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Estimation of surface area

Catherine Aaron, Alejandro Cholaquidis and Ricardo Fraiman

October 28, 2021

Abstract

We study the problem of estimating the surface area of the boundary
∂S of a sufficiently smooth set S ⊂ Rd when the available information is
only a finite subset Xn ⊂ S. We propose two estimators: the first makes
use of the Devroye–Wise support estimator, and the second makes use of
the α-convex hull of Xn, denoted by Cα(Xn). Our results depend on the
Hausdorff distance between S and Xn for the Devroye–Wise estimator, and
the Hausdorff distance between ∂S and ∂Cα(Xn) for the second estimator.

These results allow obtaining the rates of convergence of both estima-
tors when Xn is an iid sample, and also when it is the discretization of
the trajectory of a reflected Brownian motion with drift.

The first estimator is based on Crofton’s formula, which, roughly
speaking, states that the d−1 dimensional surface area of a smooth enough
set is the mean number of intersections of randomly chosen lines. We pro-
pose an estimator of the number of intersections of such lines with support
based on two Devroye–Wise support estimators.

The second estimator is the (d−1)-dimensional surface area of Cα(Xn),
denoted by |Cα(Xn)|d−1, which is proven to converge to the (d − 1)-
dimensional surface area of ∂S. Moreover, |Cα(Xn)|d−1 can be computed
using Crofton’s formula.

Key words : Crofton’s formula; Surface estimation; α-convex
hull; Devroye–Wise estimato

1 Introduction

When S ⊂ Rd is a compact set, we aim to estimate its surface area, i.e. the
(d− 1)-Hausdorff measure of its boundary ∂S. The estimation of surface areas
has been extensively considered in stereology (see, for instance, [7, 8] and [26]).
It has also been studied as a further step in the theory of nonparametric set
estimation (see [30]), and has practical applications in medical imaging (see
[18]). In addition, the estimation of a surface area is widely used in magnetic
resonance imagining techniques.

The three- and two-dimensional cases are addressed in [9], which proposed
parametric estimators when the available data are the distances to S, from a
sample outside the set, but at a distance smaller than a given R > 0.

When, as in image analysis, one can observe n data points from two dis-
tinguishable sets of random data-points (one from inside S and the other from
outside S), the estimation of the surface area of the boundary has been treated,
for any d ≥ 2, in [18, 20, 27, 30] and [38]. The proposals given in [18, 30]
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and [20] aim to estimate the Minkowski content of ∂S. In [20] a very general
convergence result is obtained, and in [18] a convergence rate of order n−1/2d is
obtained under some mild hypotheses, and later on, in [30], a convergence rate of
order n−1/(d+1) is achieved, under stronger assumptions. In [27] a very nice fully
data-driven method, based on the Delaunay triangulation, is proposed under an
homogeneous point process sampling scheme. The asymptotic rate of conver-
gence of the variance is given, but there is no global convergence rate because
no result is obtained for the bias. Lastly, in [38], a parameter-free procedure,
based on the Voronoi triangulation, is proposed, and a rate of convergence of
order λ−1/d is obtained, under a Poisson Point Process (PPP) sampling scheme
(where λ is the intensity of the PPP).

We propose two surface area estimators, in any dimension, when the available
data is only a finite set Xn ⊂ S. In this setting the two dimensional case
has been mostly studied. Assuming that Xn is an iid sample, the convex case
was first addressed in [10] (using Crofton’s formula). Later on, under the α-
convexity assumption, [4] obtained the convergence of the α-shape’s perimeter
to the perimeter of the support and the associated convergence rates are derived
. When the data are given by a trajectory from a reflected Brownian motion,
(with or without drift), a consistency result is obtained in Theorem 4 in [12].

The 2-dimensional case has many important applications. This is also true of
the three dimensional case. For instance, surface area is an important biological
parameter in organs such as the lungs.

The higher dimensional study is also important, at least from a theoreti-
cal point of view, since in [34], it is shown that the boundary surface plays an
important role as a parameter of a probability distribution, which allows ap-
plying plug-in methods. Up to our knowledge, the only paper that tackles the
surface area estimation problem in any dimension, when only “inside” data are
available, is [21], and no convergence rates are given.

Crofton’s formula, proved by Crofton in 1868 for convex subsets of R2, and
extended to arbitrary dimensions (see [37]), says that the surface area of ∂S
equals the integral of the number of intersections with ∂S of lines in Rd (see
Equations (3) and (4) for explicit versions of Crofton’s formula for d = 2 and
d ≥ 2, respectively).

As previously announced, we will propose two different estimators for the
surface area. One of them uses the Devroye–Wise support estimator

Ŝεn(Xn) = ∪ni=1B(Xi, εn) (1)

see [22], and the other one uses the α-convex hull support estimator

Cα(Xn) =
⋂

{x:d(x,Xn)≥α}

B̊(x, α)c (2)

see [35], where n is the cardinality of Xn, εn → 0 as n → ∞ and B̊(x, α)c

denotes the complement of the open ball in Rd centred at x, of radius α > 0.
The surface area estimator we propose based on Devroye–Wise support es-

timator is not just a plug-in method, because in general the number of intersec-
tions of a line with ∂Ŝεn(Xn) may not converge to the number of intersections of
that line with ∂S. We prove that this estimator converges at a rate proportional
to dH(Xn, S)1/2 (where dH denotes the Hausdorff distance). This rate can be
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improved to dH(Xn, S) when adding a reasonable assumption on the shape of
∂S. These rates are known when Xn is an iid sample, see the comments below.

To estimate the surface area when the support estimator is Cα(Xn), we first
extend the result in [19]. More precisely, we prove that, in any dimension, the
surface area of the hull’s boundary, i.e. |∂Cα(Xn)|d−1, converges to |∂S|d−1.
This result is interesting in itself, but, in practice, it is difficult to compute
|∂Cα(Xn)|d−1, especially for dimension d > 2. However, we will see that, by
means of Crofton’s formula, it can be easily estimated, via the Monte Carlo
method.

These results can be applied to many deterministic or random situations, to
obtain explicit convergence rates. We focus on two random situations: the case
Xn = {X1, . . . , Xn} of iid drawn on S (with a density bounded from below by a
positive constant), and the case of random trajectories of reflected diffusions on
S. In particular, we provide convergence rates when the trajectory is the result
of a reflected Brownian motion (see [12, 13]). This last setting has several ap-
plications in ecology, where the trajectory is obtained by recording the location
of an animal (or several animals) living in an area S, which is called its home
range (the territorial range of the animal), and Xt represent the position at
time t transmitted by the instrument (see for instance [6, 12, 13], and references
therein).

The rate of convergence of the surface area estimator, based on Ŝεn(Xn),
when Xn is an iid sample, is of order n−1/2d, which can be improved to n−1/d,
depending on the assumptions on the smoothness of ∂S.

With the estimation of the support that uses the α-convex hull, when Xn is
an iid sample, we obtain a rate of order n−2/(d+1).

The rest of this paper is organized as follows.
In Section 2, we introduce: 1) the notation and some well-known geomet-

ric restrictions. 2) Crofton’s formula, first for dimension two and then for the
general case. 3) The main geometric restrictions required in one of the main the-
orems. Section 3 introduces the surface area estimator based on Devroye–Wise
support estimator. Main results regarding this estimator are stated in subsec-
tion 3.3. The computational aspects of this estimator are studied in subsection
3.4. The approach based on the α-convex hull is introduced in Section 4. A
discussion of the rates of convergence is given in Section 5. An algorithm based
on the Monte Carlo method for the estimator based on the α-hull is introduced
in Section 6. Lastly, Section 7 treates the performance of our estimator in a
simulation study. All proofs are deferred to the Appendix.

2 Background

2.1 Notations

Given a set S ⊂ Rd, we denote by S̊, S and ∂S the interior, closure and
boundary of S, respectively, with respect to the usual topology of Rd. We
also write diam(S) = sup(x,y)∈S×S ||x− y||. The parallel set of S of radius ε is

B(S, ε) = {y ∈ Rd : infx∈S ‖y − x‖ ≤ ε}.
If A ⊂ Rd is a Borel set, then |A|d denotes its d-dimensional Lebesgue

measure. When A ⊂ Rd is a (d− 1)-dimensional manifold, then |A|d−1 denotes
its (d− 1)-Haussdorf measure.
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We denote by B(x, ε) the closed ball in Rd, of radius ε, centred at x, and
ωd = |Bd(x, 1)|d. Given two compact non-empty sets A,C ⊂ Rd, the Hausdorff
distance or Hausdorff–Pompei distance between A and C is defined by

dH(A,C) = inf{ε > 0 : such that A ⊂ B(C, ε) and C ⊂ B(A, ε)}.

The (d − 1)-dimensional sphere in Rd is denoted by Sd−1, while the half-
sphere in Rd is denoted by (S+)d−1, i.e. (S+)d−1 = (Rd−1 ×R+) ∩ Sd−1. Given
M a sufficiently smooth (d − 1)-manifold and x ∈ M , the affine tangent space
of M at x is denoted by TxM . When S ⊂ Rd is a regular (i.e. compact and

satisfying S = S̊), and has a C1 regular boundary ∂S, then for any x ∈ ∂S we
can define ηx the outward normal unit vector at x, that is, the unit vector of
(Tx∂S)⊥ such that, for t > 0 small enough, x+ tηx ∈ Sc.

Given a vector θ ∈ (S+)d−1 and a point y, rθ,y denotes the line {y+ λθ, λ ∈
R} = y+Rθ. If y1 and y2 are two points in rθ,y, then yi = y+λiθ; with a slight
abuse of notation, we write y1 < y2 when λ1 < λ2.

2.2 Crofton’s formula

In 1868, Crofton proved the following result (see [16]): given a convex set in the
plane, whose boundary is denoted by γ, then its length |γ|1 can be computed
by

|γ|1 =
1

2

∫ π

θ=0

∫ +∞

p=−∞
nγ(θ, p)dpdθ, (3)

nγ(θ, p) being the number of intersections of γ with the line rθ∗,θp, where θ∗ ∈
(S+)1 is orthogonal to θ, and dpdθ is the 2-dimensional Lebesgue measure, see
Figure 1. This result has been generalized to compact (not necessarily convex)
sets in Rd for any d > 2, and also to Lie groups, see [37].

Figure 1: The function nγ counts the number of intersections of γ with the line
rθ∗,θp determined by θ and p.

To introduce the general Crofton formula in Rd for a compact (d − 1)-
dimensional manifold M , let us define first the constant

β(d) = Γ(d/2)Γ((d+ 1)/2)−1π−1/2,

where Γ stands for the well known Gamma function. Let θ ∈ (S+)d−1. Then,
θ determines a (d − 1)-dimensional linear space θ⊥ = {v : 〈v, θ〉 = 0}. Given
y ∈ θ⊥, let us write nM (θ, y) = #(rθ,y ∩M), where # is the cardinality of the
set. see Figure 2.

It is proved in [25] (see Theorem 3.2.26) that if M is a (d− 1)-dimensional
rectifiable set, then the integralgeometric measure of M (which will be denoted
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Figure 2: The line rθ,y = y + Rθ is shown, where y ∈ θ⊥ and θ ∈ (S+)d−1.

by Id−1(M), and is defined by the right-hand side of 4) equals its (d − 1)-
dimensional Hausdorff measure, i.e.

|M |d−1 = Id−1(M) =
1

β(d)

∫
θ∈(S+)d−1

∫
y∈θ⊥

nM (θ, y)dµd−1(y)dθ. (4)

The measure dθ is the uniform measure on (S+)d−1 (with total mass 1) and
µd−1 the d− 1 dimensional Lebesgue measure.

2.3 Restrictions on the shape

We will now recall some well-known restrictions that are put on the shape in
set estimation.

Definition 2.1. For α > 0, a set S ⊂ Rd is said to be α-convex if S = Cα(S),
where Cα(S) is the α-convex hull of S, defined in (2), replacing Xn by S.

When S is α-convex, a natural estimator of S from a random sample Xn of
points (drawn from a distribution with support S), is Cα(Xn), see [35].

Definition 2.2. A set S ⊂ Rd is said to satisfy the outside α-rolling condition if
for each boundary point s ∈ ∂S there exists an x ∈ Sc such that B(x, α)∩∂S =
{s}. A compact set S is said to satisfy the inside α-rolling condition if Sc

satisfies the outside α-rolling condition at all boundary points.

Remark 1. Throughout this paper we assume that ∂S is the boundary of a

compact set S ⊂ Rd such that S = S̊. We also assume that S fulfills the outside
and inside α-rolling conditions, and then ∂S is rectifiable (see Theorem 1 in
[39]). From this it follows that Id−1(∂S) = |∂S|d−1 < ∞, which implies (by
(4)) that, except for a set of measure zero with respect to dµd−1(y)dθ, any line
rθ,y meets ∂S a finite number of times: n∂S(θ, y) < ∞. From Theorem 1 in
[39], it also follows that ∂S is a C1 manifold, which allows us for each x ∈ ∂S,
to define its unit outward normal vector ηx.

For the estimator of the surface area based on the Devroye–Wise estimator
we will assume that ∂S satisfies a technical hypothesis, referred to as (C, ε0)-
regularity.
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Definition 2.3. Put Eθ(∂S) = {x ∈ ∂S, 〈ηx, θ〉 = 0}. The image of Eθ(∂S) by
the orthogonal projection onto θ⊥ is denoted by Fθ = πθ⊥(Eθ(∂S)) (which for
non-degenerate cases is a (d−2)-dimensional submanifold of θ⊥). We also write
B(Fθ, ε) for its paralell set of radius ε.

Let us define, for ε > 0,

ϕθ(ε) =
∣∣θ⊥ ∩B(Fθ, ε)

∣∣
d−1.

• We will say that ∂S is (C, ε0)-regular if for all θ and all ε ∈ (0, ε0), ϕ′θ(ε)
exists and ϕ′θ(ε) ≤ C.

• If ∂S is (C, ε0)-regular for some ε0 > 0, we will say that ∂S is C-regular.

Under regularity and geometric conditions on ∂S, the (C, ε0)-regularity is
related to the conjecture proposed in [3]. Once the rolling balls condition is
imposed, we will show through some examples in Figure 3 that the (C, ε0)-
regularity of the boundary is quite mild.

Figure 3: (a) smooth square Figure 4: (b) 2D peanut

Figure 5: (c) 3D peanut Figure 6: (d) an ‘infinite wave’ shape

(a) The first set, presented in Figure 3, is a unit square with ‘round angles’,
for all θ, Fθ = πθ⊥(Eθ(∂S)) = {x1(θ), x2(θ)} with ||x1(θ) − x2(θ)|| ≥ 1.
Thus for ε < 1/2, and for all θ, ϕθ(ε) = 4ε and is thus ∂S is (4, 0.5)-regular
(in particular 4-regular).

(b) The second set, presented in Figure 4, is a 2-dimensional ‘peanut’ made
of 4 circular arcs. For all θ and ε small enough, we have ϕθ(ε) = 2cθε
where cθ is the number of connected components of Fθ, which is less than
6, from which it follows that S has a 12-regular boundary.

6



(c) The third set, presented in Figure 5, is the surface of revolution generated
by (b). Here we have that for all θ, Eθ is a 1-dimensional manifold with
less than 3 connected components. The maximal length of a component
is bounded by L, the length of the maximal perimeter (shown in blue in
the figure). The reach of each Eθ is (uniformly in θ) lower bounded by
α > 0. All these assertions allow claiming that ∂S is 6L-regular.

(d) The rolling ball condition is not sufficient to guarantee the (C, ε0)-regularity
of the boundary: this fails if, for instance, we replace in the smooth square
shown in (a) a flat piece of the boundary by the graph of the function
x5 sin(1/x) as in Figure 6. We have ϕ′0(ε) → +∞ when ε → 0 which
implies that ∂S is not C-regular.

For the Devroye–Wise type estimator we will also show that the convergence
rate can be quadratically improved if we additionally assume that the number
of intersections between any line and ∂S is bounded from above (this excludes
the case of a linear part in ∂S such as in Figure 3).

Definition 2.4. Given S ⊂ Rd, we say that ∂S has a bounded number of linear
intersections if there exists an NS such that for all θ ∈ (S+)d−1 and y ∈ θ⊥,
n∂S(θ, y) ≤ NS .

3 Surface area estimation based on the Devroye–
Wise estimator

3.1 A conjecture on the Devroye–Wise estimator

Since in general the set S is unknown, we first propose the natural plug-in idea
of computing |∂Ŝ|d−1 where Ŝ is an estimator of S. There are different kinds
of set estimators, depending on the geometric restrictions imposed on S and
the structure of the data (see [12, 22] and references therein). One of the most
studied in the literature, which is also universally consistent, is the Devroye–
Wise estimator (see [22]), introduced in (1). This all-purpose estimator has the
advantage that it is quite easy to compute the intersection of a line with its
boundary, as follows: Given a line rθ,y, we can compute Yi = ∂B(Xi, εn)∩ rθ,y,
and then Zi = {y ∈ Yi, d(y,Xn) ≥ εn}, so we have that, with probability one,
∪iZi = rθ,y ∩ ∂Ŝεn(Xn). Indeed, suppose that there exists a z ∈ ∪iZi and

z ∈ ˚̂
Sεn . Then we have d(z,Xn) = εn and z ∈ H{Xi, d(Xi, z) = εn} (where

H(E) is the convex hull of E). Thus, there are at least d + 1 observations on
the same hypersphere of given radius εn, but this event has probability 0, see
[29].

We conjecture that the plug-in estimator |∂Ŝεn(Xn)|d−1 satisfies the follow-
ing:

1. If εn < dH(Xn, S), then ∂Ŝεn(Xn) does not converge to ∂S and |∂Ŝεn(Xn)|d−1
does not converge to |∂S|d−1.

2. If εn = dH(Xn, S), then ∂Ŝεn(Xn) converges to ∂S with the best possible
rate but |∂Ŝεn(Xn)|d−1 does not converge to |∂S|d−1 but greatly overesti-
mates it.
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3. If εn � dH(Xn, S) and εn → 0, then ∂Ŝεn(Xn) converges to ∂S and
|∂Ŝεn(Xn)|d−1 converges to |∂S|d−1. Concerning the rate, if S fulfills the
outside and inside rolling ball conditions, then for n large enough we have
that B(S, εn−dH(Xn, S)) ⊂ Ŝεn(Xn) ⊂ B(S, εn), which in turn gives that
||∂Ŝεn(Xn)|d−1 − |∂S|d−1| ≥ O(εn) � dH(Xn, S) and that |∂Ŝεn(Xn)|d−1
overestimates the surface area.

3.2 A surface estimator based on the Devroye–Wise esti-
mator

The aim of this section is to propose an estimator for the surface area based
on the Devroye–Wise support estimator and Crofton’s formula. It can attain
a convergence rate of order dH(X, S). The whole procedure is defined for any
set X, not necessarily finite, because we will apply our estimator to the case
in which X is the trajectory of a Brownian motion. If X is not finite, then for
a given ε > 0, we write Ŝε(X) = B(X, ε). The procedure replaces n∂S(θ, y)
by n̂ε,X(θ, y) introduced in Definition 3.1, and then integrates n̂ε,X(θ, y) as in
Crofton’s formula, see (5). We will prove that (see Remark 2), by the (C, ε0)-
regularity of the boundary, with probability one rθ,y is not included in any
(d − 1)-dimensional affine tangent space (tangent to ∂S). Then n∂S(θ, y) =
2kS(θ, y) where kS(θ, y) is the number of connected components of rθ,y ∩ S.

Definition 3.1. Let ε be a positive real number, and X ⊂ S a set (not necessarily
finite). Consider a line rθ,y. If Ŝε(X) ∩ rθ,y = ∅, define n̂ε,X(θ, y) = 0. If not,
then:

• denote by I1, . . . , Im the connected components of Ŝε(X)∩rθ,y. Order this
sequence in such a way that Ii = (ai, bi), with a1 < b1 < a2 < b2 < · · · <
am < bm.

• If for some consecutive intervals Ii, Ii+1, . . . , Ii+`, for all ai < t < bi+` and
t ∈ rθ,y, d(t,X) ≤ 4ε, define Ai = (ai, bi+`).

• Let j be the number of disjoint open intervals A1, . . . , Aj that this process
ended with. Then define n̂ε,X(θ, y) = 2j.

To roughly summarize this, we consider the connected components of Ŝε∩rθ,y
and ‘link or glue’ the ones that are in the same connected component of Ŝ4ε∩rθ,y.
In the sequel, we will refer to this process as the gluing procedure.

To gain some insight into the relation between n̂ε,X(θ, y) and n∂Ŝε(X)(θ, y),

observe that n̂ε,X(θ, y) ≤ n∂Ŝε(X)(θ, y). We also have that n̂ε,X(θ, y) ≤ n∂Ŝ4ε(X)(θ, y).

Indeed, let C1, . . . , CK be the connected components of rθ,y∩ Ŝ4ε and note that:

1. For each j there exists an index i such that Ij ⊂ Ci.

2. If d(Ci,X) > ε for all j, we have that Ij ∩ Ci = ∅.

3. If d(Ci,X) ≤ ε, there exists an Ij ⊂ Ci and all the Ij such that Ij ⊂ Ci
are glued by the proposed procedure. Thus there exists a unique j′ such
that Aj′ ⊂ Cj .
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Our first proposed estimator is

Îd−1(X, ε) =
1

β(d)

∫
θ∈(S+)d−1

∫
y∈θ⊥

n̂ε,X(θ, y)dµd−1(y)dθ. (5)

Under the assumption that ∂S has a bounded number NS of linear intersec-
tions (see Definition 2.4), we will consider, for a given N0 ≥ NS ,

ÎN0

d−1(X, ε) =
1

β(d)

∫
θ∈(S+)d−1

∫
y∈θ⊥

min(n̂ε,X(θ, y), N0)dµd−1(y)dθ.

3.3 Main results on the Devroye–Wise based estimator.

Theorem 3.2. Let S ⊂ Rd be a compact set fulfilling the outside and inside
α-rolling conditions. Assume also that S is (C, ε0)-regular for some positive
constants C and ε0. Let Xn = {X1, . . . , Xn} ⊂ S. Let εn → 0 be such that
dH(Xn, S) ≤ εn. Then

Îd−1(Xn, εn) = |∂S|d−1 + O(
√
εn). (6)

Moreover, for n large enough,

|O(
√
εn)| ≤ 4Cdiam(S)

3β(d)
√
α

√
εn.

From Theorem 3.2 and Theorem 4 in [17], we can obtain the rate of conver-
gence for the iid case:

Corollary 1. Let S ⊂ Rd be a compact set fulfilling the inside and outside
α-rolling conditions. Assume also that S is (C, ε0)-regular for some positive
constants C and ε0. Let Xn = {X1, . . . , Xn} be the set of observations of an iid
sample of X with distribution PX supported on S. Assume that PX has density
f (w.r.t. µd) bounded from below by some c > 0. Let εn = C ′(ln(n)/n)1/d and
C ′ > (6/(cωd))

1/d. Then with probability one, for n large enough,

Îd−1(Xn, εn) = |∂S|d−1 + O
(( ln(n)

n

) 1
2d
)

Note that, as mentioned in Section 5.2 in [17], if εn = 2 maxi minj 6=i ||Xi −
Xj ||, then with probability one, for n large enough, εn ≤ 2dH(Xn, S), which
together with Corollary 1, entails that, with the aforementioned choice for εn,
our proposal is fully data driven, for the iid case.

If the number of linear intersections of ∂S is assumed to be bounded by a
constant NS , the use of min(n̂εn , N0) (for any N0 ≥ NS) allows us to obtain
better convergence rates.

Theorem 3.3. Let S ⊂ Rd be a compact set fulfilling the outside and inside
α-rolling conditions. Assume also that S is (C, ε0)-regular for some positive
constants C and ε0, and that the number of linear intersections of ∂S is bounded
by NS. Let Xn = {X1, . . . , Xn} ⊂ S. Let εn → 0 be such that dH(Xn, S) ≤ εn
and N0 ≥ NS. Then

ÎN0

d−1(Xn, εn) = |∂S|d−1 + O(εn).

Moreover, for n large enough, |O(εn)| ≤ 5
β(d)CN0εn.
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As before, we give the convergence rate associated to the iid setting and the
reflected Brownian motion hypothesis as two corollaries of Theorem 3.3.

Corollary 2. Let S ⊂ Rd be a compact set fulfilling the inside and outside
α-rolling conditions. Assume also that S is (C, ε0)-regular for some positive
constants C and ε0 and that ∂S has a bounded number of linear intersections.
Let Xn = {X1, . . . , Xn} be the set of observations of an iid sample with distri-
bution PX , supported on S. Assume that PX has density f (w.r.t. µd) bounded
from below by some c > 0. Let εn = C ′(ln(n)/n)1/d and C ′ > (6/(cωd))

1/d.
Then with probability one, for n large enough,

ÎN0

d−1(Xn, εn) = |∂S|d−1 + O
(( ln(n)

n

) 1
d
)
.

Here again the choice of εn = 2 maxi minj ||Xi − Xj || is suitable, but now,
the price to pay is the selection of the parameter N0.

In a more general setting, the conclusion of Theorem 3.3 holds when the set
of points Xn is replaced by the trajectory XT of any stochastic process {Xt}t>0

included in S, observed in [0, T ], such that dH(XT , S)→ 0 as T →∞. Observe
that the estimator ÎN0

d−1(X, ε) is well defined even when XT is not a finite set,
see Definition 3.1. We will assume that S is bounded with connected interior
and ∂S is C2. This is the case (for example) of some reflected diffusions and in
particular the reflected Brownian motion (RBM). This has been recently proven
in Corollary 1 in [12], for RBM without drift (see also [13] and [14] for the RBM
with drift). The definition of an RBM with drift is as follows: Given a d-
dimensional Brownian motion {Bt}t≥0 departing from B0 = 0 and defined on a
filtered probability space (Ω,F, {Ft}t≥0,Px), an RBM with drift is the (unique)
solution to the following stochastic differential equation on S:

Xt = X0 +Bt −
1

2

∫ t

0

∇f (Xs)ds−
∫ t

0

ηXsξ(ds), where Xt ∈ D, ∀t ≥ 0,

where the drift, ∇f (x), is given by the gradient of a function f , and is assumed
to be Lipschitz, {ξt}t≥0 is the corresponding local time, i.e. a one-dimensional

continuous non-decreasing process with ξ0 = 0 that satisfies ξt =
∫ t
0
I{Xs∈∂S}dξs.

Since the drift is given by the gradient of a function and S is compact, we have
that its stationary distribution has a density bounded from below by a constant.

Corollary 3. Let S ⊂ Rd be a non-empty compact set with connected interior

such that S = S̊, and suppose that S fulfills the outside and inside α-rolling
conditions. Assume also that S is (C, ε0)-regular for some positive constants C
and ε0 and that the number of linear intersections of ∂S is bounded by NS. Let
XT ⊂ S be as before. Then, with probability one, for T large enough,

ÎN0

d−1(XT , εT ) = |∂S|d−1 + o
(( ln(T )2

T

) 1
d
)
,

where εT = o((ln(T )2/T )1/d).

3.4 The algorithm

We will now describe an algorithm to compute n̂ε,Xn(θ, y) for a given (θ, y),
when the input is a finite set of n elements and ε > 0. For a reflected diffusion,
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we take Xn ⊂ XT to be a dense enough subset of n points. Observe that this is
not restrictive since XT is stored as a finite set of points in a computer.

1. For each i, compute di := d(rθ,y, Xi) =
√
||Xi − y||2 − 〈Xi − y, θ〉2.

2. Compute the connected components Ii of rθ,y ∩ Ŝε(Xn) according to the
following steps: Initialize the list of the extremes of these intervals by
listz= ∅ and listl= ∅. Then, for i = 1 to n:

• If di = ε, then Ni = 1, `1 = 〈Xi − y, θ〉 and z1 = B(Xi, ε) ∩ rθ,y =
y + `1θ

• If di < ε, then Ni = 1 and compute `1 = 〈Xi − y, θ〉 −
√
ε2 − d2i and

`2 = 〈Xi − y, θ〉 +
√
ε2 − d2i . Then z1 = y + `1θ and z2 = y + `2θ

such that {z1, z2} = B(Yi, εn) ∩ rθ,y.

• For j = 1 toNi: if d(zj ,Xn) ≥ ε, do listz=listz∪{zj} and listl=listl∪{`j}.

From the comments at the beginning of subsection 3.1, we know that,
with probability one, listz equals rθ,y ∩ Ŝε.

• Sort listl. With probability one, listl has an even number, 2m, of
elements (see the comments at the beginning of subsection 3.2), and
define ai and bi such that `2(i−1)+1 = ai, `2i = bi (which correspond
to the ai and bi in Definition 3.1 i.e. (ai, bi) are the connected com-
ponents of rθ,y ∩ Ŝε(X)).

3 Obtain the a′i and b′i such that I ′i = (a′i, b
′
i) are the connected components

of Ŝ4ε(Xn) ∩ rθ,y by using the same procedure.

4. Lastly, compute n̂ε,X(θ, y), as follows:
initialization n̂ε,Xn(θ, y) = m.
For i = 1 to m− 1:
If there exists k such that (bi, ai+1) ⊂ I ′k, then: n̂ε,Xn(θ, y) = n̂ε,Xn(θ, y)−1

4 The approach based on the α-convex hull

4.1 The estimator based on the α′-hull assuming the α-
rolling ball condition

In [4] it was proved that, in dimension two, under some regularity assumptions,
the length of the boundary of the α-shape of an iid sample converges to the
length of the boundary of the set. The α-shape has the very good property
that its boundary is very easy to compute, and hence so is its surface measure.
Unfortunately we are not sure that the results can be extended to higher dimen-
sions. Nevertheless, considering the α-convex hull (which is quite close to the
α-shape) allows extending the results on the surface measure to any dimension.
The following deterministic theorem states that, for all 0 < α′ < α, the surface
measure of the boundary of the α′-convex hull Xn ⊂ S converges to |∂S|d−1
with a rate that depends on dH(∂Cα′(Xn), ∂S).

11



Theorem 4.1. Let S ⊂ Rd be a compact set such that ∂S is a (d − 1)-
dimensional C2 manifold with reach α > 0. Let α′ < α be a positive con-
stant and let Xn ⊂ S be a finite set such that dH(∂Cα′(Xn), ∂S) ≤ εn with
εn ≤ min ((αα′)/(16(α+ α′)), 1/((d− 1)α)). Then

1. π∂S : ∂Cα′(Xn) → ∂S (where π∂S(x) denotes the projection onto ∂S) is
one to one, and

2. ||∂S|d−1 − |∂Cα′(Xn)|d−1| ≤
(

3α+ 64α+α
′

αα′

)
εn.

As previously, we can deduce from the deterministic theorem and results in
[4] the convergence rates under the iid assumption.

Corollary 4. Let S ⊂ Rd be a compact set such that ∂S is a (d−1)-dimensional
C2 manifold with reach α > 0. Let Xn = {X1, . . . , Xn} be an iid sample of X
with distribution PX supported on S. Assume that PX has density f (w.r.t. µd)
bounded from below by some c > 0. Suppose α′ < α. Then with probability one,
for n large enough,

||∂S|d−1 − |∂Cα′(Xn)|d−1| = O((ln(n)/n)2/(d+1)).

In this case we do not need the additional hypothesis of (C, ε0)-regularity;
the convergence rate is far better than the one given in Theorem 3.2, where
the price to pay is the computational cost when d increases. With regard to
the parameter selection α′, a fully data driven (but computationally expensive)
method is proposed in [36].

4.2 Computation with the use of Crofton’s formula

Unfortunately, the explicit computation of |∂Cα(Xn)|d−1 is very difficult. Due
to the fact that ∂Cα(Xn) is a rectifiable set (see the comment before Remark
1), we can use Crofton’s formula and the Monte Carlo method to estimate
|∂Cα(Xn)|d−1. This, as we will see, is based on the fact that the computation
of ňα(θ, y) := n∂Cα(Xn)(θ, y) is feasible. It requires first the computation of
the α-convex hull, as well as the convex hull, of Xn. Recall that the convex
hull H(Xn) of Xn is equal to the intersection of a finite number of half-spaces

H(Xn) =
⋂K
i=1Hi with Hi = {x ∈ Rd, 〈x− yi, ui〉 ≤ 0} for some {y1, . . . , yK} ⊂

Rd and {u1, . . . , uK} ⊂ Sd−1.
In [23] it is proved, for dimension 2, but mentioned that the generalization

is not difficult, that Cα(Xn)c is the union of a finite number of balls and the
aforementioned half-spaces. The centres Oi of these balls, and their radii ri, are
obtained by computing the Delaunay complex of the points as follows:

1. Compute all the Delaunay simplices σi = H({Xi1 , . . . , Xid+1
}), i.e. those

such that B̊(Oi, ri) ∩ Xn = ∅ and ∂B(Oi, ri) is the sphere circumscribed
to Xi1 , . . . , Xid+1

.

2. Sort the indices so that ri are decreasing, and define K ′ = #{ri, ri ≥ α′}.

3. Define B+
i = B̊(Oi, ri) for i ∈ {1, . . . ,K ′}. Clearly ri ≥ α′ for all i =

1, . . . ,K ′.
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4. Compute the faces of the boundary of the α′-shape (see [23]), which are
the fi = H({Xi1 , . . . , Xid}) such that there exists a unique j ≥ K ′ + 1
such that fi ⊂ σj . Also compute Ωi (resp. ρi), which is the centre (resp.
radius) of the sphere circumscribed to Xi1 , . . . , Xid in the plane spanned
by Xi1 , . . . , Xid and ρi. Now we have two different cases.

(a) fi is a face of ∂H(Xn), i.e. there exists j′ such that fi ⊂ Hj′ . Then
define wi = uj′ .

(b) fi is not a face of ∂H(Xn), thus there exists j′ ≤ K ′ such that

fi ⊂ σj′ . Then define wi =
Oj−Oj′
||Oj−Oj′ ||

, with j ≥ K + 1 such that

fi ⊂ σj .

Define B−i = B̊(Ωi +
√
α′2 − ρ2iwi, α′). Then

Cα′(Xn)c =

(⋃
i

Hc
i

)
∪

(⋃
i

B−i

)
∪

(⋃
i

B+
i

)
. (7)

To simplify notation, we write Cα(Xn)c =
⋃
iBi. Observe that if the line rθ,y

is chosen at random (w.r.t. dµd−1dθ), with probability one we have rθ,y ∩ ∂Bi
contains less than three points.

Initialize list=∅. Then:
for each i,

• compute rθ,y ∩ ∂Bi.

• For all z ∈ rθ,y ∩ ∂Bi

1. If for all j z /∈ B̊j , then do list=list∪{z}

then ň(θ, y) = #list.

5 Discussion of the rates of convergence

In Corollary 4 we obtained the same convergence rate as the one provided in [4]
for d = 2, conjectured as suboptimal. As mentioned in [4], if the measure of the
symmetric difference between S and an estimator Ŝn is bounded by εn, we can
only expect that plug-in methods allow estimating |∂S|d−1 with a convergence
rate εn. Thus, in the iid setting, the estimator defined by (6) (respectively (7)
to (9)) can be seen as ‘optimal’ relative to the use of the Devroye–Wise support
estimator (respectively the α-convex hull support estimator), since they achieve
the best possible convergence rates for those estimators. This is nevertheless

far from being optimal: the minimax rate is conjectured to be n−
d+3
2d+2 , which

is the minimax rate for the volume estimation problem (see [5]), and in [32] it
is proved that the minimax rate is the same for the volume estimation problem
and the surface area estimation problem (at least in the image setting, which
usually extends to the iid setting). Unfortunately, attaining this optimal rate for
the surface area estimation problem is much more involved, even in the easier
setting with data uniformly drawn in S and Sc with perfect identification: no
estimator attaining this rate has been proposed yet.
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6 Integralgeometric estimations via a Monte Carlo
method and numerical experiments

To estimate the surface area with a Monte Carlo method, we propose the fol-
lowing classical procedure. Generate a random sample θ1, . . . , θk uniformly
distributed on (S+)d−1. For each i = 1, . . . , k, draw a random sample ℵi =
{yi1, . . . , yi`} uniformly distributed on [−L,L]d−1 ⊂ θ⊥i , independent of θ1, . . . , θk,
where L = maxj=1,...,n ||Xj ||. Then, the estimators are given by

ˆ̂
I
(`,k)
d−1 (∂S) =

(2L)d−1

β(d)

1

`k

k∑
i=1

∑̀
j=1

n̂εn,Xn(θi, y
i
j) (8)

ˆ̂
I
(`,k,N0)
d−1 (∂S) =

(2L)d−1

β(d)

1

`k

k∑
i=1

∑̀
j=1

min(n̂εn,Xn(θi, y
i
j), N0) (9)

ˇ̌I
(`,k)
d−1 (∂S) =

(2L)d−1

β(d)

1

`k

k∑
i=1

∑̀
j=1

ňr(θi, y
i
j). (10)

7 Simulation study

The performance of (8) and (10) is shown through a simulation study. We

consider the sets Sd = Bd(O, 1) \ B̊d(O, r) for d = 2, 3, and r = 0.5. On each
set we draw n iid random vectors supported on Sd, whose common distribution
is X = RZ, R being a real valued random variable uniform on [0, r] and Z a
random vector (independent of R), supported on the d− 1 dimensional sphere.
The sample sizes are n = 200, 400, 600, 1000 and n = 2000. For each n, d and
r, the whole procedure is replicated 40 times. For the Monte Carlo method, we
chose k = 1000 and ` = 1. For the case of the α-convex hull estimator given by
(10), we assume that α is known (α = 0.5 for r = 0.5). For the estimator (8),
we choose εn = max min ||Xi −Xj ||. The results are shown in Figures 7 and 8,
where on the left are shown box-plots of

EDWi =

ˆ̂
I
(1,1000)
d−1 (∂S)− |Sd|d−1

|Sd|d−1

for different values of n, and on the right box-plots of

ECHi =
ˇ̌I
(1,1000)
d−1 (∂S)− |Sd|d−1

|Sd|d−1

for the same values of n. We also computed, 104 times, the integral (4) by
means of the Monte Carlo method, assuming that the set is known (and then,
counting without error the number of intersections of the lines with the set).
For each of these 104 replications, we choose k = 1000 and ` = 1. Let us denote
these estimates by Ŝi for i = 1, . . . , 104. We have computed

EMC
i =

Ŝi − |S|d−1
|S|d−1

.
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In each of the figures, the dotted red line shows the median of EMC
i . The

minimum and maximum of EMC
i are shown as dotted yellow lines. In blue

are the first and third quartiles, Q1, and Q3. The dotted black lines show
Q1− 2IQR and Q3 + 2IQR, IQR being the interquartile range.

We then can observe that:

• For d = 2, (10) is almost as good as the integral (4) by means of the
Monte-Carlo method (dotted red line), for all values of n. The estimator
(8) does not attain this performance, even for n = 2000.

• As expected for d = 3, the performance of (10) and (8) becomes worse
mostly because of the the performance of the Monte Carlo method.

Figure 7: For r = 0.5 and d = 2, left: box-plots of ECHi , right: box-plots of
EDWi , for n = 200, 400, 600, 1000 and 2000.

Figure 8: For r = 0.5 and d = 3, left: box-plots of ECHi , right: box-plots of
EDWi , for n = 200, 400, 600, 1000 and 2000.
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8 Appendix

8.1 Proofs of Theorems 3.2 and 3.3

Sketch of the proofs of Theorems 3.2 and 3.3

The idea is to consider separately two subsets of the set of lines that intersect
∂Ŝεn(Xn):

1. If a line rθ,y = y + Rθ is ‘far enough’ (fulfilling condition L(ε) for some
ε > 0, see Definition 8.1) from the tangent spaces, then our algorithm
allows a perfect estimation of n∂S(θ, y), see Lemma 8.5.

2. Considering the set of lines that are not ‘far enough’ from the tangent
spaces (denoted by Aεn(θ)), see Definition 8.1), Corollary 5 states that,
under (C, ε0)-regularity, the integral of n̂εn,Xn(θ, y) on Aεn(θ) is bounded

from above by C ′ε
1/2
n , C ′ being a positive constant. Theorem 3.3 states

that the previous bound can be improved to C ′εn, under (C, ε0)-regularity,
if ∂S has a bounded number of linear intersections.

8.1.1 Condition L(ε)

We now define the two sets of lines to be treated separately: The lines that are
‘far’ from an affine tangent space, and the lines that are ‘close to being tangent’
to ∂S. More precisely, recall that under the rolling ball hypothesis, the unit
outer normal vector ηx at x is well defined (see Remark 1). Now we define

TS = {x+ (ηx)⊥ : x ∈ ∂S},

the collection of all the affine (d− 1)-dimensional tangent spaces.

Definition 8.1. Let ε ≥ 0. A line rθ,y = y + λθ fulfills condition L(ε) if y is at
a distance larger than 4ε from all the affine hyper-planes w+η⊥ ∈ TS satisfying
〈η, θ〉 = 0.

For a given θ, we define

Aε(θ) =
{
y ∈ θ⊥ : ||y|| ≤ diam(S) and rθ,y does not satisfy L(ε)

}
.

8.1.2 Some useful lemmas

Lemma 8.2. Let S be a compact set fulfilling the outside and inside α-rolling
conditions. Let rθ,y be a line that fulfills condition L(0) and rθ,y∩∂S 6= ∅. Then
rθ,y intersects ∂S in a finite number of points.

Proof. Because S fulfills the outside and inside α-rolling conditions, Theorem 1
in [39] implies that for any x ∈ ∂S, the affine (d− 1)-dimensional tangent space
Tx∂S exists. If rθ,y fulfills L(0), then rθ,y is not included in any hyper-plane
tangent to S. Suppose that ∂S ∩ rθ,y is not finite. Then, by compactness, one
can extract a subsequence t′n ∈ ∂S ∩ rθ,y that converges to y′ ∈ ∂S ∩ rθ,y.

1. Because t′n and y′ are in rθ,y, we have that, for all n,
t′n−y

′

||t′n−y′||
= ±θ.

2. Because t′n and y′ are in ∂S, which is a (d − 1)-dimensional C1 manifold

(see Theorem 1 in [39]), and t′n → y′, we have limn→+∞
t′n−y

′

||t′n−y′||
∈ Ty′∂S.
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These two facts imply that θ ∈ Ty′∂S, which contradicts the assumption that
rθ,y is not included in any hyper-plane tangent to S.

Lemma 8.3. Let S ⊂ Rd be a compact set fulfilling the outside and inside
α-rolling conditions. Let ε > 0 be such that ε < α/4 and ν = 2

√
2ε(α− 2ε).

For any line rθ,y fulfilling condition L(ε) and rθ,y ∩ ∂S 6= ∅, we have that
rθ,y meets ∂S at a finite number of points t1, . . . , tk, where ti+1 − ti ≥ 2ν for
all i = 1, . . . , k − 1. Consequently, if ε < α/4, then k = #(rθ,y ∩ ∂S) ≤
diam(S)ε−1/2/(4

√
α).

Proof. Note that if a line fulfills condition L(ε), then it fulfills condition L(0).
Consequently, the fact that rθ,y intersects ∂S in a finite number of points follows
from Lemma 8.2. Let us denote by t1 < · · · < tk the intersection of rθ,y with
∂S.

Let us denote by ηti and ηti+1
the outer normal vectors at ti and ti+1,

respectively. We have two cases: the open interval (ti, ti+1) ⊂ Sc or (ti, ti+1) ⊂
S̊. Let us consider the first case (the proof for the second one is similar).

Because (ti, ti+1) ⊂ Sc and S fulfills the inside α-rolling condition on ti,
there exists a z ∈ S such that ti ∈ ∂B(z, α) and B(z, α) ⊂ S. In particular,
B(z, α) ∩ (ti, ti+1) = ∅, which implies 〈ηti , θ〉 ≥ 0.

Reasoning in the same way but with ti+1, we get 〈ηti+1
θ〉 ≤ 0. Given that

rθ,y is not included in any tangent hyperplane, we have that 〈ηti , θ〉 > 0 and
〈ηti+1 , θ〉 < 0.

If, for some i, ti+1 − ti < 2ν, then, by Theorem 3.8 in [15], there exists a
curve γ : [0, 1] → ∂S such that γ(0) = ti, γ(1) = ti+1 and d(γ(t), rθ,y) ≤ 4ε for
all t. We also have the inside and outside α-rolling conditions, something which
implies that x 7→ ηx is Lipschitz (see Theorem 1 in [39]). From 〈ηti , θ〉 > 0 and
〈ηti+1 , θ〉 < 0, it follows that there exists an s0 ∈ (0, 1) such that 〈ηγ(s0), θ〉 = 0,
which contradicts the hypothesis that y is at a distance larger than 4ε from all
the (d−1)-dimensional hyperplanes tangent to S. This proves that ti+1−ti ≥ 2ν
for all i = 1, . . . , k − 1.

Lemma 8.4. Let S ⊂ Rd be a compact set fulfilling the outside and inside α-
rolling conditions, with a (C, ε0)-regular boundary. Then for all ε ≤ min{ε0, α/4},∫

θ∈(S+)d−1

∫
y∈Aε(θ)

n∂S(θ, y)dµd−1(y)dθ ≤ C diam(S)√
α

√
ε.

Moreover, if ∂S has bounded number of linear intersections, then∫
θ∈(S+)d−1

∫
y∈Aε(θ)

n∂S(θ, y)dµd−1(y)dθ ≤ 4CNSε. (11)

Proof. From the proof of the previous lemma, it follows that for any y ∈ θ⊥

with d(y, Fθ) = ` and ` < 4ε, n∂S(θ, y) ≤ diam(S)`−1/2/(4
√
α). Hence,
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∫
θ∈(S+)d−1

∫
y∈Aε(θ)

n∂S(θ, y)dµd−1(y)dθ

=

∫
θ∈(S+)d−1

∫ 4ε

`=0

∫
{y∈θ⊥:d(y,Fθ)=`}

n∂S(θ, y)dµd−2(y)d`dθ

≤
∫
θ∈(S+)d−1

∫ 4ε

`=0

∫
{y∈θ⊥:d(y,Fθ)=`}

1

4
diam(S)(α`)−1/2dµd−2(y)d`dθ

≤
∫
θ∈(S+)d−1

∫ 4ε

`=0

1

4
diam(S)(α`)−1/2

∫
{y∈θ⊥d(y,Fθ)=`}

dµd−2(y)d`dθ

≤
∫
θ∈(S+)d−1

∫ 4ε

`=0

1

4
diam(S)(α`)−1/2|

{
y ∈ θ⊥ : d(y, Fθ) = `

}
|d−2d`dθ.

By the definition of ϕθ,∣∣∣{y ∈ θ⊥ : ` ≤ d(y, Fθ) ≤ `+ d`
}∣∣∣
d−1

= ϕθ(`+ d`)− ϕθ(`).

From the (C, ε0)-regularity of ∂S and the mean value theorem we obtain∣∣∣{y ∈ θ⊥ : d(y, Fθ) = `
}∣∣∣
d−2
≤ sup
ε∈(0,ε0)

ϕ′θ(ε) ≤ C,

which implies∫
θ∈(S+)d−1

∫
y∈Aε(θ)

n∂S(θ, y)dµd−1(y)dθ ≤∫
θ∈(S+)d−1

∫ 4ε

`=0

C
1

4
diam(S)(α`)−1/2d`dθ ≤ C diam(S)√

α

√
ε.

Applying exactly the same reasoning, under the hypothesis of the bounded-
ness of the number of linear intersections for ∂S, we get∫
θ∈(S+)d−1

∫
y∈Aε(θ)

n∂S(θ, y)dµd−1(y)dθ ≤
∫
θ∈(S+)d−1

∫ 4ε

`=0

CNSd`dθ ≤ 4CNSε.

Remark 2. If in the proof of Lemma 8.4 we take ` = 0, we obtain that the
measure of the set of lines belonging to some half-space tangent to ∂S is 0.

Lemma 8.5. Let S be a compact set fulfilling the outside and inside α-rolling
conditions. Let Xn = {X1, . . . , Xn} ⊂ S. Let εn → 0 be such that dH(Xn, S) ≤
εn. Let rθ,y = y + Rθ be any line fulfilling condition L(εn). Then, for n large
enough so that 4εn < α, n∂S(θ, y) = n̂εn,Xn(θ, y).

Proof. Throughout this proof we will use the following notation when rθ,y∩∂S 6=
∅. Let t1 < . . . < t2k be the intersection of rθ,y with ∂S. This set is finite due
to Lemma 8.2 and is an even number because condition L(εn) is fulfilled. Also
[t2(i−1)+1, t2i] ⊂ S for all i = 1, . . . , k and (t2i, t2i+1) ⊂ Sc for all i = 1, . . . , k−1.
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First, we will prove that

n̂εn,Xn(θ, y) ≥ n∂S(θ, y). (12)

If rθ,y ∩ ∂S = ∅, then inequality (12) holds. Assume rθ,y ∩ ∂S 6= ∅. We will
now prove that

if (ti, ti+1) ⊂ Sc, then: ∃s ∈ (ti, ti+1) such that d(s, S) > 4εn. (13)

Because S fulfills the inside α-rolling condition on ti, there exists a zi ∈ S such
that ti ∈ ∂B(zi, α) and B(zi, α) ⊂ S. Since B(zi, α) ∩ (ti, ti+1) = ∅, it follows
that 〈ηti , θ〉 ≥ 0 (recall that ηti = (ti − zi)/α and ti+1 − ti = ||ti+1 − ti||θ).
Reasoning in the same way but with ti+1, 〈ηti+1

, θ〉 ≤ 0. By condition L(εn),
we obtain

〈ηti , θ〉 > 0 and 〈ηti+1 , θ〉 < 0. (14)

Suppose that for all t ∈ (ti, ti+1) we have d(t, ∂S) ≤ 4εn. Take n large enough
so that 4εn < α. Because S fulfils the outside and inside α-rolling conditions, by
Lemma 2.3 in [31], ∂S has positive reach greater than α. Then, by Theorem 4.8
in [24], γ = {γ(t) = π∂S(t), t ∈ (ti, ti+1)}, the orthogonal projection onto ∂S of
the interval (ti, ti+1) is well defined and is a continuous curve in ∂S. By Theorem
1 in [39], the map from ∂S to Rd x 7→ ηx is Lipschitz. Thus, t 7→ 〈ηγ(t), θ〉 is a
continuous function of t for all t ∈ (ti, ti+1), which, together with (14), ensures
the existence of an s ∈ (ti, ti+1) such that d(s, γ(s)) ≤ 4εn and θ ∈ η⊥γ(s), which

contradicts the assumption that rθ,y fulfills condition L(εn). This proves (13).
From (13) we easily obtain (since s ∈ Sc and Xn ⊂ S) that

if (ti, ti+1) ⊂ Sc, then: ∃s ∈ (ti, ti+1) such that d(s,Xn) > 4εn. (15)

To conclude (12) let us write, for i = 1, . . . , k, I ′i = [t2(i−1)+1, t2i] for the

connected components of S ∩ rθ,y. Since dH(Xn, S) < εn, S ⊂ Ŝεn(Xn). Then,
for i = 1, . . . , k, there exists a j such that I ′i ⊂ Ij , Ij being a connected compo-

nent of Ŝεn ∩ rθ,y. Note now that (15) ensures that, for all i 6= i′, if I ′i ⊂ Ij and

I ′i′ ⊂ Ij′ then Ij′ and Ij are not in the same connected component of Ŝ4εn(Xn)
thus they are not glued, and then n̂εn,Xn(θ, y) ≥ n∂S(θ, y).
Next, we will prove the opposite inequality,

n̂εn,Xn(θ, y) ≤ n∂S(θ, y). (16)

Assume first rθ,y ∩ ∂S 6= ∅. Consider t∗ ∈ (ti, ti+1) ⊂ Sc and t∗ ∈ Ŝεn(Xn).

Equation (16) will be derived from the fact that (t∗, ti+1] ⊂ Ŝ4εn(Xn) ∩ rθ,y or

[ti, t
∗) ⊂ Ŝ4εn(Xn) ∩ rθ,y and thus the connected component of Ŝεn(Xn) ∩ rθ,y

that contained t∗ is glued with the one that contains [ti−1, ti] or with the one
that contains [ti, ti+1].

Introduce ψ(t) : (ti, ti+1) → R defined by ψ(t) = d(t, ∂S). Consider the
points t ∈ (ti, ti+1) such that d(t, ∂S) < α, and let pt ∈ ∂S be such that
||pt − t|| = d(t, ∂S). By item (3) in Theorem 4.8 in [24], ψ′(t) = 〈ηpt , θ〉.

Let Xj be the closest observation to t∗ (recall that because t∗ ∈ Ŝεn(Xn),
we have ||Xj − t∗|| ≤ εn). Now, because there exists a point p∗ ∈ [t∗, Xj ] ∩ ∂S,
we obtain that ψ(t∗) ≤ εn and, because rθ,y fulfils L(εn), 〈ηpt∗ , θ〉 6= 0.

Assume that, for instance, 〈ηpt∗ , θ〉 < 0. Then ψ(t∗) ≤ εn and ψ′(t∗) < 0.
Suppose that there exists a t′ ∈ (t∗, ti+1) such that ψ(t′) ≥ εn and consider
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t′′ = inf{t > t∗, ψ(t′) ≥ εn}. Then for all t ∈ (t∗, t′′), we have ψ(t) ≤ εn < α,
and thus ψ is differentiable on this interval (using again item (3) of Theorem 4.8
in [24]). From the fact that ψ(t′′) ≥ ψ(t∗) and ψ′(t∗) < 0 we deduce that there
exists a t̃ ∈ (t∗, t′′) such that ψ′(t̃) = 0, which contradicts L(εn) because ψ(t̃) ≤
εn. To summarize, we have shown that if 〈ηpt∗ , θ〉 < 0, then for all t ∈ (t∗, ti+1)

we have that d(t, ∂S) ≤ εn, and thus (t∗, ti+1) ⊂ Ŝ2εn(Xn) ⊂ Ŝ4εn(Xn).
Symmetrically, if 〈ηpt∗ , θ〉 > 0, then (ti, t

∗) ⊂ Ŝ2εn(Xn) ⊂ Ŝ4εn(Xn).
Thus we now have that if rθ,y ∩ ∂S = ∅, then n̂εn,Xn(θ, y) ≤ n∂S(θ, y).
Now we are going to prove that for a line rθ,y fulfilling condition L(εn) we

can not have rθ,y ∩ ∂S = ∅ and n̂εn,Xn(θ, y) > 0. Reasoning by contradiction,
upon assuming that rθ,y ∩ ∂S = ∅ and n̂εn,Xn(θ, y) > 0, we have that 0 <
min{||x − y||, x ∈ rθ,y, y ∈ S} ≤ εn. Now the regularity condition also gives
that if this minimum is realized for x∗ and y∗ we have y∗ ∈ ∂S and θ ∈ Ty∗∂S,
which contradicts condition L(εn).

Lemma 8.6. Let S ⊂ Rd be a compact set fulfilling the outside and inside
α-rolling conditions. Let Xn ⊂ S and suppose εn → 0 is a sequence such that
dH(Xn, S) ≤ εn, while rθ,y = y + Rθ and A1, . . . , Ak are the sets in Definition
3.1, Ai = (ai, bi) for i = 1, . . . , k. Now suppose that the sets are indexed in such
a way that a1 < b1 < a2 < . . . < bk. Then for all i = 2, . . . , k, we have that
||ai − bi−1|| > 3

√
εnα and for all i = 1, . . . , k, ||bi − ai|| > 3

√
εnα, for n large

enough so that 3
√
αεn < α/2, which implies

n̂εn,Xn(θ, y) ≤ diam(S)

3
√
α

ε−1/2n .

Proof. Assume by contradiction that for some i, ||ai − bi−1|| ≤ 3
√
εnα. By

construction, [bi−1, ai] ⊂ Ŝεn(Xn)c ⊂ Sc. Because ai and bi are on ∂Ŝεn(Xn),
we have d(ai,Xn) = d(bi−1,Xn) = εn.

The projection πS : [bi−1, ai]→ ∂S is uniquely defined because ∂S has reach
at least α and d(t, ∂S) ≤ d(t, ai) + d(ai, ∂S) ≤ ||ai − bi−1|| + d(ai,Xn) for all
t ∈ (bi−1, ai), ||ai−bi−1|| ≤ 3

√
εnα < α/2 and d(ai, ∂S) ≤ εn ≤ α/2. Moreover,

πS is a continuous function.
Hence maxx∈[bi−1,ai] ||x − πS(x)|| ≥ εn, and the maximum is attained at

some x0 ∈ [bi−1, ai]. First, we show that ||x0−πS(x0)|| ≥ 3εn. Indeed, suppose
by contradiction that for all t ∈ (bi−1, ai), d(t, ∂S) ≤ 3εn. Then d(t,Xn) ≤
4εn, which contradicts the definition of the points ai and bi. The fact that
||x0−πS(x0)|| ≥ 3εn > d(ai, S) = d(bi−1, S) guarantees that x0 ∈ (bi−1, ai) and
that η0, the outward unit normal vector to ∂S at πS(x0), is normal to θ.

Let z0 = πS(x0) + η0α. Observe that d(ai, S) ≤ εn and d(bi−1, S) ≤ εn.
From the outside α-rolling condition at πS(x0), ||x0 − πS(x0)|| ≤ α and using
the fact that η0 is normal to θ, we have (see Figure 9)

rθ,y ∩B(z0, α− εn) ⊂ [bi−1, ai],

which implies, see Figure 9, that ||ai − bi−1|| ≥ 2
√

(α− εn)2 − (α− `)2, where
` = d(x0, πS(x0)). Therefore,

||ai − bi−1|| ≥ 2
√

(`− εn)(2α− `− εn). (17)

20



If we bound ` ≥ 3εn and use the fact that ` = o(1), which follows from
` ≤ ||bi−1 − ai||+ εn ≤ 3

√
εnα+ εn, then we get, from (17),

||ai − bi−1|| ≥ 2
√

2εn(2α− `− εn) = 2
√

4εnα(1 + o(1))) = 4
√
αεn(1 + o(1)),

and for n large enough this contradicts ||ai−bi−1|| ≤ 3
√
αεn. Then, the number

Figure 9: ||ai − bi−1|| ≥ 2
√

(α− εn)2 − (α− `)2, where ` = d(x0, πS(x0)).

of disjoint intervals Ai is bounded from above by diam(S)/(3
√
εnα). The proof

that for all i = 1, . . . , k, ||bi − ai|| > 3
√
εnα follows the same ideas, we will give

a sketch of the proof. Let bi < ai be such that ||ai − bi|| ≤ 3
√
εnα. Proceeding

as before, maxx∈[bi,ai] ||x−πS(x)|| ≥ 3εn and it is attained at some x0 ∈ (bi, ai).
Let z0 = πS(x0) + η0α, with η0 being the outward unit normal vector to ∂S at
πS(x0). Then rθ,y ∩B(z0, α) ⊂ [bi, ai] since [bi, ai] /∈ B(z0, α) and B(z0, α) ⊂ S.
From rθ,y ∩B(z0, α) ⊂ [bi, ai] it follows as before that ||ai− bi|| ≥ 4

√
εnα, which

is a contradiction.
Lastly, n̂εn,Xn(θ, y) ≤ diam(S)/(3

√
εnα).

Corollary 5. Let S ⊂ Rd be a compact set fulfilling the outside and inside
α-rolling conditions and with a (C, ε0)-regular boundary. For n large enough so
that 3

√
αεn < min(α/2, ε0), we have∫

θ

∫
y∈Aεn (θ)

n̂εn,Xn(θ, y)dµd−1(y)dθ ≤ C diam(S)

3
√
α

√
εn.

8.1.3 Proof of Theorem 3.2

Without loss of generality, we can assume that 0 ∈ S. Recall that for θ ∈
(S+)d−1, Aεn(θ) is the set of all y ∈ θ⊥ such that ||y|| ≤ diam(S) and rθ,y does

not fulfill L(εn). First, from Lemma 8.5, we have that ||∂S|d−1 − Îd−1(X, ε)| is
bounded from above by

1

β(d)

∫
θ∈(S+)d−1

∫
y∈Aεn (θ)

|n̂εn,Xn(θ, y)− n∂S(θ, y)|dµd−1(y)dθ,
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which is bounded from above by

1

β(d)

∫
θ∈(S+)d−1

∫
y∈Aεn (θ)

n̂εn,Xn(θ, y)dµd−1(y)dθ+

1

β(d)

∫
θ∈(S+)d−1

∫
y∈Aεn (θ)

n∂S(θ, y)dµd−1(y)dθ.

Now, by Corollary 5 and Lemma 8.4, we get that

||∂S|d−1 − Îd−1(X, ε)| ≤ 4Cdiam(S)

3β(d)
√
α

√
εn,

for n large enough.

8.1.4 Proof of Theorem 3.3

The proof of Theorem 3.3 is basically the same as the previous one. Since
N0 ≥ NS Lemma 8.5 ensures that, for all ry,θ not in Aεn(θ), min(n̂(θ, y), N0) =
n∂S(θ, y), for n large enough that 4εn < α. Thus we still have, for n large
enough, ||∂S|d−1 − ÎN0

d−1(∂S)| is bounded from above by

1

β(d)

∫
θ∈(S+)d−1

∫
y∈Aεn (θ)

|n̂εn,Xn(θ, y)− n∂S(θ, y)|dµd−1(y)dθ,

which is bounded from above by

1

β(d)

∫
θ∈(S+)d−1

∫
y∈Aεn (θ)

n∂S(θ, y)dµd−1(y)dθ+

1

β(d)

∫
θ∈(S+)d−1

∫
y∈Aεn (θ)

n̂εn,Xn(θ, y)dµd−1(y)dθ.

Now, by applying (11) for the first part and a similar calculation for the
second part, we get that

||∂S|d−1 − ÎN0

d−1(∂S)| ≤ C(4NS +N0)

β(d)
εn, (18)

for n large enough.

8.1.5 Proof of Corollary 3

By Corollary 1 in [14], we know that, with probability one, for T large enough,
dH(XT , S) ≤ εT → 0, where εT = o((ln(T )2/T )1/d). Let Xn = {Xt1 , . . . , Xtn}
be a discretization of XT such that ti − ti−1 = T/n and tn = T . Put εn =
dH(Xn, S); then εn ≥ εT . It is clear that, for a fixed T , εn decreases to εT as
n → ∞. To emphasize the dependence on the set, we will write ÎN0

d−1(∂S,Xn)

for the estimator based on Xn, and ÎN0

d−1(∂S,XT ) for the estimator based on XT
(both defined using Definition 3.1). Then by (18), to prove Corollary 3 it is
enough to prove ÎN0

d−1(∂S,Xn)→ ÎN0

d−1(∂S,XT ) as n→∞, for arbitrary fixed T .
Fix θ and y. It is clear that n̂(θ, y)(∂S,Xn) → n̂(θ, y)(∂S,XT ) as n → ∞, and
so Corollary 3 follows by the dominated convergence theorem, using the fact
that min{n̂(θ, y), N0} ≤ N0.
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8.2 Proofs for the estimator based on the α-hull

Theorem 4.1 will be easily obtained from the two following geometric lemmas
and Theorem 3 in [35].

Here we need to introduce some new notation. Let A and B be two sub-
spaces of Rd. We denote by ](A,B) the operator norm of the difference between
the orthogonal projection onto A, πA, and the orthogonal projection onto B, πB ,
i.e. ](A,B) = ||πA− πB ||op. If f is a function, then ∇f (x) denotes its gradient
and Hf its Hessian matrix. Given two sets C,D ⊂ Rd, we write C ≈ D if there
exists an homeomorphism between C and D. In what follows, M ⊂ Rd will be a
compact set, and C2 a (d−1)-dimensional manifold (with or without boundary).
Then for all x in M , there exists an rx > 0 such that either

i) for all r ≤ rx, B̊(x, r) ∩M ≈ B̊d−1(0, 1), or

ii) for all r ≤ rx, B̊(x, r) ∩M ≈ B̊d−1(0, 1) ∩ {(x1, . . . , xd−1) : x1 ≥ 0}.

The set of points satisfying condition i) constitute int(M), while the set of
points satisfying ii) constitute ∂M . We have that ∂M is a (d− 2)-dimensional
manifold without boundary and, as a consequence, |∂M |d−1 = 0.

Given a point x ∈ M , NxM = {v ∈ Rd : 〈v, u〉 = 0,∀u ∈ TxM} is the 1-
dimensional orthogonal subspace. If M is a manifold as before, and ∂M = ∅, we
define for any compact set E ⊂M (E is not necessarily a manifold) its interior

int(E) = {x ∈ E : ∃rx such that for all r ≤ rx, B̊(x, r) ∩ E ≈ B̊d−1(0, 1)}. We
have int(E) is a manifold (without boundary and, when is not empty int(E) has
the same dimension as M).

Lemma 8.7. Let S ⊂ Rd be a compact set fulfilling the inside and outside α-
rolling conditions. Let α′ < α be a positive constant. Let Xn = {X1, . . . , Xn} ⊂
S be such that dH(∂Cα′(Xn), ∂S) ≤ εn with εn < (αα′)/(4(α + α′)) ≤ α/2.
Then,

1. there exist C1(Xn), . . . , CK(Xn) such that:

(a)
⋃K
i=1 Ci(Xn) ⊂ ∂Cα′(Xn)

(b) |∂Cα′(Xn) \ (
⋃K
i=1 Ci(Xn))|d−1 = 0

(c) Ci(Xn) is a C2 (d− 1)-dimensional manifold

(d) Ci(Xn) ∩ Cj(Xn) = ∅ when i 6= j

for all x ∈
⋃K
i=1 Ci(Xn), there exists a η̂x, the unit normal (to ∂Cα′(Xn)),

a vector pointing outward (with respect to Cα′(Xn)) from x that satisfies

〈η̂x, ηπ∂S(x)〉 ≥ 1− 2(α+ α′)

αα′
εn.

2. π∂S : ∂Cα′(Xn)→ ∂S the orthogonal projection onto ∂S is one to one.

3. ∂Cα′(Xn) ≈ ∂S

Proof. From (7) it follows that, for some N ,

∂Cα′(Xn) =

N⋃
i=1

(
∂Bi \

N⋃
j=1

Bj

)
.
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Here, the Bi are balls of radius ri larger than α′ or half-spaces (by abuse of
notation, if Bi is an half-space we will put ri = +∞).

Our first step consists in proving that:

1. If x ∈ ∂Cα′(Xn) \Xn, then for all i such that x ∈ ∂Bi \
⋃N
j=1Bj , we have

ri = α′.

2. If x ∈ ∂Cα′(Xn) ∩Xn, then there exists an i such that x ∈ ∂Bi \
⋃N
j=1Bj

ri = α′.

Suppose that x ∈ ∂Cα′(Xn)\Xn. Consider first the case x ∈ ∂Bi = S(Oi, ri)
with ri ≥ α′. If ri > α′, then, introducing Ωi = x + (α′/ri)(Oi − x) = Oi +

(ri − α′)(x−Oi)/ri, we have that B(Ωi, α
′) ∩Xn ⊂ (B̊(Oi, ri) ∪ {x}) ∩Xn = ∅.

Hence, d(Ωi,Xn) > α′, and by continuity, there exists a t > 0 so small that
d(Ωi + (t/ri)(x− Oi),Xn) > α′, that is, B(Ωi + (t/ri)(x− Oi), α′) ⊂ Cα′(Xn)c

and so x ∈ ˚Cα′(Xn)c. This is impossible: to conclude this first step, if x ∈
∂Cα′(Xn) \ Xn with x ∈ ∂Bi = S(Oi, ri), then ri = α′.

Second, consider the case x ∈ Bi with Bi = {z, 〈z − x, ui〉 > 0} where ui is
a unit vector. We can conclude, similarly, on introducing Ωi = x + α′ui, that
B(Ωi, α

′)∩Xn = ∅ and B(Ωi− tui, α′) ⊂ Cα′(Xn)c (for some positive but small

enough t) and so x ∈ ˚Cα′(Xn)c.
If x ∈ ∂Cα′(Xn) ∩ Xn, then by the compactness of ∂Cα′(Xn), there exists a

sequence (xk) in ∂Cα′(Xn) \ {x} with xk → x. Because Xn is finite, it follows
that for k large enough, xk ∈ ∂Cα′(Xn) ∩ Xcn. Because the number of possible
Si is finite, we can extract from (xk) a sequence (x′k) such that there exists an
Si = ∂Bi such that for all k, x′k ∈ Si making k → +∞, and then we have x ∈ Si.

Our second step consists in proving that if there exists an x ∈ ∂Bi \ (
⋃
j Bj),

then

〈η̂x,i, ηπ∂S(x)〉 ≥ 1− 2(α+ α′)

αα′
εn, (19)

where η̂x,i = Oi−x
α′ and x∗ = π∂S(x). Observe that from the first step we know

that Bi = B̊(Oi, α
′). Write ηx∗ for the outward (from S) unit normal vector of

∂S at x∗ and O∗ = x∗ − αηx∗ .
Note first that

B̊(Oi, α
′) ⊂ Cα′(Xn)c and B(O∗, α) ⊂ S. (20)

Introduce y∗ = [O∗, Oi] ∩ ∂B(Oi, α
′) and y = [O∗, Oi] ∩ ∂B(O∗, α) (see Figure

10). Then, from the second inclusion in (20), we get y ∈ S, and from the first
inclusion in (20) we get d(y, Cα′(Xn)) ≥ ||y − y∗||. Then ||y − y∗|| ≤ εn, which
in turn implies

α+ α′ − ||Oi −O∗|| ≤ εn. (21)

From x∗ = π∂S(x) we get that x∗ = x+`ηx∗ where ` = ||x−x∗|| ≤ εn. Then
Oi = O∗ + (α− `)ηx∗ + α′η̂x,i and

α+ α′ − ||Oi −O∗|| = α+ α′ −
√

(α′)2 + (α− `)2 + 2α′(α− `)〈η̂x,i, ηx∗〉

= α+ α′ −
√

(α′ + α− `)2 − 2α′(α− `)(1− 〈η̂x,i, ηx∗〉)

≥ `+
α′(α− `)(1− 〈η̂x,i, ηx∗〉)

α+ α′ − `
≥ α′α(1− 〈η̂x,i, ηx∗〉)

2(α+ α′)
,
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Figure 10: x ∈ ∂Cα′(Xn), x∗ = π∂S(x), Oi = x+ α′η̂x,i and O∗ = x∗ − αηx∗

where in the first inequality of the last line we bounded A
√

1− 2B/A2 ≤
A(1−B/A2) = A−B/A, and in the last inequality α−` ≥ α/2, thus, combined
with Equation (21), we can conclude the proof of Equation (19).

We will now, as the third step, conclude the proof of assertion 1. Note that
if Bi is a ball (and not an half-space), then ∂Bi ∩ Bcj = ∂Bi ∩ Pi,j where Pi,j
the following closed half space.

Pi,j =

{
Bcj if Bj is an open half space

{x : ||x−Oi||2 − r2i ≤ ||x−Oj ||2 − r2j} if Bj = B̊(Oj , rj).

Thus Si = ∂Bi
⋂(⋃

j B
c
j

)
= ∂Bi

⋂(⋃
j 6=iB

c
j

)
= ∂Bi ∩ Hi, where Hi is a

convex polygon.
Put Ci(Xn) = ∂Bi ∩ H̊i \Xn. We are going to prove that the Ci(Xn) satisfy

conditions (a), (b), (c) and (d) of assertion 1. First note that (a) is obvious by
construction.

Suppose x ∈ ∂Cα′(Xn) \ Xn. By the first step, we know that there exists a
Bi0 which is a ball of radius α′ such that x ∈ Si0 and thus we are in the situation
where x ∈ ∂Bi0 ∩ Hi0 with Hi0 a convex polygon. If now x ∈ ∂Cα′(Xn) \ Xn
but x /∈ ∪Ci(Xn), we must have x ∈ ∂Bi0 ∩ ∂Hi0 . This gives

∂Cα′(Xn) \
(⋃
i

Ci(Xn)
)
⊂ Xn

⋃( ⋃
i,ri=α′

∂Bi ∩ ∂Hi

)
and thus |∂Cα′(Xn) \

(⋃
i Ci(Xn)

)
|d−1 = 0, which proves (d).

We will now prove that if i 6= j and Bi and Bj are two balls, then (∂Bi ∩
H̊i)∩ (∂Bj ∩Hj) = ∅. Suppose by contradiction that (Si ∩ H̊i)∩ (Sj ∩Hj) 6= ∅.
Then ||x−Oi||2 − r2i < ||x−Oj ||2 − r2j and ||x−Oi||2 − r2i ≥ ||x−Oj ||2 − r2j ,
which is a contradiction. Thus, if Ci(Xn) and Cj(Xn) are both non-empty, we
have that Bi and Bj are two balls, and if i 6= j, Ci(Xn) ∩ Cj(Xn) = ∅, which
proves (d).

This also proves that if x ∈ Ci(Xn), then there exists an rx > 0 small enough
so that ∂Cα′(Xn) ∩ B(x, rx) = ∂Bi ∩ B(x, rx). Thus ∂Cα′(Xn) ∩ B(x, rx) is a
C2, d − 1 dimensional manifold. Moreover, the tangent space at x is given by
(x − Oi)⊥. Also, the unit normal (to ∂Cα′(Xn)) vector (Oi − x)/||x − Oi|| is
well defined, and points outwards to Cα′(Xn). This concludes the proof of (c)
and also the proof of 1).
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The proof of 2) follows the same ideas used to prove Theorem 3 in [1]. We
are going to give the main steps of the proof (adapted to our case).

We first prove the surjectivity. For any x∗ ∈ ∂S, we introduce O∗ = x∗−αηx∗
and x = x∗ − 2εnηx. From the inside and outside α-rolling conditions it follows
that S has reach α > 0, and so π∂S([x, x∗]) = x∗, where we used that 2εn < α.
To prove that x ∈ Cα′(Xn) we proceed by contradiction. If x /∈ Cα′(Xn), then

there exists an O with ||O − x|| ≤ α′ and B̊(O,α′) ⊂ Cα′(Xn)c.
Let u = (O − x)/||O − x||, y = [O∗, O] ∩ ∂B(O∗, α) and y∗ = [O∗, O] ∩

∂B(O,α′), and therefore ||y − y∗|| ≤ εn which implies

α+ α′ − ||O −O∗|| ≤ εn. (22)

But now

α+ α′ − ||O −O∗|| =

= α+ α′ −
√
||O − x||2 + (α− 2εn)2 + 2||O − x||2(α− 2εn)〈u, ηx∗〉

= α+ α′ −
√

(||O − x||+ α− 2εn)2 − 2||O − x||(α− 2εn)(1− 〈u, ηx∗〉)

= α+ α′ − (||O − x||+ α− 2εn)

√
1− 2||O − x||(α− 2εn)(1− 〈u, ηx∗〉)

(||O − x||+ α− 2εn)2

≥ 2εn + α′ − ||O − x||+ α′(α− εn)(1− 〈u, ηx∗〉)
α+ α′ − εn

≥ 2εn,

which contradicts Equation (22). Thus x ∈ Cα′(Xn) and so, there exists a
z ∈ (x, x∗) and z ∈ ∂Cα′(Xn), such that π∂S(z) = x∗.

We now prove the injectivity. Suppose by contradiction that there are x1, x2
∈ ∂Cα′(Xn) such that π∂S(x1) = π∂S (x2) = y. Write `i = d(xi, ∂S), for i =
1, 2. Because Cα′(Xn) ⊂ S, we have xi + `iηy = y and thus x1 = x2 + (`2 −
`1)ηy and |`2 − `1| ≤ εn (because for i ∈ {1, 2}, `i ≥ 0 and `i ≤ εn due to
dH(∂S, ∂Cα′(Xn)) ≤ εn). Suppose that `2 ≥ `1. From the first step together

with Equation (19), we know that there exists an Oi such that B̊(Oi, α
′) ⊂

Cα′(Xn)c, ||x2 − Oi|| = α′ and 〈u, ηy〉 ≥ 1 − 2(α + α′)/(αα′)εn with u =
(Oi − x2)/α′. Then

||x1 −Oi||2 = (`2 − `1)2 + α′2 − 2α′(`2 − `1)〈u, ηy〉

≤ (`2 − `1)2 + α′2 − 2α′(`2 − `1) +
4(α+ α′)

α
(`2 − `1)εn

≤ α′2 − (`2 − `1)

(
2α′ − 4(α+ α′)

α
εn − (`2 − `1)

)
≤ α′2 − (`2 − `1)

(
2α′ −

(
4(α+ α′)

α
+ 1

)
εn

)
The condition εn ≤ αα′

4(α+α′) guarantees 2α′ − (4(α + α′)/α + 1)εn > 0 thus, if

`2 > `1, then x1 ∈ B̊(Oi, α
′), which is impossible (recall that B̊(Oi, α

′) ⊂ Ccα′
and that x1 ∈ Cα′(Xn)). Thus, by contradiction, `1 = `2 and x1 = x2, which
concludes the proof of injectivity.

Lastly, we prove 3. Since reach(∂S) ≥ α and dH(∂Cα′(Xn), ∂S) ≤ εn < α,
π∂S , restricted to ∂Cα′(Xn), is continuous (see [24]). The continuity of π−1∂S :
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∂S → ∂Cα′(Xn) follows from the same ideas used to prove the injectivity of π∂S :
we provide a sketch of the proof. It follows from reach(∂S) ≥ α that π−1∂S (x) =
x − `(x)ηx with `(x) ≥ 0. Also, x 7→ ηx is a continuous function (see Theorem
1 in [39]). It remains to be proved that ` is a continuous function. If this is
not the case, we can find sequences (yn) ⊂ ∂S and (y′n) ⊂ ∂S, both converging
to some y ∈ ∂S), such that `(yn) → `1 and `(y′n) → `2. We can conclude
exactly as in the proof of injectivity that we can take x1,n = yn − `(yn)ηyn and
x2,n = y′n − `(y′n)ηy′n making n → +∞. We thus have ∂S ≈ ∂Cα′(Xn), which
proves assertion 3, and thus concludes the proof of the lemma.

Lemma 8.8. Suppose that M is a C2, bounded (d − 1)-dimensional manifold
with positive reach α. Let πM denote the projection onto M and M̂ be a C2,
(d− 1)-dimensional manifold such that

1. πM is one to one from M̂ to M ,

2. for all x ∈ M̂ we have ||x− πM (x)|| ≤ ε1 and 〈η̂x, ηπM (x)〉 ≥ 1− ε2.

Then, if ε1(d− 1)α ≤ 1 and ε2 ≤ 1/8, we have

(1− 3ε1α− 32ε2)
d−1
2 ≤ |M̂ |d−1

|M |d−1
≤ (1 + 3ε1α+ 32ε2)

d−1
2 . (23)

Proof. Let p ∈ M and denote by (e1, . . . , ed−1) an orthonormal basis of TpM
and complete it with ed a unit vector of NpM . A neighborhod of p in M can

be parametrized by ϕ(x) = x + f(x)ed =
∑d−1

1 xiei + f(x1, . . . , xd−1)ed where

x =
∑d−1

1 xiei belongs to a neighborhood of p and ∇f (p) = 0.
Consider now the surface element (of M) ds(p) = dx1 . . . dxd−1. Its image

by π−1M on the surface element (of M̂) is given by

dŝ(p) =
√

det(Jπ−1
M

(p)′Jπ−1
M

(p))dx1 . . . dxd−1.

The rest of the the proof consist in giving bounds for det(Jπ−1
M

(p)′Jπ−1
M

(p)). We

have that π−1M (ϕ(x)) = x+`(x)n(x) where n(x) = (−∂f/∂x1, . . . ,−∂f/∂xd−1, 1) ∈
NxM , which gives that

Jπ−1
M

(p) =

(
Id−1 − `(p)Hf (p)

∇`(p).

)
The reach condition gives that ||Hf (p)||op ≤ α and `(p) = ||π−1M (p)− p|| ≤ ε1 so
that we just have to bound ||∇`(p)||. Note that, for j = 1, . . . , d− 1, we have

tj = ej +
∂`

∂xj
(p)ed − `(p)

(
d−1∑
1

∂2f

∂xi∂xj
ei

)
∈ Tπ−1

M (p)M̂.

Note that ηp = ±ed and introduce η̂π−1
M (p). Since t1, . . . , td−1, η̂π−1

M (p) is an

orthogonal basis of Rd, we have that

ed =

d−1∑
i=1

〈ed,
ti
||ti||
〉 ti
||ti||

+ 〈ed, η̂π−1
M (p)〉η̂π−1

M (p),
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which implies

1 =

d−1∑
i=1

〈ηp,
ti
||ti||
〉2 + 〈ηp, η̂π−1

M (p)〉
2.

Thus, by condition 2, we have |〈tj , ed〉| = |〈tj , ηp〉| ≤
√

2ε2||tj ||, which im-
plies ∣∣∣∣ ∂`∂xj (p)

∣∣∣∣ ≤ √2ε2||tj || ≤
√

2ε2

(
1 +

∣∣∣∣ ∂`∂xj (p)

∣∣∣∣+ ε1(d− 1)α

)
.

From this, we get ∣∣∣∣ ∂`∂xj (p)

∣∣∣∣ ≤ √2ε2(1 + ε1(d− 1)α)

1−
√

2ε2
.

So, Jπ−1
M

(p)′Jπ−1
M

(p) = Id−1 + E with E a symmetric matrix with

||E||op ≤ 2ε1α+ ε21α
2 +

(√
2ε2(1 + ε1(d− 1)α)

1−
√

2ε2

)2

,

thus we finally obtain the inequality

(1− 3ε1α− 32ε2)
d−1 ≤ det

(
Jπ−1

M
(p)′Jπ−1

M
(p)
)
≤ (1 + 3ε1α+ 32ε2)

d−1
,

which concludes the proof.

8.2.1 Proof of Theorem 4.1

Theorem 4.1 follows now from the previous lemmas. Introduce Si = π∂S(Ci(Xn))
where the Ci(Xn) are the sets introduced in Lemma 8.7. Due to Lemma 8.7
we have |∂S|d−1 =

∑
i |Si|d−1 and |∂Cα′(Xn)|d−1 =

∑
i |Ci(Xn)|d−1. Due to

Lemma 8.8 we also have, for all i: (1− 3ε1α− 32ε2)
d−1
2 |Si|d−1 ≤ |Ci(Xn)|d−1 ≤

(1 + 3ε1α+ 32ε2)
d−1
2 |Si|d−1, which concludes the proof.

8.2.2 Proof of Corollary 4

We only need to check that the conditions of Theorem 4.1 are fulfilled, with
probability one, for n large enough. In [35] it is proven that, with probability
one for n large enough, dH(∂Cα′(Xn), ∂S) ≤ εn ≤ c(lnn/n)2/(d+1) for some
given explicit constant c. Since Cα′(Xn)c is a finite union of balls and affine

half-spaces, that is, Cα′(Xn)c =
⋃N1

i=1Ei with Ei = B̊(Oi, ri) or Ei = {z ∈
Rd, 〈uj , z〉 > ai}, it follows that

∂Cα′(Xn) =
⋃
i

(
∂Ei

⋂(⋃
j 6=i

Ej

)c)
.

Now define the Fj as the connected components of the sets ∂Ei
⋂

(
⋃
j 6=iEj)

c.
Then the Fj are closed manifolds of dimension dj ≤ (d − 1), and are compact
since Fj ⊂ Cα′(Xn), which is compact. Lastly, because ∂Cα′(Xn) is a (d −
1)-dimensional manifold, we must have ∂Cα′(Xn) = ∪j,dj=d−1Fj (that is, the
lower dimensional Fk are included in ∪j,dj=d−1Fj). This concludes the proof of
Corollary 4.
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