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ABSTRACT
Turbulent convection is thought to act as an effective viscosity in damping equilibrium tidal
flows, driving spin and orbital evolution in close convective binary systems. Compared to
mixing-length predictions, this viscosity ought to be reduced when the tidal frequency |ωt |

exceeds the turnover frequency ωcv of the dominant convective eddies, but the efficiency of
this reduction has been disputed. We reexamine this long-standing controversy using direct
numerical simulations of an idealized global model. We simulate thermal convection in a
full sphere, and externally forced by the equilibrium tidal flow, to measure the effective
viscosity νE acting on the tidal flow when |ωt |/ωcv & 1. We demonstrate that the frequency
reduction of νE is correlated with the frequency spectrum of the (unperturbed) convection. For
intermediate frequencies below those in the turbulent cascade (|ωt |/ωcv ∼ 1−5), the frequency
spectrumdisplays an anomalous1/ωα power law that is responsible for the frequency-reduction
νE ∝ 1/|ωt |

α, where α < 1 depends on the model parameters. We then get |νE | ∝ 1/|ωt |
δ

with δ > 1 for higher frequencies, and δ = 2 is obtained for a Kolmogorov turbulent cascade. A
generic |νE | ∝ 1/|ωt |

2 suppression is next found for higher frequencies within the dissipation
range of the convection (but with negative values). Our results indicate that a better knowledge
of the frequency spectrum of convection is necessary to accurately predict the efficiency of
tidal dissipation in stars and planets resulting from this mechanism.

Key words: binaries: close – convection – hydrodynamics – planet-star interactions

1 INTRODUCTION

Turbulent convection in stars is believed to dissipate the tidal shear
excited by gravitational interactions in close stellar binary or plan-
etary systems, and this process can play an important role in de-
termining the orbital and spin evolution of low-mass binary stars
or short-period planets (e.g. Mazeh 2008; Ogilvie 2014). The time-
scale for these evolutionary processes is inversely proportional to
the effective viscosity, and so estimating the stellar (or planetary)
viscosity is of crucial importance in applications. The laminar vis-
cosity in convective envelopes is much too small to be relevant for
tidal evolution (e.g. in the Sun; Hanasoge & Sreenivasan 2014), and
so turbulent convection is usually thought to act as an effective tur-
bulent viscosity νE that is responsible for damping oscillatory tidal
flows. This mechanism is usually invoked to explain the circular-
ization and synchronization of binary systems containing low-mass
or solar-like main-sequence stars (e.g. Zahn 1989; Zahn & Bouchet
1989; Meibom & Mathieu 2005; Meibom et al. 2006; Van Eylen
et al. 2016; Lurie et al. 2017; Triaud et al. 2017; von Boetticher
et al. 2019), and evolved stars (e.g. Verbunt & Phinney 1995; Beck
et al. 2018; Price-Whelan & Goodman 2018).

The effective viscosity due to convection can be estimated by

? E-mail: vidalje63@gmail.com

neglecting the oscillatory nature of the tidal flow such that νE ' νcv
(leading to the standard constant lag-time tidal model, e.g. Alexan-
der 1973; Eggleton et al. 1998), where νcv is the turbulent viscosity
predicted bymixing-length theory (MLT, e.g. Spiegel 1971). Under-
standing and characterizing the interaction between oscillatory tidal
flows and turbulent convection has been referred to as the Achilles’
heel of tidal theory (Zahn 2008). Zahn (1966) first realized that νE
ought to be reduced when the tidal frequency |ωt | is faster than
the turnover frequency ωcv of the dominant convective eddies. The
magnitude of this inhibition has been however disputed (e.g. Good-
man & Oh 1997), and two contradictory prescriptions have been
used. Zahn (1966, 1989) proposed the linear scaling

νE ∝ νcv (|ωt |/ωcv)
−1, (1)

which is derived by applying MLT arguments assuming that the
largest eddies dominate the dissipation, but Goldreich & Nicholson
(1977) proposed instead a quadratic reduction

νE ∝ νcv (|ωt |/ωcv)
−2 (2)

that is derived by assuming that the dominant contribution to the
effective viscosity at short tidal periods comes from eddies in the
turbulent (Kolmogorov) cascade with a turnover time-scale compa-
rable with the oscillation period.

When equations (1)-(2) are evaluated in stellar models, they
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typically lead to very different predictions for tidal evolutionary
time-scales (e.g. Price-Whelan & Goodman 2018). Thus, appli-
cation of tidal theory to convection zones remains uncertain, and
determining the correct frequency-reduction law of the turbulent
viscosity is crucial before we can apply tidal theory to interpret
observations of close binaries (e.g. Kirk et al. 2016; Lurie et al.
2017; Van Eylen et al. 2016; Triaud et al. 2017; Price-Whelan &
Goodman 2018) and possibly also short-period planetary orbits (e.g.
Rasio et al. 1996). It is possible that the two laws could be valid
in different frequency ranges. Indeed, scaling (1) seems to work
well when applied to certain stellar oscillations (Gonczi 1982) or
in early calculations of pre-main sequence circularization (Zahn &
Bouchet 1989), whereas quadratic scaling (2) could be relevant for
much shorter forcing periods, such as those that are relevant for the
interaction between acoustic modes and convection (Goldreich &
Keeley 1977; Goldreich et al. 1994; Samadi et al. 2001).

The frequency-reduction law of the turbulent viscosity acting
on tidal flows has been also independently revisited with direct
numerical simulations (DNS). The two laws were first recovered in
separate studies, which support either the linear scaling (Penev et al.
2007, 2009) or the quadratic suppression (Ogilvie & Lesur 2012;
Braviner 2016; Duguid et al. 2020). The coexistence of the two
scaling laws has however been found subsequently, using an ideal-
ized turbulence model (Goldman 2008) and in our previous global
DNS (Vidal & Barker 2020). These recent results have the potential
to reconcile the previous theoretical and numerical findings. More-
over, the recent numerical findings have shed light on the fact that
the two scaling laws may be appropriate for different reasons than
those originally suggested. On the one hand, the quadratic suppres-
sion has been convincingly found for high frequencies |ωt | � ωcv ,
particularly those outside the turbulent cascade (Ogilvie & Lesur
2012; Braviner 2016; Duguid et al. 2020; Vidal & Barker 2020).
On the other hand, the linear reduction, which has been only ob-
served in an intermediate-frequency range (with |ωt | ∼ ωcv), may
be correlated with the frequency spectrum of the (unperturbed) con-
vection. Indeed, the convective frequency spectrum is expected to
be flatter than the Kolmogorov frequency spectrum in that range,
as reported for Boussinesq (Vidal & Barker 2020) or compressible
(e.g. Penev et al. 2011; Horst et al. 2020) convection, such that
predictions (1)-(2) may not be generic.

Owing to the importance of this problem to understand tidal
evolution, we continue our numerical investigation (Vidal & Barker
2020) using global DNS of convection in the presence of the equi-
librium tidal flow to gain robust physical insights into the efficiency
of tidal dissipation in slowly rotating convective stars or planets.
Our global model complements the previous local studies in Carte-
sian geometry (e.g. Ogilvie & Lesur 2012; Braviner 2016; Duguid
et al. 2020), in that we study more realistic tidal flows, and we
explore convective flows in stellar-like (or planetary-like) spherical
domains in which the flow is free from the influence of artificial
periodic (or shearing-periodic) boundary conditions. On the other
hand, global DNS are typically more computationally-demanding
than local DNS, which prevents us from studying very long tidal
periods relative to convective time-scales.

The paper is organized as follows.We present our global model
and numerical methods in Section 2, and discuss the general proper-
ties of the unperturbed convection in Section 3. Direct computations
of the turbulent viscosity are presented in Section 4. The implica-
tions of our results are presented in Section 5, and we conclude the
paper in Section 6.

2 FORMULATION OF THE PROBLEM

2.1 Convection model

We study the interplay between tidal flows and convection using
an idealized model of fully convective stars or giant planets. We
model a full sphere of radius R and volume V , filled with a fluid
of uniform (laminar) kinematic viscosity ν and thermal diffusivity
κ, and employ spherical coordinates (r, θ, φ) centered on the body.
The body possibly rotates at the angular velocity Ωs1z , where 1z is
the Cartesian unit vector along the polar axis. We model convection
in the Boussinesq approximation (Spiegel 1971), considering slight
fluctuations of temperatureΘ and velocity from the motionless con-
duction state T0(r) sustained by the homogeneous internal heating
source QT . The gravitational field is g = −γ r , where r is the posi-
tion vector and γ is a constant, which represents the leading-order
component for a low-mass body that is not very centrally condensed.
The primary body is also subjected to tidal forcing from an orbiting
companion, which drives large-scale tidal flows in the fluid interior
(Ogilvie 2014; Le Bars et al. 2015). Following Goodman & Oh
(1997), we divide the total velocity field u + U0 into two compo-
nents, a turbulent convective flow u and a background large-scale
tidal flow U0 (see below).

We employ dimensionless quantities for the simulations, adopt-
ing R as the length scale, the viscous time-scale R2/ν as the time-
scale, and (νQT R2)/(6κ2) as the unit of temperature (as in Vidal
& Barker 2020). The dimensionless Boussinesq equations for the
fluctuations [u,Θ] in the rotating frame are
∂u

∂t
+ (u · ∇) u = −∇p + ∇2u + RaΘ r − f , (3a)

∂Θ

∂t
+ (u · ∇)Θ = 1

Pr

[
2 u · r + ∇2

Θ

]
− Q, (3b)

∇ · u = 0, (3c)

with the dimensionless (reduced) pressure p and

f = (2/E) 1z × u + (u · ∇)U0 + (U0 · ∇) u, (4a)
Q = (U0 · ∇)Θ. (4b)

We have discarded the term (U0 · ∇)T0 in the temperature equation,
since it should be negligible when β � 1 (e.g. Lai et al. 1993, in
the ellipsoidal geometry). We have also introduced in equations (3)
the Rayleigh number Ra, the Prandtl number Pr and the Ekman
number E . They are given by

Ra =
αT γQT R6

6νκ2 , Pr =
ν

κ
, E =

ν

ΩsR2 , (5a–c)

whereαT is the thermal expansion coefficient. TheRayleigh number
measures the strength of the convective driving, and the Ekman
number the strength of viscous diffusion with respect to global
rotation. Since many low-mass stars are slow rotators (e.g. Nielsen
et al. 2013; Newton et al. 2018), we will mainly ignore global
rotation in theDNSby setting E = +∞ (thoughwewill also consider
a few slowly rotating cases, see below).

Equations (3) are complemented with boundary conditions at
the (dimensionless) spherical boundary r = 1. For the temperature,
we employ the isothermal conditionΘ = 0 (we expect to obtain sim-
ilar results using fixed flux conditions). To avoid spurious numerical
issues associated with angular momentum conservation in global
simulations of tidal flows (e.g. as observed in Favier et al. 2014),
we enforce the no-slip (NS) boundary conditions (BC) u = 0. The
latter BC does not qualitatively affect the (small-scale) turbulent
flows driven in the bulk in our simulations, compared to the more
realistic stress-free (or free-surface) BC for stellar applications.

MNRAS 000, 1–14 (2020)
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Figure 1. Sketch of the tidal problem in the inertial frame. The companion
is orbiting around the fluid body in the orbital plane (dashed line), with
angular velocity Ωorb 1z . Color bar illustrates log10( |u |

2) for our DNS
with Ra = 8 × 106.

2.2 Tidal forcing

Previous numerical studies modeled the tidal flow with either an
(ad-hoc) external forcing (Penev et al. 2009), or with a background
unidirectional shear flow in a shearing box (Ogilvie & Lesur 2012;
Braviner 2016; Duguid et al. 2020). For a more realistic astro-
physical model, we consider self-consistently the large-scale (non-
wavelike) equilibrium tidal flow in a homogeneous body.We assume
that the companion is a point mass, moving on an aligned circular
orbit around the star with the angular velocity Ωorb1z (as depicted
in Fig. 1). Thus, the dominant component of the tidal potential has
the spherical harmonic degree l = 2 and azimuthal order m = 2
(Ogilvie 2014). In the frame rotating with the fluid at the rate Ωs ,
the resulting (dimensionless) flow is in the xy-plane and takes the
form (e.g. Barker & Lithwick 2013)

U0 = −
ωt β

2

(
sin(ωt t) cos(ωt t)
cos(ωt t) − sin(ωt t)

) (
x
y

)
, (6)

where β � 1 is the dimensionless tidal amplitude (roughly the ratio
of tidal displacement to unperturbed radius), ωt = 2 (E−1 − E−1

orb
)

is the dimensionless forcing frequency and E−1
orb
= (ΩorbR2)/ν is

the dimensionless orbital frequency.

2.3 Numerical modeling

We follow the numerical implementation introduced in Vidal &
Barker (2020) to account for tidal flows. The non-linear equations
(3) are solved in their weak variational form by using the spectral-
element code Nek5000 (e.g. Fischer et al. 2007). The computational
domain is decomposed into 3584 non-overlapping hexahedral ele-
ments. Within each element, the velocity (and pressure) is repre-
sented as Lagrange polynomials of order N (respectively, N − 2)
on the Gauss-Lobatto-Legendre (Gauss-Legendre) points. Tempo-
ral discretization is accomplished by a third-order method, based
on an adaptive and semi-implicit scheme in which the non-linear
and Coriolis terms are treated explicitly, and the remaining linear
terms are treated implicitly. Solutions are de-aliased following the
3/2 rule, such that 3N/2 grid points are used in each dimension
for the non-linear terms, whereas only N points are used for the
linear terms. We have checked the numerical accuracy in targeted
simulations by varying the polynomial order fromN = 7 toN = 9.

Table 1.Characteristics of (unperturbed) DNSwithNS conditions. Rayleigh
number Ra, Prandtl number Pr , convective velocity ucv , and turbulent
length scale lE .

Ra, Pr E ucv lE

1 × 105, 1.0 +∞ (1.84 ± 0.1) × 101 (4.6 ± 0.8) × 10−1

3 × 105, 1.0 +∞ (3.18 ± 0.2) × 101 (3.9 ± 1.1) × 10−1

6 × 105, 1.0 +∞ (4.40 ± 0.2) × 101 (3.5 ± 1.1) × 10−1

1 × 106, 1.0 +∞ (5.64 ± 0.3) × 101 (3.2 ± 1.0) × 10−1

2 × 106, 1.0 +∞ (7.74 ± 0.4) × 101 (2.9 ± 1.0) × 10−1

4 × 106, 1.0 +∞ (1.00 ± 0.1) × 102 (2.5 ± 0.8) × 10−1

8 × 106, 1.0 +∞ (1.31 ± 0.1) × 102 (2.2 ± 0.2) × 10−1

1 × 106, 0.3 +∞ (1.43 ± 0.1) × 102 (2.5 ± 0.9) × 10−1

1 × 106, 1.0 10−1 (5.64 ± 0.3) × 101 (3.1 ± 1.0) × 10−1

1 × 106, 1.0 10−2 (4.86 ± 0.3) × 101 (2.9 ± 1.0) × 10−1

The efficiency of tidal dissipation is investigated by computing
an effective volume-averaged viscosity coefficient νE , introducing
the volume average 〈·〉V = (1/V)

∫
V
· dV . The forcing amplitude β

must be large enough to obtain a measurable tidal response, but too
large values could strongly modify the results when the amplitude
of the tidal flow is much larger than the convective flow (e.g. see
in Penev et al. 2009; Duguid et al. 2020). Only small differences
in the properties of the convection have been found for the values
of β considered below (always smaller than a few percent for the
volume-averaged quantities when β ≤ 5 × 10−2, not shown).

Finally, we initiated the convection with random noise to the
temperature field and let it saturate without tides (i.e. β = 0) for
most of the simulations, before switching on the equilibrium tidal
flow. We have checked that initiating the convection together with
the tidal flow does not lead to noticeably different results.

3 UNPERTURBED CONVECTION

We simulate highly super-critical convection with Ra � Rac and
Pr = 1, where the critical value for linear onset, computed using
a dedicated linear solver (Vidal & Schaeffer 2015; Monville et al.
2019), is Rac = 4019 with NS conditions (the latter value cor-
rects the onset given in Vidal & Barker 2020, which corresponds
instead with the critical value for stress-free BC). The parameters
and outputs for the DNS with β = 0 are summarized in table 1. The
spatial spectrum of the unperturbed convection is illustrated in Fig.
2. The spectra are well converged with our adopted resolution and
they exhibit (small) inertial-like ranges, with a Kolmogorov scaling
(∝ −5/3) that emerges more clearly when Ra is increased.

For astrophysical applications, the convection is often char-
acterized using MLT by the (unperturbed) turbulent viscosity
νcv ∼ ucv lE , with a typical amplitude of the flow ucv and a typical
length scale of the turbulent eddies lE . To define the convective
velocity ucv , we use the volume-averaged root-mean-square radial
velocity ucv = (〈u2

r 〉V )
1/2 that characterizes the radial mixing. We

find ucv ∝ Ra0.45 in the DNS (top panel in Fig. 3), which is in rea-
sonably good agreement with the MLT scaling ∝ Ra1/2 expected
in the fully turbulent regime (e.g. Spiegel 1971). This indicates
that the convective velocities in our DNS are in an approximately
diffusion-free regime, as is expected in stars and planets.

The length scale lE is usually defined as a function of the local
pressure scale height in stellar interiors, but this definition cannot
be self-consistently employed in Boussinesq models. Estimating lE
in global models is difficult (except for rapidly rotating convection,

MNRAS 000, 1–14 (2020)
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Figure 2. Instantaneous volume-averaged spectrum of the kinetic energy, as
a function of the spherical harmonic degree l ≥ 1 (using orthonormalized
spherical harmonics). Thick black line shows the Kolmogorov power law
l−5/3. Spectra have been computed by interpolating the data to a spherical
grid, and then by performing a spherical harmonics analysis (Schaeffer
2013). Inset shows the volume-averaged spectra restricted to r ≤ 0.6.
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Figure 3. Top panel: Convective velocity ucv as a function of Ra in DNS.
Bottom panel: Length scale lE as a function of Ra. Dashed line is the
power law lE = 3.17 Ra−0.17. Horizontal line indicates the value lE = 1/3
considered in Vidal & Barker (2020) with Ra = 106.
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Figure 4. Frequency spectrum of the convective flux 〈urΘ〉V in DNS with
Ra = 4 × 106. Inset panel shows the convective (angular) frequency ωcv

as a function of Ra.

as reported in Guervilly et al. 2019), but a useful characterization of
turbulent flows is the Taylor wavenumber kT (e.g. Rieutord 2014)

kT =
√
〈|∇ × u |2〉V /〈|u |2〉V , (7)

from which we can estimate a turbulent length scale as lE = π/kT
(based on the half wavelength). Note that this scale does not rep-
resent the energetically-dominant eddies, but a scale intermediate
between the “outer scale" and the dissipation scales, and fairly rep-
resents the mean size of the eddies in the turbulent cascade. Indeed,
in our DNS that do not possess very long inertial ranges, lE works
reasonably well to define the typical size of the turbulent eddies
(which we have verified by visual inspection of the flow). We show
in Fig. 3 (bottom panel) the evolution of lE as a function of Ra in
the DNS, and observe that the length scale displays the power law1

lE ∝ Ra−0.17. It also agrees with the value lE ' 1/3 at Ra = 106,
which was considered in Vidal & Barker (2020).

An estimate of the the convective (angular) frequency ωcv

is also required. By analogy with stellar models, one can define
the convective frequency based on the input parameters (as also
considered in Ogilvie & Lesur 2012). To do so, we introduce the
dimensionless Brunt-Väisälä frequency N(r) given here by N2(r) =
−2r2 Ra/Pr , and define a typical convective frequency ωcv ∼ |N0 |
with the mean radial value |N0 | = |N2(1)|1/2/2 ∝ (Ra/Pr)1/2,
whose scaling agrees with MLT (e.g. Spiegel 1971). Alternatively,
a more accurate definition could be based on the turbulent prop-
erties of the convective flows. In the following, we compute the
frequency spectrum of the time series X(t) defined as |F {X(t)}|,

1 A similar scaling for lE can be obtained by considering that it should
scale like the geometric mean lE ∼ (ηR)0.5, with the outer scale R ∼ 1 and
the dissipation scale η ∼ R/Re3/4 (Rieutord 2014), where Re is a Reynolds
number of the large-scale eddies (assuming Re ∼ Ra0.5, consistently with
Fig. 3). This gives lE ∼ Ra−0.19R in dimensional units.

MNRAS 000, 1–14 (2020)
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Figure 5. Frequency spectrum of 〈uxuy 〉V for DNS with Ra = 4 × 106.
The thick dashed line shows the power law 1/ω0.66, and the thick gray line
indicates the scaling 1/ω2 expected for a Kolmogorov cascade.

where F is the Discrete Fourier Transform, as a function of the
angular frequency ω. We first remove the mean value of the time
series and then apply a Hanning window function before we com-
pute numerically the Fourier transform (using the FFT algorithm,
and normalizing by the length of the signal). One may defineωcv as
the frequency that provides the maximum contribution to the con-
vective flux 〈urΘ〉V , but the convective frequency is actually poorly
constrained from the spectrum of this quantity, which does not ex-
hibit a clearly defined peak (see Fig. 4). We choose to instead define
the convective frequency as ωcv = uE/lE , to be consistent with
simple MLT expectations. We find that ωcv ∝ Ra0.62 in the DNS
(see inset), which is quite close to the MLT prediction ωcv ∝ Ra0.5

(e.g. Spiegel 1971).
We show in Fig. 5 the frequency spectrum of the Reynolds

stress component 〈uxuy〉V , where the angular frequencies have
been normalized by ωcv (bottom axis) and |N0 | (top axis), for
the illustrative DNS with Ra = 4 × 106. Several different regimes
are observed (which are also relevant for the spectrum of the kinetic
energy, not shown). For very low frequencies ωcv . O(10−1), we
observe frequency-independent white noise.Within an intermediate
frequency range (here 10−1 . ω/ωcv ≤ O(1)), denoted below as
the anomalous range, the spectrum is characterized by an anoma-
lous 1/ωα power law with exponents α < 1 that vary with Ra and
Pr in full spheres (as we will discuss further below). For larger
frequencies ω/ωc ≥ O(1) in the turbulent cascade, the spectrum
first displays the power law 1/ω2 expected for Kolmogorov turbu-
lence (Landau & Lifshitz 1987; Kumar & Verma 2018). Finally,
the frequencies belong to the dissipation range of the convection
when ω/ωc � 1, first with the power-law scaling 1/ω4 in a narrow
frequency interval (as found in laboratory experiments, see in Liot
et al. 2016) and then with a steeper decay.

4 EFFICIENCY OF TIDAL DISSIPATION

4.1 Effective viscosity coefficient

We primarily extract the turbulent viscosity from our DNS by defin-
ing an effective viscosity coefficient νE , which is computed by bal-
ancing the mean rate at which convection does work on the tidal
flow with the mean rate of viscous dissipation of the latter flow (e.g.
Goodman & Oh 1997; Duguid et al. 2020; Vidal & Barker 2020).
This leads to νE = 〈νt (r, θ, φ)〉V with

νt (r, θ, φ) = −
1

(ωt β)2∆T

∫ T

t0

u · [(u · ∇)U0] dt (8a)

and the integrand

u · [(u · ∇)U0] = −
ωt β

2

[(
u2
x − u2

y

)
sin(ωt t)

+2 uxuy cos(ωt t)
]
, (8b)

where ∆T = T − t0 is the time-interval used for integration (with
t0 being an appropriate initial time in the saturated regime). The
time average in expression (8a) is obtained by fitting a linear slope
to the cumulative time integral to reduce turbulent noise. (e.g. see
fig. 13 in Duguid et al. 2020). Global simulations in the presence
of large-scale tidal flows are very demanding, because they must
be run for a sufficiently long duration to reduce noise. We have
therefore integrated each simulation with a tidal flow for at least
one viscous time unit (i.e. ∆T ≥ 1), corresponding with more
than a hundred tidal periods, to obtain converged statistics for the
effective viscosity. Finally, since the background flow strictly does
not satisfy the boundary conditions in a sphere, we have verified that
the volume average is not dominated by regions near the boundary,
and is instead due to interactions with turbulent flows in the bulk
(not shown here, but see fig. 5 in Vidal & Barker 2020).

We show in Fig. 6 the direct computations of νE in the DNS
with Ra = 106 and Ra = 4 × 106, assuming a tidal amplitude
of β = 5 × 10−2 (which is e.g. a relevant value for a solar-mass
binary in a one-day orbit). We also over-plot the frequency spec-
trum of the Reynolds stress component F

{
〈uxuy〉V

}
as the gray

lines in both panels. The clearest result evident in Fig. 6 is that νE
decreases as the ratio |ωt |/ωcv is increased, which means that the
efficiency of the dissipation is reduced for fast tides. For the particu-
lar DNSwith Ra = 106, the two canonical frequency-reduction laws
(linear and quadratic) are approximately obtained, which were pre-
viously discussed in Vidal & Barker (2020). However, our more
thorough analysis reveals that the frequency-reduction law fol-
lows several successive power laws that are in good agreement
with the frequency spectrum of the unperturbed convection. Within
the anomalous (intermediate-frequency) range where the frequency
spectrum of the unperturbed convection varies as 1/ωα (with power
exponents α < 1 in full spheres), the viscosity is reduced as
νE ∝ 1/(|ωt |/ωcv)

α. Then, for higher frequencies in the (narrow)
turbulent cascade that displays the Kolmogorov power law 1/ω2,
the previous frequency-reduction scaling ceases to be valid and is
replaced by a quadratic reduction for the effective viscosity (with
only positive values).

Therefore, we obtain two successive frequency-reduction laws
for the effective viscosity for frequencies below the dissipation range
of the turbulence. Although our turbulent cascade corresponds here
to a narrow frequency interval, our results confirm that a Kol-
mogorov spectrum is associated with a quadratic reduction (as
postulated by Goldreich & Nicholson 1977, though it is unclear
whether their mechanism applies in detail). However, for smaller

MNRAS 000, 1–14 (2020)
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Figure 6. Direct measurements of the effective viscosity νE in non-rotating
DNS with Pr = 1 and β = 5 × 10−2, as a function of |ωt |/ωcv

or |ωt |/ |N0 |. Squares: νE > 0. Circles: νE < 0. Horizontal dashed
lines: MLT expectation νcv = ucv lE in the low-frequency regime (i.e.
|ωt | � ωcv ). The gray curve shows the frequency spectrum of 〈uxuy 〉V
for unperturbed convection with β = 0, as a function of the scaled angular
frequency |ω |/ωcv (same horizontal values as |ωt |/ωcv ). Background
colors refer to figure 5.

frequencies in the anomalous range (i.e. outside the turbulent cas-
cade), the frequency reduction of the effective viscosity is neither
quadratic nor linear, but follows instead the anomalous frequency
spectrum 1/ωα of the convection. Moreover, the power exponent
α < 1 is reduced in full spheres when the Rayleigh number is in-
creased, for instance with α = 0.74 ± 0.05 when Ra = 106 and
α = 0.66 ± 0.05 when Ra = 4 × 106.
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Figure 7. Direct measurements of the effective viscosity νE in non-rotating
DNS as a function of |ωt |/ωcv (or |ωt |/ |N0 |). DNS with Ra = 106,
Pr = 0.3 and β = 5 × 10−2. Squares: νE > 0. Circles: νE < 0. Horizontal
dashed lines: MLT prediction νcv = ucv lE . The gray curve shows the
frequency spectrum of 〈uxuy 〉V for unperturbed convection with β = 0,
as a function of the scaled angular frequency |ω |/ωcv (same horizontal
values as |ωt |/ωcv ). Background colors refer to Fig. 5.

We show in Fig. 7 the effective viscositymeasured inDNSwith
Ra = 106 andPr = 0.3 (this is relevant for liquidmetals, e.g.Kaplan
et al. 2017). Exploring cases with smaller Pr is important because
Pr in stellar or planetary convection zones is much smaller than
unity (e.g. Hanasoge & Sreenivasan 2014). The frequency range
of the Kolmogorov cascade is slightly larger in this case compared
to Fig. 6, and more importantly the transition between positive
and negative values occurs at larger tidal frequencies (within the
dissipation range) but always when |νE | . ν. Note also that the
value of the exponent α is different in the intermediate-frequency
regime, showing that α also depends on Pr , which indicates a
parameter-dependence within the anomalous range.

Note that we have been unable to accurately determine νE
in the low-frequency regime (|ωt | . ωcv) with these simulations.
This is because the amplitude of the tidal flow in this regime was
too weak to give a sufficiently strong signal-to-noise ratio. A crude
extrapolation of our results into the low frequency regime is broadly
consistentwith expectations fromMLT though,whichwould predict
νE ∝ νcv ∼ ucv lE when |ωt | → 0. The proportionality constant is
often assumed to be 1/3 without rigorous justification (e.g Zahn
1989; Ogilvie & Lin 2007), based on the analogy with kinetic
theory for a microscopic viscosity. Here we instead find values
close to 1, or in fact in excess of 1 if νE continues to follow the
spectrum for smaller |ωt |/ωcv , indicating more efficient dissipation
at low frequencies from this mechanism than the naive application
of MLT would predict. This result is broadly consistent with local
simulations (Duguid et al. 2020), and prior theoreticalwork obtained
with an idealized turbulence model (e.g. Goldman 2008).
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Figure 8. Direct measurements of the effective viscosity νE in non-rotating
DNS as a function of |ωt |/ωcv (or |ωt |/ |N0 |), showing the transition
to negative values of νE . DNS with Ra = 106, Pr = 1 and |ωt | β =

20. Squares: νE > 0. Circles: νE < 0. Horizontal dashed lines: MLT
prediction νcv = ucv lE . The gray curve shows the frequency spectrum
of 〈uxuy 〉V for unperturbed convection with β = 0, as a function of the
scaled angular frequency |ω |/ωcv (same horizontal axis as |ωt |/ωcv ).
Background colors refer to Fig. 5.

4.2 Negative values

Statistically significant negative values of the turbulent viscosity
are found in Figs 6 and 7 for much higher frequencies within the
dissipation range, which are consistent with previous local results
and asymptotic theory (Ogilvie & Lesur 2012; Duguid et al. 2020).
The transition towards negative values is better illustrated in Fig. 8
using DNS with Ra = 106 and Pr = 1, but with the fixed amplitude
|ωt | β = 20 for the tidal flow (instead of fixing β). This allows us to
investigate more efficiently the transition between positive and neg-
ative values, without disturbing (to the same extent) the frequency
spectrum of the convection contrary to Figs 6-7 (for which the am-
plitude of the tidal flow increases when |ωt | increases, see fig. 3
in Vidal & Barker 2020). In the narrow frequency interval where
the frequency spectrum displays a 1/ω4 power law, we find that
the eddy viscosity is reduced by the same amount but has positive
values. For larger frequencies within the dissipation range, the ef-
fective viscosity changes sign and then follows a generic quadratic
reduction once |νE | . ν.

For very high frequencies, our results indicate that |νE | ∝
(|ωt |/ωcv)

−2 even for these negative values, consistently with
asymptotic theory (Ogilvie & Lesur 2012; Duguid et al. 2020).
Moreover, since the change of sign of νE seems to occur when
|νE |/ν . 1 in dimensional units (corresponding with frequencies
|ωt | firmly within the dissipation range), this probably indicates
that the observed negative values are not astrophysically relevant
but result from (necessarily) adopting simulation parameters that
are far removed from their astrophysical values (see below).
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Figure 9. |<e (ν̂E,xy ) | (red squares) and |=m(ν̂E,xy ) | (blue circles) of the
contribution to the effective viscosity defined by equation (9a), as a function
of |ωt |/ωcv in DNS with Pr = 1 and β = 5 × 10−2. Background colors
refer to Fig. 5.

4.3 Complementary analysis

We can alternatively compute the effective viscosity associated with
each component of the volume-averaged Reynolds stress by relating
the stress to the time history of the rate of strain (thus accounting
for the oscillatory nature of the tidal flow, see e.g. Ogilvie & Lesur
2012). In the Fourier domain, this gives

F {〈uxuy〉V } = ν̂E,xy ωt β F {cos(ωt t)}, (9a)

F {〈u2
x〉V } = ν̂E,xx ωt β F {sin(ωt t)}, (9b)

MNRAS 000, 1–14 (2020)



8 J. Vidal & A. J. Barker

and similarly for F {〈u2
y〉V }, where [ν̂E,xy, ν̂E,xx] are complex-

valued quantities.
In the regime of high-frequency tidal forcing (|ωt | � ωcv),

Ogilvie & Lesur (2012) and Duguid et al. (2020) used asymptotic
theory to demonstrate the visco-elastic nature of the tidal response
(using a simple oscillatory shear) for quantity (9a). In the latter
expression, the real part <e(ν̂E,xy) represents a turbulent viscos-
ity (which is in phase with the tidal shear and out of phase with
the tidal displacement) associated with this component of the flow,
which provides a contribution to the total νE . Asymptotic theory in-
dicates that for high frequencies, this quantity should scale as |ωt |

−2

(with possibly negative values). On the other hand, the imaginary
part =m(ν̂E,xy) is related to an effective elasticity (which is out
of phase with the tidal shear and in phase with the tidal displace-
ment) and should obey a linear reduction |ωt |

−1 in that regime
(indicating an effective elastic modulus that is independent of fre-
quency). We show in Fig. 9 direct computations of ν̂E,xy from
equation (9a) for two different values of Ra, which confirm the uni-
versal nature of the visco-elastic response of 〈uxuy〉V at high tidal
frequencies (here |ωt |/ωcv ≥ O(10)). We broadly obtain a linear
reduction |=m(ν̂E,xy)| ∝ |ωt |

−1 in the high-frequency regime, and
we also recover the expected scaling in |ωt |

−2 for the turbulent
viscosity |<e(ν̂E,xy)| in this regime. The latter is always smaller
than |=m(ν̂E,xy)|, indicating a primarily elastic response to high
frequency shear, with a weaker viscous component.

However, this asymptotic theory does not apply for the lower
forcing frequencies |ωt |/ωcv ≤ 10 that we consider here. Indeed,
for these lower frequencies, |<e(ν̂E,xy)| and |=m(ν̂E,xy)| have
comparable magnitudes, and the viscous component can even dom-
inate. Hence, the predictions of the asymptotic theory cannot be
strictly invoked to support the quadratic reduction for lower frequen-
cies than those contained in the dissipation range of the convection
in our simulations. Instead, we find that the νE behaves similarly
to the frequency spectrum of 〈uxuy〉V (e.g. Fig. 6), indicating that
this is a key quantity governing the frequency-reduction of the eddy
viscosity in our simulations.

We also illustrate in Fig. 10 the contribution to νE from
=m(ν̂E,xx) computed from (9b). Similar results are obtained for
the 〈u2

y〉V component (since ux and uy play symmetrical roles, not
shown). The amplitude of the effective viscosity contribution from
this component is in broad quantitative agreement with Figs 6 and
9, which cross-validates our computations for the turbulent viscos-
ity. This also agrees with Penev et al. (2009), who showed that the
effects of convective turbulence on a large-scale oscillatory shear
flow is fairly well represented by an effective viscosity coefficient.

4.4 Inclusion of weak rotation

We now introduce global rotation to assess the robustness of the
observed frequency-reduction laws for slowly rotating stars or
planets. One measure for the degree of rotational constraint in
convection-driven flows is given by the convective Rossby num-
ber Roc = E

√
Ra/Pr . Weakly rotating convection is believed to

approach non-rotating convection (e.g. Gastine et al. 2016; Long
et al. 2020), and so quantitatively similar results are expected for
the turbulent viscosity when Roc � 1 (as considered below). We
show in Fig. 11 theDNSwith Roc = 102 (E = 10−1) and Roc = 101

(E = 10−2). By comparison with Fig. 6a, we observe values of νE
that are close to the ones obtained in the non-rotating DNS.

Our results indicate here that weak global rotation does not
significantly modify the frequency-reduction laws of νE found in
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Figure 10. Effective viscosity contribution |=m(ν̂E,xx ) | computed from
expression (9b), as a function of |ωt |/ωcv in DNS with Ra = 106, Pr = 1
and β = 5 × 10−2. Background colors refer to Fig. 5.
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Figure 11. Direct measurements of the effective viscosity νE in weakly
rotating DNS with Ra = 106, Pr = 1 for tidal amplitude β = 5 × 10−2,
as a function of |ωt |/ωcv (or |ωt |/ |N0 |). Red squares: νE > 0 in DNS
with Roc = 102 (E = 10−1) and β = 5 × 10−2. Empty circles: νE < 0
in DNS with Roc = 102 (E = 10−1) and β = 5 × 10−2. Empty triangles:
νE < 0 for DNSwith Roc = 101 (E = 10−2) and β = 10−2. The horizontal
dashed lines indicate the MLT expectation νcv ∼ ucv lE for Roc = 102

(E = 10−1), and the gray curve shows the frequency spectrum of 〈uxuy 〉V
for unperturbed DNS with Roc = 102 (E = 10−1) as a function of ω/ωcv

(same horizontal axis as |ωt |/ωcv ). Background colors refer to Fig. 5.
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non-rotating spherical convection. Yet, rapid rotation is known to
strongly affect spherical convection (e.g. Guervilly et al. 2019),
and is therefore believed to strongly modify the effective viscos-
ity when Roc � 1 (Mathis et al. 2016). Another complication
with incorporating rapid rotation in our model is that the tidal
(elliptical) instability can be triggered for large enough β when
−1 ≤ Ωorb/Ωs = E/Eorb ≤ 3 (Barker et al. 2016; Vidal &Cébron
2017). Further work is required to explore this regime, which might
be relevant for giant planets or young rapidly rotating stars.

5 DISCUSSION

5.1 Non-Kolmogorov turbulent spectrum

Our DNS have shown that the frequency-reduction of the eddy
viscosity is directly correlated with the frequency spectrum of the
convection (which is largely unaltered by the tidal flow). Outside the
dissipation range of the convection, we have recovered the quadratic
reduction for frequencies in the Kolmogorov cascade (Goldreich
& Nicholson 1977), but for lower frequencies where the frequency
spectrum is less steep than theKolmogorov spectrum,we have found
a new frequency reduction that is surprisingly smaller than the linear
suppression proposed by Zahn (1966). One could look at the scales
that dominate the effective viscosity to get further physical insight
into this problem. Zahn (1966) indeed assumed that the dissipation
is dominated by the largest eddies, whereas Goldreich & Nicholson
(1977) assumed that the ‘resonant eddies’ dominate the dissipation.

To this end, we illustrate in Fig. 12 the radial dependence of
the turbulent viscosity for the illustrative DNS with Ra = 106 and
β = 5 × 10−2 for different tidal frequencies. We show the power
spectrum (normalized by its maximum value) of the l = m = 0
component (i.e. the surface-average per shell) of quantity (8a) as a
function of the radius r . Within the anomalous range (|ωt |/ωcv & 1
in Figs 12a and b), the eddy viscosity is dominated by turbulent ed-
dies deep in the interior. We also find a significant contribution of
the interior eddies in Fig. 12d, for DNS with much higher frequen-
cies |ωt |/ωcv ≥ 10 (i.e. characterized by the quadratic suppression
with negative values), but smaller-scale turbulent interactions are
also triggered nearer the surface (except in the outer thin thermal
boundary layer). These radial profiles do not allow us to disentangle
easily the length scales that are responsible for the various scaling
laws for νE . However, they do show a tendency for larger radii to
contribute more at high frequencies. This trend might be expected
if the ‘resonant eddies’ at each radius (with frequencies comparable
with |ωt |) are important, since the convective heat flux increases
with radius such that the local convective eddies have larger fre-
quencies nearer the surface. However, our simulations do not pro-
vide convincing support for this hypothesis (see also in Duguid et al.
2020).

In light of our findings, we have revisited the numerical results
of Penev et al. (2009) from an independent viewpoint. Indeed, they
argued that the observed linear scaling for the effective viscosity
in their DNS was due to the shallower than Kolmogorov frequency
spectrum of the convection. Hence, one might wonder whether their
DNS were subject to 1/ωα dynamics (as found in our DNS). We
reproduce in Fig. 13 the frequency power spectrum of the convective
flows in their DNS. The spectra are less steep than the expected
Kolmogorov spectrum 1/ω2, in broad agreement with the power

law 1/ωδ with2 δ ≈ 1.2. The latter value is incompatible with
our results, since we have always found 1/ωα power laws with
α < 1 within the anomalous range. Instead, the reduction factor
for νE obtained by Penev et al. (2009) could result from eddies
in a turbulent cascade (as in Goldreich & Nicholson 1977), but
only if the theoretical scaling for νE is modified to account for
spatial spectra with non-standard power exponents (, −5/3) in the
turbulent cascade.

Indeed, a simple predictive theory can be developed for incom-
pressible flows, which relates the power exponent δ of the frequency
spectrum to the power exponent Λ of the spatial spectrum of the
turbulent kinetic energy, such that (Goldman & Mazeh 1991)

Λ =
3δ − 1
1 + δ

, δ =
1 + Λ
3 − Λ

. (10a,b)

StandardKolmogorov turbulencewithΛ = 5/3 gives δ = 2 (Landau
& Lifshitz 1987), as considered by Goldreich & Nicholson (1977).
We can then deduce from (10) that the frequency-reduction of the
eddy viscosity is νE ∝ 1/|ωt |

δ (see the derivation Appendix A in
Goldman & Mazeh 1991). Note that the 1/ωα spectra observed in
our DNS with α < 1 cannot be explained by the latter theory, since
the spatial exponent Λ predicted by (10a) that is required to match
δ < 1 does not agree with the observed spatial spectra in Fig. 2.
A non-Kolmogorov “cascade" with Λ , 5/3 could be produced by
scale-dependent buoyant driving or non-negligible viscous damp-
ing, and it might also result from anisotropic or inhomogeneous
turbulence.

We show in Fig. 14 the time-averaged spatial power spectra
of the velocity components reported in Penev et al. (2009). To
be more consistent with the incompressible theory, we have only
shown the power spectra of the horizontal velocity components as
a function of the horizontal wave numbers kx and ky (since their
anelastic results could differ more importantly from this simple
incompressible theory in the vertical direction, as a result of their
adopted density stratification). The spatial spectra, which are clearly
flatter than the Kolmogorov spectrum (i.e. with Λ ≤ 5/3), are in
good agreementwith the power law k−Λi with the exponentΛ = 1.18
given by expression (10a) assuming δ = 1.2 (see Fig. 13).

Finally, we reproduce in Fig. 15 the horizontal effective eddy
viscosity coefficient, computed from theDNS of Penev et al. (2009),
as a function of (|ωt |/ωcv)

−1 using Penev’s representation. Even if
the measurements are subject to relatively large uncertainties, the
frequency-reduction of the eddy viscosity in the fast tide range (here
(|ωt |/ωcv)

−1 ≤ 1) is in good agreement with our prediction using
equation (10) assuming δ = 1.2. Moreover, our theory is also more
consistent with the fact that the eddies with convective time-scales
close to the tidal forcing period were responsible for most of the
dissipation in the compressible DNS, as reported by Penev et al.
(2009) (contrary to Zahn’s assumption). Therefore, the fact that
frequency-reduction law reported in Penev et al. (2009) appears
broadly consistent with a linear suppression cannot be taken to
conclusively support Zahn’s prescription.

To summarize, very different frequency spectra can be gen-
erated by turbulent convection, leading to different prescriptions
for the frequency-suppression law of the eddy viscosity. They can
manifest in the form of anomalous 1/ωα power laws for low to
intermediate frequencies, such that the frequency-reduction law of
the eddy viscosity is expected to be directly correlated with the
anomalous frequency spectrum (as reported here). Additionally,

2 The exponent δ given in fig. 3 has a typo in Penev et al. (2009), which
has been corrected in Penev et al. (2011).
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Figure 12. Normalized power spectrum of the time-averaged l = m = 0 component (i.e. average on a spherical shell) of equation (8a) as a function of radius r
in DNS with Ra = 106, Pr = 1 and β = 5 × 10−2. These indicate the radii that provide the dominant contribution to νE .

the convection can also exhibit a turbulent cascade that is less steep
than the Kolmogorov spectrum (e.g. Penev et al. 2009), such that the
quadratic reduction factor of the eddy viscosity initially proposed
by Goldreich &Nicholson (1977) ought to be modified accordingly.

5.2 Astrophysical implications

Our findings indicate that the frequency dependence of the eddy vis-
cosity is surprisingly much more complex than initially proposed
by Zahn (1966) and Goldreich & Nicholson (1977). We can quali-
tatively extrapolate our findings to weakly rotating stellar interiors
as illustrated in Fig. 16. For very low frequency forcing, standard
expectations from MLT (e.g. Spiegel 1971) predict the eddy vis-
cosity to scale as νE ∼ ucv lE ∝ (Ra/Pr)1/2 in dimensionless
units, independently of the tidal frequency when |ωt |/ωcv � 1.
The latter scaling is consistent with constant tidal lag-time models
(e.g. Alexander 1973; Hut 1981; Eggleton et al. 1998), which are
commonly applied in astrophysics. However, since this model is
only valid for very low tidal frequencies (|ωt | � ωcv), the con-

stant time-lag model should not be used for the majority of tidal
applications, particularly those in which |ωt | & ωcv .

In the presence of fast tides |ωt |/ωcv ≥ 1, the effective vis-
cosity ought to be reduced. A 1/|ωt |

α power-law reduction is first
expected, with shallow exponents α < 1. Secondly, for frequencies
in a turbulent cascade that is characterized by a power-law spa-
tial spectrum with an arbitrary exponent Λ, the effective viscosity
should be reduced as νE ∝ 1/|ωt |

(1+Λ)/(3−Λ) (Goldman & Mazeh
1991). This gives a quadratic reduction for standard Kolmogorov
turbulence (as proposed by Goldreich & Nicholson 1977). This
quadratic reduction is probably the relevant one in stars and planets
(e.g. Goldreich & Keeley 1977), but further work is required to as-
sess this hypothesis with more realistic compressible (or anelastic)
models. Finally, for much higher frequencies, the eddy viscosity
may exhibit a quartic reduction νE ∝ 1/|ωt |

4 in a narrow tran-
sition range towards the dissipation scales of the turbulence, and
then a quadratic suppression |νE | ∝ 1/|ωt |

2 with possibly negative
values for tidal frequencies further into the dissipation range when
|νE | . ν (see also in Ogilvie & Lesur 2012; Duguid et al. 2020).

Based on our results, robust quantitative extrapolation is cur-
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Figure 13. Frequency spectra of the three velocity components [ux, uy, uz ]

in anelastic DNS, obtained from fig. 3 in Penev et al. (2009).

rently challenging beyond the aforementioned qualitative picture.
The latter two frequency regimes may be not relevant in astro-
physics, because they would require very large values of |ωt |/ωcv .
MLT indeed predicts ωcv ∝ (Ra/Pr)1/2 in the fully turbulent
regime (in broad agreement with our DNS, as shown in the in-
set panel in Fig. 4). For solar-like stars, typical values for the
Rayleigh and Prandtl numbers are indeed Ra = 1019 − 1024 and
Pr = 10−6 − 10−4 (Hanasoge & Sreenivasan 2014), such that
the turbulent cascade should extend to much higher frequencies,
and the lower bound of the dissipation range should be shifted to
|ωt |/ωcv � O(10), comparedwith our simulations.Values νE � ν

are thus expected in most stellar interiors. Negative values νE ≤ 0
may be theoretically possible in stellar interiors, but very large
values of |ωt | would probably be required, which are likely to
be unrealistic for large-scale tidal flows. The turbulent convective
damping of the acoustic modes (Goldreich & Keeley 1977) also
provides an indirect viewpoint that may suggest that the observed
negative values are not physically relevant. Indeed, if the observed
correlation between the frequency spectrum of the convection and
the frequency-reduction law of the eddy viscosity is generic, then
the turbulent cascade should extend until very large frequencies3
because a quadratic reduction of positive eddy viscosities is proba-
bly required to explain the damping of these modes (e.g. Goldreich
et al. 1994; Samadi et al. 2001).

The power spectrum observedwithin the anomalous rangemay
naively appear as a transition between the zero-frequency and the
Kolmogorov-like scalings (as in Goldman 2008). However, this is
more probably an occurrence of 1/ωα turbulent noise (Niemann
et al. 2013), which is a robust feature of various turbulent flows
(e.g. Herault et al. 2015a; Pereira et al. 2019). This power spectrum
may thus exist in turbulent stellar (or planetary) interiors, resulting
from the long-term properties of the turbulent flows (according
to prior statistical theories, e.g. Herault et al. 2015b). We have

3 The acoustic modes have much larger frequencies than those of tidal
forcing.
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Figure 14. Time-averaged horizontal power spectrum of the velocity com-
ponents [ux, uy ] in anelastic DNS (obtained from the top panels of fig. 3 in
Penev et al. 2009), as a function of the horizontal wave numbers [kx, ky ] in
plane-layer geometry.
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Figure 15. Comparison between theory (10), linear reduction, and direct
measurements of the eddy viscosity (denoted here K0

1212) in anelastic DNS
(extracted from the weak forcing case of fig. 12 in Penev et al. 2009).
The two data sets (red squares and blue circles) have been computed using
two different methods (see details in Penev et al. 2009). Two power laws
K0

1212 ∝ (|ωt |/ωcv )
−δ with δ = 1.2 have been drawn (one for each data

set in the range ( |ωt |/ωcv )
−1 ≤ 1).
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Figure 16. Expected behavior of νE as a function of |ωt |/ωcv in turbulent
stellar interiors. Laminar viscosity ν, turbulent viscosity νE ∼ ucv lE
(MLT) in the low-frequency regime. Λ is the power exponent of the spatial
spectrum of the kinetic energy. Background colors refer to Fig. 5.

unfortunately found here power exponents α < 1 that vary with
Ra and Pr in full spheres (see the slopes in Figs 6a and 7, both
obtained at Ra = 106), contrary to preliminary findings in plane-
layer geometries (with α ' 0.5, which will be presented elsewhere).
This indicates an important model-dependence to the anomalous
range, and so we cannot currently extrapolate the numerical values
of α for very turbulent interiors.

Our DNS also suggest that νE could be reduced (over its low
frequency asymptotic value) for smaller frequencies |ωt |/ωcv . 1
as indicated in Fig. 16, because the anomalous range may extend
until |ωt |/ωcv ' O(0.1) or perhaps below (as observed in the
various frequency spectra). Yet, since computations of the low-
frequency spectrum of turbulent flows are very challenging, we
have been unable to directly measure the eddy viscosity within the
low-frequency regime, and we do not have very reliable estimates
of the transition values between the two regimes for very turbulent
stellar interiors.

To illustrate one of the uncertainties in applying our results, we
briefly explore how the theoretical time-scales for binary spin syn-
chronization are affected by changes in the slope α of the anomalous
regime. To do so, we consider a continuous piece-wise power-law
profile for νE based on our simulations (as illustrated in Fig. 16).
We adopt νE = ucv lE for ωt/ωcv ≤ 0.3, then νE ∝ 1/|ωt |

α for
0.3 < |ωt |/ωcv < 3, and finally νE ∝ 1/|ωt |

2 when |ωt |/ωcv ≥ 3
(discarding the possible negative values of νE ).We consider the val-
ues 0.5 ≤ α ≤ 1 that span our simulations. We use main-sequence
stellar models computed with MESA (see Appendix A for further
details), where ucv and lE are here the convective velocity and mix-
ing length that varywith stellar radius, andωcv = ucv/lE .We calcu-
late the correct equilibrium tide in convective regions (Terquemet al.
1998; Ogilvie 2014), which differs from the commonly-adopted but
strictly incorrect equilibrium tide of Zahn (1989), and then compute
the dissipation integral. We thus obtain a tidal quality factor Q′eq,
from which the time-scale for tidal synchronization of the stellar
spin of the primary star interacting with a companion of mass M2
is (after correcting a typographical error in formula (7) of Vidal &
Barker 2020)

τΩ =
2Q′eq

9πr2
g

(
M + M2

M2

)2 P4
orb

P2
dyn

Ps

, (11)

10−1 100 101

Porb

106

107

108

109

1010

1011

1012

τ Ω

M/M� = 0.2

M/M� = 0.5

M/M� = 0.8

M/M� = 1

M/M� = 1.2

Figure 17. Synchronization time-scale τΩ (in years), as a function of Porb

(in days), due to convective damping of the equilibrium tide (e.g. Terquem
et al. 1998; Ogilvie 2014), for a star of mass M with the initial spin period
Ps = 10 d. The companion has a fixed mass M2 = M� . Viscosity pre-
scription based on Fig. 16 with 0.5 ≤ α ≤ 1 within the anomalous range
0.3 < |ωt |/ωcv < 3, and a quadratic reduction when |ωt |/ωcv ≥ 3 (i.e.
with Λ = 5/3). Solid lines (respectively dashed lines) have been computed
with α = 0.5 (respectively α = 1).

where r2
g is the dimensionless squared radius of gyration, Pdyn =

2π/(GM/R3)1/2 is the dynamical time-scale, Porb = 2π/Ωorb
is the orbital period, and Ps = 2π/Ωs is the (initial) spin pe-
riod. We show in Fig. 17 the results for τΩ as a function of Porb

with M2 = M� (where M� is the solar mass) and Ps = 10 d in
each case, for a range of main-sequence stellar models with masses
M/M� ∈ [0.2, 0.5, 0.8, 1.0, 1.2] that correspond to the stellar ages
[2.9, 3.3, 2.6, 4.7, 2.9]Gyr. This shows that for an anomalous regime
spanning a decade in frequency, uncertainties in α only affect τΩ
by a factor of two or three (except near spin-orbit synchronization
at Porb = Ps = 10). On the other hand, if the anomalous range is
much wider, uncertainties in α could have more important effects
on τΩ (not shown).

Finally, the power spectrum of the turbulent cascade is also un-
certain. Kolmogorov spectra have been robustly reported for Boussi-
nesq convection (Kumar & Verma 2018), but compressible convec-
tion (e.g. Penev et al. 2011; Horst et al. 2020) may display different
non-Kolmogorov spectra (depending on the convection setup). Fur-
ther work is required to characterize the frequency spectrum ofmore
realistic stellar convection so that we can robustly apply our results
to astrophysical tidal evolution.

6 CONCLUDING REMARKS

In this paper, we have revisited numerically the long-standing con-
troversy regarding the interaction between equilibrium tidal flows
and turbulent convection. We have conducted DNS of thermal con-
vection within an idealized global model of a fully-convective fluid
body, which is a simple analogue of a low-mass star or core-less
giant planet, to measure the turbulent viscosity νE acting on the
large-scale equilibrium tidal flow.

Our results have highlighted that quantifying the efficiency of
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tidal dissipation resulting from this mechanism is more complex
than was previously believed. Indeed, we have found that neither
the often-disputed linear (Zahn 1966) or quadratic (Goldreich &
Nicholson 1977) scaling laws for the turbulent viscosity are gener-
ally valid for tidal frequencies |ωt | that exceed the dominant con-
vective turnover frequencyωcv . Instead, we have demonstrated that
the frequency-reduction law of the eddy viscosity is correlated with
the frequency spectrum of the unperturbed convection, and we have
obtained here various scaling laws in our DNS.

The eddy viscosity is first reduced as νE ∝ 1/|ωt |
α for tidal

frequencies below those in the turbulent cascade, with shallow expo-
nents α < 1. Then, for frequencies in a turbulent Kolmogorov-like
cascade with the spatial power exponent Λ, we have consistently
combined our numerical findings with Penev’s previous results to
show that νE ∝ 1/|ωt |

(1+Λ)/(3−Λ). For the standard Kolmogorov
cascade with Λ = 5/3, which is probably the relevant one over a
broad range of scales in stars or planets (as supported by observa-
tions of solar acousticmodes, e.g.Goldreich&Keeley 1977; Samadi
et al. 2001), this leads to νE ∝ 1/|ωt |

2 (Goldreich & Nicholson
1977). However, further work is required to explore the robustness
of this scaling in more realistic (compressible or anelastic) models.
Our results finally support the universality of the quadratic reduction
law |νE | ∝ |ωt |

−2 for very high frequencies in the dissipation range
of the convection, which is consistent with asymptotic predictions
when |ωt |/ωcv � 1 (Ogilvie & Lesur 2012; Duguid et al. 2020).

Our findings have important consequences for interpreting as-
trophysical observations such as those that constrain tidal synchro-
nization and circularization of main-sequence binaries (e.g. Mei-
bom & Mathieu 2005; Meibom et al. 2006; Van Eylen et al. 2016;
Lurie et al. 2017; Triaud et al. 2017) and the circularization of
evolved stars (Verbunt & Phinney 1995; Beck et al. 2018; Price-
Whelan & Goodman 2018). Indeed, it appears that a fundamental
knowledge of stellar convection is required before we can be confi-
dent in modeling the tidal evolution of astrophysical systems due to
this mechanism. Hence, further work is required to understand the
properties of more realistic convection models in the presence of
oscillatory tidal flows. The transitions between the various regimes
observed in our DNS remain for instance poorly constrained, since
we have necessarily adopted simulation parameters that are far re-
moved from their astrophysical values, and so should be further
explored in more realistic models of stellar convection. The anoma-
lous 1/ωα spectrum should be also further investigated as a function
of Ra/Pr , as well as the slope of power spectrum of the turbulent
cascade, which would be very challenging numerically in more tur-
bulent setups. Astrophysical extrapolations also employ crude ap-
plications of MLT to the low-frequency regime, which is known not
to be accurate in detail (e.g. Goldman 2008) and departures from
MLT have been found in DNS of compressible convection (e.g.
Anders et al. 2019). Hence, MLT predictions should be carefully
compared to more turbulent DNS of convection.

We have considered only circular orbits in this paper, but dif-
ferent tidal components generally coexist (e.g. for eccentric orbits,
see in Ivanov & Papaloizou 2004; Vick & Lai 2020) and they could
be damped at different rates (e.g. Lai 2012). We have also neglected
dynamical tides (e.g. Ogilvie&Lin 2007), although their interaction
with convection may be important when inertial waves are excited.
Indeed, tidally-excited inertial waves (restored by Coriolis forces)
may be the key driver of binary circularization and synchroniza-
tion in sufficiently rapidly rotating stars (e.g. Ogilvie & Lin 2007;
Goodman & Lackner 2009; Ivanov et al. 2013; Favier et al. 2014).

Finally, note that our simple physical picture should remain
qualitatively valid in weakly rotating interiors (i.e. slow rotators).

However, rapid rotation is known to strongly affect convection-
driven turbulence, as reported in DNS of plane-layer (e.g. Barker
et al. 2014; Currie et al. 2020) and spherical convection (e.g. Kaplan
et al. 2017; Guervilly et al. 2019), and it has also been proposed
that it could modify the effective viscosity (Mathis et al. 2016). Fur-
ther work is required to explore rapidly rotating convection, which
might be relevant for giant planets or young rapidly rotating stars.
Since the frequency spectrum of the convection could be strongly
impacted by rapid global rotation, the interactions between tidal
flows and convection is worth investigating for these applications.
Non-linear tidal flows can also be triggered in rapidly rotating inte-
riors for sufficiently large tidal deformations (such as the elliptical
(tidal) instability, e.g. Barker et al. 2016; Vidal & Cébron 2017),
which could enhance tidal dissipation for the shortest orbital periods
(Barker 2016; Vidal et al. 2018, 2019). Understanding the interplay
of these flows with convection also deserves future work.
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APPENDIX A: MESA CODE PARAMETERS

We use MESA version 12778 (Paxton et al. 2011, 2013, 2015,
2018, 2019). The inlist file that we use is given below. We alter
initial_mass to generate a given stellar model.

&star_job
create_pre_main_sequence_model = .true.

/ !End of star_job namelist
&controls
! starting specifications

initial_mass = 1.0
initial_z = 0.02d0
MLT_option = ’Henyey’
max_age = 5.0d10
max_years_for_timestep = 1.0d8
use_dedt_form_of_energy_eqn = .true.
use_gold_tolerances = .true.
mesh_delta_coeff = 0.3
when_to_stop_rtol = 1d-6
when_to_stop_atol = 1d-6

/ !End of controls namelist

This paper has been typeset from a TEX/LATEX file prepared by the author.
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