.

Given a point x ∈ M , N x M = {v ∈ R d : v, u = 0, ∀u ∈ T x M } is the 1dimensional orthogonal subspace. If M is a manifold as before, and ∂M = ∅, we define for any compact set E ⊂ M (E is not necessarily a manifold) its interior int(E) = {x ∈ E : ∃r x such that for all r ≤ r x , B(x, r) ∩ E ≈ Bd-1 (0, 1)}. We have int(E) is a manifold (without boundary and, when is not empty int(E) has the same dimension as M ).

Lemma 8.7. Let S ⊂ R d be a compact set fulfilling the inside and outside αrolling conditions. Let α < α be a positive constant. Let X n = {X 1 , . . . , X n } ⊂ S be such that :

i. d H (∂C α (X n ), ∂S) ≤ ε n with ε n < αα 2(α+α ) (notice that we then have ε n ≤ α /2 and ε n ≤ α/4). ii. d H (X n , S) < 1 3 αα α+α note that 1 3 αα α+α ≤ α 3 Then, 1. there exist C 1 (X n ), . . . , C K (X n ) such that: (a) K i=1 C i (X n ) ⊂ ∂C α (X n ) (b) |∂C α (X n ) \ ( K i=1 C i (X n ))| d-1 = 0 (c) C i (X n ) is a C 2 (d -1)-dimensional manifold (d) C i (X n ) ∩ C j (X n ) = ∅ when i = j for all x ∈ K i=1 C i (X n ),
there exists a ηx , the unit normal (to ∂C α (X n )), a vector pointing outward (with respect to C α (X n )) from x that satisfies

ηx , η π ∂S (x) ≥ 1 - 2(α + α ) αα ε n .
2. π ∂S : ∂C α (X n ) → ∂S the orthogonal projection onto ∂S is one to one.

∂C

α (X n ) ≈ ∂S Proof.
Let us prove first that there are no isolated points in ∂C α (X n ). Indeed, suppose by contradiction that there exists x is an isolated point of ∂C α (X n ). That is, there exists r > 0 such that B(x, r) ∩ ∂C α (X n ) = {x}. By connectedness of B(x, r) \ {x} we have or B(x, r) [START_REF] Edelsbrunner | On the shape of points in the plane[END_REF] .

\ {x} ⊂ C α (X n ) c or B(x, r) \ {x} ⊂ C α (X n ). The second case contradicts x ∈ ∂C α (X n ) since C α (X n ) is
||O y -O|| 2 = (α -min(r, ε n ) -||x -x * || + a) 2 + b 2 ≤ (α -min(r, ε n ) -||x -x * ||) 2 + 2a(α -min(r, ε n ) -||x -x * ||) + (α ) 2 ≤ (α + α -min(r, ε n ) -||x -x * ||) 2 -2(α -a)(α -min(r, ε n ) -||x -x * ||) Thus ||O y -O|| is bounded from above by ≤ (α + α -min(r, ε n ) -||x -x * ||) 1 -2 (α -a)(α -min(r, ε n ) -||x -x * ||) (α + α -min(r, ε n ) -||x -x * ||) 2 ≤ α + α -min(r, ε n ) -||x -x * || - (α -a)(α -min(r, ε n ) -||x -x * ||) (α + α -min(r, ε n ) -||x -x * ||) and α + α -||O y -O|| ≥ (α -a) α -min(r, ε n ) -||x -x * || α + α -min(r, ε n ) -||x -x * || α + α -||O y -O|| ≥ (α -ε n /2)(α -2ε n ) α + α ≥ αα α + α 3 8 > 1 3 αα α + α > d H (X n , S) Figure 15: x ∈ ∂C α (X n ), x * = π ∂S (x), O i = x + α ηx,i and O * = x * -αη x * . Observe that B(O i , α ) ∩ B(O * , α) = ∅ by
From x * = π ∂S (x) we get that

x * = x + η x * where = ||x -x * || ≤ ε n . Then O i = O * + (α -)η x * + α ηx,i and α + α -||O i -O * || = α + α -(α ) 2 + (α -) 2 + 2α (α -) ηx,i , η x * = α + α -(α + α -) 2 -2α (α -)(1 -ηx,i , η x * ) ≥ + α (α -)(1 -ηx,i , η x * ) α + α - ≥ α α(1 -ηx,i , η x * ) 2(α + α ) , (24) 
where in the first inequality of the last line we bounded A 1 -2B/A 2 ≤ A(1 -B/A 2 ) = A -B/A, and in the last inequality α -≥ α/2, thus, combined with Equation ( 23), we can conclude the proof of Equation ( 21).

We will now, as the third step, conclude the proof of assertion 1. Note that if B i is a ball (and not an half-space), then ∂B i ∩ B c j = ∂B i ∩ P i,j where P i,j the following closed half space.

P i,j = B c j if B j is an open half space {x : ||x -O i || 2 -r 2 i ≤ ||x -O j || 2 -r 2 j } if B j = B(O j , r j ). Thus S i = ∂B i j B j c = ∂B i j =i B c j = ∂B i ∩ H i , where H i is a convex polygon. Put C i (X n ) = ∂B i ∩ Hi \ X n .
We are going to prove that the C i (X n ) satisfy conditions (a), (b), (c) and (d) of assertion 1. First note that (a) is obvious by construction.

Suppose x ∈ ∂C α (X n ) \ X n . By the first step, we know that there exists a B i0 which is a ball of radius α such that x ∈ S i0 and thus we are in the situation where

x ∈ ∂B i0 ∩ H i0 with H i0 a convex polygon. If now x ∈ ∂C α (X n ) \ X n but x / ∈ ∪C i (X n ), we must have x ∈ ∂B i0 ∩ ∂H i0 . This gives ∂C α (X n ) \ i C i (X n ) ⊂ X n i,ri=α ∂B i ∩ ∂H i and thus |∂C α (X n ) \ i C i (X n ) | d-1 = 0, which proves (b).
We will now prove that if i = j and B i and B j are two balls, then (∂B i ∩ Hi ) ∩ (∂B j ∩ H j ) = ∅. Suppose by contradiction that (S i ∩ Hi ) ∩ (S j ∩ H

j ) = ∅. Then ||x -O i || 2 -r 2 i < ||x -O j || 2 -r 2 j and ||x -O i || 2 -r 2 i ≥ ||x -O j || 2 -r 2 j
, which is a contradiction. Thus, if C i (X n ) and C j (X n ) are both non-empty, we have that B i and B j are two balls, and if

i = j, C i (X n ) ∩ C j (X n ) = ∅, which proves (d).
This also proves that if x ∈ C i (X n ), then there exists an r x > 0 small enough so that ∂C

α (X n ) ∩ B(x, r x ) = ∂B i ∩ B(x, r x ). Thus ∂C α (X n ) ∩ B(x, r x ) is a C 2 , d -1 dimensional manifold.
Moreover, the tangent space at x is given by (x -O i ) ⊥ . Also, the unit normal (to ∂C α (X n )) vector (O i -x)/||x -O i || is well defined, and points outwards to C α (X n ). This concludes the proof of (c) and also the proof of 1).

The proof of 2) follows the same ideas used to prove Theorem 3 in [START_REF] Aaron | Local convex hull support and boundary estimation[END_REF]. We are going to give the main steps of the proof (adapted to our case).

We first prove the surjectivity. For any x * ∈ ∂S, we introduce O * = x * -αη x * and x = x * -2ε n η x * . From the inside and outside α-rolling conditions it follows that S has reach α > 0, and so π ∂S ([x, x * ]) = x * , where we used that 2ε n < α.

To prove that x ∈ C α (X n ) we proceed by contradiction. If x / ∈ C α (X n ), then there exists an O with ||O -x|| ≤ α and B(O, α ) ⊂ C α (X n ) c . Let u = (O -x)/||O -x||, y = [O * , O] ∩ ∂B(O * , α) and y * = [O * , O] ∩ ∂B(O, α ), and therefore ||y -y * || ≤ ε n which implies α + α -||O -O * || ≤ ε n . (25) 
But now

α + α -||O -O * || = α + α + ||(α -2ε n )η x * + u||O -x|||| = α + α -||O -x|| 2 + (α -2ε n ) 2 + 2||O -x||(α -2ε n ) u, η x * = α + α -(||O -x|| + α -2ε n ) 2 -2||O -x||(α -2ε n )(1 -u, η x * ) = α + α -(||O -x|| + α -2ε n ) 1 - 2||O -x||(α -2ε n )(1 -u, η x * ) (||O -x|| + α -2ε n ) 2 ≥ α + α -(||O -x|| + α -2ε n ) 1 - ||O -x||(α -2ε n )(1 -u, η x * ) (||O -x|| + α -2ε n ) 2 ≥ 2ε n + α -||O -x|| + ||O -x||(α -2ε n )(1 -u, η x * ) (||O -x|| + α -2ε n ) ≥ 2ε n ,
where the last inequality follows from ||O -x|| ≤ α and 2ε n < α. This contradicts Equation [START_REF] Federer | Curvature measures[END_REF]. Thus x ∈ C α (X n ). From the outside and inside α rolling condition (which implies α-convexity, see [START_REF] Cuevas | On statistical properties of sets fulfilling rolling-type conditions[END_REF]) it follows that,

C α (X n ) ⊂ C α (X n ) ⊂ C α (S) = S. Then, if x * ∈ ∂S then x * ∈ ∂C α (X n ) or x * ∈ C α (X n ) c
. In both cases there exists a z ∈ (x, x * ) and z ∈ ∂C α (X n ), such that π ∂S (z) = x * . We now prove the injectivity. Suppose by contradiction that there are

x 1 , x 2 ∈ ∂C α (X n ) such that π ∂S (x 1 ) = π ∂ S (x 2 ) = y. Write i = d(x i , ∂S), for i = 1, 2. Because C α (X n ) ⊂ S, we have x i + i η y = y and thus x 1 = x 2 + ( 2 -
with Equation ( 21), we know that there exists an

O i such that B(O i , α ) ⊂ C α (X n ) c , ||x 2 -O i || = α and u, η y ≥ 1 -2(α + α )/(αα )ε n with u = (O i -x 2 )/α . Then ||x 1 -O i || 2 = ( 2 -1 ) 2 + α 2 -2α ( 2 -1 ) u, η y ≤ ( 2 -1 ) 2 + α 2 -2α ( 2 -1 ) + 4(α + α ) α ( 2 -1 )ε n ≤ α 2 -( 2 -1 ) 2α - 4(α + α ) α ε n -( 2 -1 ) ≤ α 2 -( 2 -1 ) 2α - 4(α + α ) α + 1 ε n .
The condition ε n ≤ αα 4(α+α ) guarantees 2α -(4(α + α )/α + 1)ε n > 0 thus, if 2 > 1 , then x 1 ∈ B(O i , α ), which is impossible (recall that B(O i , α ) ⊂ C c α and that x 1 ∈ C α (X n )). Thus, by contradiction, 1 = 2 and x 1 = x 2 , which concludes the proof of injectivity. Lastly, we prove 3. Since reach(∂S) ≥ α and d H (∂C α (X n ), ∂S) ≤ ε n < α, π ∂S , restricted to ∂C α (X n ), is continuous (see [START_REF] Federer | Curvature measures[END_REF]). The continuity of π -1 ∂S : ∂S → ∂C α (X n ) follows from the same ideas used to prove the injectivity of π ∂S : we provide a sketch of the proof. It follows from reach(∂S) ≥ α that π -1 ∂S (x) = x -(x)η x with (x) ≥ 0. Also, x → η x is a continuous function (see Theorem 1 in [START_REF] Walther | On a generalization of Blaschke's rolling theorem and the smoothing of surfaces[END_REF]). It remains to be proved that is a continuous function. If this is not the case, we can find sequences (y n ) ⊂ ∂S and (y n ) ⊂ ∂S, both converging to some y ∈ ∂S), such that (y n ) → 1 and (y n ) → 2 . We can conclude exactly as in the proof of injectivity that we can take x 1,n = y n -(y n )η yn and x 2,n = y n -(y n )η y n making n → +∞. We thus have ∂S ≈ ∂C α (X n ), which proves assertion 3, and thus concludes the proof of the lemma. Lemma 8.8. Suppose that M is a C 2 , bounded (d -1)-dimensional manifold with positive reach α. Let π M denote the projection onto M and M be a C 2 , (d -1)-dimensional manifold such that 1. π M is one to one from M to M , 2. for all x ∈ M we have ||x -π M (x)|| ≤ ε 1 and ηx , η π M (x) ≥ 1 -ε 2 .

Then, if ε 1 (d -1)α ≤ 1 and ε 2 ≤ 1/8, we have x i e i + f (x 1 , . . . , x d-1 )e d where x = d-1 1

(1 -3ε 1 α -32ε 2 ) d-1 2 ≤ | M | d-1 |M | d-1 ≤ (1 + 3ε 1 α + 32ε 2 ) d-1 2 . ( 26 
x i e i belongs to a neighborhood of p and ∇ f (p) = 0, see for instance Proposition 3, point 1, in [START_REF] Aaron | On boundary detection[END_REF]. The 

||E|| op ≤ 2ε 1 α + ε 2 1 α 2 + √ 2ε 2 (1 + ε 1 (d -1)α) 1 - √ 2ε 2 2 
, thus we finally obtain the inequality

(1 -3ε 1 α -32ε 2 ) d-1 ≤ det J π -1 M (p) J π -1 M (p) ≤ (1 + 3ε 1 α + 32ε 2 ) d-1 ,
which concludes the proof. Let ε n = d H (∂C α (X n ), ∂S) and S i = π ∂S (C i (X n )) where the C i (X n ) are the sets introduced in Lemma 8.7, we have that, for all i: d H (S i , C i (X n )) ≤ ε n . Due to Lemma 8.7 we also have

1. |∂S| d-1 = i |S i | d-1 and |∂C α (X n )| d-1 = i |C i (X n )| d-1 .
2. for every i and all x ∈ C i (X n ), ηx , η π ∂S (x) ≥ 1 -2(α+α ) αα ε n . Thus, by Lemma 8.8 we also have, for all i:

1 -3αε n - 64(α + α ) αα ε n d-1 2 ≤ |C i (X n )| d-1 |S i | d-1 ≤ 1 + 3αε n + 64(α + α ) αα ε n d-1 2 
.

Introduce then A = 3α + 64(α+α ) αα , summing all the terms in the inequalities

(1 -Aε n ) d-1 2 |S i | d-1 ≤ |C i (X n )| d-1 ≤ (1 + Aε n ) d-1 2 |S i | d-1 , gives (1 -Aε n ) d-1 2 |∂S| d-1 ≤ |∂C α (X n )| d-1 ≤ (1 + Aε n ) d-1 2 |∂S| d-1 .
which concludes the proof.

Proof of Corollary 4

We only need to check that the conditions of Theorem 4.1 are fulfilled, with probability one, for n large enough. In [START_REF] Cuevas | On boundary estimation[END_REF] it is proved that d H (X n , S) ≤ O((ln n/n) 1/d e.a.s. so, with probability one for n large enough it is upper bounded by 1 3 αα α+α . In [START_REF] Rodríguez-Casal | Set estimation under convexity type assumptions[END_REF] it is proven that, with probability one for n large enough, d H (∂C α (X n ), ∂S) ≤ ε n ≤ c(ln n/n) 2/(d+1) for some given explicit constant c. Since C α (X n ) c is a finite union of balls and affine half-spaces, that is,

C α (X n ) c = N1 i=1 E i with E i = B(O i , r i ) or E i = {z ∈ R d , u j , z > a i }, it follows that ∂C α (X n ) = i ∂E i j =i E j c .
Now define the F j as the connected components of the sets ∂E i ( j =i E j ) c . Then the F j are closed manifolds of dimension d j ≤ (d -1), and are compact since F j ⊂ C α (X n ), which is compact. Lastly, because ∂C α (X n ) is a (d -1)-dimensional manifold, we must have ∂C α (X n ) = ∪ j,dj =d-1 F j (that is, the lower dimensional F k are included in ∪ j,dj =d-1 F j ). This concludes the proof of Corollary 4.
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 2 Figure 2: The line r θ,y = y + Rθ is shown, where y ∈ θ ⊥ and θ ∈ (S + ) d-1 .
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  Surface area estimation based on the Devroye-Wise estimator 3.1 A conjecture on the Devroye-Wise estimator Since in general the set S is unknown, we first propose the natural plug-in idea of computing |∂ Ŝ| d-1

K

  i=1 H i with H i = {x ∈ R d , x -y i , u i ≤ 0}for some {y 1 , . . . , y K } ⊂ R d and {u 1 , . . . , u K } ⊂ S d-1 .
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 7 Figure 7: Points in R 2
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 81 Figure 8: Points in R 2 , The associated Delaunay complex and an half space H c 1
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 9110 Figure 9: The convex hull of the points (blue) and a Ball B + 1
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 11 Figure 11: The convex hull of the points, all the B + i and the boundary faces (green)

Figure 12 :

 12 Figure 12: The convex hull of the points, all the B + i , the boundary faces (green) and two B -. B - 1 correspond to case (a) and B - 2 corresponds to case (b).
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 1 Proofs of Theorems 3.2 and 3.3 Sketch of the proofs of Theorems 3.2 and 3.3

Figure 13 :

 13 Figure 13: We show in each pannel 10 replications of (11) (black) and (12) (red), for different values of d and r. Varying n ∈ {50, 100, 200, 500, 1000, 2000, 4000}.

  a close set. Thus we have B(x, r)\{x}⊂ C α (X n ) c . Let us introduce x * = π ∂S (x), then ||x-x * || ≤ ε n . Let us denote η * = η x * . By definition of x * , x = x * -||x-x * ||η * . Let us introduce O = x * -αη * . From the inner rolling ball property, B(O, α) ⊂ S. Let us define y = x -min(r, ε n )η * . From y ∈ C α (X n ) c it follows that there exists O y such that ||O y -y|| < α and B(O y , α )∩X n = ∅. From d H (X n , S) < α we have ||O y -O|| > α, and thus [O, O y ] ∩ ∂B(O, α) = ∅. Let us define z = [O, O y ] ∩ ∂B(O, α), then z ∈ S and B(z, (α + α -||O y -O||)) ∩ X n = ∅. We will prove that α + α -||O y -O|| ≥ d H (X n , S), which is a contradiction. Because x ∈ C α (X n ) we have ||O y -x|| ≥ α . Let us write O y = y +aη * +bw with ||w|| = 1 and w ∈ (η * ) ⊥ , by ||O y -x|| ≥ α and ||O y -y|| < α it quickly comes that a 2 + b 2 ≤ (α ) 2 and a ≤ min(r,εn) 2 . Now

)

  Proof. Let p ∈ M and denote by (e 1 , . . . , e d-1 ) an orthonormal basis of T p M and complete it with e d a unit vector of N p M . A neighborhod of p in M can be parametrized by ϕ(x) = x + f (x)e d = d-1 1

1 M(p) J π - 1 M 1 . 1 M(p) J π - 1 M 1 M

 111111 Consider now the surface element (of M ) ds(p) = dx 1 . . . dx d-1 . Its image by π -1 M on the surface element (of M ) is given bydŝ(p) = det(J π -(p))dx 1 . . . dx d-The rest of the the proof consist in giving bounds for det(J π -(p)). Wehave that π -1 M (ϕ(x)) = x+ (x)n(x) where n(x) = (-∂f /∂x 1 , . . . , -∂f /∂x d-1 , 1) ∈ N x M , which gives that J π -(p) = I d-1 -(p)H f (p) ∇ (p) .

8. 2 . 1 1 Theorem 4 . 1

 21141 Proof of Theorem 4.follows now from the previous lemmas.

  

  t n and y are in ∂S, which is a (d-1)-dimensional C 1 manifold (see Theorem 1 in[START_REF] Walther | On a generalization of Blaschke's rolling theorem and the smoothing of surfaces[END_REF]), and t n → y , we have lim n→+∞ (t n -y )/||t n -y || ∈ T y ∂S, (see Definition 4.3 in[START_REF] Federer | Curvature measures[END_REF]

  reach condition gives that ||H f (p)|| op ≤ α (see Proposition 6.1 in [30]) and (p) = ||π -1 M (p) -p|| ≤ ε 1 so that we just have to bound ||∇ (p)||. Note that, for j = 1, . . . , d -1, we have t j = e j + ∂ ∂x j (p)e d -(p) Note that η p = ±e d and introduce ηπ -1 M (p) . Since t 1 , . . . , t d-1 , ηπ -1 M (p) is an orthogonal basis of R d , we have that e d = Thus, by condition 2, we have | t j , e d | = | t j , η p | ≤ √ 2ε 2 ||t j ||, which im-

		d-1 1 e d-1 ∂ 2 f ∂x i ∂x j i=1 e d , t i ||t i || t i ||t i || + e d , ηπ -1 M (p) ηπ -1 M (p) ,
	which implies				
		1 =	d-1 i=1	η p ,	t i ||t i ||	2 + η p , ηπ -1 M (p)	2 .
	plies					
	∂ ∂x j ∂x From this, we get (p) ≤ √ 2ε 2 ||t j || ≤ √ ∂ 2ε 2 1 +
		∂ ∂x j	(p) ≤	√	2ε 2 (1 + ε 1 (d -1)α) 1 -√ 2ε 2	.
	So, J π -1 M	(p) J π -1				

i ∈ T π -1 M (p) M . j (p) + ε 1 (d -1)α . M (p) = I d-1 + E with E a symmetric matrix with

)η y and |

-1 | ≤ ε n (because for i ∈ {1, 2}, i ≥ 0 and i ≤ ε n due to d H (∂S, ∂C α (X n )) ≤ ε n ). Suppose that 2 ≥ 1 .From the first step together
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Which, as announced lead to a contradiction. From [START_REF] Baíllo | A survey and a new selection criterion for statistical home range estimation[END_REF] it follows that, for some N ,

Here, the B i are balls of radius r i larger than α or half-spaces (by abuse of notation, if B i is an half-space we will put r i = +∞).

Our first step consists in proving that:

and by continuity, there exists a t > 0 so small that

Second, consider the case x ∈ B i with B i = {z, z -y i , u i > 0} where u i is a unit vector. We can conclude, similarly, on introducing Ω i = x + α u i , that B(Ω i , α ) ∩ X n = ∅ and B(Ω i -tu i , α ) ⊂ C α (X n ) c (for some positive but small enough t) and so x ∈ Cα (X n ) c . If x ∈ ∂C α (X n ) ∩ X n , then by the preliminary result, there exists a sequence (x k ) in ∂C α (X n ) \ {x} with x k → x. Because X n is finite, it follows that for k large enough,

Because the number of possible S i is finite, we can extract from (x k ) a sequence (x k ) such that there exists an S i = ∂B i such that for all k, x k ∈ S i making k → +∞, and then we have x ∈ S i .

Our second step consists in proving that if there exists an x ∈ ∂B i \ ( j B j ), then

where ηx,i = Oi-x α and x * = π ∂S (x). Observe that from the first step we know that B i = B(O i , α ). Write η x * for the outward (from S) unit normal vector of ∂S at x * and O

Introduce [START_REF] Cholaquidis | Home range estimation under a restricted sampling scheme[END_REF]. Then, from the second inclusion in [START_REF] Cuevas | Polynomial volume estimation and its applications[END_REF], we get y ∈ S, and from the first inclusion in [START_REF] Cuevas | Polynomial volume estimation and its applications[END_REF]