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Abstract. We consider the propagation of the piston mode in an acoustic waveguide obstructed
by two screens with small holes. In general, due to the features of the geometry, almost no energy
of the incident wave is transmitted through the structure. The goal of this article is to show that
tuning carefully the distance between the two screens, which form a resonator, one can get almost
complete transmission. We obtain an explicit criterion, not so obvious to intuit, for this phenomenon
to happen. Numerical experiments illustrate the analysis.
Key words. Waveguides, perforated screens, asymptotic analysis, abnormal transmission.

1 Introduction
We study the propagation of acoustic waves in a 3D waveguide obtructed by two screens with holes
of size ε where ε > 0 is a small parameter. We work at fixed frequency such that only the piston
mode, constant in the transverse direction, can propagate. In this setting, the scattering of an
incident piston mode is characterized by a reflection coefficient Rε and a transmission coefficient T ε
(see (5) below). Due to conservation of energy, we have

|Rε|2 + |T ε|2 = 1. (1)

In general, that is for arbitrary positions of the screens, due to the features of the geometry, almost
no energy of the incident wave passes through the small holes and one observes almost complete
reflection: limε→0R

ε = 1 and limε→0 T
ε = 0. But tuning carefully the distance 2Lε between the

screens, we will see that one can get good energy transmission. More precisely, for certain choices
of L0, L′, L′′ in Lε := L0 + εL′ + ε2L′′ and for a certain condition (31) on the shape of the holes,
we can obtain limε→0R

ε = 0 and limε→0 T
ε = T 0 with |T 0| = 1 (see Section 5).
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Figure 1: Side view of the waveguide Ωε (left) and picture of the left perforated screen (right).

Similar problems have been considered in [1, 3] but with only one hole and with Dirichlet boundary
conditions. In [3], the authors work with decompositions in Fourier series which are hard to gen-
eralize. In [1], following [5], the authors use techniques of construction of asymptotic expansions
for boundary value problems in singularly perturbed domains. We also adopt this approach. But
to the difference of the above mentioned publications, we employ a fine tuning procedure of the
geometrical shape which allows us to reveal the complete transmission phenomenon.
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2 Setting

First, we describe in detail the geometry (see Figure 1). Let ω±, ω0 be connected bounded open
sets of R2 such that ω± ⊂ ω0. We define the 3D domains

Ωε
± := {x = (y, z) ∈ R3 | y ∈ ω±, ±z > Lε}, Ωε

0 := ω0 × (−Lε;Lε),

with, for ε > 0 small,
Lε = L0 + εL′ + ε2L′′. (2)

Here the parameters L0 > 0, L′, L′′ ∈ R will be set later to observe interesting phenomena. Pick
some points Pj± ∈ ω±, with Pj± 6= Pk± for j 6= k, and some bounded sets θj± ⊂ R2, j = 1, . . . , J±,
with J± ∈ N∗ := {1, 2, . . . }. Then define the small “holes”

Θε
j± := {x = (y, z) ∈ R3 | ε−1(y − Pj±) ∈ θj±, z = ±Lε}

(see Figure 1 right). Finally set

Ωε := Ωε
− ∪

( J−⋃
j=1

Θε
j−

)
∪ Ωε

0 ∪
( J+⋃
j=1

Θε
j+

)
∪ Ωε

+.

We consider the following problem with Neumann boundary condition

∆uε + κ2uε = 0 in Ωε

∂νu
ε = 0 on ∂Ωε.

(3)

Here, ∆ is the Laplace operator while ∂ν corresponds to the derivative along the exterior nor-
mal. Furthermore, uε is the acoustic pressure in the medium while κ > 0 is the wave number.
Denote κ2

± the first positive eigenvalue of the Neumann Laplacian in ω±. In (3), we work with
κ ∈ (0; min(κ−, κ+)) so that only the piston modes win

± , wout
± with

win
±(y, z) =

e∓iκz√
|ω±|

, wout
± (y, z) =

e±iκz√
|ω±|

, (4)

can propagate in Ωε
±. Here |ω±| stands for the Lebesgue measure of the set ω±. We are interested

in the solution to the diffraction problem (3) generated by the incoming wave win
− in the trunk Ωε

−.
This solution admits the decomposition

uε(y, z) =
win
− +Rε wout

− (y, z + Lε) + . . . in Ωε
−

T ε wout
+ (y, z − Lε) + . . . in Ωε

+
(5)

where Rε ∈ C, T ε ∈ C are reflection and transmission coefficients. In this decomposition, the ellipsis
stand for a remainder which decays at infinity with the rate e−(κ2

−−κ2)1/2|z| in Ωε
− and e−(κ2

+−κ
2)1/2|z|

in Ωε
+. Note that the shifts ±Lε in the decomposition (5) are introduced to prepare the analysis

below. With the normalisation (4), Rε and T ε satisfy the relation of conservation of energy (1).
Our goal is to compute an asymptotic expansion of Rε, T ε with respect to ε as ε tends to zero.

3 Ansatz and auxiliary problems

To observe interesting phenomena, we work with L0 in (2) such that

L0 =
πq

2κ where q ∈ N∗.

In this case, κ2 is an eigenvalue of the problem

−∆v = λv in Ω0
0 := ω0 × (−L0;L0)

∂νv = 0 on ∂Ω0
0

(6)

2



obtained by considering the limit ε → 0+ in the equation (3) restricted to the resonator Ωε
0. We

shall assume that κ2 is a simple eigenvalue and we denote by v the eigenfunction

v(x) = cos(κ(z + L0)). (7)

Far from the holes Θε
j±, for the field uε in (5) we work with the ansätze

uε(x) = win
−(y, z + Lε) +R0 wout

− (y, z + Lε) + u0
−(y,−(z + Lε)) + . . . in Ωε

− (8)

uε(x) = T 0 wout
+ (y, z − Lε) + u0

+(y, z − Lε) + . . . in Ωε
+ (9)

uε(x) = ε−1a0 v(z) + ε0 v′ε(x) + εv′′(x) + . . . in Ωε
0. (10)

Here R0, T 0, a0 are unknown complex constants and the functions u0
±, v′ε, v′′ have to be determined.

In particular, u0
± decay exponentially at infinity. The term v′ε will depend on ε but this dependence

will be rather explicit. In these expansions, the ellipsis stand for higher order terms which will be
unimportant in the analysis.

In the vicinity of the holes Θε
j±, we observe a boundary layer phenomenon. To capture it, we

introduce the rapid variables ξj± = (ξ1
j±, ξ

2
j±, ξ

3
j±) := ε−1(x −Pε

j±) with Pε
j± := (Pj±,±Lε). We

look for an expansion of uε in a neighbourhood of the holes Θε
j± of the form

uε(x) = ε−1Z−1
j± (ξj±) + ε0Z0

j±(ξj±) + . . . , (11)

where the functions Z−1
j± , Z0

j± are to determined. Observing that

(∆x + κ2)uε(ε−1(x−Pε
j±)) = ε−2∆ξj±u

ε(ξj±) + . . . ,

we are led to consider the Neumann problem

−∆ξZ = 0 in Ξj±, ∂νZ = 0 on ∂Ξj± (12)

where Ξj± := R3
− ∪ R3

+ ∪ θj±(0). Here, by convention, R3
− := {ξ = (ξ1, ξ2, ξ3) ∈ R2 × (−∞; 0)},

R3
+ := R2 × (0; +∞) and θj±(0) := θj± × {0}.

Introduce Pj± the capacity potential of the set θj±(0) which is defined as the solution to the
problem

−∆ξPj± = 0 in R3 \ θj±(0), Pj± = 1 on θj±(0),

and decay at infinity. In the sequel, the asymptotic behaviour of Pj± at infinity will play a major
role. As |ξ| → +∞, we have (see e.g. [4])

Pj±(ξ) = cap(θj±)
|ξ|

+ ~qj± · ∇Φ(ξ) +O(|ξ|−3),

where Φ := ξ 7→ −1/(4π|ξ|) is the fundamental solution of the Laplace operator in R3 and ~qj±
is some given vector in R3. The term cap(θj±) = (4π)−1 ∫

R3\θj±(0) |∇Pj±|2 dξ > 0 corresponds to
the harmonic capacity [6] of the planar crack θj±(0). Note that since Pj± is even in ξ3, we have
~qj± = (~q 1

j±, ~q
2
j±, 0). Playing with symmetries, one can check that any smooth bounded solution of

(12) is of the form c0 + c1Wj±(ξ) where c0, c1 are constants and where Wj± is the function such
that

Wj±(ξ) =
{

1− Pj±(ξ) ξ3 > 0
−1 + Pj±(ξ) ξ3 < 0.

Note that one can verify that Wj± is harmonic and smooth in Ξj±. Moreover, Wj± is odd in ξ3.
With this definition, for η = ±, we have the expansion

Wjη(ξ) = ±1± 4πcap(θjη)Φ(ξ)∓ ~qjη · ∇Φ(ξ) +O(|ξ|−3), |ξ| → +∞, ±ξ3 > 0. (13)
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4 Asymptotic expansion of the scattering coefficients

In order to identify the terms in the outer (8), (9), (10) and inner (11) expansions of uε, we will
match the different behaviours in the neighbourhood of the holes Θε

j±.

? We start with the expansion (10) of uε in Ωε
0. From the Taylor formula and the expression

(7) for v, we have
v(±Lε) = (∓1)q(1− ε2(κL′)2/2 +O(ε3)). (14)

On the other hand, we observe that the expansions (8), (9) of uε in Ωε
± remain bounded as ε→ 0.

Therefore, matching the constant behaviours at order ε−1, in the inner expansion (11), we get

Z−1
j± (ξj±) = a0

2 (∓1)q(1∓Wj±(ξj±)).

Note in particular that with this choice, Z−1
j± (ξ) indeed tends to zero as |ξ| → +∞, ±ξ3 > 0.

? Then we introduce the expansion (10) of uε in Ωε
0 in the initial problem and look at the terms of

order ε0. This leads us to consider the problem

∆v′ + κ2v′ = 0 in Ω0
0, ∂νv

′ = 0 on ∂ω0 × (−L0;L0),

±∂zv′(y,±L) = a0(∓1)qκ2L′ − a0π(∓1)q
J±∑
j=1

cap(θj±)δ(y − Pj±) for y ∈ ω0.
(15)

To obtain the second boundary condition, we used the Taylor expansion

∂zv(±Lε) = (∓1)1+qεκ2(L′ + εL′′ +O(ε2)). (16)

It shows that the first term ε−1a0 v(z) in (10) generates an error of order ε0 on ω0 × {±Lε} which
must be compensated. Moreover, the Dirac masses δ(y − Pj±) come from

Z−1
j± (ξ) = a0

2 (∓1)q(2 + 4πcap(θj±)Φ(ξ) + . . . ), |ξ| → +∞, ±ξ3 > 0. (17)

Since Φ(ξ) = −1/(4π|ξ|), note that ε−1Φ(ξj±) = −1/(4π|x −Pε
j±|) is a term of order ε0. We

emphasize that v must have the singular behaviour of the Green’s function at the points (Pj±,±L0).
Multiplying the volume equation of (15) by v and integrating twice by parts, we find that (15) admits
a solution if and only if

∫
∂Ω0

0
v ∂νv′ dσ = 0. For a0 6= 0, this is equivalent to have

L′ =
π

2κ2|ω0|
∑
±

J±∑
j=1

cap(θj±). (18)

We emphasize that if L′ in (2) is chosen different from the above value (18), then we must have
a0 = 0. In this case, there is no term in ε−1 in (10), (11) and we simply get almost complete
reflection when ε tends to zero. Therefore, from now on, we assume that L′ is set as in (18). Then
the solution of (15) is uniquely defined under the condition∫

Ω0
0

v′v dx = 0.

Since L′ > 0, we need to extend the function v′ defined in Ω0
0 to Ωε

0. We take v′ε in the expansion
(10) by setting

v′ε(y, z) = v′(y, z − εL′ − ε2L′′) for z > 0
v′(y, z + εL′ + ε2L′′) for z < 0. (19)
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At z = 0, v′ε has the jumps

[v′ε](y, 0) := v′ε(y, 0+)− v′ε(y, 0−) = −2εL′∂zv′(y, 0) +O(ε2)
[∂zv′ε] (y, 0) := ∂zv

′
ε(y, 0+)− ∂zv′ε(y, 0−) = −2εL′∂2

zv
′(y, 0) +O(ε2).

(20)

These jumps will be compensated with the term v′′ε . The important point is that they occur in a
region where v′ is smooth.

? The next step consists in matching the outer (8), (9) and inner (11) expansions of uε at order ε0

in Ωε
±. In addition to (17), we have

Z−1
j± (ξ) = −a

0

2 (∓1)q(4πcap(θj±)Φ(ξ) + . . . ), |ξ| → +∞, ∓ξ3 > 0.

As a consequence, we obtain that the functions u0
± in (8), (9) must solve the following problems

∆u0
± + κ2u0

± = 0 in Ω@± := ω± × (0; +∞), ∂νu
0
± = 0 on ∂ω± × (0; +∞)

−∂zu0
±(y, 0) = iκ|ω±|−1/2S0

± + a0π (∓1)q
J±∑
j=1

cap(θj±)δ(y − Pj±) for y ∈ ω±.
(21)

Here S0
+ := T 0 and S0

− := R0 − 1. With our choice for the ansätze, u0
± must be exponentially

decaying at infinity. Multiplying (21) by eiκz + e−iκz and integrating by parts, we have to impose
that

∫
∂Ω@
±

(eiκz + e−iκz) ∂νu0
± dσ = 0. This leads to the identities

0 = iκ|ω±|+1/2S0
± + a0π (∓1)q

J±∑
j=1

cap(θj±). (22)

Introduce the generalized Green function Gj± which solves

∆Gj± + κ2Gj± = 0 in Ω@±, ∂νGj± = 0 on ∂ω± × (0; +∞)
−∂zGj±(y, 0) = δ(y − Pj±)− |ω±|−1 for y ∈ ω±.

(23)

Note that Gj± is exponentially decaying at infinity (to show this, again multiply by eiκz + e−iκz

and integrate by parts). As rj± := ((y − Pj±)2 + z2)1/2 tends to zero, we have the decomposition

Gj±(x) =
1

2πrj±
+ G̃j±(x)

where the function G̃j± is smooth. The matrices G± := (G±jk)1≤j,k≤J± with G±jk = G̃j±(Pk±, 0) is real
and symmetric. With this notation, using identity (22), we find that the functions u0

± introduced
in (21) satisfy

u0
± = a0π (∓1)q

J±∑
j=1

cap(θj±)Gj±.

As a consequence, as rj± tends to zero, we have the representation

u0
±(x) = a0π (∓1)q cap(θj±)

2πrj±
+ a0 (∓1)q U0

j± +O(rj±) with U0
j± := π

J±∑
k=1

cap(θk±)G±kj . (24)

Now we define the terms Z0
j± in the near field expansions (11). From the expression (19) of v′ε, as

rεj± := |x−Pε
j±| tends to zero, we obtain the expansion

v′ε(x) = −a0π(∓1)q cap(θj±)
2πrεj±

+ a0(∓1)q V′j± +O(rεj±) (25)
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for some real constants V′j± independent of ε. Owing to (8), (9) and (24), the function Z0
j± in (11)

must verify
Z0
j±(ξ) = s0

± + a0 (∓1)q U0
j± + o(1), |ξ| → +∞, ±ξ3 > 0.

with s0
+ := T 0/|ω+|1/2 and s0

− := (1 +R0)/|ω−|−1/2. Besides, owing to (10) and (25), we have

Z0
j±(ξ) = a0(∓1)q V′j± + o(1), |ξ| → +∞, ∓ξ3 > 0.

We conclude that
Z0
j±(ξj±) = Aj±Wj±(ξj±) +Bj±

where, according to the decomposition (13) of Wj±, the constants Aj±, Bj± solve the systems

±Aj± +Bj± = s0
± + a0 (∓1)q U0

j±, ∓Aj± +Bj± = a0 (∓1)q V′j±

Thus, we get

Aj± = ±(s0
± + a0 (∓1)q U0

j± − a0 (∓1)q V′j±)/2, Bj± = (s0
± + a0 (∓1)q U0

j± + a0 (∓1)q V′j±)/2.

? In (8)-(11), it only remains to define the term v′′. Consider the problem

∆v′′ + κ2v′′ = 0 in Ω0
0 \ (ω0 × {0}), ∂νv

′′ = 0 on ∂ω0 × (−L0;L0),
[v′′] (y, 0) = 2a0L′∂zv

′(y, 0), [∂zv′′] (y, 0) = 2a0L′∂zzv
′(y, 0)

±∂zv′′(y,±L) = a0(∓1)qκ2L′′

±2π
J±∑
j=1

Aj±cap(θj±)δ(y − Pj±)∓ a0

2 (∓1)q
J±∑
j=1

∑
p=1,2

qpj±
∂δ

∂yp
(y − Pj±) for y ∈ ω0.

(26)

Here the jumps at z = 0 are introduced to compensate (20). Moreover the boundary conditions of
the third line have been obtained by using (16) and by matching the expansions.

Multiplying the volume equation of (26) by v and integrating twice by parts, we find that (26)
admits a solution if and only if there holds a relation of the form (compatibility condition)

(−1)qT 0K+ + (1 +R0)K− + a0(α1 + α2L
′′) = 0 where K± := π

|ω±|1/2
J±∑
j=1

cap(θj±) (27)

and where α1, α2 are some real constants depending in particular on κ, ω0, θj± but not on ε and
L′′. Thus together with (22), we obtain the system

iκ T 0 + a0 (−1)qK+ = 0
iκ (R0 − 1) + a0K− = 0
(−1)qT 0K+ + (1 +R0)K− + a0(α1 + α2L

′′) = 0.
(28)

Solving (28), we obtain the following proposition, the main result of this article.

Proposition 4.1. Let Rε, T ε be the scattering coefficients (see (5)) in the geometry Ωε defined
from the parameter Lε = πq/(2κ) + εL′ + ε2L′′. For L′ as in (18), we have limε→0R

ε = R0(L′′),
limε→0 T

ε = T 0(L′′) with

R0(L′′) =
K2

+ −K2
− − iκβ

K2
+ +K2

− − iκβ
, and T 0(L′′) =

2(−1)q+1K+K−

K2
+ +K2

− − iκβ
. (29)

Here β := α1 + α2L
′′ and K±, α1, α2 are set in (27). Besides, for the constant a0 in (10) we have

a0 = a0(L′′) =
2iκK−

K2
+ +K2

− − iκβ
. (30)
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5 Analysis of the results

First, we observe that the coefficients R0(L′′), T 0(L′′) defined in Proposition 4.1 satisfy the relation
of conservation of energy |R0(L′′)|2 + |T 0(L′′)|2 = 1. On the other hand, R0 vanishes for a certain
L′′ = L′′� (such that β(L′′�) = 0⇔ α1 + α2L

′′
� = 0) if and only if K− = K+. This is equivalent to

1
|ω−|1/2

J−∑
j=1

cap(θj−) =
1

|ω+|1/2
J+∑
j=1

cap(θj+). (31)

Then we have T 0(L′′�) = (−1)q+1 and a0(L′′�) = iκ/K−. Note that in order (31) to be satisfied,
we do not need J− = J+ or ω− = ω+. Moreover, the position of the holes does not play any role
because we deal with the piston modes. When (31) is met, setting β̃ = κβ/(2K2

−), we obtain

R0(L′′) =
− iβ̃

1− iβ̃
, T 0(L′′) =

(−1)q+1

1− iβ̃
, a0(L′′) =

iκ/K−

1− iβ̃
. (32)

In this case, there holds R0(L′′) + (−1)q+1T 0(L′′) = 1 and as L′′ varies in R, R0(L′′) runs on the
circle centred at 1/2 of radius 1/2 while T 0 runs on the circle centred at (−1)q+1/2 of radius 1/2
(see Figure 2 right).

ε

Lε

πq

2κ

ε0

�

Figure 2: Left: paths {γL′′(ε) = (ε, πq/(2κ) + εL′ + ε2L′′, ε > 0} ⊂ R2 for several values of L′′.
According to the chosen path, the limit of the scattering coefficients along this path as ε → 0+ is
different. With this picture, we understand why for a fixed small ε0, the scattering coefficients have
a rapid variation as the distance between the screens changes in a vicinity of πq/(2κ). Right: sets
{R0(L′′) , L′′ ∈ R} (�) and {T 0(L′′) , L′′ ∈ R} ( ) in the complex plane where R0(L′′), T 0(L′′) are
defined in (29). Here q is odd and K− = K+. The black bold line represents the unit circle.

When the geometry is symmetric with respect to the plane z = 0, we have K− = K+ and so
R0(L′′�) = 0, T 0(L′′�) = (−1)q+1. But in this situation, working with symmetries for example as in
[2], we can get better and show that for ε > 0 small enough, there is Lε close to πq/(2κ)+εL′+ε2L′′�
such that Rε = 0 and T ε = (−1)q+1 (exactly and not asymptotically). We stress that for exact
complete transmission, the position of holes (and not only their shapes and numbers) matters.

6 Numerical illustrations
In this section, we illustrate the results we have obtained above. To simplify the numerical imple-
mentation, we work in 2D. We emphasize that the asymptotic analysis is different from the above
3D setting. However, the physical phenomena are similar. For the experiments, we define the
waveguide Ωε such that for L > 0,

Ωε = R× (0; 1) \ {Σε
− ∪ Σε

+} with Σε
± := {±L} × Iε±. (33)

Here the sets Iε± depend on the situation and will be given below. We take κ = 0.8π < κ± = π so
that only the piston modes (see (4)) can propagate. We compute numerically the scattering solution
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uε defined in (5). To proceed, we use a P2 finite element method in a truncated geometry. On
the artificial boundary created by the truncation, a Dirichlet-to-Neumann operator with 15 terms
serves as a transparent condition. Once we have computed uε, it is easy to obtain the scattering
coefficients Rε, T ε in the representation (5). For the numerics, we take ε = 10−4.

For the numerics of Figure 3, in (33) we take Iε− = Iε+ = (0; 1) \ [1/2 − ε/2; 1/2 + ε/2] (the
holes are centered on the middle line of the waveguide). For κ = 0.8π, the first critical length is
L0 = π/(2κ) = 1/1.6 = 0.625. In Figure 3, we display the scattering coefficients for L varying close
to 0.625. As expected, when ε is small, for most values of L, the energy of the incident field is almost
completely backscattered and the transmission coefficient T is close to zero. In accordance with
the discussion of Section 5 (remark that K− = K+ and even strongly, the geometry is symmetric
with respect to z = 0), we observe the phenomenon of complete transmission for some L = L?. As
expected (see formula (18)), we note that L? > L0. In Figure 3, we find back the circles charac-
terised by the formulas (32) for the asymptotic behaviour of the scattering coefficients. In Figure 4,
we display the same quantities as in Figure 3 but with L varying close to the second critical length
L0 = 2π/(2κ) = 1.25. Again, we get results in agreement with (32).

In Figure 5, we display the field uε for two different values of L, namely for a generic one where T is
almost zero and for L ≈ L?. For L ≈ L?, we indeed observe that the scattering field is exponentially
decaying in the incident branch. For L ≈ L?, we also note that the imaginary part of uε is large in
the resonator, of the order ε−1. This is coherent with the formula (30) which indicates that a0(L?)
is purely imaginary.

0.6263 0.62635 0.6264 0.62645 0.6265 0.62655 0.6266 0.62665 0.6267 0.62675 0.6268
0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

Figure 3: Left: curves L 7→ |Rε(L)| (�) and L 7→ |T ε(L)| (+×). Right: L 7→ Rε(L) (�) and L 7→ T ε(L)
(+×) in the complex plane. According to the conservation of energy, we have |Rε(L)|2 + |T ε(L)|2 = 1.
Therefore the scattering coefficients are located inside the unit disk delimited by the black bold line.
For both pictures, L takes values close to L0 = π/(2κ) = 0.625 and ε = 10−4.
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Figure 4: Same quantities as in Figure 3 but with L taking values close to L0 = 2π/(2κ) = 1.25.

1)

2)

3)

4)

Figure 5: 1) <e uε for L = 0.5. 2) <e uε for L = 0.6265 ≈ L?. 3) (resp. 4)) <e (uε − ui) (resp.
=m (uε − ui)) (scattered field) for L = 0.6265 ≈ L?. Here ui(x) = win

−(z + L).
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Figure 6: Same quantities as in Figure 3 but in the geometries defined by (34) (left) and (35) (right).

For the numerics of Figure 6 left, in (33) we take

Iε− = (0; 1) \ [0.1− ε/2; 0.1 + ε/2] and Iε+ = (0; 1) \ [0.7− ε/2; 0.7 + ε/2]. (34)
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In this case, the holes are not at the center of the waveguide and there is no symmetry with respect
to z = 0. However, we still have K+ = K− and (32) indicates that we should observe almost
complete transmission for a certain L∗. And this is what we get. For the numerics of Figure 6 right,
we take

Iε− = (0; 1) \ [0.5− 3ε/2; 0.5 + 3ε/2] and Iε+ = (0; 1) \ [0.5− ε/2; 0.5 + ε/2]. (35)

In other words, the right hole is three times larger than the left hole. In this case, we have cap(θj−) =
3cap(θj+) so that K− = 3K+ and infL |R0(L)| = 4/5 according to (32). This is indeed what we
observe.
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