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INTRODUCTION

Automatic speaker verification (ASV) is the task of verifying whether a speech utterance has been spoken by a claimed speaker [START_REF] Kinnunen | An overview of textindependent speaker recognition: From features to supervectors[END_REF][START_REF] Hansen | Speaker recognition by machines and humans: A tutorial review[END_REF]. State-of-the-art ASV systems show promising performance when several minutes of audio data have been collected in controlled conditions for both enrollment and verification. The amount of enrollment and verification speech is an important factor [START_REF] Poddar | Speaker verification with short utterances: a review of challenges, trends and opportunities[END_REF]. While having more speech typically improves recognition performance, short-duration utterances are often preferable for practical deployment. The short-duration speaker verification (SdSV) challenge 2020 primarily focuses on the duration factor where speakers are enrolled and verified with a few seconds of audio data [START_REF] Zeinali | Shortduration speaker verification (SdSV) challenge 2020: the challenge evaluation plan[END_REF]. Besides, the speech corpus for the challenge was recorded in realistic environments, and the collection protocol was designed to incorporate various kinds of noises in the speech corpus which introduced mismatches between the enrollment and the verification phases. The challenge has two independent tasks. Our entry focuses on Task 1, which concerns textdependent ASV.

In text-dependent ASV, the spoken phonetic contents for enrollment and verification are assumed to be identical. Typically, a short sentence or phrase is shared by all users. However, considering the practical fact that the test speaker can also utter a wrong phrase [START_REF] Larcher | Textdependent speaker verification: Classifiers, databases and RSR2015[END_REF][START_REF] Lee | The RedDots data collection for speaker recognition[END_REF], there may be four types of trials, respectively defined as target correct (TC) where the target speaker utters the correct phrase, target wrong (TW) where the target speaker utters a different phrase, impostor correct (IC) where an impostor utters the same phrase as in speaker enrollment, and impostor wrong (IW) where an impostor utters a different phrase compared to speaker enrollment. For evaluation purposes, TC trials are considered as genuine trials to be accepted, and the remaining three as impostor trials to be rejected.

Although methods developed for text-independent ASV are applicable to text-dependent ASV without any modification, they do not generalize well [START_REF] Larcher | Textdependent speaker verification: Classifiers, databases and RSR2015[END_REF]. In particular, the performance severely degrades in the TW condition due to the similarities in speaker information. The solutions proposed for text-dependent ASV verify the speaker identity and the spoken phrase in an integrated manner. Here, the phrase information is incorporated by capturing contextual information with a hidden Markov model (HMM) [START_REF] Larcher | Textdependent speaker verification: Classifiers, databases and RSR2015[END_REF][START_REF] Sarkar | Text dependent speaker verification using un-supervised HMM-UBM and temporal GMM-UBM[END_REF][START_REF] Zeinali | HMMbased phrase-independent i-vector extractor for textdependent speaker verification[END_REF][START_REF] Zeinali | Deep neural networks and Hidden markov models in i-vector-based text-dependent speaker verification[END_REF][START_REF] Dey | Template-matching for text-dependent speaker verification[END_REF], dynamic time warping (DTW) [START_REF] Dey | Template-matching for text-dependent speaker verification[END_REF][START_REF] He | A low-power textdependent speaker verification system with narrow-band feature pre-selection and weighted dynamic time warping[END_REF] and pass-phrase identification [START_REF] Sarkar | Incorporating pass-phrase dependent background models for text-dependent speaker verification[END_REF]. Alternatively, standalone utterance verification (UV) and ASV modules can be developed, and fused together at the score or decision level [START_REF] Kinnunen | Utterance verification for text-dependent speaker recognition: A comparative assessment using the RedDots corpus[END_REF].

We investigate both strategies for this challenge. Our single system applies joint spoken phrase and speaker identity verification where phrase information is incorporated with a pass phrase-dependent background model (PBM) [START_REF] Sarkar | Incorporating pass-phrase dependent background models for text-dependent speaker verification[END_REF]. The primary system integrates modules developed for separate tasks. Here, we adopt a cascade fusion strategy where UV is performed before ASV. We first compute the decision threshold associated with the equal error rate (EER) for UV on the development set. A verification trial is assigned with an arbitrarily low ASV score if its UV score is lower than the threshold. On the other hand, a trial is passed to the ASV module for scoring if its UV score is greater than or equal to the threshold. The threshold computed on the development set is adopted for scoring on the evaluation set. Our UIAI team is a multi-site collaboration involving four research labs. Given the emphasis on text-dependent ASV, we investigate different UV and text-dependent approaches. We develop an i-vector-based UV method that includes channel variability compensation. We introduce a text-dependent ASV method employing phone-based bottleneck features with PBM. We also explore how a standard ASV system can be improved in short-duration conditions with different frame-level acoustic features and utterance-level speaker embeddings. Finally, we study different system combination strategies suitable for combining UV and ASV systems. Our primary system, which is a multi-level fusion of seven different subsystems, has achieved the fifth rank out of 19 submissions in the challenge whereas the single system has shown substantial improvement over the two challenge baselines.

The rest of the paper is organized as follows. Section 2 describes different subsystems developed for the challenge. Section 3 describes the experimental setup. Section 4 presents the experimental results. Finally, we conclude in Section 5.

SYSTEM DESCRIPTION

In this section, we summarize the subsystems used for our primary submission to the SdSV challenge.

Utterance verification

Our UV system relies on speaker embeddings. Although speaker embeddings mainly encode speaker information, they contain a considerable amount of information about the spoken content [START_REF] Raj | Probing the information encoded in x-vectors[END_REF][START_REF] Wang | What does the speaker embedding encode?[END_REF]. This makes them potentially useful for UV tasks (besides ASV). The UV task in the SdSV challenge is a closed-set task as there are no out-of-set phrases. We use an i-vector representation [START_REF] Dehak | Front-end factor analysis for speaker verification[END_REF] and a probabilistic linear discriminant analysis (PLDA) back-end for this task. The setup is similar to the one commonly used in ASV scenarios, except that we treat utterance identifiers (rather than speakers) as the class labels. The i-vectors are projected onto a 9-dimensional space using linear discriminant analysis (LDA). Whitening and length normalization are applied to the projected i-vectors. We then use Gaussian PLDA with a full-rank subspace to compute the pairwise UV score between the average i-vector of the claimed phrase and the i-vector of the test phrase. Finally, we apply score normalization suitable for this closed-set scenario where the number of possible hypotheses is fixed. We use Max norm which subtracts the maximum score of the other (competing) phrases from the hypothesized phrase score [START_REF] Kinnunen | Utterance verification for text-dependent speaker recognition: A comparative assessment using the RedDots corpus[END_REF]. We also tried Mean norm but it performed worse.

Speaker verification

We develop four standalone ASV systems based on x-vector-PLDA [START_REF] Snyder | X-vectors: Robust DNN embeddings for speaker recognition[END_REF] and Gaussian mixture model-universal background model (GMM-UBM) [START_REF] Reynolds | Speaker verification using adapted Gaussian mixture models[END_REF] approaches.

X-vector-PLDA system: The network architecture for extracting x-vector speaker embeddings is given in Table 1. It differs from the x-vector architecture originally reported in [START_REF] Snyder | X-vectors: Robust DNN embeddings for speaker recognition[END_REF] by adding squeeze-and-excitation (SE) [START_REF] Hu | Squeeze-and-excitation networks[END_REF] modules to each frame-level time-delay neural network (TDNN) layer. In addition, three of the frame-level layers are replaced by residual (RES) blocks [START_REF] He | Deep residual learning for image recognition[END_REF]. The global mean and standard deviation pooling layer is replaced with a learnable dictionary encoder (LDE) [START_REF] Zhang | Deep TEN: Texture encoding network[END_REF][START_REF] Cai | A novel learnable dictionary encoding layer for end-to-end language identification[END_REF]. The LDE layer is similar to a GMM: it assigns features into components and computes statistics locally. We used a variant of LDE with a diagonal covariance matrix shared across all components. For more details of the speaker embedding extractor, see [START_REF] Vestman | Neural i-vectors[END_REF]. The trials are scored with a PLDA module [START_REF] Garcia-Romero | Analysis of i-vector length normalization in speaker recognition systems[END_REF] trained on the training embeddings. Finally, adaptive symmetric score normalization (AS-norm) [START_REF] Cumani | Comparison of speaker recognition approaches for real applications[END_REF] is applied.

GMM-UBM systems:

The success of GMM-UBM systems in speaker verification with short utterances [START_REF] Poddar | Speaker verification with short utterances: a review of challenges, trends and opportunities[END_REF] as well as text-dependent ASV [START_REF] Larcher | Textdependent speaker verification: Classifiers, databases and RSR2015[END_REF][START_REF] Kinnunen | Utterance verification for text-dependent speaker recognition: A comparative assessment using the RedDots corpus[END_REF][START_REF] Sahidullah | Local spectral variability features for speaker verification[END_REF] motivates us to explore this approach for the SdSV challenge. Our GMM-UBM systems are similar to standard GMM-UBM systems except that the UBMs are trained in a more efficient way. Instead of training a UBM on the full dataset, we train 10 GMMs on audio data for each of the 10 phrases independently and create the UBM by combining the components of the 10 GMMs and normalizing the mixture weights to unit sum. In the following, we consider three GMM-UBM systems relying on different acoustic features. 

Joint utterance and speaker verification

We perform joint verification of spoken content and speaker identity based on PBMs [START_REF] Sarkar | Incorporating pass-phrase dependent background models for text-dependent speaker verification[END_REF]. In this approach, PBMs are first derived from the GMM-UBM using maximum a posteriori (MAP) adaptation with pass phrase-specific audio data. During the enrollment phase, target speaker models are created by MAP adaptation from the best-matched PBM instead of the single UBM in a GMM-UBM system. The best-matched PBM is found in the maximum likelihood (ML) sense. In the test phase, we first determine the best-matched PBM for the test utterance. Finally, we compute the log-likelihood ratio score between the target model and the best-matched PBM. Our primary submission includes two PBM systems based on two different sets of bottleneck features (BN) extracted with deep neural networks (DNNs).

Phone-discriminative bottleneck (Phone-BN) features are extracted by a DNN trained on phone labels obtained using an HMM. We use the in-domain audio data of the SdSV challenge along with phone sequence information. We chose the flat-start method [START_REF] Young | The HTK Book (for version 3.4)[END_REF] for HMM training as phone-level alignments are not available. First, we train HMM-based monophone models by pooling all the utterances and their corresponding phone sequences. Parameters of the phonebased HMMs are then re-estimated in an iterative manner using the Baum-Welch algorithm. We consider 42 HMMs that correspond to the number of unique phones in the training data. We consider a 3-state (excluding start and end-state) left-to-right topology without skipping state transitions. We also model silences and pauses between words. We generate phone-level alignments and discard silences and pauses. Then we train a DNN to classify phones. The frame-level output of one hidden layer [START_REF] Sarkar | Time-contrastive learning based deep bottleneck features for text-dependent speaker verification[END_REF] is then projected using principal component analysis (PCA) to obtain lower-dimensional Phone-BN features. Figure 1 illustrates the Phone-BN feature extraction system.

Stream-wise time-contrastive learning based BN (sTCL-BN) features are extracted in a similar way, except that the phone classes used as DNN training targets are found in an unsupervised way [START_REF] Sarkar | Time-contrastive learning based deep bottleneck features for text-dependent speaker verification[END_REF][START_REF] Sarkar | Time-contrastive learning based DNN bottleneck features for text-dependent speaker verification[END_REF]. First, all the speech utterances are randomly concatenated into a single stream. This stream is segmented into fixed-duration chunks that capture shortterm context. Given the desired number N of classes, N chunks are taken at a time, and data points in the n-th chunk are assigned to class label n where n ∈ {1, 2, ..., N }. The process is repeated until all data points have been assigned. A segment-based clustering algorithm [START_REF] Sarkar | Time-contrastive learning based deep bottleneck features for text-dependent speaker verification[END_REF][START_REF] Sarkar | Time-contrastive learning based DNN bottleneck features for text-dependent speaker verification[END_REF] is applied to group similar chunks together and update the class labels until convergence. We then train a DNN to discriminate the obtained labels. The frame-level output of a hidden layer is projected into a low dimensional space using PCA to obtain sTCL-BN features.

EXPERIMENTAL SETUP

Dataset description

The audio data for the SdSV challenge was created from the DeepMine dataset collected by crowdsourcing [START_REF] Zeinali | DeepMine speech processing database: Text-dependent and independent speaker verification and speech recognition in Persian and English[END_REF][START_REF] Zeinali | A multi purpose and large scale speech corpus in Persian and English for speaker and speech recognition: the DeepMine database[END_REF]. Task 1 involves speech files from 963 speakers as in-domain audio data. There is no development set which could be used for parameter tuning and optimization. We have created a development set by randomly choosing a subset of 63 speakers from this in-domain data. Similarly to the evaluation set, we enroll each speaker with three utterances for phrase-specific targets.

If adequate data for a speaker-phrase combination is not available, we disregard that target model. The remaining sentences are used for test. We obtain a total of 519 target models and 4,810 speech utterances for test in the development set. The number of trials is summarized in Table 2. Similarly to the evaluation set, there is no cross-lingual trial. We have also discarded same-gender trials by clustering i-vectors for the 63 speakers (averaged over all utterances) into two pseudogender classes and keeping the trials for which the speakers in the enrollment model and the test utterance fall into the same class. The remaining in-domain data from 900 speakers consisting of 94,661 utterances are considered for system development in addition to the other permitted audio data, such as VoxCeleb and LibriSpeech. The evaluation set consists of 12,404 enrollment models, 69,542 utterances, and 8,306,700 trials.

Dataset and parameters for system training

We refer the seven subsystems in the UIAI entry as S1-S7.

S1 is the UV system and it uses mel-frequency cepstral coefficient (MFCC) features. We extract 20-dimensional static MFCCs, apply a RASTA filter [START_REF] Hermansky | Rasta processing of speech[END_REF], and compute deltas and double-deltas to create 60-dimensional features. Utterancelevel cepstral mean and variance normalization (CMVN) is applied after discarding non-speech frames using energybased activity detection (SAD). A 512-component UBM is trained on in-domain training data. The T-matrix is estimated with 600 factors on the same audio data. The extracted ivectors are projected to 9 dimensions using LDA based on phrase labels.

S2 is the x-vector-PLDA ASV system. The x-vector extractor is trained on YouTube audio data from VoxCeleb-1 [START_REF] Nagrani | VoxCeleb: A large-scale speaker identification dataset[END_REF] and VoxCeleb-2 [START_REF] Chung | Vox-Celeb2: deep speaker recognition[END_REF]. Recordings from the same YouTube video source are concatenated together. The scoring back-end (PLDA, centering, whitening, AS-norm) is trained on the in-domain data. For PLDA, the training labels are pairs of speaker and phrase IDs. Both in-domain and VoxCeleb data are augmented 5-fold using Kaldi's [START_REF] Povey | The Kaldi speech recognition toolkit[END_REF] augmentation recipes which include reverberation and additional noise, babble, or music. The input features for the embedding extractor are 60-dimensional, cepstral mean normalized MFCCs extracted with Kaldi. Kaldi's energy based VAD is applied to remove non-speech frames.

S3-5 are the GMM-UBM based ASV systems. Ten phrase-specific 512-component GMMs are trained on the in-domain data and merged into a 5120-component UBM. The target speaker models are created by MAP adaptation with a relevance factor of 3. We use three different acoustic front-ends. System S3 is based on 60-dimensional MFCCs including deltas and double-deltas. System S4 uses linearfrequency cepstral coefficients (LFCCs) with the same dimension. System S5 uses 66-dimensional overlapped block transform coefficients (OBTCs) computed with two blocks of sizes 9 and 13 [START_REF] Sahidullah | Design, analysis and experimental evaluation of block based transformation in MFCC computation for speaker recognition[END_REF]. The pre-and post-processing stages are identical for the three feature sets. We use 20 mel filters and retain the energy coefficients. The features are processed with RASTA filtering and utterance-level CMVN. We do not apply SAD since this degraded performance.

S6 is the PBM-based joint verification system with Phone-BN features. The DNN feature extractor consists of 7 fullyconnected layers with 1024 neurons and sigmoid activation. Its inputs are 57-dimensional RASTA-filtered MFCCs including deltas and double-deltas with a context of 11 frames. The number of outputs is 42. The DNN is trained on the in-domain data using CNTK [START_REF]An introduction to computational networks and the computational network toolkit[END_REF]. We compute BN features by projecting the output of the second hidden layer on each time frame into a 57-dimensional vector using PCA. The PCA matrix is computed on 10,000 randomly selected utterances from the training part of LibriSpeech. We use the open-source robust voice activity detector (rVAD) [START_REF] Tan | rVAD: An unsupervised segment-based robust voice activity detection method[END_REF] to discard non-speech frames from the enrollment and test utterances before applying utterance-level CMVN. The HMM used for extracting the phone labels does not discard non-speech frames, but it uses utterance-level CMVN. We use HTK [START_REF] Young | The HTK Book (for version 3.4)[END_REF] to build the HMM system. The Phone-BN features are then used with the PBM system where a gender-independent GMM-UBM with 2048 Gaussian components is trained using 60, 000 utterances from LibriSpeech. We create the target models using MAP adapta-tion with 3 iterations. We adapt only the mean vectors with a relevance factor of 10.

S7 is the PBM-based joint verification system with sTCL features. The DNN feature extractor uses the same input features as S6. We use rVAD [START_REF] Tan | rVAD: An unsupervised segment-based robust voice activity detection method[END_REF] to discard non-speech frames, and we consider N = 10 unsupervised classes as in our previous study [START_REF] Sarkar | Time-contrastive learning based deep bottleneck features for text-dependent speaker verification[END_REF]. The DNN and the PBMs are trained on the same audio data using the same hyper-parameters as S6.

Performance evaluation

The primary metric for the challenge is the normalized minimum detection cost function (minDCF) [START_REF] Zeinali | Shortduration speaker verification (SdSV) challenge 2020: the challenge evaluation plan[END_REF]. The EER is also reported. These are computed by treating TC trials as genuine and by pooling the remaining three as impostor. We computed those metrics on the development set using our own scoring script while the challenge organizers computed performance on the evaluation set. We also report the performance for the three sub-conditions and their average values on the development set. 

RESULTS

The ASV performance of the individual subsystems on the development set is shown in Table 3. The first row shows the ASV result of the UV system S1 which performs well in wrong pass-phrase conditions (TW and IW). However, the performance for the IC condition is random with about 50% EER as this system does not use speaker information. The next row shows the performance for the x-vector-based ASV system S2. Although it yields promising performance in the IC and IW conditions, it performs poorly in the TW condition. Similarly, the GMM-UBM systems perform relatively well in the IC and IW conditions but they fail in the TW condition. Our results also indicate that the GMM-UBM systems give competitive performance compared to the x-vector system. The short-term OBTC features outperform MFCCs in all cases. Out of the two PBM-based methods, the one based on Phone-BN features performs consistently better and both of these methods outperform other subsystems in terms of average EER and minDCF. S6 achieves the lowest average and pooled EERs as well as minDCFs. For this reason, we select it as the single system for the challenge.

We build the primary system submitted to the challenge by combining the modules for UV and ASV. We fuse S1, S6 and S7 for the UV task and all the subsystems except S1 for the ASV task. The subsystems for each task are combined by linear score weighting where the weights are optimized on the development set by linear search. The UV and ASV system are then combined by cascade fusion as described earlier. The trials with wrong pass-phrases as detected by the fused UV system are assigned an ASV score of -100, while the trials with correctly detected pass-phrases are retained with fused ASV score. Table 4 summarizes the results achieved by the single system and the primary system on the development and evaluation sets. The single system outperforms the two challenge baselines, especially in terms of minDCF. Figure 2 shows the DET plots of the submitted systems along with the baselines.

CONCLUSIONS

We have described the UIAI systems submitted to the SdSV challenge 2020 for text-dependent ASV. The systems developed are a fusion of different subsystems using various frontends and back-ends. To deal with the pass-phrase verification problem, we combined the UV system with ASV in a cascade mode. Our development set created with a subset of limited in-domain data generalized well to the evaluation set by estimating suitable fusion parameters and by demonstrating systematic improvement. However, there was a substantial performance gap between the development and evaluation set possibly due to the large number of speakers and presence of unknown noises in the evaluation set.

Systems studied for the challenge submissions were developed independently by four different sites using various features and classifiers. This work could be extended towards a more systematic comparison of front-end acoustic features and different back-end classifiers. For instance, our phonebottleneck features could be studied with x-vector system adopted for this work.
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 1 Fig. 1. Phone-BN feature extraction system.

Fig. 2 .

 2 Fig. 2. DET plots of the UIAI systems along with baselines.

Table 1 .

 1 Architecture of speaker embedding extractor network. The layers from 1 to 8 and layer 10 are followed by leaky ReLU activations and batch normalization. The embeddings are extracted from layer 10 before applying the activation function.

	#	Layer type	CNN kernel size Output dim.
	1	TDNN-SE	5	512
	2,3 TDNN-RES-SE	5	512
	4,5 TDNN-RES-SE	7	512
	6,7 TDNN-RES-SE	1	512
	8	TDNN-SE	1	128
	9	LDE aggregation	-	8,192
	10 FC	-	512
	11 FC-softmax	-	#speakers

Table 2 .

 2 Number of trials per condition in the development set.

	TC	TW	IC	IW	Total
	4,810	19,236	119,737	478,946	622,729

Table 3 .

 3 Results (EER in % / minDCF) in the development set for the individual subsystems included in the UIAI primary submission.

	ID	Method	Short-term features	Task	TW	IC	IW	Pooled	Avg.
	S1	i-vector	MFCC	UV	0.08 / 0.005	51.64 / 1.00	0.08 / 0.005	18.29 / 1.00	17.27 / 0.337
	S2	x-vector	MFCC	ASV	9.11 / 0.575	0.82 / 0.041	0.12 / 0.004	0.93 / 0.085	3.35 / 0.207
	S3	GMM-UBM	MFCC	ASV	8.35 / 0.431	0.91 / 0.040	0.60 / 0.019	1.36 / 0.090	3.29 / 0.164
	S4	GMM-UBM	LFCC	ASV	10.69 / 0.535	1.27 / 0.057	0.77 / 0.028	1.68 / 0.116	4.24 / 0.206
	S5	GMM-UBM	OBTC	ASV	7.82 / 0.405	0.85 / 0.035	0.60 / 0.016	1.22 / 0.085	3.09 / 0.152
	S6	PBM	Phone-BN	Both	0.07 / 0.008	1.31 / 0.051	0.01 / 0.001	0.81 / 0.029	0.46 / 0.020
	S7	PBM	sTCL-BN	Both	0.14 / 0.011	1.74 / 0.062	0.01 / 0.001	1.07 / 0.038	0.63 / 0.025

Table 4 .

 4 Results (EER in % / minDCF) of single and primary systems in the development and evaluation sets. The x-vector based baseline achieves 9.05% EER and 0.529 minDCF while the i-vector/HMM baseline achieves 3.49% EER and 0.146 minDCF.

	System	TW	IC	IW	Pooled	Avg.	Eval set. (Pooled)
	Single (S6)	0.07 / 0.008	1.31 / 0.051	0.01 / 0.001	0.81 / 0.029	0.46 / 0.020	3.83 / 0.118
	Primary (fusion S1-S7)	0.06 / 0.006	0.32 / 0.015	0.00 / 0.000	0.17 / 0.007	0.13 / 0.007	2.14 / 0.072