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Abstract—In Deep Neural Network (DNN) accelerators, the on-
chip traffic and memory traffic accounts for a relevant fraction
of the inference latency and energy consumption. A major
component of such traffic is due to the moving of the DNN model
parameters from the main memory to the memory interface
and from the latter to the processing elements (PEs) of the
accelerator. In this paper, we present DNNZip, a technique aimed
at compressing the model parameters of a DNN, thus resulting
in significant energy and performance improvement. DNNZip
implements a lossy compression whose compression ratio is tuned
based on the maximum tolerated error on the model parameters
provided by the user. DNNZip is assessed on several convolutional
NNs and the trade-off inference energy saving vs. inference
latency reduction vs. network accuracy degradation is discussed.
We found that up to 64% energy saving, and up to 67% latency
reduction can be obtained with a limited impact on the accuracy
of the network.

Index Terms—Approximate Deep Neural Networks, Deep
Neural Network Accelerator, Weights Compression, Accu-
racy/Latency/Energy Trade-off.

I. INTRODUCTION

Deep Neural Networks (DNNs) have been founding fertile
ground in several application domains achieving dramatic
accuracy improvements in many tasks as compared to tra-
ditional handcrafted algorithms. While DNN-based methods
often require significant computational, communication, and
storage capabilities, there is a need to run them in real-time
on resource constrained embedded and/or mobile systems.
Thus, in the last few years, several dedicated hardware ac-
celerators have been proposed for efficient inference compu-
tation [1]–[3]. Their basic architecture consists of a matrix
of processing elements (PEs) specialized to perform several
multiply-accumulate operations per clock cycle interconnected
by means of a customized network-on-chip (NoC) [4], [5].

Current DNN models rely on millions or even billions of
parameters, thus exacerbating the role played by the com-
munication and memory sub-systems for moving such high
data volume from the main memory into the accelerator and
then to its many PEs. Thus, the performance and energy
figures of a DNN accelerator are severely affected by the
communication and memory sub-system [6], [7]. Fig. 1a shows
the normalized latency and energy during the execution of an

inference for different network models1. As it can be observed,
the overall inference latency is due to the memory and on-chip
communication latency. The overall inference energy is mainly
due to memory (both on-chip local and off-chip main memory)
and on-chip communication. There are three main types of
traffic that determine the above latency and energy figures, as
follows: 1) The traffic for fetching the input feature map and
model parameters (i.e., weights) from the memory; 2) the on-
chip traffic for dispatching the weights and the input feature
map among the PEs of the accelerator; 3) the traffic for storing
back the output feature map to the main memory in case of
the local memory does not suffice. In particular, the fraction
of traffic due to transfer weights accounts for a significant
fraction of the overall traffic as shown in Fig. 1b. Further,
in contrast to the traffic induced by the output feature maps
that decreases as the accelerator’s local memory size increases,
the weights induced traffic is not affected by the amount of
local memory. Thus, as the local memory size increases, the
memory traffic becomes more and more dominated by the
weights-induced traffic as shown in Fig. 1c for the case of
MobileNet.

Based on the above observations, reducing the memory
footprint to store the model parameters would have a relevant
positive impact on both the performance and energy metrics.
Thus, in this paper, we present DNNZip, a new compression
technique for reducing the memory footprint to store the
weights and consequently the traffic induced for delivering
them to PEs. DNNZip takes as inputs the DNN model and a
user defined maximum tolerated error on the model parameters
and returns the compressed model parameters to be stored
into the memory. Each layer of the DNN is compressed with
the appropriate compression level in such a way to do not
exceed the aforementioned maximum error threshold. DNNZip
implements a lossy compression, that is, the decompressed
parameters differ from the original ones. Thus, the compressed
DNN can be seen as an approximate version of the original
DNN. The architecture of the decompression unit which is in-
tegrated into each PE and which allows on-the-fly decompres-
sion of the compressed parameters’ stream is also presented.

1Information about the reference architecture of the DNN accelerator and
the simulation setup are reported in Sec. IV.
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Fig. 1. Breakdown of inference latency and energy (a) and memory traffic
(b) for different network models. Memory traffic breakdown for MobileNet
for different local memory sizes (c).

DNNZip is assessed on several DNN models covering a wide
spectrum of complexities in terms of number of parameters
and number/type of layers. The trade-off between performance
improvement vs. energy saving vs. accuracy degradation for
the execution of an inference is then discussed.

Although several techniques have been proposed in the
context of model compression and acceleration for DNNs [8],
we show how DNNZip is complementary to other compression
techniques and can be applied on top of them for further
improving performance and energy figures.

II. RELATED WORK

Most of the compression methods proposed in literature
focus on minimizing the model size. Methods based on param-
eters pruning and sharing try to remove parameters that are not
crucial to the model performance. Deep compression [9] first
prunes the network by learning only the important connections
then, it quantizes the weights to enforce weight sharing,
and finally, Huffman coding is applied. The main drawback
of this approach is that Huffman coding implies storing a
large dictionary with a consequent area overhead making it
unsuitable for lightweight and energy-efficient implementa-
tions. Other methods modify the network structure in order to
compress weights. For instance, a unified end-to-end learning
framework for learning compressible representations, jointly
optimizing the model parameters, the quantization levels, and
the entropy of the resulting symbol stream to compress the

network model is presented in [10]. A method to compress
intermediate feature maps to decrease memory storage and
bandwidth requirements during inference is presented in [11].
It is based on converting fixed-point activations into vectors
over the smallest GF(2) finite field followed by nonlinear
dimensionality reduction layers embedded into a DNN. The
main drawback of compression representation learning based
approaches is that they alter the DNN model and then require a
retraining phase. EBPC [6] is a hardware-friendly and lossless
compression scheme for the feature maps present within
CNNs. However it is limited on the compression of the feature
maps although the model parameters/weights are responsible
for a major fraction of the overall memory/communication
traffic (see Fig. 1b). Several compression techniques are based
on reducing the number of bits required to represent weights
with a consequent reduction of the memory footprint for
storing the network parameters [12]. A direct consequence of
quantization is the possibility of using arithmetic hardware
modules working on lower data width, with a consequent
improvement in silicon area and energy consumption. Extrem-
izing quantization techniques, binarization allows to represent
weights with just a single bit [13], [14]. Interested reader can
refer to [8] for a survey of model compression and acceleration
for DNNs.

As we will see in the rest of the paper, DNNZip does
not compete with the aforementioned model compression
techniques but it is rather orthogonal to them and it can be
applied on top of them for further increasing their compression
effectiveness.

III. DNNZIP

A. Compression Technique

To compress the model parameters one might think to
apply one of the many available general data compression
techniques. There are, however, two main issues that make
such choice inappropriate/unfeasible in the considered context.
First, conventional compression techniques rely on exposing
redundant patterns in the data set by encoding them with a
reduced number of bits as respect to that used for encoding
less frequent patterns. Unfortunately, the entropy of the DNN
parameters is close to that of random data making thus
ineffective the use of conventional compression techniques.
Second, conventional compression techniques are usually im-
plemented in software and the decompression algorithm is
often too complex to be implemented in hardware. In contrast,
in our context, we are interested in extremely simple hardware
decompression logic able to perform on-the-fly decompression
of the compressed model parameters right before they are
delivered to the PEs.

The compression technique implemented in DNNZip com-
presses each layer as follows. Firstly, the parameters of
the layer are sequentially parsed to extract monotonic sub-
sequences of parameters. Then, for each sub-sequence, a linear
regression based on the least squares criterion is used to
determine the two coefficients of the line that approximates
the values in the sub-sequence. The two coefficients, for each



sub-sequence, are the codewords which form the compressed
model parameters to be stored into memory. To further in-
crease the compression ratio, the strict monotonic definition
is relaxed with a weak monotonic definition in which a
tolerance factor δ is introduced as follows. A sub-sequence
{w1, w2, . . . , wn} is monotonic decreasing in the weak sense
with tolerance threshold δ if:

wi > wi+1 ∨ |wi − wi+1| ≤ δ ∀ i = 1, 2, . . . , n− 1. (1)

Fig. 2 shows a graphic description of the compression tech-
nique implemented by DNNZip. Please note that, in the rest
of the paper we refer to δ as fraction of the amplitude of
the set of the considered parameters. For instance, δ = 0.1
means 0.1× (maxP −minP ) where P is the considered set
of parameters to be compressed.

B. Decompression Unit

Compressed parameters are stored into the main memory
and are decompressed by a decompression unit embedded into
each PE of the accelerator. The decompression unit generates
the sub-sequence of approximated parameters [see Fig. 2(a)]
starting from the codeword (m, q). As the approximated
parameters are the points of the line with (m, q), they can be
generated as w̃i = w̃i−1+m for i = 2, . . . , N , where w̃1 = q
and N is the length of the sub-sequence. The organization
of the decompression unit is shown in Fig. 3. As it can be
observed the datapath requires a single adder and a register
for storing the current generated approximate parameter w̃i,
whereas the control unit can be simply implemented by means
of a two states finite state machine.

The decompression unit has been synthesized at gate level
with Synopsys Design Compiler and implemented with Synop-
sys IC Compiler. The values of the implemented macro take
also into account the overhead due to clock tree and scan
flip flops for DFT. Finally the sign-off has been made with
Synopsys Prime Time after that parasitics have been extracted
by means of Synopsys Star RC. For the entire implementation
flow a 16 nm technology standard cells library has been
used. The decompression unit has been integrated into the PE
[Fig. 3(b)] which is similar to that used in Simba platform [5]
and features a 32 KB of local memory to temporary store
weights, and a bank of parallel vector multiply-and-add units
each able to perform 8:1 dot-product. The decompression unit
occupies an area of 1008 µm2, has a critical path of 0.49 ns,
and a power consumption of 58 µW that is less than 1%, both
in terms of area and power, than that of the PE.

C. Compression Flow

The DNN compression flow is shown in Fig. 4. First
a sensitivity analysis is carried out to determine the most
sensitive layers with respect to the approximation of their
parameters (cf. Sec. III-C1). The sensitivity level (SL) of
each layer along with the size of the set of parameters in
each layer are used to compute a score for each layer (cf.
Sec. III-C2). The scores along with a user defined maximum
tolerated error on the model parameters (NMSEmax) are used

to determine the order in which layers are compressed to
derive the approximate (i.e., compressed) networks and the
appropriate δ value for each layer (cf. Sec. III-C3). The output
of the flow is a set of compressed DNNs differing each other
by the number of compressed layers. The three main steps
of the compression flow are described in more detail in the
following.

1) Sensitivity Analysis: Let Acc be the top 1 accuracy of
the original DNN for test data set DS. Let P (Li) be the set
of parameters of layer Li. A portion pp of the parameters
is perturbed with a perturbation intensity pi. Perturbing a
parameter means randomly adding/subtracting a fraction pi of
its value. The perturbed DNN is tested and its top 1 accuracy is
computed for DS. This process is repeated a number of times
until reaching the 95% confidence for ±1% of the mean of
the accuracies. Let Acci be the mean of the top 1 accuracies
of the perturbated DNNs. The sensitivity level of layer Li is
then computed as SL(Li) = (Acc−Acci)/Acc.

2) Scores Computation: The sensitivity level and the size
of the layer (i.e., the number or parameters of the layer) are
used to compute the score of the layer. Specifically, high
scores are assigned to large and low sensitive layers. This
is because it is more convenient to compress those layers
accounting for a higher fraction of the total parameters and,
at the same time, are less sensitive to the approximation of
their parameters. Based on this, the score S(Li) assigned to
layer Li is directly proportional to its number of parameters
and inversely proportional to its sensitivity level, that is,
S(Li) = |P (Li)|/SL(Li).

3) Layers Compression: The last step of the compression
flow is the actual layers’ compression. First, layers are sorted
based on their score. Let {s1, s2, . . . , sNL} be such that
S(Ls1) > S(Ls2) > . . . > S(LsNL

) where NL is the number
of layers. Then, we consider NL different compressed DNNs,
namely, xDNN1, xDNN2, . . . , xDNNNL where xDNNi

is the compressed DNN in which layers Ls1 , . . . , Lsi are
compressed, whereas the remaining layers Lsi+1 , . . . , LsNL

are left uncompressed.
The generic layer Li is compressed with an appropriate

δ value which is selected based on the maximum tolerated
error on the weights provided by the user. Such error is
expressed as the normalized mean squared error (NMSE) as
respect to the amplitude of the parameters of Li. That is,
NMSE =MSE/[maxP (Li)−minP (Li)]. The appropriate
δ value is the maximum δ that can be used to compress the
layer without exceeding the maximum NMSE provided by the
user. The algorithm for computing the maximum delta value is
shown in Alg. 1. The algorithm takes in input the layer to be
compressed and the maximum tolerated NMSE and returns
the compressed layer. Starting from the highest δ value of
1, it compresses the layer with the current δ value (line 4).
Then, the NMSE between the original parameters and the
approximated parameters (i.e., the reconstructed parameters
from the compressed ones) is computed (line 5). If the NMSE
is greater than the maximum tolerated NMSE threshold, it
means that the current δ value is too high. Then, δ is reduced
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by a certain amount (0.1% in the experiments in the next
section). Otherwise, the current compressed layer is saved
and the loop is terminated. The loop is also terminated
if δ becomes negative. It means that, the layer cannot be
compressed without violating the NMSEmax constraint. In
such a case, the returned xLayer is NULL and the layer is
not compressed.

Algorithm 1: Compute the maximum δ value to com-
press a layer without exceeding the maximum NMSE
threshold.
Data: Layer,NMSEmax

Result: xLayer
1 xLayer← NULL;
2 δ ← 1;
3 repeat
4 xLayer′ ← Compress(Layer, δ);
5 NMSE← ComputeNMSE(Layer, xLayer′);
6 if NMSE > NMSEmax then
7 Decrease δ;
8 else
9 xLayer← xLayer′;

10 break;
11 end
12 until δ < 0;

IV. EXPERIMENTS

In this section, we assess DNNZip on different CNN models
used in image classification problems. However, other deep
learning models such as Recurrent Neural Networks (RNNs)
for speech/natural language applications can also be explored



in future work. We consider six representative CNN models,
namely, LeNet-5, AlexNet, VGG-16, MobileNet, Inception-
v3, and ResNet-50 which cover a wide spectrum in terms of
complexity both in the number and type of layers and number
of parameters.

A. Compression Analysis

We start by assessing the compression ratio and the corre-
sponding accuracy loss when DNNZip is applied on different
CNNs. First, we show in detail the steps of the compression
flow described in Sec. III-C. Then, we summarize the results
obtained for the remaining CNNs.

1) Compression Flow applied to Inception-v3: We consider
Inception-v3 as reference CNN to show in detail the different
steps of the compression flow. The first phase is the sensitivity
analysis. In the experiments we consider a perturbation portion
of 10% and a perturbation intensity of 5%. We select the
10 largest layers (in terms of number of parameters) out of
48 layers of Inception-v3. Their fraction as respect to the total
number of parameters is shown in Fig. 5. The selected layers
account for the 56% of the total model parameters. The figure
also shows the sensitivity level of each considered layer. The
less sensitive layer is predictions (with a sensitivity level less
than 1%) which is also the largest one (it accounts for approx
11% of the total parameters). The size of a layer (i.e., its
number of parameters) divided by its sensitivity level is used
to compute the score of the layer, Fig. 6. The score assigned
to a layer provides the suitability to compress that particular
layer. In fact, more suitable layers to be compressed are large
layers (that account for a large fraction of the total parameters)
and low sensitive layers (that less impact the network accuracy
when their parameters are approximated, i.e., compressed).

We generate 10 compressed (i.e., approximated) versions
of Inception-v3, namely, Inception-x1, Inception-x2, . . .,
Inception-x10 where Inception-xn is the approximated net-
work in which the n layers with the highest scores are
compressed. Each layer is compressed with a specific δ value
computed as described in Alg. 1. In the experiments, we use
a NMSEmax of 0.05%. We found a high degradation of the
network accuracy when compressing more than 5 layers thus
the analysis is limited to the first five compressed versions.
Tab. I reports the δ value used for compressing the specific
layer, along with its compression ratio (CR) and the indication
of the layers compressed in each considered approximated
version. Fig. 7 shows the memory footprint reduction and the
top 5 accuracy of Inception and its five compressed versions.
By compressing only one layer, which is the case of Inception-
x1, with a δ of 4%, the reduction of the memory footprint
is 9% and there is no remarkable accuracy degradation. We
notice that, the percentage of the memory footprint saving
increases with the number of compressed layers until reaching
52% without degradation of the accuracy. The limitation on
5 compressed layers is due to the fact that the other layers do
not meet the constraint defined by the considered NMSEmax.

TABLE I
COMPRESSION RATIO AND δ VALUE FOR EACH COMPRESSED LAYER.

Layer name Fraction δ CR Inception-
x1 x2 x3 x4 x5

predictions 11% 4% 1.51 X
conv2d 72 3% 6% 2.37 X X
conv2d 86 3% 6% 10.39 X X X
conv2d 78 2% 4% 1.98 X X X X
conv2d 87 8% 3% 4.45 X X X X X

2) Summary of the Compression Analysis: DNNZip is ap-
plied to the rest of the CNNs and the results are summarized in
Tab. II. The experiments have been carried out by considering
a NMSEmax of 0.05%. For each CNN, the table reports
the names of the compressed layers, the δ value computed
with Alg. 1, the compression ratio (CR), the weighted CR,
the memory footprint reduction, and the top 5 accuracy. The
weighted CR is the CR weighted by the size of the layer
as respect to the total number of parameters. The memory
footprint reduction is the reduction in terms of bytes for storing
the parameters of the CNN passing from the original model
to the compressed model. The first row in each group reports
the results for the original CNN whereas the subsequent rows
reports the results for the approximated (i.e., compressed)
CNNs. These latter are identified with the same name of the
original CNN with the suffix -xn, where n is the number of
compressed layers. Please note that, the compressed layers in
*-xi approximated CNN are the same of that in *-x(i − 1)
plus the one reported in its row. For instance, in AlexNet-x3
the compressed layers are dense1, dense2, and conv2d4. The
table reports the results up to three compressed layers as, for
most of the considered CNNs, the network accuracy rapidly
decreases when more than three layers are compressed. As it
can be observed, except for MobileNet, the memory footprint
reduction is, on average, over 50% with an accuracy loss that
is, in several cases, less than 5%.

The memory footprint reduction has a positive impact on
both latency and energy metrics, and is assessed in the next
subsection.

B. Latency and Energy Analysis

The previous results show how DNNZip provides a high
compression ratio which then leads to a significant reduction
in memory footprint without a major accuracy degradation. In
this section, we focus on its impact on the inference latency
and the inference energy. As baseline DNN accelerator we
consider a Simba chiplet [5] which contains an array of PEs
interconnected by means of a 4 × 4 mesh-based NoC. Each
PE includes a 32 KB weight buffer and 8 parallel vector
MAC units each of one able to perform 8:1 dot-product
operations. The PE is augmented with the decompression
unit described in Sec. III-B. The RTL models of the PE and
router have been synthesized with Synopsis Design Compiler,
implemented with Synopsys IC Compiler, and mapped on a
16 nm technology standard cells library. The links have been
modelled with HSPICE and the parasitics extraction from
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layout has been made using Cadence Virtuoso. The power
figures collected by the circuit level analysis have been used to
back-annotate the cycle-accurate NoC simulator [15], [16]. For
memory, both local and main memory, we used CACTI [17] to
estimate the energy consumption (both leakage and dynamic)
and timing information.

Fig. 8 shows the inference latency, energy, and accuracy
reduction when DNNZip is applied on the CNN models
analyzed in the previous subsection. For each CNN model
we selected a specific compressed instance among those
reported in Tab. II. Specifically, for each CNN, we selected
the compressed instance for which the memory footprint
saving is remarkably higher then the consequent accuracy loss.
Fig. 8a shows the percentage inference latency reduction of
communication and memory. The communication latency is
the component due to the NoC for dispatching the weights
and the feature maps among the PEs. The memory latency is
the component due to fetch/store feature maps and weights
from/to the main memory. We do not report the computation
latency (i.e., the component due to the PEs for performing

dot-products operations, pooling, and activation computations)
as it is unaffected by the application of DNNZip. In fact,
the number of operations per inference does not change as
computations are carried out on decompressed parameters. The
graph reports also the total latency saving in which all the three
components of the latency are taken into account. On average,
43% of total inference latency reduction is observed with
31% communication latency reduction and 47% main memory
latency reduction. As expected, the highest latency reductions
are observed for LeNet-5, AlexNet, and VGG-16 in which
the compressed layers account for a significant fraction of the
total parameters as compared to the other CNNs. MobileNet
exhibits the lowest inference latency reduction. This is due to
the fact that, its layers are almost all the same size (i.e., the
same number of parameters) and the compression of few of
them (two in the considered compressed instance) results in
limited traffic reduction. Thus, a limitation of DNNZip is that
of not being very effective in the case of network models with
a low variance in layers size. Inference energy saving results
are shown in Fig. 8b in which we report the two components



TABLE II
MEMORY FOOTPRINT REDUCTION AND ACCURACY LOSS WHEN DNNZIP IS APPLIED ON DIFFERENT CNNS.

Network Compressed Fraction δ CR Weighted Mem fp Top-5
Model layer CR reduction Accuracy

LeNet-5 — — — — — — 0.9995
LeNet-5-x1 dense 2 16% 18% 2.22 1.20 16% 0.9994
LeNet-5-x2 dense 1 78% 20% 4.01 3.55 71% 0.9901
LeNet-5-x3 conv2d 2 3% 20% 3.16 3.64 72% 0.8720

AlexNet — — — — — — 0.9794
AlexNet-x1 dense 1 4% 13% 2.42 1.06 6% 0.9794
AlexNet-x2 dense 2 70% 13% 3.53 2.85 65% 0.9588
AlexNet-x3 conv2d 4 4% 13% 3.03 2.94 66% 0.9205

VGG-16 — — — — — — 0.8559
VGG-16-x1 fc1 74% 8% 5.28 4.24 76% 0.8395
VGG-16-x2 predictions 3% 3% 1.38 4.26 76% 0.8355
VGG-16-x3 fc2 12% 8% 1.66 4.34 78% 0.8195

MobileNet — — — — — — 0.9064
MobileNet-x1 conv pw 13 24% 2% 1.55 1.15 13% 0.7916
MobileNet-x2 conv preds 24% 1% 1.29 1.22 19% 0.7842
MobileNet-x3 conv pw 7 6% 2% 1.59 1.26 21% 0.7018

Inception — — — — — — 0.9720
Inception-x1 predictions 11% 4% 1.51 1.10 9% 0.9720
Inception-x2 conv2d 72 3% 6% 2.37 1.17 15% 0.9720
Inception-x3 conv2d 86 3% 6% 10.39 1.78 44% 0.9720

ResNet — — — — — — 0.9440
ResNet-x1 res5c branch2b 9% 8% 8.35 2.05 51% 0.9020
ResNet-x2 fc1000 8% 3% 2.37 2.22 55% 0.8730
ResNet-x3 res5c branch2c 4% 5% 3.77 2.40 58% 0.8570

considered in the latency analysis with the inclusion of the
energy component due to the local memory. On average, 30%
total inference energy saving is observed with 42%, 7%, and
47%, communication, local memory, and main memory energy
reduction, respectively. The low energy saving for MobileNet
is due to the same causes outlined above for the inference
latency. Finally, Fig. 8c shows the loss of accuracy due to the
application of DNNZip. With exception of MobileNet, less
than 5% in accuracy loss is observed and for most of them
(LeNet-5, AlexNet, VGG-16, and Inception), the accuracy loss
is less than 2%.

C. DNNZip on top of TensorFlow Lite Quantization

DNNZip can be used to further increase the compression
efficiency of other model compression techniques. Several
compression techniques are based on reducing the number
of bits required to represent the model parameters with a
consequent reduction of the memory footprint and the possi-
bility of using arithmetic hardware modules working on lower
data width, with a consequent improvement in silicon area
and energy consumption [12]. We apply DNNZip on top of
TensorFlow Lite quantization (TFLQ), introduced by Google
as part of the DeepMind project [18]. Tab. III reports the
memory footprint reduction and the accuracy loss for the two
cases. As it can be observed, TFLQ provides, in almost all the
cases, a memory footprint saving of 75% as the parameters
are down scaled from 32 bits to 8 bits. Only for LeNet-
5, the saving is low as only 2 out of 5 of its layers are
compressed. The accuracy loss is negligible. When DNNZip
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Fig. 8. Latency reduction, energy saving, and accuracy loss when DNNZip
is applied on different CNNs.



TABLE III
MEMORY FOOTPRINT REDUCTION AND ACCURACY LOSS WHEN DNNZIP

IS APPLIED ON TOP OF TENSORFLOW LITE QUANTIZATION (TFLQ).

Network Model TFLQ TFLQ + DNNZip
Mem fp Accuracy Mem fp Accuracy
reduction loss reduction loss

LeNet-5 2% 2% 72% 10%
AlexNet 75% 0.8% 81% 7%
VGG-16 75% 0.1% 94% 5%
MobileNet 75% 1.2% 79% 19%
Inception 75% 0.1% 82% 2%
ResNet 75% 0.5% 86% 8%

is applied on the TFLQ compressed network, an additional
memory footprint saving is observed with an accuracy loss
that is less than 10% in most of the cases.

V. CONCLUSIONS

In this paper, we presented DNNZip, a compression tech-
nique aimed at reducing the memory footprint for storing the
model parameters of DNNs with consequent improvements
in both inference latency and energy consumption. DNNZip
selectively compresses the layers of a DNN with the most
appropriate compression level in such a way to do not exceed
a user defined error threshold defined in terms of the maxi-
mum tolerated error on the model parameters. The hardware
decompression unit integrated into the PEs of a reference
DNN accelerator has been also presented. DNNZip has been
assessed on several CNNs and the trade-off inference energy
consumption vs. inference latency vs. accuracy loss has been
discussed. We found that up to 64% energy saving, and up to
67% latency reduction can be obtained with a limited impact
on the accuracy of the network.
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