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PSL(2,C), the exponential and some new free

groups

Daniel Panazzolo ∗

Abstract

We prove a normal form result for the groupoid of germs generated
by PSL(2,C) and the exponential map. We discuss three consequences
of this result: (1) a generalization of a result of Cohen about the group
of translations and powers, which gives a positive answer to a problem
posed by Higman; (2) a proof that the subgroup of Homeo(R,+∞)
generated by the positive affine maps and the exponential map is iso-
morphic to a HNN-extension; (3) a finitary version of the immiscibility
conjecture of Ecalle-Martinet-Moussu-Ramis
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1 Introduction

1.1 Normal forms

We recall some basic concepts and terminology from the theory of
groupoids (see e.g. [4]). A groupoid is a category G whose objects
Obj(G) form a set and in which every morphism is an isomorphism.
For each x, y ∈ Obj(G), we denote by G(x, y) the set of morphisms
in G from x to y. We denote also by G the disjoint union of G(x, y),
for all x, y ∈ Obj(G). The composition of morphism is written multi-
plicatively: if f ∈ G(x, y) and g ∈ G(y, z), then these morphisms can
be composed and its composition is the morphism gf ∈ G(x, z). From
now on, when we write the expression gf for two morphisms f, g, we
are tacitly assuming that these morphism can be composed. The sym-
bol 1 will generally denote the identity morphism and f−1 ∈ G(y, z)
will denote the inverse of the morphism f ∈ G(x, y). We will say that
morphism f has source x = s(f) and target y = t(f) if f ∈ G(x, y).
The group G(x, x) will be called vertex group at x and will be denoted
simply by G(x).

A finite sequence of morphisms [f1, f2, . . . , fn] in G is called a path
if s(fi) = t(fi+1). Given such a path, we will say that f = f1 · · · fn ∈ G
is the morphism defined by the path. The operation of concatenation
in the set of paths is defined in the obvious way, taking into account
the source/target compatibility.

A path [f1, f2, . . . , fn] is called reduced if:

• no two consecutive morphisms fi, fi+1 are mutually inverse.

• if some fi is the identity morphism then n = 1 and f = [1].

We can give a groupoid structure to the set of reduced paths. The op-
eration of composition of two paths is defined as follows: first concate-
nate the paths and then successively eliminate all consecutive terms
which are mutually inverses. The resulting groupoid is called the free
groupoid on the graph of G ([4], section 8.2).
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Given a differentiable manifold M , let G(M) denote the Haefliger
groupoid over M (see e.g. [20], section 5.5). We recall that, by defini-
tion, the set of objects Obj(G(M)) is the set of points of M and, for
each p, q ∈ M , G(M)(p, q) is the set of all germs of diffeomorphisms
(M,p)→ (M, q). In order to keep the traditional naming, we will refer
to the morphisms of G(M) simply as germs.

Given a map f : U → V , where U, V ⊂M are open sets and f is a
local diffeomorphism (i.e. locally invertible), we denote by Germ(f) ⊂
G(M) the smallest wide subgroupoid containing all the germs f,p of
f at all points p of its domain. We recall that a subgroupoid G1 of a
groupoid G2 is called wide if Obj(G1) = Obj(G2).

More generally, given an arbitrary collection C of local diffeomor-
phisms as above, we denote by Germ(C) ⊂ G(M) the smallest sub-
groupoid containing Germ(f), for all f ∈ C.

From now on, we shall assume that M = P1(C) and that all maps
are holomorphic. As a basic object, we will frequently consider the
groupoid GExp = Germ(exp) associated to the usual exponential map.
This is the groupoid whose germs at each point are given by finite
compositions f = f1 · · · fn of the following germs

{1,p} ∪ {exp,p : if p ∈ C} ∪
⋃
k∈Z

{lnk,p : if p ∈ C∗}

where 1,p is the the identity germ at p and lnk,p is the germ at p of
the kth-branch of the logarithm, i.e. the map

lnk : C∗ −→ Jk = {x+ iy : y ∈](2k − 1)πi, (2k + 1)πi]}
z 7−→ ln(|z|) + i argk(z)

where argk : C→](2k− 1)πi, (2k+ 1)πi] is the kth-branch of the argu-
ment function. In general, we have the relation

exp,q logk,p = 1,q

for all p ∈ C and q = logk(p). On the other hand,

logk,q exp,p : z 7→ z + 2πi(k − s)

for all p ∈ Js and q = exp(p). In particular, notice that germ corre-
sponding to the translation by 2πi lies in GExp.

In what follows, we are going to simplify the notation and omit the
subscripts ,p when referring to the germ of a local diffeomorphism at
a point p of its domain. Thus, the same symbol, say exp, will denote
both the exponential map and the germ at each point of its domain.
In the situation where we want to emphasize that we are considering
its germ at a specific point p, we will simply write that s(exp) = p.
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exp

∞

0

∞

0

logk Jk

We also introduce the following symbols for the (germ of) exponential
map and the zeroth branch of the logarithm:

e : z 7→ exp(z), l : z 7→ ln0(z).

Another important object for us is the groupoid

GPSL(2,C) = Germ(PSL(2,C)).

We recall that the group PSL(2,C) is generated by the subgroups

W = {1 : z 7→ z, w : z 7→ 1/z}, T = {ta : z 7→ z + a, a ∈ C}
S = {sα : z 7→ αz, α ∈ C∗}

which are, respectively, the involution, the translations and the scal-
ings. We denote by Aff ⊂ PSL(2,C) the subgroup of affine maps,
i.e. Aff = T o S.

Following the above notational convention, the same symbols ta, sα
and w will be used to denote the corresponding germs in GPSL(2,C).

Our main result is a normal form for elements in the groupoid

GPSL(2,C),Exp = Germ(PSL(2,C) ∪ {exp})

In order to state this result, consider the subgroupsH0, H1 ⊂ PSL(2,C)
given by

H0 = T o {s−1}, and H1 = S o {w}.
For the next definition, we recall that, given a group G and a subgroup
H ⊂ G, a right transversal for H is a subset T ⊂ G of representatives
for the right cosets {Hg : g ∈ G} which contains the identity of G.

Definition 1.1. Let T0,T1 ⊂ PSL(2,C) be right transversals for H0, H1,
respectively. A (T0,T1)-normal form in GPSL(2,C),Exp is a path

g = [g0, h1, g1, . . . , hn, gn], n ≥ 0

4



such that the following conditions hold:

(i) The germ g0 lies in GPSL(2,C).

(ii) For each 1 ≤ i ≤ n, hi ∈ {e, l}.
(iii) If hi = e then gi ∈ T0.

(iv) If hi = l then gi ∈ T1.

(v) There are no subpaths of the form [e,1, l] or [l,1, e].

We denote by NFT0,T1 the set of all (T0,T1)-normal forms. The path
[1] will be called the identity normal form.

There is an obvious mapping

ϕ : NFT0,T1 → GPSL(2,C),Exp

which associates to each normal form g = [g0, h1, . . . , gn] the germ
ϕ(g) = g0h1 · · · gn. The main goal of this paper will be to study the
surjectivity and injectivity properties of this mapping.

Remark 1.2. As we shall see in Lemma 2.1, a possible choice of
transversals T0,T1 for H0, H1, respectively, is as follows:

T0 = {sρ : ρ ∈ Ω} ∪ {sρwtb : ρ ∈ Ω, b ∈ C}
T1 = {tb : b ∈ C} ∪ {tawtb : a ∈ Ω, b ∈ C∗ \ {−1/a}} ∪ {tcw : c ∈ C∗}

where Ω = {α : Re(α) > 0} ∪ {α : Re(α) = 0, Im(α) > 0} is the region
shown in figure 1.1

•
1

Ω

Im(α)

Re(α)

Figure 1: The region Ω

From now on, in order to simplify the exposition, we shall fix the
choice of transversals T0,T1 as described in the remark 1.2, and write
NFT0,T1

simply as NF. Each result that we are going to discuss in

1In fact, we could define similar transversals by choosing any region in C∗ which is a
fundamental domain for the Z2-action z 7→ −z and contains 1.
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the remaining of the paper can be appropriately translated to different
choices of transversals.

In order to state the Main Theorem, we need define certain special
normal forms. To simplify the notation, we shall frequently omit the
square braces and write a path [g1, . . . , gn] simply as g1 · · · gn.

For each α ∈ C∗, the power map with exponent α is the germ defined
by

pα = e sα l,

i.e. the germ of power map z 7→ zα obtained by choosing the zeroth
branch of the logarithm.

A normal form a ∈ NF will be called an algebraic path (resp. ratio-
nal path) of length n ≥ 0 if it has the form

a = θ0 pα1
θ1 · · · pαnθn,

where αi are exponents in Ω ∩ Q (resp. αi ∈ Ω ∩ Z), and

θ0 ∈ PSL(2,C), θn ∈ T1 and θ1, . . . , θn−1 ∈ T1 \ {1}.

We will say that a is of affine type if θi is an affine map for each
0 ≤ i ≤ n− 1. All paths of length n = 0 are of affine type.

Notice that each path g ∈ NF can be decomposed as

g = a0 γ1 a1 · · · γm am, m ≥ 0

where each ai is an algebraic path and each γi is either e, l or a power
germ pαi with an exponent αi ∈ Ω \ Q. This decomposition is unique
if we further require that there are no subpaths of the form

γi ai γi+1 = e sα l.

In other words, we assume that each subpath esαl is grouped together
into written as the power map pα.

The above unique decomposition of g will be called the algebro-
transcendental decomposition. Each ai is will be called a maximal
algebraic subpath of g.

The natural number m will be called the height of g and noted
height(g). Hence, normal forms of height zero correspond to algebraic
paths.

Given symbols η1, η2 ∈ {e, l,p}, we will say that the maximal al-
gebraic subpath ai lies in a [γ, η]-segment , if γi = η1 and γi+1 = η2.

Example 1.3. The path g = e s√2 l l t1e s2 l t1wew is a normal form
with algebro-transcendental decomposition

g = 1︸︷︷︸
a0

p√2︸︷︷︸
γ1

1︸︷︷︸
a1

l︸︷︷︸
γ2

t1p2t1w︸ ︷︷ ︸
a2

e︸︷︷︸
γ3

w︸︷︷︸
a3
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The maximal algebraic subpaths a1 and a2 lie in [p, l] and [l, e] seg-
ments, respectively. Notice that maximal algebraic subpaths can be
the identity, as it is the case of a0 and a1.

We will say that a normal form g ∈ NF is tame if

(i) Either height(g) = 0 and g is an algebraic path of affine type.

(ii) Or height(g) ≥ 1 and each maximal algebraic subpath lying in a
segment of type

[e, l], [l, e], [l,p], [p, e], or [p,p]

is of affine type.

For instance, the normal form of the previous example is tame. We
shall denote by NFtame the subset of tame normal forms.

Main Theorem (Normal form in GPSL(2,C),Exp). The mapping

ϕ : NF→ GPSL(2,C),Exp

is surjective. Moreover, this mapping is injective when restricted to
NFtame.

The study of non-tame normal forms puts into play some difficult
problems concerning the study of finite coverings P1(C)→ P1(C) with
imprimitive monodromy groups. This issue is strongly related to the
well-known Ritt’s decomposability theorem [23], which fully describes
monoid structure of the polynomials under the composition operation.

The following example shows that we cannot expect the map ρ :
NF→ GPSL(2,C),Exp to be bijective without further restrictions.

Example 1.4. Each Chebyshev polynomial Tn(x) lies in GPSL(2,C),Exp,
as it can be defined by the identity

Tn = ϕpn ϕ
−1

where pn(z) = zn and ϕ(z) = z + 1/z is given explicitly by

ϕ = s−1t2wt−1/4p2t−1/2wt1.

On the other hand, we can also express T2(z) = z2−2 as t−2p2. Hence,
the relation

T2

(
z +

1

z

)
= z2 +

1

z2

is equivalent to say that the normal form

s−1t2wt−1/4p2t−1/2wt1p2t−1wt1/2p1/2t1/4wt−2p1/2t2

defines the identity germ. Of course, this normal form is not tame.
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Remarks 1.5. (1) Some readers will probably notice the similarities
between the above normal form and Britton’s normal form for HNN-
extensions (see e.g. [16], IV.2). Indeed, there is a general notion of
HNN-extension for groupoids ([4], section 8.4.1) which generalizes the
usual notion for groups (see subsection 1.4). At a first view, one could
expect to prove that GPSL(2,C),Exp is isomorphic to the HNN-extension
of GPSL(2,C) with the exponential e acting as the stable letter, i.e. some-
how conjugating the subgroupoids GH0

and GH1
.

This cannot hold (at least not in such a näıve way). In fact, con-
sider the subgroupoids L0 and L1 obtained by restricting the groupoids
GH0

and GH1
to the subdomains C and C∗, respectively. Then, the ex-

ponential map indeed defines a morphism of groupoids by

Θ : L0 −→ L1

h 7−→ eh e−1

where the germ e−1 is chosen in such a way that s(h) = t(e−1). At the
level of objects, this induces the mapping Θ : C→ C∗, Θ(p) = exp(p).

However, Θ is not an isomorphism of groupoids, since it annihilates
all germs t2πik, with k ∈ Z; and identifies each two points in C which
differ by an integer multiple of 2πi.

As a matter of fact, Θ establishes an isomorphism between the
groupoid L1 and the quotient groupoid L0/Ker(Θ), which is simply
the groupoid with the object set C/2πiZ and morphisms given by the
action of {ta : a ∈ C} and s−1 modulo 2πiZ.

(2) It is easy to see that GPSL(2,C),Exp coincides with GT,Exp, i.e. the
groupoid generated only by the translations and the exponential. In-
deed, one easily constructs the subgroups S and W by defining

sα = etln0(α)l, and w = e2tiπl
2.

for all α ∈ C∗. The Normal form Theorem could be formulated solely
in terms of paths in GT,Exp. However, this would lead to a much more
complicated enunciation and to the loss of the analogy with the theory
of HNN-extensions.

(3) Notice that GPSL(2,C) has a natural Lie groupoid structure,
which is inherited from étale groupoid structure of G(P1(C)) (see [20],
section 5.5). Some readers may be wondering which is the relation
between GPSL(2,C) and the so-called semi-direct product Lie groupoid

PSL(2,C) n P1(C)

which is naturally defined by the action of PSL(2,C) on P1(C) (see
[20], section 5.1).

One can show that PSL(2,C)nP1(C) and GPSL(2,C) are isomorphic
as groupoids, but not as Lie groupoids. Indeed, the source fibers of
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GPSL(2,C) (i.e. the sets s−1(p), p ∈ P1(C)) have a discrete topology while
all source fibers of PSL(2,C) n P1(C) are manifolds diffeomorphic to
PSL(2,C).

(4) Another interesting construction can be obtained by combining
the groupoids Germ(PSL(2,C)), Germ(exp) and Germ(℘, ℘′), where

℘ : C/Λ→ P1(C)

is the Weierstrass function associated to a period lattice Λ ⊂ C. In this
case, the resulting groupoid G would contain a rich class of rational
maps, so-called finite quotients of affine maps (see [19]), i.e. rational
maps f of degree two or more which fit into commutative diagrams of
the form

C/Λ C/Λ

P1(C) P1(C)

Θ

l

f

Θ

where l(z) = az + b is an affine map defined on C/Λ and Θ : C/Λ →
P1(C) is a finite covering. For instance (see [18], Problem 7-f), for
Λ = Z⊕iZ and l(z) = (1+i)z, the germ ℘ l ℘−1 is (up to a conjugation
by a Möebius map) the quadratic rational map h(z) = (z + 1/z)/2i.

1.2 Powers and affine maps

As a consequence of the Main Theorem, we are going to obtain a gen-
eralization of a result of S. Cohen. Let R be an arbitrary multiplicative
subgroup of C∗ and let PowR be the set of germs determined by all the
branches of the power maps

C∗ 3 z 7→ zr, with r ∈ R

Clearly, the associated groupoid Germ(PowR) is simply obtained by
taking the union of PowR with the identity germs 1 at 0 and ∞. As
above, for each r ∈ R, we denote by

pr = esrl

the germ of power map obtained by choosing the zeroth branch of the
logarithm.

Initially motivated by a question of Friedman, several authors (cf.
[12]) considered the groupoid

GAff,PowR = Germ(Aff,PowR)

whose elements are obtained by finite compositions of germs of affine
and power maps. In particular, they studied the following property:

9



Definition 1.6. We will say that GAff,PowR has the amalgamated
structure property if each element GAff,PowR can be uniquely defined
by a path

[g0, pr1 , ta1 , . . . ,prn , tan ]

for some n ≥ 0, where g0 ∈ Germ(Aff), ri ∈ R \ {1} and ai ∈ C for
i = 1, . . . , n, such that ai is nonzero for 1 ≤ i ≤ n− 1.

In particular, this property implies that, given n ≥ 1 and two
sequences of constants r1, . . . , rn ∈ R \ {1} and a1, . . . , an ∈ C with ai
nonzero for 1 ≤ i ≤ n− 1, the germ defined by

z 7→ (a1 + (a2 + · · ·+ (an + x)rn · · · )r2)r1

(where we choose arbitrary branches for the power maps) cannot be
the identity.

Building upon a method originally introduced by White in [28],
Cohen proved in [5] that GAff,PowQ>0

has the amalgamated structure

property (i.e. one takes R equal to Q>0).
Using our normal form Theorem, we prove the following:

Theorem 1.7. The groupoid GAff,PowR has the amalgamated structure
property if R ∩ Q<0 = ∅.

Equivalently, we assume that for each r ∈ R, the ray rQ<0 does
not intersect R.

• r ∈ R

rQ<0

Remark 1.8. Assume R is the multiplicative subgroup of C∗ gen-
erated by exp(2πiλ1), . . . , exp(2πiλn), for some collection of complex
numbers λ1, . . . , λn. Then, the condition R ∩ Q<0 = ∅ is equivalent to
the following non-resonance condition:(1

2
+ i ln(Q>0)

)
∩
(
Z + λ1Z + · · ·+ λnZ

)
= ∅

where ln denotes the principal branch of the logarithm function.
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1.3 Generalized Witt algebras

We describe another consequence of the Normal Form Theorem. Let
M be an additive sub-monoid of C (i.e. a subset M ⊂ C which is
closed under addition and contains zero). Following [1], we define the
generalized Witt algebra W(M) as the C-vector space with a basis
{wg : g ∈M}, subject to the Lie multiplication

[wg, wh] = (g − h)wg+h.

Each basis element can be represented by a (possibly multivalued)
complex vector field on P1(C) given by

wg = zg
(
z
∂

∂z

)
whose flow at time a is given by the multivalued map

exp(awg) = z 7→

{
(−ag + z−g)−1/g, if g 6= 0

exp(a)z, if g = 0.

Following the conventions of the first subsection, we are going to denote
also by exp(awg) the germs in G(P1(C)) obtained by taking all possible
determinations of the maps z 7→ (−ag + z−g)−1/g at all points of its
domain of definition.

Example 1.9. ForM = Z we obtain the classical Witt algebraW(Z).
The subalgebra W(Z≤0) ⊂ W(Z) plays an important role in holomor-
phic dynamics. The flow maps in this subalgebra can be written as

z 7→ exp(aw−k)(z) = z (1− akz−k)1/k, ∀k ∈ Z≥0,∀a ∈ C

and they generate a well-known subgroup of the group Diff(C,∞) of
germs of holomorphic diffeomorphisms fixing the infinity.

Theorem 1.10. Let M be an arbitrary additive sub-monoid of C.
Then, for all n ≥ 1, all scalars a1, . . . , an ∈ C \ {0} and all elements
g1, . . . , gn ∈M \ {0} such that gi+1/gi /∈ Q<0 ∪ {1}, the germ

z 7→ exp(a1wg1) · · · exp(anwgn)(z)

cannot be the identity.

Remark 1.11. The condition gi+1/gi 6= 1 must be imposed due to
the trivial relation

exp(awg)exp(bwg) = exp((a+ b)wg)

Moreover, there are numerous counter-examples to the above result
if drop the assumption gi+1/gi 6= −1. For instance, given a ∈ C∗,

11



consider the so-called two parabolic group Ga ⊂ PSL(2,C), which is
the group generated by the time a flows maps of w−1 and w1, namely

z 7→ exp(aw−1)(z) = z + a, z 7→ exp(aw1)(z) =
z

1 + az

Following [15], we say that a is a free point if Ga is a free group. There
are plenty of non-free points. For instance, Ree showed in [21] that the
real segment ] − 2, 2[ is contained in an open set where the non-free
points are densely distributed.

Assume that a is a non-free point. Then, by definition, there exist
a n ≥ 1 and nonzero integers p1, q1, . . . , pn, qn such that

exp(p1aw1)exp(q1aw−1) · · · exp(pnaw1)exp(qnaw−1) = 1

Clearly, each relation of this type would give a counter-example to the
above Theorem if the assumption gi+1/gi+1 6= −1 were dropped.

Our next goal is to state a normal form result for the groupoid

GM = Germ
(
{exp(awg) : g ∈M, a ∈ C}

)
For this, given g ∈M, and a ∈ C, we define the following germ

Φa,g =

{
p−1/gt−agp−g, if g 6= 0

sexp(a), if g = 0.

where ta and sα are the translation and scalings germs, respectively;
and the power map pr is defined as in subsection 1.2. In other words,
Φa,g ∈ GM is simply the germ obtained from the (multivalued) flow
map exp(awg) by choosing the zeroth branch of the logarithm in the
definition of the power maps x 7→ x−g and x 7→ x−1/g.

The phenomena described in the previous remark leads us to define
the following concept. We say that an additive sub-monoid M of C
has no rational antipodal points if

M∩
(
MQ≤0) = {0}.

Using our Main Theorem, we shall prove the following:

Theorem 1.12 (Normal form in GM). Suppose thatM has no rational
antipodal points. Then, each element of the groupoid GM is uniquely
defined by a path

[Φa0,0,Φa1,g1 , . . . ,Φan,gn ]

for some n ≥ 0, gi ∈M and ai ∈ C such that:

(i) gi ∈M \ {0} and ai ∈ C \ {0}, for 1 ≤ i ≤ n,

(ii) Im(a0) ∈]− πi, πi],

12



(iii) gi 6= gi+1, for 1 ≤ i ≤ n− 1.

Remark 1.13. For sub-monoidsM having antipodal points, it follows
from Remark 1.11 that a normal form result as above would depend
on precise characterization of the set of free points. This seems to be
a very difficult problem. As a hint, we refer to figure 2, reproduced
from [11]. It shows a numerically computed representation the set of
free points in the plane Cλ, where λ = a2/2.

Figure 2: The known free points are unshaded.

1.4 HNN-extensions in Homeo(R,+∞)

Going in another direction, we can consider the analogous problem for
the group Homeo(R,+∞) of germs at +∞ of real homeomorphisms de-
fined in open intervals of the form {x : x > x0} and which go to infinity
as x goes to infinity. The group operation being the composition.

Consider the following subgroups of Homeo(R,+∞),

T = {ta : x 7→ x+ a , a ∈ R}, S+ = {sα : x 7→ αx , α ∈ R>0}
Exp = {e : x 7→ exp(x), e−1 : x 7→ ln(x)},

where ln : R∗ → R is obviously taken as the real branch of the loga-
rithm. Let Aff+ = T o S+ denote the subgroup of real positive affine
maps. As it is well known, the conjugation by the exponential map
defines an isomorphism

θ : T −→ S+

ta 7−→ etae
−1 = sexp(a)

and we can consider the group Aff+?θ derived from (T,Aff+, θ) by
HNN extension. We recall (see e.g. [24], 1.4) that given a group G
with presentation G = 〈F |R〉 and an isomorphism θ : H → K between
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two subgroups H,K ⊂ G, the HNN extension derived from (H,G, θ)
is a group G?θ with presentation

G?θ =
〈
F, k | R, khk−1 = θ(h),∀h ∈ H

〉
The new generator k is called stable letter.

Consider now the subgroup GAff+,Exp of Homeo(R,+∞) generated

by Aff+ ∪ Exp. From the universal property of the HNN extensions,
we know that there is an unique morphism

φ : Aff+?θ −→ GAff+,Exp

which is the identity when restricted to Aff+ and which maps the stable
letter to the exponential map.

We claim that GAff+,Exp contains no other relations besides the one
expressing that exp conjugates T to S+. In other words,

Theorem 1.14. φ : Aff+?θ → GAff+,Exp is an isomorphism.

Remark 1.15. Based on the above result, we can obtain a quite eco-
nomic presentation for the group GAff+,Exp, namely

GAff+,Exp =
〈
R, k

∣∣ (kak−1)b(kak−1)−1 = exp(a)b, ∀a, b ∈ R
〉

where R is equipped with its usual additive group structure. For in-
stance, the multiplicative structure of S+ is easily obtained by defining
sexp(a) := kak−1.

As another consequence, we obtain a large collection of (apparently
new) free subgroups inside Homeo(R,+∞). Indeed, consider the family
of subgroups {Tn}n∈Z∗ ⊂ Homeo(R,+∞) given by

T0 = T, Tn = θn(T0) = enT0e
−n, ∀n ∈ Z∗

where, for n > 0 (resp. n < 0), en denotes the n-fold composition of e
(resp. e−1). Notice that S+ = T1. We define

An = θn(Aff+) = Tn o Tn+1, ∀n ∈ Z

where Tn+1 acts on Tn by conjugation (exactly as S+ acts on T ).

Corollary 1.16. The subgroup of GAff+,Exp generated by
⋃
n∈Z An

is isomorphic to the infinite free amalgamated product given by the
following diagram

· · · Aff+ Aff+ Aff+ · · ·

T T T T
id id id idθ θ θ θ
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where the north-east and north-west arrows are respectively the identity
inclusions and the monomorphism S+ = θ(T ).

In [12], Glass attributes to Higman the following question:

Do T and Pow+ = {x 7→ xr : r ∈ R>0} generate their free product?

The above Corollary allows us to answer this question affirmatively.
Indeed, as A1 = S+ o Pow+, the above diagram shows that the sub-
group GAff+,Pow+ of Homeo(R,+∞) generated by T ∪ S+ ∪ Pow+ has
the presentation

GAff+,Pow+ =
(
T o S+

)
?
S+

(
S+ o Pow+

)
where the amalgam is obviously made over S+.

1.5 Transseries and a finitary version of Lemme 1

We follow the notation from [9]. Let T = R [[[x]]] be the real ordered
field of well-based transseries and P ⊂ T be the subset large positive
transseries. Then, P is a group under the composition operation and
there is a injective homomorphism

T : GAff+,Exp →P

which associates to each element g ∈ GAff+,Exp its transseries at infin-
ity. Indeed, each germ in GAff+,Exp defines element in the Hardy field
H(Ran,exp) (see e.g.[26]), and therefore this homomorphism is a direct
consequence of the embedding of H(Ran,exp) into T (see [26], Corollary
3.12).

In this subsection, we shall be concerned with the following prop-
erty (see e.g. [6], [13]):

Definition 1.17. Given an element φ ∈ P and a subgroup H ⊂ P,
we shall say that H and φ are immiscible if the subgroup generated by
H ∪ φHφ−1 is isomorphic to the free product H ?H.

For each integer k ≥ 1, let Gk ⊂P denote the subgroup real formal
series at +∞ which are tangent to identity to order k, i.e. the group
of transseries of the form

x 7→ x+
∑
j≥k−1

bjx
−j , with bj ∈ R

The following problem is stated in [7] (see also [6], section 1.4):
Immiscibility problem: Prove that G2 and φ are immiscible in the
following cases:

φ : x 7→ exp(x), φ : x 7→ x+ ln(x), or φ : x 7→ xλ,

where λ ∈ R>0 \ Q>0.
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Remarks 1.18. (1) The immiscibility problem naturally appears in
the study of the Poincaré first return map in the vicinity of an ele-
mentary polycycle. Such study is an essential ingredient in the proofs
of the Finiteness Theorem of limit cycles for polynomial vector fields
in the plane (see in [6] and [13]). According to the strategy sketched
in [7] and [8], one expects that a positive answer to the immiscibility
problem would allow to significantly simplify these proofs.
(2) The immiscibility problem has an obvious negative answer if G2

is replaced by G1. Indeed, given an arbitrary non-identity element
f ∈ G1 and an scalar a ∈ R∗, consider the series

g = sexp(a)fsexp(−a)

which is also an element of G1. Then, using the identity eta = sexp(a)e
one can rewrite

g = etae
−1fet−ae

−1

Since the translation ta is an element of G1, one obtains the following
relation in the subgroup generated by G1 ∪ eG1e

−1:

etae
−1fet−ae

−1 = sexp(a)fsexp(−a),

which shows that this subgroup is not isomorphic to the free product
G1 ? G1.

Notice that an element f ∈ Gk can be written as the limit of a
(Krull convergent) sequence {fn}n≥k ⊂P given by

f0 = 1, fn = T
(
exp(anw−n)

)
fn−1, where w−n = x−n

(
x
∂

∂x

)
with constants an ∈ R uniquely determined by f and the flow maps
exp(anw−n) being given by Example 1.9.

This motivates us to consider the subgroup Gk,finite ⊂ Gk of those
elements f which can be expressed as finite words, namely

f = T
(

exp(a1w−k1) · · · exp(anw−kn)
)

for some n ≥ 0, ai ∈ R and ki ∈ Z≥k. Notice that each Gk,finite is
indeed defined by an analytic function in a neighborhood of infinity
and lies in the image of the morphism T considered above. It also lies
in the Hardy field H(Ran,exp) (cf. [26], section 3.11).

In order to formulate our next result, let Λ be the subset of all
non-identity elements g ∈ GAff+,Exp of the form

g = g1 · · · gn

for some n ≥ 1 and gi ∈ {e, l}∪{pr : r ∈ R>0\Q>0}. As a consequence
of the previous Theorem and the Normal form Theorem, we obtain the
following finitary immiscibility property:
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Theorem 1.19. Let g be an arbitrary element in Λ. Then, G2,finite

and φ = T (g) are immiscible.

Remarks 1.20. (1) Notice that the result includes the case where g
is given by towers of exponentials and powers, such as

g : x→ ee
xr

, r ∈ R>0 \ Q>0

However, it does not include the so-called inverse log-Lambert map,

L : x 7→ x+ ln(x)

which is a solution of the differential equation( x

1 + x

d

dx

)
L = 1.

The map L plays an important role in proof of the finiteness of limit
cycles. Indeed, it constitutes one of the building blocks in the con-
struction of the Dulac transition map near a hyperbolic saddle or a
saddle-node. We believe that it is possible to adapt our proof to in-
clude this function in the statement of the above Theorem.
(2) The passage from G2,finite to G2 in the immiscibility problem seems
to be outside the reach of the tools developed in this paper. A possible
strategy of proof could consist in appropriately identifying G2 to some
subset of ends in the Bass-Serre tree defined by the HNN-extension
Aff+?θ.
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2 Formal Theory in GPSL(2,C),Exp

In this section, we will start our proof of the Main Theorem. As a first
step, we recall some basic universal constructions in groupoid theory,
following closely [4].

2.1 Free product and quotient of groupoids

Let G and H be groupoids, and let j1 : G → K, j2 : H → K be
morphisms of groupoids. We say that these morphisms present K
as the free product of G and H if the following universal property is
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satisfied: if g : G → L and h : H → L are morphisms of groupoids
which agree on Obj(G) ∩ Obj(H ) then there is a unique morphism
k : K → L such that kj1 = g, kj2 = h. Such free product always exists
(see [4], section 8.1) and will be noted G ∗ H .

If the groupoids G and H have no common morphism except the
identity, the elements of G ∗ H are can be identified with the set of
paths

[g1, g2, . . . , gn]

which are either equal to [1] or where each gi belongs to either G or H ,
no gi is the identity, and gi, gi+1 do not belong to the same groupoid.

We now recall the construction of the quotient of a groupoid by a
set of relations. In a groupoid G , suppose given, for each object p, a set
R(p) of elements of G(p) (the vertex group at p). The disjoint union
R of the R(p) is called a set of relations in G . We define the normal
closure N = N (R) of R as the following subgroupoid: Given an object
x ∈ Obj(G), a consequence of R at x is either the identity at x or any
morphism of the form

a−1
n ρnan · · · a−1

1 ρ1a1

for which ai ∈ G(x, xi) and ρi, or ρ−1
i , is an element of R(xi). The set

of all consequences at a point x, which we note N (x), is a subgroup
of G(x) and the disjoint union N of all N (x) has the structure of
a totally disconnected normal subgroupoid of G (see [4], section 8.3),
where by totally disconnected groupoid we mean a groupoid where each
morphism have its source equal to its target. It can be shown that N
is the smallest wide normal groupoid of G which contains R.

Let G/N (R) be the quotient groupoid (see [4], Theorem 8.3.1). The
projection π : G → G/N (R) has the following universal property: for
each morphism of groupoids f : G → H which annihilates R, there
exists a unique morphism f ′ : G/N (R)→ H such that f = f ′π.

2.2 Product normal form in GPSL(2,C) ∗ ΓGExp

The essence of our Normal Form Theorem is to present GPSL(2,C),Exp

as the quotient of a free product of groupoids by some explicit set of
relations. For this, we consider the groupoids

GPSL(2,C) = Germ(PSL(2,C)), GExp = Germ({exp})

and let ΓGExp denote the free groupoid on the graph of GExp, i.e. the
groupoid defined by the set of reduced paths on GExp (see subsec-
tion 1.1). Let F = GPSL(2,C) ∗ ΓGExp be the free product of these
groupoids.

A first necessary step to obtain a normal form in F is to describe
the normal forms in GPSL(2,C) and ΓGExp. We need two preparatory
Lemmas:
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Lemma 2.1. Each element g ∈ PSL(2,C) can be written as one of the
following expressions

g = sαtawtb or g = sαtb

for some uniquely determined constants α ∈ C∗ and a, b ∈ C. More-
over, if we consider the region Ω ⊂ C given by

Ω = {α : Re(α) > 0} ∪ {α : Re(α) = 0, Im(α) > 0},

(see Figure 1, at the Introduction), the following holds:

(i) Each right coset of H0 = T o {s−1} in PSL(2,C) contains an
unique element of the form

g = sρwtb, or g = sρ

for some constants b ∈ C and ρ ∈ Ω.

(ii) Each right coset of H1 = So{w} in PSL(2,C) contains an unique
element of the form

g = tawtb, g = tcw, or g = tb

for some constants c ∈ C \ {0}, b ∈ C and a ∈ Ω such that
b 6= −1/a.

Proof. The first part of the Lemma follows from the well-known pre-
sentation of PSL(2,C) (see e.g.[14], XI,§2). In particular, we recall the
following relation in PSL(2,C),

1

a+ 1
z

= − 1

a2

(
−a+

1

z + 1
a

)
, ∀a ∈ C \ {0}, z ∈ C,

or, equivalently,
wtaw = s−1/a2t−awt1/a.

Now, in order to prove items (i) and (ii), it suffices to study the or-
bit of sαtb and sαtawtb under the left multiplication by H0 and H1,
respectively.

For instance, given sαtawtb ∈ PSL(2,C) such that a 6= 0, the above
relation in PSL(2,C) allows us to write

sαtawtb ≡ (s−a2sαw) sαtawtb ≡ s−a2wtawtb ≡ t−awtb+1/a

where ≡ denotes the equivalence in H1\PSL(2,C). Therefore, the coset
H1sαtawtb contains either an element of the form tawtb with a ∈ Ω
and b 6= −1/a or an element of the form tcw, with c 6= 0. �
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To state the next result, we introduce the symbols

lk : z 7→ lnk(z), ∀k ∈ Z

where, we recall, lnk denotes the kth branch of the logarithm. Notice
that l0 = l.

Lemma 2.2. Each element in ΓGExp is either the identity 1 or a path
of the form

[lk1 , . . . , lkn , e, · · · , e︸ ︷︷ ︸
s-times

]

for some positive integers n, s, not both zero, and integers k1, . . . , kn ∈
Z such that the rightmost germ lkn and the leftmost germ e in the path
are not mutually inverses.

Proof. Each germ g ∈ GExp is defined by a path

[g1, g2, . . . , gm]

where each gi is either equal to e or to lk for some k ∈ Z. We trans-
form this path to a reduced one by successively canceling out each two
consecutive germs gi, gi+1 such that gigi+1 = 1.

Recall now the following (unique) two relations in GExp (see the
discussion at the Introduction),

(1) elk = 1 and (2) lke = 1, if s(e) ∈ Jk,

for all k ∈ Z. Therefore, after performing all possible cancellations in
the above path, we either obtain the identity path, or a path as above
such that no germ lk has a germ e to its left; and furthermore, that no
consecutive germs lk, e are mutually inverse. This is precisely a path
of the form in the statement of the Lemma. �

We now consider normal forms inside the free product groupoid
F = GPSL(2,C) ∗ ΓGExp.

Definition 2.3. A product normal form in F is a path of the form

g = [g0, h1, f1, g1, . . . , hn, fn, gn]

for some n ≥ 0, such that the following holds:

• The germ g0 lies in GPSL(2,C) (with possibly g0 = 1).

• For 1 ≤ i ≤ n, hi is either equal to e or to lk, for some k ∈ Z.

• If hi = e then fi ∈ H0 and gi is given by item (i) of Lemma 2.1.

• If hi = lk then fi ∈ H1 and gi is given by item (ii) of Lemma 2.1.

• There are no subpaths [lk,1,1, e] or [e,1,1, lk] such that the
germs lk and e are mutually inverse.
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We denote by PNF the set of all product normal forms.

As a consequence of the definition of F and the previous two Lem-
mas, we obtain the following

Proposition 2.4. Each morphism of F can be uniquely defined by an
element of PNF.

Proof. By the definition of a free product, each non-identity element
g ∈ F can be uniquely identified with a path

g = [g1, g2, . . . , gn]

such that the following conditions hold:

• gi ∈ GPSL(2,C) ∪ ΓGExp, for i = 1, . . . , n;

• no two consecutive morphisms gi, gi+1 belong to the same groupoid.

• No gi is the identity morphism.

Given such a path, we can uniquely obtain a path in PNF. Indeed,
proceeding from left to right, for i = 1, . . . , n, we do the following:

(1) If gi ∈ ΓGExp then, we use Lemma 2.2 to write

gi = [lk1 , . . . , lkn , e, . . . , e]

and, in the expression of g, we replace gi by the subpath

[lk1 ,1,1, lk2 , . . . , lkn ,1,1, e,1,1, . . . , e]

(2) If i ≥ 1, gi belongs to GPSL(2,C) and gi−1 has a e as its last symbol
then we use Lemma 2.1 to write

gi = f g′, for some f ∈ H0, and g′ given by Lemma 2.1.(i)

and we replace gi by the subpath [f, g′] in the expression of g.

(3) If i ≥ 1, gi belongs to GPSL(2,C) and gi−1 has a lk as its last
symbol then we use Lemma 2.1 to write

gi = f g′, for some f ∈ H1, and g′ given by Lemma 2.1.(ii)

and we replace gi by the subpath [f, g′] in the expression of g.

This concludes the proof. �

Remark 2.5. Recall that the subgroup of translations by 2πiZ lies
in the intersection GExp ∩ GPSL(2,C). Therefore, the normal forms in
the free product groupoid GPSL(2,C) ∗ GExp are more subtle to describe
than those in F .
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Let now NF be the set of normal form paths defined in Remark 1.2
of the Introduction. Clearly, there is a natural embedding of NF into
PNF given by

[g0, h1, g1, . . . , hn, gn] ∈ NF −→ [g0, h1,1, g1, . . . , hn,1, gn] ∈ PNF

To simplify the notation, we will keep the symbol NF to denote the
image of this embedding.

2.3 Quotienting GPSL(2,C) ∗ ΓGExp

Now, we consider the following collection Rel of relations in F

Rel


le = t−2πir, if s(e) ∈ Jr.
es−1 = we

eta = sexp(a)e, ∀a ∈ C.

where l = l0 is the 0th branch of the logarithm. Notice that, for
simplicity, we have written these relations in the form of an equality of
germs w = u, but this should be understood as saying that w composed
with the inverse of u is a relation (in the sense of subsection 2.1) at
every point where the corresponding germs are defined.

Let F/N (Rel) denote the quotient groupoid, as defined in the pre-
vious subsection, and let

π : F −→ F/N (Rel)

be the canonical morphism. The following Theorem will be proved in
the next subsection.

Theorem 2.6. Each element in the quotient F /N (Rel) is uniquely
defined by a normal form in NF.

We now observe that, by construction and the universal property
of F , there is an uniquely defined groupoid epimorphism

φ : F → GPSL(2,C),Exp

which is induced by the inclusion morphisms GPSL(2,C) → GPSL(2,C),Exp

and GExp → GPSL(2,C),Exp.
Using the obvious relations between the exponential, the affine

maps and the involution, we conclude that this morphism factors out
through the canonical morphism π : F → F /N (Rel), i.e. we have a
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commutative diagram

F GPSL(2,C),Exp

F /N (Rel)

π

φ

ϕ

for an uniquely defined morphism ϕ : F /N (Rel) → GPSL(2,C),Exp. As
an immediate consequence of this discussion and Theorem 2.6, we ob-
tain

Corollary 2.7. The first statement of the Main Theorem is true.

2.4 Reduction to normal forms in F /N (Rel)

This subsection is devoted to the proof of Theorem 2.6. For this, we
briefly recall the basic concepts of reduction systems (see e.g. [3]). An
abstract reduction system is a pair (X,→) where the reduction → is a
binary relation on the set X. Traditionally, we write x→ y (or y ← x)

instead of (x, y) ∈→. The binary relation
∗→ is the reflexive transitive

closure of →. In other words, x
∗→ y if and only if there is x0, . . . , xn

such that x = x0 → x1 → · · · → xn = y. The binary relation
∗↔ is

the reflexive transitive symmetric closure of →. Equivalently, x
∗↔ y if

and only if there are z1, . . . , zn ∈ X such that

x↔ z1 ↔ z2 · · · ↔ zn ↔ y

where ↔=← ∪ →. We also say that:

• x ∈ X is reducible if there is a y ∈ X such that x→ y.

• x ∈ X is in normal form if it is not reducible.

• x ∈ X is a normal form of y ∈ X if y
∗→ x and x is a normal

form.

• x, y ∈ X are joinable if there is a z ∈ X such that x
∗→ z

∗← y.

A reduction system (X,→) is called terminating if there is no infinite
descending chain x0 → x1 → · · · . In this case, each element x has at
least one normal form. A reduction system (X,→) is called confluent

if y1
∗← x

∗→ y2, implies that the elements y1 and y2 are joinable. We
say that (X,→) is Church-Rosser if x

∗↔ y implies that x and y are
joinable. These two properties are usually pictured by the following

23



respective diagrams

x y1

y2 z

∗

∗

∗
∗

x y

z

∗

∗ ∗

We shall use the following consequences of the definitions:

(i) if (X,→) is terminating and confluent then every element has a
unique normal form (see [3], Lemma 2.1.8).

(ii) The Church-Rosser and the confluent properties are equivalent
(see [3], Theorem 2.1.5).

We are going to apply this formalism to the set X = PNF of product
normal forms (see definition 2.3). In order to simplify the notation, in
the remaining of this subsection, we shall identify a path [f1, . . . , fn]
with a word f1f2 · · · fn in the letters f1, . . . , fn. We stress that the
formal word f1f2 · · · fn should not be confounded with the element of
the groupoid GPSL(2,C),Exp defined by the corresponding path. The
letter l0 will be written simply l. Moreover, the identity path [1] will
be identified with the empty word ε. Thus, for instance, the path
[e,1,1, e] will be written simply as ee.

First of all, we introduce the following reduction rules (recall that
both sides of the ⇒ relation should be seen as paths in F ):

lk ⇒ t2πikl, ∀k ∈ Z∗

el⇒ ε,

le⇒ t−2πir, if s(e) ∈ Jr
es−1 ⇒ we,

eta ⇒ sexp(a)e, ∀a ∈ C.

lw ⇒ s−1l if arg0(s(w)) 6= π

lw ⇒ t2πis−1l if arg0(s(w)) = π

lsα ⇒ tbl, , ∀α ∈ C∗

where, in this last rule, we define b ∈ C as follows:

b =


ln0(α), if −π < arg0(α) + arg0(s(sα)) ≤ π
ln−1(α), if π < arg0(α) + arg0(s(sα)) ≤ 2π

ln1(α), if −2π < arg0(α) + arg0(s(sα)) ≤ −π

The reduction system (PNF,→) is now defined as follows: Given g, h ∈
PNF, we say that g → h if there exists some reduction rule u ⇒ v as
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above such that one can write

g = g′ug′′, for some g′, g′′ ∈ PNF,

and h ∈ PNF is the product normal form of the path g′vg′′.

Remark 2.8. Notice that the simple substitution g′ug′′ → g′vg′′

would not map PNF into itself. For instance, if b = ln0(−2) then
applying the fifth substitution rule to g = etaetb, one would obtain
etas−2e, which is not in PNF, since tas−2 should be decomposed in
H0T0 as (tas−1)s2.

Proposition 2.9. The reduction system (PNF,→) is terminating and
confluent. Moreover, the set of normal forms of (PNF,→) is precisely
the subset NF.

Proof. We claim that there can be no infinite sequence of reductions.
To prove this, we define a well-order on PNF which will decrease after
each reduction.

First of all, recall that a germ f ∈ H0 ∪H1 is either the identity or
can be uniquely expressed as follows:

(a) In H0: f = tas−1, f = ta or f = s−1, for some a ∈ C \ {0},
(b) In H1: f = sαw, f = sα, or f = w, for some α ∈ C∗ \ {1}.

Accordingly, we define the h-length lh(f) ∈ {0, 1, 2} by

lh(f) = 2 if f ∈ {tas−1, sαw}, lh(f) = 1 if f ∈ {ta, sα, s−1,w},

and we put lh(f) = 0 if f = 1.
Consider now a path g = g0h1f1g1 · · ·hnfngn in PNF. We define,

its h-length as the integer n-vector

lh(g) = (lh(fn), lh(fn−1), . . . , lh(f1)) ∈ {0, 1, 2}n

We further define m(g) to be the total number of germs of type lk, for
k ∈ Z∗, and n(g) to be the total number of germs of type e or l in the
expression of g.

Finally, we define a total order in PNF by saying that g < g′ if

(m(g), n(g), lh(g)) <lex (m(g′), n(g′), ln(g′)),

where <lex is the lexicographical ordering in the set of positive integer
vectors.

By inspecting the rules in Rel, one sees that if g′ → g then g < g′.
Moreover, a path g ∈ PNF is not reducible if and only if the following
holds

• m(g) = 0,
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• lh(g) = (0, . . . , 0) and,

• g contains no subpath of the form el or le.

According to Definition 1.1, this corresponds precisely to say that g ∈
NF. Thus, we have proved that (PNF,→) is terminating and that its
set of normal forms is NF.

In order to prove the confluence of the reduction system, we use
Bendix-Knuth criteria as stated in [10], Lemma 6.2.4. Thus it suf-
fices to consider all shortest paths for which at least two of the above
reduction rules can be applied (i.e. they overlap) and show that the
paths obtained after applying these reductions are then joinable. For
instance, one sees that

ele et−2πir

e e

el→ ε

le→ t−2πir

∗
∗

The computation for the other possible overlaps is straightforward but
quite tedious. We omit this computation. �

We are now ready to prove Theorem 2.6:

Proof of Theorem 2.6. We need to prove that each coset of F /N (Rel)
contains exactly one element of NF. By the fact that (PNF,→) is
terminating, we know that each coset of F /N (Rel) contains at least
one element of NF.

Now, the essential remark is that the equivalence relation
∗↔ on

PNF defines precisely the cosets of the quotient groupoid F /N (Rel).
Indeed, for each relation u = v in the list Rel given at subsection 2.3,
one sees that u

∗↔ v. Reciprocally, for each reduction rule u⇒ v, one
sees that uv−1 belongs to N (Rel).

Therefore, assume that there exist two elements g, g′ in NF such
that π(g) = π(g′) (where π : F → F /N (Rel) is the quotient map).

This is equivalent to say that g
∗↔ g′. Since (PNF,→) is confluent, it

is Church-Rosser. Therefore, g
∗↔ g′ implies that g and g′ are joinable.

But since both g and g′ are normal forms (and hence not reducible),
we conclude that g = g′. �

Remark 2.10. (Word problem and decidability) One could ask if the
reduction system (PNF,→) would allow us to algorithmically solve the
word problem in F /N (Rel). Equivalently, one asks if, given an element
g ∈ PNF, there exists an algorithm to decide if

g
∗→ 1.
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Notice that the reduction rules in (PNF,→) assume the existence of an
oracle which, given a complex constant α ∈ C, will answer affirmatively
or negatively to the question

Is α = 0 ?

Even assuming that the constants appearing in the initial path g are,
say, rational numbers, this oracle will eventually need to test new con-
stants which are exp-log expressions in these initial constants, such
as

ee
e2 log(3/4)

+e−3ee
10

− ee
e2 ln 5

− ln(ln(3/2)).

The existence of an algorithm for the above oracle is strongly re-
lated to the decidability of (R, exp) and the known algorithms assume
Schanuel’s conjecture.

On the positive side, using the results of [22] and [25] (see also
[17], section 2.1), one can prove the following: Assuming Schanuel’s
conjecture, the word problem is decidable for the groupoid

FQ/N (Rel)

where FQ denotes the free product groupoid GPSL(2,Q) ∗ ΓGexp.

3 From normal forms to field extensions

Our present goal is to prove the second part of the Main Theorem.
Many of the following constructions will be carried out for arbitrary
normal forms, not necessarily satisfying the tameness property. We
shall explicitly indicate the points where this assumption will be nec-
essary.

Given a point p ∈ P1(C), we denote by (M, ∂) the differential
field of meromorphic germs at p equipped with the usual derivation
∂ = d/dz with respect to some arbitrary local coordinate z at p (with
constant subfield Const(∂) = C).

Given a normal form g ∈ NF, with source point p = s(g), our next
goal is to construct a sequence of field extensions in M which will
encode the necessary information to study the identity

ϕ(g) = id.

wher, we recall that ϕ : NF → GPSL(2,C),Exp is the mapping which
associates a germ in GPSL(2,C),Exp to each path in NF.
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3.1 Algebraic paths and Cohen field

In this subsection, we consider field extensions defined by algebraic
paths. Let a ∈ NF be an algebraic path of length n ≥ 0. Thus, we can
uniquely write

a = θ0 pα1
θ1 · · · pαnθn,

where each exponent αi lie in Ω∩Q\{1}, θ0 ∈ PSL(2,C), θi ∈ T1 \{1},
for 1 ≤ i ≤ n and θ1, . . . , θn−1 are not the identity.

We consider the sequence of algebraic field extensions in M

En ⊂ En−1 ⊂ · · · ⊂ E0 = E

inductively defined as follows. Firstly, En = C(xn) is the field defined
by the identity germ xn = ϕ(1). Then, for each i = 0, . . . , n − 1, we
define

Ei = Ei+1(xi)

where xi is a germ of solution of the algebraic equation

xvi = θ(xi+1)u

where we have written θ = θi+1 and αi+1 = u/v for some co-prime
integers u, v. Here, the branch of the vth-root is uniquely chosen ac-
cordingly to the source/target compatibility condition determined by
a. We will say that the resulting field

E = C(x0, . . . , xn)

is the Cohen field of a.
In the seminal paper [5], Cohen has studied the Cohen field for

algebraic normal forms of affine type. In what follows, we shall make
essential use of the following immediate consequence of a result in [5].

Theorem 3.1 (cf. [5],Theorem 3.2). Assume that a is an algebraic
normal form of affine type and length n ≥ 0, with associated Cohen
field E = C(x0, . . . , xn). Then, we can write

E = C(x0, xn)

i.e. x1, . . . , xn−1 are rational functions of x0 and xn. Moreover, if a is
not a rational path (2) then E is a strict algebraic extension of C(xn).

Notice that the second statement of the Theorem does not hold if
a is not of affine type.

2Recall (see the Introduction) that an algebraic path is called rational if each power
map in its basic decomposition has a exponent in Ω ∩ Z.
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Example 3.2. Consider the algebraic normal form

a = p1/2t−1/4 p2 θ p2

where θ is a Möebius map such that θ(0) = −1/2 and θ(∞) = 1/2.
Then, we can write Ea = C(x, y, z) where x, y, z satisfy the relations

z2 = − x2

(x2 + 1)2
and y = z2.

Obviously, C(x, z) is not a strict algebraic extension of C(x).

From now on, the elements y = xn and z = θ0(x0) (where θ0 is the
Möebius part of a) will be called, respectively, the tail and the head
elements of the Cohen field of a.

Corollary 3.3. Assume that a is a non-identity algebraic normal form
of affine type, with Cohen field E. Then, the head and tail elements
z, y ∈ E cannot satisfy the relation

y

z
= 1.

Proof. We consider the following three possible cases:

(i) a is not a rational path.

(ii) a is a rational path of length n ≥ 1.

(iii) a = θ is a Möebius map.

In the case (i), the result is an immediate consequence of Theorem 3.1.
In case (ii), we write the the decomposition of a as

a = θ0 pu1
θ1 · · · pun θn

for some integers u1, . . . , un ∈ Ω ∩ Z. It follows that E is the func-
tion field of an algebraic curve C ⊂ (P1(C))n+1 which defined by the
vanishing of the ideal n ⊂ C[X0, . . . , Xn] generated by the equations

xn−1 = θn(xn)un , . . . , x0 = θ1(x1)u1 .

(after appropriately eliminating the denominators in the expression of
the Möebius maps). In particular, the rational map y = xn defines
a degree 1 unbranched covering C → P1(C) while the rational map
z = θ(x0) defines a branched covering C → P1(C) of degree u =
|u1 · · ·un| ≥ 2. Therefore, y/z is a non-constant rational map on C.

Finally, in the case (iii), we have the identity x0 = xn = y. There-
fore we can write

z

y
=
θ(y)

y

and the right hand side is non-constant because θ 6= 1. This concludes
the proof. �

Remark 3.4. The Example 1.4 shows that Corollary 3.3 is false if we
drop the condition that a is of affine type.
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3.2 The field associated to g ∈ NF

We will now generalize the construction of the previous section to arbi-
trary normal forms. Assume that g ∈ NF has an algebro-transcendental
decomposition

g = a0 γ1 a1 · · · γm am, m ≥ 0

Then, we inductively construct a chain of subfields in M,

Lm ⊂ Fm ⊂ · · · ⊂ L0 ⊂ F0 = F.

as follows. Firstly, we define Lm = C(ym) to be the field defined over
C by the identity germ ym = ϕ(1). Then, we put:

(1) Fi = Li(zi), where zi ∈M is the germ defined

zi = ϕ
(
ai γi+1 ai+1 · · · γm am

)
, i = 0, . . . ,m

(2) Li = Fi+1(yi), where yi ∈M is the germ defined

yi = ϕ
(
γi+1 ai+1 · · · γm am

)
, i = 0, . . . ,m− 1

We will say that F = C(y0, z0, . . . , ym, zm) is the field associated to g.
Notice that each field extension Fi+1 ⊂ Li (described in item (2))

is obtained by adjoining to Fi+1 a (germ of) nonzero solution y to one
of the following differential equations

∂(y)

y
= ∂(z), ∂(y) =

∂(z)

z
or

∂(y)

y
= α

∂(z)

z

where we have written write z = zi+1. These equations correspond
respectively to the case where γi+1 is given by e, l or pα, for some
α ∈ Ω \ Q.

On the other hand, each extension Li ⊂ Fi (described in item (1))
is algebraic, obtained by adjoining a germ of solution zi of a polynomial
equation with coefficients in C(yi).

More precisely, if we consider the Cohen field E associated to the
maximal algebraic path ai (as defined in subsection 3.1), and write
E = C(x0, . . . , xn), then we can embed C(yi, zi) into E by setting

y = xn, and z = θ0(x0).

In particular, the first part of Theorem 3.1 can be reformulated as
follows: If g = a is an algebraic path of affine type then the fields F
and E coincide.

Remark 3.5. It follows from the above discussion that the differential
field (F, ∂) associated to a normal form is a Liouvillian extension of
(C(x), ∂) (see [27], section 1.5). Furthermore, one always have

trdegC F ≤ m+ 1

where m = height(g).
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The second part of the Main Theorem will be a direct consequence
of Corollary 3.3 and the following result.

Theorem 3.6. Let g ∈ NFtame be a tame normal form of height m ≥ 1
and associated field F = C(y0, z0, . . . , ym, zm). Then

trdegC F = m+ 1.

Moreover, {y0, . . . , ym} forms a transcendence basis for F/C.

3.3 Three Lemmas on twisted equations

The proof of Theorem 3.6 uses induction on the height of a normal form
and is essentially based on the three Lemmas stated below, which treat
special types of differential equation in (F, ∂). For future reference, the
equations (1), (2) and (3) below will be called, respectively, the first,
second and third twisted equations.

To fix the notation, we consider a tame normal form g ∈ NFtame of
height m ≥ 0 with algebro-transcendental decomposition

g = a0 γ1 a1 · · · γm am, m ≥ 0

and associated differential field F = C(y0, z0, . . . , ym, zm) (equipped
with the usual derivation ∂ = d/dz induced from M).

In the following statements, we use the following definition. Given
a germ γ ∈ {e, l,pα : α ∈ Ω \ Q}, the γ-augmention of g (or, shortly,
the γ-augmented path) is the path

gaug = γ a0 γ1 a1 · · · γn an

obtained by adjoining γ to the left of g (with the obvious compatibility
condition that the source of the germ γ coincides with the target of
the germ θ0).

Note that gaug is not necessarily in normal form. We will say that
gaug is a nice augmentation of g if gaug lies in NFtame and moreover
the right hand side of the above displayed equation is precisely the
algebro-transcendental decomposition of gaug.

Lemma 3.7. Assume {y0, . . . , ym} is a transcendence basis for F/C
and suppose that the e-augmented path

gaug = e θ0 γ1 θ1 · · · γn θn

is a nice augmentation of g. Let f ∈ F be a nonzero solution of the
equation (

∂ − µ∂(z0)
)
f = 0 (1)

for some µ ∈ C. Then, necessarily µ = 0 and f ∈ C.
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Lemma 3.8. Assume {y0, . . . , ym} is a transcendence basis for F/C
and suppose that the p-augmented path

gaug = pα θ0 γ1 θ1 · · · γn θn, for some α ∈ Ω \ {1}

is a nice augmentation of g. Let f ∈ F be a nonzero solution of the
equation (

∂ − µ∂(z0)

z0

)
f = 0 (2)

for some µ ∈ C \ Q∗. Then, µ = 0 and f ∈ C.

Lemma 3.9. Assume {y0, . . . , ym} is a transcendence basis for F/C
and suppose that the l-augmented path

gaug = l θ0 γ1 θ1 · · · γn θn

is a nice augmentation of g. Let f ∈ F be a nonzero solution of the
equation

∂f = c
∂
(
z0

)
z0

(3)

for some c ∈ C. Then, necessarily c = 0 and f ∈ C.

We postpone the proofs of these Lemmas to the subsection 3.7.

3.4 The proof of Theorem 3.6

Let us see how the previous results imply the Theorem 3.6.

Proof of Theorem 3.6. As we said above, the proof is by induction
in m = height(g). Therefore, we start with the case m = 0. By
definition, g = a is an algebraic path of affine type, and the associated
field K = C(y, z) has transcendency degree one over C.

Now, given m ≥ 0, we assume by induction that all tame normal
forms of height ≤ m satisfy the conclusions of the Theorem. Let h ∈
NFtame be a normal form of height m + 1. Then, we can write the
decomposition

h = a0 γ0 g

for some algebraic path a0 ∈ PSL(2,C), a germ γ0 ∈ {e, l,pα : α ∈
Ω \ Q}. Further,

g = a1 γ2 θ2 · · · γn+1 θn+1

is a tame normal form of height m and the augmented path gaug = γ0g
is a nice augmentation of g (see definition at subsection 3.3).

Let us denote by F and F ′ the differential fields associated to g
and h, and write

F = C(y1, z1, . . . , ym+1, zm+1), F ′ = C(y0, z0, . . . , ym+1, zm+1).
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Recall that, by construction, z0 is algebraic over C(y0). Therefore,
to prove the induction step, it suffices to show that the element y0 is
transcendental over F . To simplify the notation, from now on we will
write y = y0 and z = z1.

Let us assume for a contradiction, that y is algebraic over F . We
choose a minimal polynomial f ∈ F [X] for y, say

f = f0 + · · ·+ fd−1X
d−1 +Xd, fk ∈ F,

where we can assume that d ≥ 1 and that f0 is nonzero. We discuss
separately the cases where γ0 = e (extension of exp type), γ0 = l
(extension of log type) and γ0 = pα (extension of power type).

Suppose that the extension F ⊂ F ′ is of exp type. Recalling that
y satisfies the equation ∂(y) = y∂(z), it follows from the equation
∂(f(y)) = 0 that the polynomial

p = ∂(f0) + · · ·+
(
∂(fd−1) + (d− 1)∂(z)fd−1

)
Xd−1 + d∂(z)Xd

vanishes on y. As a consequence, the polynomial of degree at most
d − 1 given by q = p − d∂(z)f also vanishes y. By the minimality of
f , this polynomial must vanish identically. This is equivalent to the
collection of equations(

∂ − (k − d)∂(z)
)
fk = 0, k = 0, . . . , d− 1.

We claim that this implies d = 0, which contradicts the definition of
f .

Indeed, assume for a contradiction that d ≥ 1. Then, we are pre-
cisely in the hypothesis of Lemma 3.7, i.e. each fk satisfies the first
twisted equation with µ = (k − d). In particular, for k = 0, one has(

∂ − d∂(θ(x))
)
f0 = 0

and the Lemma implies that f0 = 0, which is absurd.
Assume now that the extension F ⊂ F ′ is of power type. Then, it

follows from the relation ∂(y) = α y ∂
(
z
)
/z that the polynomial

p = ∂(f0) + · · ·+
(
∂(fd−1) + α(d− 1)

∂(z)

z
fd−1

)
Xd−1 + αd

∂(z)

z
Xd

also vanishes on y. Hence, by the minimality of d, the polynomial

q = p− αd∂(z)

z
f

must vanish identically. This corresponds to the collection of equations(
∂ − α(d− k)

∂(z)

z

)
fk = 0, k = 0, . . . , d− 1.
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We claim that this set of equations has no solution if d ≥ 1. Indeed,
in this case, each one of the above equation corresponds to a twisted
equation as described in Lemma 3.8 with µ = α(d − k) ∈ C \ Q. In
particular, for k = 0, we conclude from that Lemma that f0 = 0, which
is absurd.

Finally, in case where the extension F ⊂ F ′ is of log type, we have

∂(y) =
∂(z)

z
.

Hence, the polynomial of degree at most d− 1 given by

q =
(
∂(f0) +

∂(z)

z
f1

)
+ · · ·+

(
∂(fd−1) + d

∂(z)

z

)
Xd−1

also vanishes on y. By the minimality of d, this polynomial vanishes
identically and this corresponds to say that the collection of equations

∂fk =
∂(z)

z
(k + 1)fk+1, for k = 0, . . . , d− 1

hold, where we put fd = 1. Taking k = d− 1, the rightmost equation
is exactly the twisted equation from Lemma 3.9. From the Lemma, it
follows that d = 0, which contradicts our assumption. This concludes
the proof of the Theorem. �

Remark 3.10. As some readers may have noticed, the above com-
putations are very similar to the classical computations of the Picard-
Vessiot extension K/k for the elementary linear differential equations

∂(y) = a, or ∂(y) = ay, with a ∈ k

over a given differential field (k, ∂) (see e.g. [27], examples 1.18 and
1.19). In this simple setting, the computation of the differential Galois
group of the extension K/k reduces to studying when these equations
have no solution in the base field.

3.5 Resonance relations and Ax Theorem

In this subsection, we recall some results about differential field exten-
sions and differentials forms, following closely Wilkie’s notes [29]. They
are key ingredients in proof of the celebrated Ax’s Theorem (cf. [2]).
We observe that the results described here are completely independent
of the Theorem 3.6 and Lemmas 3.7, 3.8 and 3.9.

In this subsection, k ⊆ K will denote arbitrary fields of character-
istic zero, and k will be assumed to be algebraically closed. We will
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say that elements x1, . . . , xn ∈ K satisfy a power resonance relation
(over k) if there exist integers r1, . . . , rn, not all zero, such that

n∏
i=1

xrii ∈ k.

Similarly, we will say that y1, . . . , yn ∈ K satisfy a linear resonance
relation (over k) if there exist integers r1, . . . , rn, not all zero, such
that

n∑
i=1

ri yi ∈ k.

Since k is supposed algebraically closed, we can assume in both cases
that the integers r1, . . . , rn are coprime.

We will denote by Derk(K) the set of derivations δ : K → K whose
constant subfield Const(δ) contains k. For each n ∈ N, Ωnk (K) denotes
the K-vector space of alternating, K-linear n-forms on Derk(K) and

d : Ωnk (K) −→ Ωn+1
k (K)

is the total differential map. The space Ω1
k(K) is the dual of Derk(K),

and it is usually called the space of Kähler differentials of K over k.
The space Ω0

k(K) is identified to K.
We say that a 1-form ω ∈ Ω1

k(K) is closed (resp. exact) if dω = 0
(resp. ω = du for some u ∈ K). Finally, given an intermediate field
k ⊂ K0 ⊂ K, we say that a form ω ∈ Ω1

k(K) is defined over K0 if
ω =

∑
aidbi, for some ai, bi ∈ K0.

Lemma 3.11. Suppose that K0 is a field such that k ⊂ K0 ⊂ K and
tr.deg.k(K0) = n for some n ≥ 1. Let δ ∈ Derk(K) be a derivation
such that Const(δ) = k, and suppose that

ω1, . . . , ωn ∈ Ω1
k(K)

are closed 1-forms defined over K0 satisfying ωi(δ) = 0, for i =
1, . . . , n. Then ω1, . . . , ωn are linearly dependent over k.

The above statement and its proof can be found, for instance, in
Wilkie’s notes [29], Theorem 2.

Lemma 3.12. Suppose that there exists nonzero x1, . . . , xm ∈ K and
elements e1, . . . , em ∈ k not all zero such that the differential form

m∑
i=1

ei
dxi
xi

is exact. Then, x1, . . . , xm satisfy a power resonance relation over
k. Moreover, assume that there exists a derivation δ ∈ Derk(K) and
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y1, . . . , ym ∈ K such that

Const(δ) = k, and
δ(xi)

xi
= δ(yi)

for each 1 ≤ i ≤ m. Then y1, . . . , ym satisfy a linear resonance relation
over k.

Proof. The first statement is proved in [29]. For the second statement,
it suffices to remark that if the monomial m =

∏
xrii belongs to k then

the linear form l =
∑
riyi satisfies

δ(l) =
∑

riδ(yi) =
∑

ri
δ(xi)

xi
=
δ(m)

m
= 0

which implies that l ∈ k. �

3.6 Resonances and transcendental equations

We now consider an arbitrary normal form g ∈ NF of height m ≥ 0,
with algebro-transcendental decomposition,

g = a0 γ1 a1 · · · γm am, m ≥ 0

and associated differential field (F, ∂), where we write

F = C(y0, z0, . . . , ym, zm)

as in subsection 3.2. Further, for each i = 0, . . . ,m, we denote by
Fi = C(yi, zi) the field associated to the maximal algebraic subpath
ai.

Proposition 3.13. Assume that a nonzero element f ∈ F satisfies
one of the following three equations

(1)
∂(f)

f
= ∂(z0), (2) ∂(f) =

∂(z0)

z0
or (3)

∂(f)

f
= β

∂(z0)

z0

for some β ∈ C \ Q. Then, the elements

y0, z0, . . . , ym, zm ∈ F

satisfy either a power resonant relation or a linear resonant relation
over C.

Proof. Based on the algebraic-transcendental expansion of g written
above, we consider the following subsets of {1, . . . ,m}

Ie = {j : γj = e}, Il = {j : γj = l}, and

Ip = {j : γj = pαj , for some αj ∈ Ω \ Q},
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and define a collection of closed 1-forms ω1, . . . , ωm ∈ Ω1
C(F ) as follows

ωj =


dyj−1/yj−1 − dzj , if j ∈ Ie
dyj−1 − dzj/zj , if j ∈ Il
dyj−1/yj−1 − αjdzj/zj , if j ∈ Ip

where, in this last case, αj denotes the exponent in the power map
γj = pαj . Similarly, we define the closed 1-form ω0 as

ω0 =


df/f − dz0, if f satisfies (1)

df − dz0/z0, if f satisfies (2)

df/f − βdz0/z0, if f satisfies (3)

Then, by Lemma 3.11, since ωj(∂) = 0 for all 0 ≤ j ≤ m, and
trdegC(F ) ≤ m+ 1, there exist constants c0, . . . , cm ∈ C, not all zero,
such that the relation

c0ω0 + · · ·+ cmωm = 0

holds. We consider, first of all, the case where f satisfies equation
(2). Then, by suitably regrouping the terms in the above relation, we
obtain a 1-form

c0
dz0

z0
+
∑
j∈Ie

ci
dyi−1

yi−1
+
∑
j∈Il

cj
dzj
zj

+
∑
j∈Ip

cj

(dyj−1

yj−1
+ αj

dzj
zj

)
which is exact. Therefore, we can apply Lemma 3.12 to conclude that
there exists a monomial

M = zv00

∏
j∈Ie

y
uj−1

j−1

∏
j∈Il

z
vj
j

∏
j∈Ip

y
uj−1

j−1 z
vj
j

with integer exponents not all zero, which belongs to C. This proves
the result.

We consider now the case (1). Here, we conclude from the relation∑
cjωj = 0 that the 1-form

c0
df

f
+
∑
j∈Ie

cj
dyi−1

yi−1
+
∑
j∈Il

cj
dzj
zj

+
∑
j∈Ip

cj

(dyj−1

yj−1
− αj

dzj
zj

)
is exact. Hence, applying again Lemma 3.12, we show that there exists
a monomial of the form

M = fw
∏
j∈Ie

y
uj−1

j−1

m∏
j∈Il

z
vj
j

∏
j∈Ip

y
uj−1

j−1 z
vj
j ∈ C
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(for some integers w, vj , uj , not all zero) which belong to C. Notice
that if w = 0 we are done because this would give the desired relation.
By the same reason, we would be done if c0 = 0.

Hence, from now on, we can assume that w is nonzero and that
c0 = 1. By computing the logarithmic derivative dM/M , we can write

df

f
=

m∑
j∈Ie

pj−1
dyj−1

yj−1
+

m∑
j∈Il

qj
dzj
zj

+

m∑
j∈Ip

(
pj−1

dyj−1

yj−1
+ qj

dzj
zj

)
with pj = −uj/w and qj = −vj/w being rational numbers. We can
now replace this expression for df/f in the relation

∑
cjωj = 0 and,

again by suitably regrouping the terms, conclude that the 1-form∑
j∈Ie

(cj + pj−1)
dyi−1

yi−1
+
∑
j∈Il

(cj + qj)
dzj
zj

+

∑
j∈Ip

(cj + pj−1)
dyj−1

yj−1
+ (−cjαj + qj)

dzj
zj

is exact. If at least one of the coefficients of this 1-form is nonzero
then we can apply again Lemma 3.12 in order to obtain a monomial
satisfying the conditions in the statement. So, let us assume that all
these coefficients vanish. Since αi /∈ Q for each i ∈ Ip, we conclude
that

cj = pj−1 = qj = 0, for all j ∈ Ip.

In particular, the monomial M has simply the form

M = fw
∏
j∈Ie

y
uj−1

j−1

m∏
j∈Il

z
vj
j .

If we consider the linear form

l = w z0 +
∑
j∈Ie

uj−1zj +
∑
j∈Il

vjyj−1

it is easy to see that ∂(l) = ∂(M)/M = 0. Therefore, l ∈ Const(∂) = C.
It remains to consider the case of equation (3). The treatment is

similar to the previous case. Here, we obtain a 1-form

c0

(df
f
− β dz0

z0
) +

∑
j∈Ie

ci
dyi−1

yi−1
+
∑
j∈Il

cj
dzj
zj

+
∑
j∈Ip

cj

(dyj−1

yj−1
+ αj

dzj
zj

)
which is exact, and hence there exists a monomial

M = fwzv00

∏
j∈Ie

y
uj−1

j−1

m∏
j∈Il

z
vj
j

∏
j∈Ip

y
uj−1

j−1 z
vj
j ∈ C
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(with exponents not all zero). Assuming that c0 = 1 and that w
is nonzero (otherwise we are done), we can apply exactly the same
reasoning as above to conclude that the 1-form

(q0 − β)
dz0

z0
+
∑
j∈Ie

(cj + pj−1)
dyi−1

yi−1
+
∑
j∈Il

(cj + qj)
dzj
zj

+

∑
j∈Ip

(cj + pj−1)
dyj−1

yj−1
+ (−cjαj + qj)

dzj
zj

is exact (where q0 = −v0/w). Since β /∈ Q, the coefficient in front of
dz0/z0 cannot vanish. Therefore, we can apply Lemma 3.12 in order to
obtain a monomial which satisfies the desired relation. This concludes
the proof. �

For later use, we need to establish a more precise statement about
the existence of power/linear relations in the fields F0, . . . , Fm associ-
ated to the algebraic subpaths a0, . . . , am.

Given a normal form g = a0γ1a1 · · · γmam as in the beginning of
the subsection and an equation for f ∈ F as in the statement of the
previous Proposition, we define the augmentation of g as the path

gaug = γ0 a0 γ1 · · · γm am

which is obtained by concatenating to g the symbol γ0 = e (resp. l or
pβ) if f satisfies equation (1) (resp. (2) or (3)).

Further, given an index 0 ≤ j ≤ m − 1 and two symbols γ, γ′ ∈
{e, l,p}, we will say that the algebraic subpath aj of gaug lies in a
[γ, γ′] segment if

γj = γ and γj+1 = γ′

Corollary 3.14. Assume that {y0, . . . , ym} is a transcendence basis
for F/C. Let f ∈ F be a non-zero solution of one of the equations
(1),(2) or (3) from Proposition 3.13. Then, there exists at least one
index 0 ≤ j ≤ m− 1 such that

(i) Either aj lies in a [e, l] segment and yj , zj satisfy a linear reso-
nance relation in Fj,

(ii) Or aj lies in a [l, e], [l,p], [p, e] or [p,p] segment and yj , zj
satisfy a power resonance relation in Fj.

In particular, if m = 0 then there is no nonzero element f ∈ F satis-
fying (1),(2) or (3).

Proof. The hypothesis imply that {dy0, . . . , dym} is a basis of Ω1
C(F )

and that the F -subspaces generated by Ω1
C(F0), . . . ,Ω1

C(Fm) are F -
linearly independent. Moreover, since each zj is algebraic over yj , the
1-form dzj lies in the one-dimensional F -subspace generated by dyj .

39



From the Proposition 3.13, we conclude that if a nonzero element
f ∈ F satisfies (1), (2) or (3) then either there exists a monomial
M =

∏m
j=0 z

vj
j y

uj
j or a linear form l =

∑m
j=0 vjzj + ujyj (with integers

uj , vj not all zero) which belong to C. Taking the logarithmic derivative
dM/M in the former case or the derivative dl in the later case, we
obtain

m∑
j=0

vj
zj
dzj +

uj
yj
dyj = 0, or

m∑
j=0

vjdzj + ujdyj = 0

respectively. Therefore, by the linear independency of dy0, . . . , dyn,
either

vj
zj
dzj +

uj
yj
dyj = 0 or vjdzj + ujdyj = 0 for all 0 ≤ j ≤ m. In

the former case, we conclude that d(zvjy
uj
j ) = 0, while in the latter

case d(vjzj + ujyj) = 0.
Now, to conclude the proof, it suffices to consider more carefully

the expressions of m and l obtained in the proof of the previous Propo-
sition. For instance, we consider the case where

m = zv00

∏
j∈Ie

y
uj−1

j−1

∏
j∈Il

z
vj
j

∏
j∈Ip

y
uj−1

j−1 z
vj
j ∈ C

which, by the above argument, implies a collection of power resonance
relations of the form d(z

vj
j y

uj
j ) = 0, for j = 0, . . . , n.

Notice that no relation of type d(z
vj
j ) = 0 (i.e. with uj = 0) or

d(y
uj
j ) (i.e. with vj = 0) can appear, since this would imply that zj or

yj belong to C, contradicting the fact that both yj and zj are germs of
invertible maps. Thus, there necessarily exists a monomial relation of
the form z

vj
j y

uj
j ∈ C with exponents uj , vj both nonzero. But looking

to the above expression for m, we conclude that this can only happen
in the index j is such that j ∈ Il ∪ Ip and j + 1 ∈ Ip ∪ Ie. This is
equivalent to say that aj lies in a [l, e], [l,p], [p, e] or [p,p] segment.

The other cases can be treated in an analogous way. �

3.7 Proofs of Lemmas on twisted equations

We now proceed to the proof of Lemmas 3.7, 3.8 and 3.9. We keep the
notation introduced in subsection 3.3.

Proof of Lemma 3.7. Let us assume that µ 6= 0. By contradiction, we
assume that there exists a nonzero f ∈ F such that

∂(f)

f
= ∂(z0)

Writing the algebro-transcendental decomposition of the e-augmented
path gaug as

gaug = e a0 γ1 a1 · · · γm am, m ≥ 0
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we let zj , yj denote the head and tail elements of the Cohen differential
field Ej associated to the algebraic path aj , for j = 0, . . . ,m.

Defining γ0 = e, we can now apply Corollary 3.14 to conclude that
there exists at least one index 0 ≤ j ≤ m− 1 such that

(1) Either γj = e, γj+1 = l and yj , zj satisfy a linear resonance
relation,

(2) Or γj ∈ {l,pα : α ∈ Ω \ Q}, γj+1 ∈ {e,pα : α ∈ Ω \ Q} and yj , zj
satisfy a power resonance relation.

If m = 0 we get our desired contradiction. If m ≥ 1, we will deduce
the contradiction using Corollary 3.3.

For this, we treat cases (1) and (2) separately. To simplify the
notation, we define

a = aj , y = yj and z = zj .

and write the expansion of the algebraic path a (of affine type) as

a = θ0 p1 θ1 · · · pn θn, n ≥ 0.

In the case (1), y and z satisfy a relation of the form vz + uy = c, for
some u, v ∈ Z∗ and c ∈ C. We consider then the modified algebraic
path

a∗ = normal form reduction of s−v/u t−c/v a.

Explicitly, for a given as above, we can write

a∗ = θ∗0 p1 θ1 · · · pn θn

where the Möebius part of a∗ is given by θ∗0 = s−v/u t−c/vθ0. In
particular, the assumption that a is an algebraic path of affine type
implies that the same property holds for a∗.

Now, by the definition of a∗, the head and tail elements z∗ and y∗

of the Cohen field E∗ associated to a∗ should satisfy the relation

y∗

z∗
= 1

Hence, we will obtain the desired contradiction to Corollary 3.3 once
we show that

a∗ 6= 1.

To prove that this always holds, observe that a∗ = 1 if and only if
a = (s−v/u t−c/v)

−1 = tc/vs−u/v. Since a is a maximal algebraic
subpath (lying in a [e, l] segment) of the augmented path gaug, this
would contradict the hypothesis that gaug is a nice augmentation of g,
as stated in Subsection 3.3 .

Indeed, if either c 6= 0 or −u/v /∈ Ω \ {1} then the subpath eal is
certainly not in normal form. On the other hand, if c = 0 and −u/v ∈
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Ω \ {1} then, according to our definition of algebro-transcendental de-
composition the corresponding subpath es−u/vl should instead be con-
sidered as a rational power map p−u/v. This concludes the proof of
(1).

Consider now the case (2). We write the corresponding power res-
onance relation as yuzv = c, for some u, v ∈ Z∗ and c ∈ C∗. Since the
algebraic path a lies in a [γ, η]-segment (with γ ∈ {l,p} and η ∈ {e,p})
and gaug is a nice augmentation of g, it follows from the definition of
NF that its Möebius part θ0 necessarily lies in T1 \ {1}.

We introduce now the modified algebraic path

a∗ = sc1/upv/u a.

which is also a non-identity normal form by the discussion of the above
paragraph. Similarly to the previous case, the head and tail elements
z∗, y∗ of the Cohen field E∗ associated to a∗ satisfy the relation y∗

z∗ = 1

(up to a convenient choice of the branch of c1/u). Furthermore, a∗ is an
algebraic normal form of affine type and the above identity contradicts
Corollary 3.3 when applied to a∗. This concludes the proof of the
Lemma. �

Proofs of Lemmas 3.8 and 3.9. We follow exactly the same strategy of
the previous proof.

Namely, we assume for a contradiction that c 6= 0 and that there
exists a nonzero element f ∈ F satisfying one of the following two
equations

∂(f)

f
= µ

∂(z0)

z0
or ∂(f) =

∂(z0)

z0

where µ ∈ C \ Q. Considering the algebraic transcendental decompo-
sition of the augmented path gaug, the same alternatives (1) and (2)
listed in the previous proof appear. By repeating the same reasoning,
we obtain a contradiction. �

4 Some consequences

We proceed to prove the other results stated in the Introduction.

Proof of Theorems 1.7, 1.10 and 1.12. We will only prove Theorem 1.7,
since the other two results are immediate consequences.

First of all, we remark that GAff,PowR is a subgroupoid of GPSL(2,C),Exp.
Therefore, if we consider the free product groupoid F = GPSL(2,C) ∗
ΓGExp and the groupoid morphism

ϕ : F → GPSL(2,C),Exp
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defined in subsection 2.3, then each germ lying in the GAff,PowR is the
image of a (not necessarily unique) path in F . Further, we can assume
that such path of the form

g = θ0 pr1 θ1 · · · prn θn, n ≥ 1

where each pri is a power map with exponent ri ∈ R and each θi is
an affine map. Possibly making some simplifications, we can further
assume that θ1, . . . , θn 6= 1 and that r1, . . . , rn 6= 1.

As a consequence, g is a product normal form, i.e. an element of
the subset PNF ⊂ F given by Definition 2.3. Applying the reduction
system (PNF,→) defined in subsection 2.4, we can make the reduction

g
∗→ g′

where g′ has the same form as g, but with the additional property
that each affine map θ1, . . . , θn is a translation. The subset of paths
in F satisfying these properties will be called normal forms of power-
translation type, and noted NFPT.

Notice that a path in NFPT is not necessarily an element of NF
(see definition 1.1), because the exponents r1, . . . , rn of the power maps
do not necessarily lie in the region Ω described in Remark 1.2.

However, the reduction from NFPT to NF can be easily obtained.
Indeed, assuming that g ∈ NFPT is written as above, its normal form
reduction g

∗→ h gives the path

h = θ0w
ε1 ps1 θ1w

ε2 ps2 · · · w
εnpn θn

where we define each pair (si, εi) ∈ Ω× {0, 1} as follows:

(si, εi) =

{
(ri, 0) if ri ∈ Ω

(−ri, 1) if −ri ∈ Ω.

We remark the following two facts:

(i) The normal form h lies in NFtame.

(ii) If g, g′ ∈ NFPT reduce to a same normal form h ∈ NFtame then
necessarily g = g′.

Indeed, the assumption R ∩ Q<0 = ∅ implies that a subpath of the
form θiw appears in the expansion of h if and only if the power map
pri+1

has an exponent in R \Q. Therefore, the algebro-transcendental
decomposition of h can only contain maximal algebraic subpaths of
affine type. This proves (i).

The proof of (ii) is immediate, since the original powers r1, . . . , rn ∈
R can be read out from the expression of the normal form.

Based on these remarks, the result is now an immediate conse-
quence of the second part of the Main Theorem. �
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Proof of Theorems 1.14 and 1.19. We will only give the details of the
proof of Theorem 1.14, since Theorem 1.19 is an immediate conse-
quence of this result.

Keeping the notation of subsection 1.4, we want to prove that the
homomorphism

φ : Aff+
∗θ → GAff+,Exp.

is injective.
Using Britton’s normal form (see e.g. [16], IV.2), and the right

transversals to T0, T1 to H0, H1 defined in Remark 1.2, it follows that
we can (setwise) identify Aff+

∗θ to a set BNF (so-called Britton normal
forms) contained in the free product Aff+ ∗ 〈ki : i ∈ Z〉 (where k

denotes the stable letter of the HNN-extension). By definition, each
f ∈ BNF can be uniquely written as

f = θ0 γ1 θ1 · · · γn θn, n ≥ 0

where θ0, . . . , θn are affine maps, γi ∈ {k, k−1}, and

(i) If γi = k then θi ∈ S+

(ii) If γi = k−1 then θi ∈ T .

(iii) There are no subwords of the form k1k−1 or k−11k.

The set BNF has a natural group structure which is inherited from the
group structure of Aff+

∗θ.
Using the above expansion for f ∈ BNF, we define maximal interval

of existence If ∈ (R,+∞) of f as the largest open neighborhood of ∞
(of the form ]Af ,+∞[ for some Af ∈ R) such that each one of the n+1
truncations of the above normal form, namely

f [i] = θi γi+1 θi+1 · · · γn θn for i = 0, . . . , n

maps under φ to a germ φ(f [i]) ∈ GAff+,Exp which extends analytically
to an invertible function defined on the interval If . To simplify the
notation, we denote also by

φ(f) : If → R

the corresponding (uniquely determined) analytic function.
Now, we consider a mapping ρ1 : BNF → NFtame which sends an

element f ∈ BNF to a tame normal form ρ1(f) ∈ NFtame. If f is
written as above, this mapping is defined as follows:

(a) Each symbol θi is replaced by a corresponding germ of affine map;

(b) Each symbol k (resp. k−1) is replaced by a germ of exponential
(resp. principal branch of logarithm) map;

(c) The source point of the rightmost affine germ θn is chosen to be
Af + 1 (or 0 if Af = −∞).
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Notice that condition (c) uniquely determines the choice of all germs
given in (a) and (b) due to the necessarily source/target compatibility
conditions. Consequently, the mapping is well-defined by these condi-
tions and, moreover, injective.

Similarly, we consider the mapping

ρ2 : BNF→ GPSL(2,C),Exp

defined as follows: given f ∈ BNF, we consider the analytic function
φ(f) : If → R and let ρ2(f) ∈ GPSL(2,C),Exp be the germ of φ(f) at the
point Af + 1 (or at 0 if Af = −∞).

By construction, if ϕ : NF → GPSL(2,C),Exp denotes the mapping
defined at the Main Theorem, the following diagram

BNF NFtame

GPSL(2,C),Exp

ρ1

ρ2
ϕ

is commutative.
Now, we reason by contradiction assuming that there exists a non-

identity Britton normal form f ∈ BNF lying in the kernel of φ. Then,
it follows that φ(f) : If → R is the identity map and, consequently,
that ρ2(f) is the identity germ. On the other hand, ρ1(f) is a non-
identity tame normal form and it follows from the Main Theorem that
ϕ ◦ ρ1(f) cannot be the identity germ. This is a contradiction. �
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