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YANG-BAXTER σ-MODEL WITH WZNW TERM AS E-MODEL

CTIRAD KLIMČÍK

Abstract. It turns out that many integrable σ-models on group manifolds belong to the class

of the so-called E-models which are relevant in the context of the Poisson-Lie T-duality. We

show that this is the case also for the Yang-Baxter σ-model with WZNW term introduced by

Delduc, Magro and Vicedo in [5].

1. Introduction

Integrability and T-dualisability are both rare properties of non-linear σ-models and it is not

known what necessary conditions must be imposed on a target space metric G and on closed

3-form field H in such a way that the corresponding σ-model enjoys either one or another. It

turns out, however, that those two properties share something in common, in the sense that the

majority of integrable sigma models [1, 13, 14, 15] recently constructed fall in the class of the

so-called E-models [2], which are the building-blocks for the construction of T-dualisable models

[3, 4]. It is not yet clear why it is so, but we find that trying to put all integrable σ-models under

the common roof of the E-models is a nice guiding principle which may eventually lead to a deeper

understanding of this phenomenon. In particular, the purpose of the present note is to give the

E-model interpretation of one of a few integrable σ-models for which this was not yet done, namely

the Yang-Baxter σ-model with WZNW term. This model was introduced in [5] (see also [6] for

previous work) and it is a two parameter1 deformation of the principal chiral model defined by

the action

S[g] = −K

4

(
∫

dτ

∮

(

g−1∂−g, (1 + η2 +AR+ η2R2)g−1∂+g
)

+ k

∫

d−1

∮

(g−1dg, [g−1∂σg, g
−1dg])

)

.

(1.1)

Here (., .) is the Killing-Cartan form on the Lie algebra G of a simple compact Lie group G,

R : G → G is the so-called Yang-Baxter operator (see Section 3 for its definition), τ and σ

stand respectively for the world-sheet time and space variables (the time and space integrals are

notationally separated as
∫

and
∮

expressing2 the angular character of the variable σ), g ≡ g(σ, τ)

is a dynamical field configuration with values in G, we set also ∂± := ∂τ ± ∂σ and, finally, the

parameters of the model are constrained by the relation

A = η

√

1− k2

1 + η2
. (1.2)

1Since the constant K is just the overall normalisation constant and the relation (1.2) is supposed to hold, the

action (1.1) is indeed a two-parameter deformation of the principal chiral model; the latter is recovered for the

particular values η = A = k = 0.
2Note also our perhaps non-standard way of writing of the Wess-Zumino term which is however very useful for

”travelling” between the first order and the second order description of the σ-model dynamics. Mathematically

speaking, the object
∮
(g−1dg, [g−1dg, g−1∂σg]) should be viewed as a two-form on the infinite dimensional loop

group manifold LG.

1

http://arxiv.org/abs/1706.08912v2


2 C KLIMČÍK

While Delduc, Magro and Vicedo showed in [5] that the model (1.1) is integrable only if the

relation (1.2) holds, we show in the present paper that (1.1) has the structure of the E-model also

only in the case when the constraint (1.2) is imposed. This fact illustrates again the mysterious

relation between the E-model formalism and the integrability which motivates our work.

The plan of this note is as follows : We first review how the concept of the E-model is built up

on that of the Drinfeld double, then we introduce a particular Drinfeld double and show that

the E-model which corresponds to it is just the Delduc, Magro and Vicedo model (1.1). We also

express the Lax pair of the integrable model (1.1) in the formalism of the E-model therefore our

paper can be viewed also as an alternative demonstration of the integrability of the model (1.1).

2. E-models : generalities

Consider thus a real Lie algebreD equipped with a non-degenerate symmetric ad-invariant bilinear

form (., .)D and consider an infinte-dimensional manifold P the points of which are smooth maps

from a circle S1 into D. By parametrizing the circle by the angle σ ∈ [0, 2π] we can associate

to each σ a D-valued function j(σ) on P which to every map S1 → D attributes its value in σ.

By picking further a basis TA of D we can construct also numerical functions jA(σ) on P by the

prescription

jA(σ) := (j(σ), TA)D. (2.1)

We interpret the numerical functions jA(σ) on P as coordinates on P and we define a Poisson

structure {., .}P on P by the following Poisson brackets of the coordinates :

{jA(σ1), j
B(σ2)} = FAB

Cj
C(σ1)δ(σ1 − σ2) +DABδ′(σ1 − σ2). (2.2)

Here the tensors FAB
C and DAB are defined by means of the structure of the Lie algebra D

DAB := (TA, TB)D, [TA, TB] = FAB
CT

C . (2.3)

In fact, the non-degeneracy of the bilinear form (., .)D guarantees that the Poisson structure {., .}P
on P is symplectic3 and can be directly used for construction of dynamical systems on P . An

important class of such dynamical systems was introduced in [3, 4] and the members of this class

are called the E-models. Each E-model is by definition a dynamical system on the symplectic

manifold P defined by the Hamiltonian HE :

HE :=
1

2

∫

dσ(j(σ), Ej(σ))D , (2.4)

where E : D → D is a self-adjoint R-linear involution, i.e.

(Ex, y)D = (x, Ey)D, ∀x, y ∈ D; E2x = x, ∀x ∈ D. (2.5)

Of course the time evolution of the current j(σ) is obtained by calculating its Poisson bracket with

the Hamiltonian which gives

∂τ j = ∂σ(Ej) + [Ej, j]. (2.6)

It turns out that every E-model encapsulates the first order Hamiltonian dynamics of some non-

linear σ-model provided that it exists a Lie subalgebra H ⊂ D the dimension of which is one half

of the dimension of D and which satisfies the so called isotropy condition (x, x)D = 0, ∀x ∈ H.

Denoting respectively D and H the (simply connected) groups corresponding to the Lie algebras

3The Poisson structure given by Eq. (2.2) is usually referred to as the symplectic current algebra.
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D and H, the target space of the σ-model is the space of the right cosets D/H and its action is

given by the formula [7, 8]

SE [f ] =
1

4

∫

dτ

∮

(f−1∂+f, f
−1∂−f)D +

1

4

∫

d−1

∮

(f−1df, [f−1∂σf, f
−1df ])D−

− 1

2

∫

dτ

∮

(Pf (E)f−1∂+f, f
−1∂−f)D. (2.7)

Here the σ-model field f(τ, σ) ∈ Image(Γ), where Γ : D/H → D is some fixed global section of

the total fibration D over the base space D/H (the ideal choice of Γ is some global section but if

there is no global section of this fibration we can choose several local sections covering the base

space) and Pf (E) is a projection operator from D to D defined by its kernel and its image:

KerPf (E) = (Id + Adf−1EAdf )D, ImagePf (E) = H. (2.8)

The formula (2.7) for the σ-model action from the E-model data (PD , HE) was derived in [7, 8]

and the symplectomorphism associating to every solution of the equation of motion of the σ-model

(2.7) the solution of the first order equation of motion (2.6) was given explicitely in [2]. It reads

j = ∂σff
−1 − 1

2
f
(

Pf (E)f−1∂+f − Pf (−E)f−1∂−f
)

f−1. (2.9)

If we parametrize the D-valued current j(σ) in terms of a D-valued variable l(σ) as

j(σ) = ∂σl(σ)l(σ)
−1 (2.10)

then the equation of motion (2.6) can be rewritten as

∂τ ll
−1 = E∂σll−1 (2.11)

and we can therefore infer a useful formula

∂±ll
−1 = (E ± Id)j. (2.12)

3. E-model underlying the Yang-Baxter σ-model with WZNW term

We start by recalling the important concept of the Yang-Baxter operator R : G → G, where G is

the Lie algebra of a real simple compact group G. Considering the standard Cartan-Weyl basis

Hµ, Eα of the complexified algebra GC, we introduce the basis of the real algebra G as

T µ = iHµ, Bα =
i√
2
(Eα + E−α), Cα =

1√
2
(Eα − E−α), (3.1)

and the operator R is then given by

RT µ = 0, RBα = Cα, RCα = −Bα. (3.2)

The Yang-Baxter operator verifies the following crucial identity

[Rx,Ry] = R([Rx, y] + [x,Ry]) + [x, y], ∀x, y ∈ G. (3.3)

Let us now specify which E-model underlies the Yang-Baxter σ-model with WZNW term (1.1)

via the formula (2.7). The relevant Lie algebra D turns out to be the complexification GC of the

compact simple Lie algebra G. (It must be stressed that GC itself has to be viewed as the real Lie

algebra, e.g. for G = su(2), GC = sl(2,C), the real Lie algebra sl(2,C) is just the six-dimensional

real Lie algebra of the Lorentz group.) There is a convenient way to describe each element z ∈ GC

in terms of two elements x, y ∈ G as follows

z = x+ iy. (3.4)
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The Lie algebra commutator in GC is then defined in terms of the commutator of G:

[z1, z2] := ([x1, x2]− [y1, y2]) + i([x1, y2] + [y1, x2]), z1, z2 ∈ GC, x1, y1, x2, y2 ∈ G, (3.5)

where zj = xj + iyj , j = 1, 2.

The second building block of an E-model is the choice of the bilinear form (., .)D. To recover the

action (1.1), we choose for (., .)D a bilinear form (., .)C,ρ depending on two real parameters C and

ρ, which is defined in terms of the standard Killing-Cartan form (., .) on GC as follows:

(z1, z2)C,ρ := C.IM (eiρz1z2) ≡ C sin ρ((x1, x2)− (y1, y2)) + C cos ρ((x1, y2) + (x2, y1)). (3.6)

Here IM stands for the imaginary part of a complex number.

The last thing to specify is the self-adjoint involution E : D → D leading to the model (1.1) via

the formula (2.7). For that, we parametrize unambiguously any element z ∈ GC in terms of two

elements R,J of G as follows

z =
e−iρR+ (cosh p+ e−iρ sinh p)iJ
2 cosh p(sinh p+ cos ρ cosh p)

, (3.7)

where p is some supplementary real parameter. Then the operator Ep,ρ : D → D is just defined

by the flip R ↔ J

Ep,ρz :=
e−iρJ + (cosh p+ e−iρ sinh p)iR
2 coshp(sinh p+ cos ρ coshp)

, (3.8)

which makes its involutivity manifest. Some work is needed to verify the self-adjointness of Ep,ρ,
i.e. the property

(Ep,ρz1, z2)C,ρ = (z1, Ep,ρz2)C,ρ. (3.9)

(Note also that for p = ρ = 0 the parametrization (3.7) becomes z = R + iJ which explains the

notation: R and J are, respectively, the ”real” and the ”imaginary” parts of z.)

To extract from our E-model (Ep,ρ,GC, (., .)C,ρ) the σ-model action (2.7) we need three more

things: to identify the isotropic subalgebra H ⊂ GC and the corresponding subgroup H ⊂ GC, to

choose the section Γ of the H-fibration over GC/H and to find explicit formula for the projection

Pf (Ep,ρ). Thus for the algebra H we take the subspace of D = GC defined as the image of the

R-linear operator
(

R − tan ρ
2
(R2 + 1)− i

)

: G → GC:

Hρ := (R − tan
ρ

2
(R2 + 1)− i)G, (3.10)

The fact that the subspace Hρ is indeed a Lie subalgebra can be deduced from the identity
[(

R − tan
ρ

2
(R2 + 1)− i

)

x,
(

R− tan
ρ

2
(R2 + 1)− i

)

y
]

=

=
(

R − tan
ρ

2
(R2 + 1)− i

)([(

R− tan
ρ

2
(R2 + 1)

)

x, y
]

+
[

x,
(

R− tan
ρ

2
(R2 + 1)

)

y
])

(3.11)

which is the consequence of the identity (3.3). The crucial isotropy property of Hρ follows from

the following anti-selfadjointness property of the operator R with respect to the Killing-Cartan

form

(Rx, y) = −(x,Ry). (3.12)

How the group Hρ looks like? In fact, it is a semi-direct product of some real form of the

complex Cartan torus TC ⊂ GC with the nilpotent group N featuring the Iwasawa decomposition

of GC = GAN . To see it, it is convenient first to use the explicit form (3.2) of the Yang-Baxter
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operator R to figure out that the subalgebra Hρ ⊂ D can be written as a semi-direct sum of two

Lie subalgebras of GC (the ideal is on the right)

Hρ = SpanR(e
−

iρ
2 Hµ)⊂+ SpanC(E

α) ≡ e−
iρ
2 Lie(A)⊂+ Lie(N). (3.13)

Thus the subgroup Hρ of GC is the semidirect product Hρ := Aρ ⋉ N , where Aρ is the Abelian

subgroup of GC the Lie algebra of which is Lie(Aρ) = e−
iρ
2 Lie(A). In the case of the group

GC = SL(n,C), the elements of Aρ are appropriate diagonal matrices and the elements of N are

complex upper-triangular matrices with units on the diagonal.

If e
iρ
2 6= ±i (which we are going to suppose for the rest of this paper), there exists a global

section of the Hρ-fibration over G/Hρ. Indeed, this can be deduced from the validity of the

standard Iwasawa decomposition GC = GAN which implies in turn the validity of the modified

Iwasawa decomposition GC = GAρN . This means that any right Hρ-coset in GC can be uniquely

represented by some element of the compact group G which is, by definition, the image of that

coset by the section Γ. The section Γ defined in this way has for the image the submanifold G of

GC therefore the field f(τ, σ) in the σ-model action (2.7) can be taken as G-valued and denoted

as g(τ, σ).

In order to evaluate the σ-model action (2.7) corresponding to the E-model (Ep,ρ,GC, (., .)C,ρ), it

remains to make explicit the expression Pf (Ep,ρ)g−1∂+g. To do that we first check that

g−1∂+g = (e−iρ + i cosh p+ ie−iρ sinh p)u+ (R − tan
ρ

2
(R2 + 1)− i)v, (3.14)

where u, v are the elements of G given by the formulae

u =
(

cos ρ+ sin ρ sinh p+
(

R− tan
ρ

2
(R2 + 1)

)

(cosh p+ cos ρ sinh p− sin ρ)
)−1

g−1∂+g; (3.15)

v =

(

R− tan
ρ

2
(R2 + 1)− ep tan ρ

2
+ 1

tan ρ
2
− ep

)−1

g−1∂+g. (3.16)

We note that the u- and v-terms on the right hand side of Eq. (3.14) are respectively the elements

of the subspaces KerPf (E) = (Id + Adf−1EAdf )D and ImagePf (E) = Hρ. This means that it

holds

Pf (Ep,ρ)g−1∂+g =

(

R− tan
ρ

2
(R2 + 1)− i

)(

R− tan
ρ

2
(R2 + 1)− ep tan ρ

2
+ 1

tan ρ
2
− ep

)−1

g−1∂+g.

(3.17)

Inserting the expression (3.17) in the general formula (2.7), we obtain the second order σ-model

action corresponding to the E-model (Ep,ρ,GC, (., .)C,ρ):

SEp,ρ
[g] =

C sin ρ

4

∮
(
∫

dτ(g−1∂+g, g
−1∂−g) +

∫

d−1(g−1dg, [g−1∂σg, g
−1dg])

)

+

+
C

2

∫

dτ

∮

(

(

cos ρ− sin ρ
(

R− tan
ρ

2
(R2 + 1)

))

(

R− tan
ρ

2
(R2 + 1)− ep tan ρ

2
+ 1

tan ρ
2
− ep

)−1

g−1∂+g, g
−1∂−g

)

.

(3.18)

The σ-model (3.18) does not look like the Yang-Baxter σ-model with WZNW term as given by

Eq.(1.1), however, it can be rewritten in that form by using the identity

R3 = −R (3.19)
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which permits to invert easily the operator
(

R− tan ρ
2
(R2 + 1)− e

p
tan

ρ
2
+1

tan
ρ
2
−ep

)

. The resulting ex-

pression reads

SEp,ρ
[g] =

C

4 cosh p

∮
(
∫

dτ(g−1∂+g, g
−1∂−g) + sin ρ cosh p

∫

d−1(dgg−1 ∧, [∂σgg
−1, dgg−1])

)

+

+
C

4 coshp

(

e2p cos2
ρ

2
− sin2

ρ

2

)

∫

dτ

∮

(

(−e−pR+R2 + 1)g−1∂+g, g
−1∂−g)

)

(3.20)

and this does coincide with the original action (1.1) of Delduc, Magro and Vicedo upon the

identification

K = − C

coshp
, k = sin ρ cosh p, η2 = e2p cos2

ρ

2
−sin2

ρ

2
, A = −ep cos2

ρ

2
+e−p sin2

ρ

2
. (3.21)

It can be also checked that the constraint (1.2) is satisfied by the values of the parametersK, k, η, A

given by Eqs. (3.21), which means that the crucial property of integrability of the Yang-Baxter

σ-model with WZNW term comes about automatically from our E-model formalism.

4. Integrability

The first order field equations (2.6) of the E-model defined by the data (Ep,ρ,GC, (., .)C,ρ) acquire

a particularly simple form if we parametrize the current j(τ, σ) as in Eq. (3.7)

j =
e−iρR+ (cosh p+ e−iρ sinh p)iJ
2 cosh p(sinh p+ cos ρ cosh p)

. (4.1)

We then have

Ep,ρj =
e−iρJ + (cosh p+ e−iρ sinh p)iR
2 cosh p(sinh p+ cos ρ cosh p)

(4.2)

therefore Eq. (2.6) for the data (Ep,ρ,GC, (., .)C,ρ) can be equivalently rewritten in terms of two

G-valued equations :

∂τR = ∂σJ + [J ,R]; (4.3a)

∂τJ = ∂σR. (4.3b)

The form (4.3) of the first order field equations is of course very familiar since it is identical with

the Zakharov-Mikhailov field equations of the principal chiral model [9] allowing the so called Lax

pair with spectral parameter. This means that given a solution R(τ, σ),J (τ, σ) of the equations

of motion (4.3) and a complex number λ 6= ±1 the following GC-valued zero curvature identity

takes place

∂+A−(λ)− ∂−A+(λ) + [A−(λ), A+(λ)] = 0, (4.4)

where

A±(λ) :=
J ±R
1± λ

. (4.5)

We thus conclude that our E-model (Ep,ρ,GC, (., .)C,ρ) is integrable, in the sense of admitting an

infinite number of conserved observables extracted from the Lax pair A±(λ) in the standard way

[10]. We have thus given an alternative proof of integrability of the model (1.1) than that presented

in [5].

We remark that the Yang-Baxter σ-model with WZNW term was shown to be integrable even

in the stronger sense in [5] where it was demonstrated via the so called r/s-formalism that the

conserved observables extracted from the Lax pair Poisson-commute. The matrix Poisson brackets

of the components of the Lax connection which intervene in this computation do depend on the
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parameters C, p and ρ, which is not surprising since the Poisson brackets of the currents R and J
depend on them. Indeed we have

{J a(σ1),J b(σ2)} =
2 cosh p

C
fab

cJ c(σ1)δ(σ1 − σ2)−
4(cosh p)2 sin ρ

C
δabδ′(σ1 − σ2); (4.6a)

{J a(σ1),Rb(σ2)} =
2 cosh p

C
fab

cRc(σ1)δ(σ1 − σ2)−
4(cosh p)2(cosh p+ cos ρ sinh p)

C
δabδ′(σ1 − σ2);

(4.6b)

{Ra(σ1),Rb(σ2)} = −2 coshp
(

(sinh p)2 + (cosh p)2 + 2 cosρ sinh p coshp
)

C
J c(σ1)f

ab
cδ(σ1 − σ2)+

(4.6c)

+
4 sin ρ(cosh p)2

C
Rc(σ1)f

ab
cδ(σ1 − σ2)−

4(cosh p)2 sin ρ

C
δabδ′(σ1 − σ2).

(4.6d)

The brackets (4.6) were obtained from the symplectic current algebra (2.2) in the following way:

we chose a basis TA := (τa, iτa) of GC where τa is an orthonormal basis of G satisfying

(τa, τb) = −δab, [τa, τb] = fab
cτ

c, (4.7)

we set

Ra := (R, τa), J a := (J , τb) (4.8)

and, using the parametrization (4.1) of the D-current j, we evaluated

(j, τa)C,ρ =
CJ a

2 coshp
, (j, (sinh p+ e−iρ cosh p)iτa)C,ρ =

CRa

2 coshp
. (4.9)

Finally we plugged the expressions (4.9) into the symplectic current algebra (2.2).

For completeness, we give also the formula for the Hamiltonian (2.4) of our Ep,ρ-model in the

R,J -parametrization (4.1)

HEp,ρ
:=

C

2

∫

dσ
(cosh p+ cos ρ sinh p)((R,R) + (J ,J ))− 2 sin ρ(R,J )

4(cosh p)2(sinh p+ cos ρ cosh p)2
. (4.10)

Combining the formulae (4.6) and (4.10) we find for the Poisson brackets {R, HEp,ρ
} and {J , HEp,ρ

}

{R, HEp,ρ
} = ∂σJ + [J ,R]; {J , HEp,ρ

} = ∂σR (4.11)

in full accord with the equations of motion (4.3).

5. Another form of the first order formalism

The reader might wish to understand better how the second order action (3.20) can be derived from

the symplectic current algebra (4.6) and the Hamiltonian (4.10). In a general case, they may wish

to consult the original papers [3, 7, 8], but the case of the Yang-Baxter σ-model with the WZNW

term given by (3.20) can be understood quite simply by suitably parametrizing the symplectic

current algebra in terms of the coordinates of another symplectic manifold which features in the

first order description of the dynamics of nonlinear σ-models with the WZNW terms. Consider

thus the spaces LG and LG consisting of smooth maps from the circle S1 respectively into the Lie

algebra G and into the Lie group G. The manifold LG×LG is referred to as the (co)tangent bundle
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of the loop group LG and it is equipped with a symplectic structure4 Ω given by two equivalent

expressions:

Ω =
k

2

∮

(dgg−1 ∧, ∂σ(dgg
−1)) + d

∮

(dgg−1, JL), (g, JL) ∈ LG× LG; (5.1a)

Ω = −k

2

∮

(g−1dg ∧, ∂σ(g
−1dg))− d

∮

(g−1dg, JR), JR = −g−1JLg + kg−1∂σg. (5.1b)

Here the symbol
∮

stands for the circular integral around the loop parameter σ and (., .) is the

Killing-Cartan form on G.
It is useful to recall the Poisson brackets of the variables g, JL, JR induced by the symplectic form

(5.1) that were computed e.g. in [11, 12]:

{g(σ1) ⊗, g(σ2)} = 0; (5.2a)

{g(σ1), (JL(σ2), τ
a)} = τag(σ1)δ(σ1 − σ2); (5.2b)

{g(σ1), (JR(σ2), τ
a)} = −g(σ1)τ

aδ(σ1 − σ2); (5.2c)

{(JL(σ1), τ
a), (JL(σ2), τ

b)} = (JL(σ1), [τ
a, τb])δ(σ1 − σ2) + k(τa, τb)δ′(σ1 − σ2); (5.2d)

{(JR(σ1), τ
a), (JR(σ2), τ

b)} = (JR(σ1), [τ
a, τb])δ(σ1 − σ2)− k(τa, τb)δ′(σ1 − σ2); (5.2e)

{(JL(σ1), τ
a), (JR(σ2), τ

b)} = 0. (5.2f)

Consider now an injective map Υ : LG × LG → P from the cotangent bundle of the loop group

LG into the symplectic current algebra P (based on the choice D = GC) given explicitely by

j(σ) ≡ Υ(g, JL) := ∂σgg
−1 +

e−iρ

C
(Rg−1 + tan

ρ

2
(R2

g−1 + 1)− i)(−JL + C sin ρ ∂σgg
−1), (5.3)

where

Rg−1 := AdgRAdg−1. (5.4)

The crux of the story is the fact that, for the choice k = C sin ρ and for the choice of the bilinear

form (., .)D = (., .)C,ρ given by (3.6), the map Υ preserves the Poisson brackets (5.2) on LG×LG
and (2.2) on P (as it can be verified by somewhat tedious calculation employing crucially the

Yang-Baxter identity (3.3)). The procedure of the extraction of a non-linear σ-model (3.20) from

the Ep,ρ-model based on the involution (3.8) then starts by pull-backing the symplecting form ω

and the Hamiltonian HEp,ρ
from P to LG × LG where they become, respectively, Υ∗ω = Ω and

Υ∗HEp,ρ
= Hp,ρ :

Hp,ρ(g, JL) =
1

2

∮

(Υ(g, JL), Ep,ρΥ(g, JL))C,ρ. (5.5)

It is well-known how to obtain the first order action of a general dynamical system (P, ω,H) if

the symplectic form ω were a coboundary, that is, if it existed a 1-form θ such that ω = dθ. In

this case the action S(γ) of a trajectory γ(τ) in the phase space P would be given by

S(γ) =

∫ τf

τi

dτ(γ∗θ − (γ∗H)dτ). (5.6)

If ω is not coboundary, we must write instead

S(γ) =

∫ τf

τi

dτ(γ∗d−1ω − (γ∗H)dτ). (5.7)

Strictly speaking, the object d−1ω is not well-defined but its variation is, and that is all what is

needed to extract field equations out from (5.7). We do not enter the discussion how precisely the

4For k = 0 the expressions (5.1) describe the canonical symplectic structure on the (co)tangent bundle.



YANG-BAXTER σ-MODEL WITH WZNW TERM AS E-MODEL 9

term d−1ω should be handled in general (this is a well-known story for everyone who is familiar

with the dynamics of the standard WZNW model) since what matters for us is that the symplectic

form Ω given by (5.1a) is the sum of two 2-forms from which the one containing explicitly the

variable JL is the coboundary. This permits us to write the first order action of a trajectory

γ(τ) := (g(τ), JL(τ)) of the dynamical system (LG× LG,Ω, Hp,ρ) as follows

Sp,ρ =

∫

dτ

∮
(

(∂τgg
−1, JL)−

1

2
(Υ(g, JL), Ep,ρΥ(g, JL))C,ρ

)

+
C sin ρ

2

∫

γ∗d−1

∮

(dgg−1 ∧, ∂σ(dgg
−1)) =

=

∫

dτ

∮
(

(∂τgg
−1, JL)−

e−p

C
(JL, JL)−

sinh p+ cos ρ cosh p

C(1 + cos ρ)
(Rg−1JL, Rg−1JL)

)

+

+

∫

dτ

∮

(

∂σgg
−1,
(

sin ρ cosh p+ (sinh p+ cos ρ cosh p)
(

Rg−1 − tan
ρ

2
(R2

g−1 + 1)
))

JL

)

− C(cosh p+ cos ρ sinh p)

2

∫

dτ

∮

(∂σgg
−1, ∂σgg

−1) +
C sin ρ

2

∫

γ∗d−1

∮

(dgg−1 ∧, ∂σ(dgg
−1)).

(5.8)

We note that the G-valued current JL plays the role of auxiliary field in (5.8) and, moreover, it

appears there quadratically. It can be therefore easily eliminated giving a second order action

Sp,ρ =
Cep(1 + cos ρ)

4

∫

dτ

∮

(g−1∂+g, g
−1∂−g)+

+
C

4

(

1

cosh p
− ep(1 + cos ρ)

)
∫

dτ

∮

(Rg−1∂+g,Rg−1∂−g)+

+
C(sinh p+ cos ρ coshp)

2 coshp

∫

dτ

∮

(Rg−1∂τg, g
−1∂σg)+

C sin ρ

4

∫

d−1

∮

(dgg−1 ∧, [∂σgg
−1, dgg−1]).

(5.9)

Of course, the action (5.9) can be easily rewritten in the equivalent form (3.20) of the Yang-Baxter

σ-model with WZNW terms, as it should.

6. Outlook

The ordinary Yang-Baxter σ-model [13, 14] obtained from (3.20) by setting ρ = 0 can be alter-

natively deformed to the two-parametric bi-Yang-Baxter σ-model [15] which is also integrable.

There is an obvious open problem of ”switching on” a non-vanishing ρ in the bi-Yang-Baxter case

and to obtain in this way a three-parametric integrable deformation of the principal chiral model.

This problem does not seem to be an easy one, however.
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J. Balog, P. Forgács, Z. Horváth and L. Palla, A new family of SU(2) symmetric integrable σ-models, Phys.

Lett. B324 (1994) 403, hep-th/9307030;

V.V. Bazhanov, G.A. Kotousov and S.L. Lukyanov, Winding vacuum energies in a deformed O(4) sigma

model, Nucl. Phys. B889 (2014) 817, arXiv:1409.0449 [hep-th];

I. V. Cherednik; Relativistically invariant quasiclassical limits of integrable two-dimensional quantum models,

Theor. Math. Phys. 47 (1981) 422;

F. Delduc, M. Magro and B. Vicedo, On classical q-deformations of integrable sigma-models, JHEP 1311

(2013) 192, arXiv:1308.3581 [hep-th];

F. Delduc, T. Kameyama, M. Magro and B. Vicedo, Affine q-deformed symmetry and the classical Yang-

Baxter σ-model, JHEP 1703 (2017) 126 doi:10.1007/JHEP03(2017)126, arXiv:1701.03691 [hep-th];

F. Delduc, M. Magro and B. Vicedo, An integrable deformation of the AdS5 × S5 superstring action, Phys.

Rev. Lett. 112 (2014) no.5, 051601, arXiv:1309.5850 [hep-th];

http://arxiv.org/abs/1312.3542
http://arxiv.org/abs/hep-th/9307030
http://arxiv.org/abs/1409.0449
http://arxiv.org/abs/1308.3581
http://arxiv.org/abs/1701.03691
http://arxiv.org/abs/1309.5850


10 C KLIMČÍK
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