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The recently introduced matrix group SE2(3) provides a 5×5 matrix representation for the orientation, velocity and position of an object in the 3-D space, a triplet we call "extended pose". In this paper we build on this group to develop a theory to associate uncertainty with extended poses represented by 5×5 matrices. Our approach is particularly suited to describe how uncertainty propagates when the extended pose represents the state of an Inertial Measurement Unit (IMU). In particular it allows revisiting the theory of IMU preintegration on manifold and reaching a further theoretic level in this field. Exact preintegration formulas that account for rotating Earth, that is, centrifugal force and Coriolis force, are derived as a byproduct, and the factors are shown to be more accurate. The approach is validated through extensive simulations and applied to sensorfusion where a loosely-coupled fixed-lag smoother fuses IMU and LiDAR on one hour long experiments using our experimental car. It shows how handling rotating Earth may be beneficial for long-term navigation within incremental smoothing algorithms.

I. INTRODUCTION

The main contribution of this paper is to provide practical techniques to associate uncertainty to the triplet orientation R ∈ SO(3), velocity v ∈ R 3 , position p ∈ R 3 of a moving platform equipped with an Inertial Measurement Unit (IMU) for use in navigation and estimation problems.

A 4×4 transformation matrix may model the pose of a platform, i.e. its orientation and its position. This has been popularized in computer vision [START_REF] Hartley | Multiple View Geometry in Computer Vision[END_REF], probabilistic robotics [START_REF] Barfoot | State Estimation for Robotics[END_REF] and pose-graph SLAM [START_REF] Dellaert | Factor Graphs for Robot Perception[END_REF]. In particular, Gaussian distributions in exponential coordinates of the Lie group SE(3) provide practical tools for propagating pose uncertainty or fusing multiple measurements of a pose in one estimate, see the pioneering work of [START_REF] Wang | Nonparametric Second-Order Theory of Error Propagation on Motion Groups[END_REF] and its follow-up [START_REF] Barfoot | Associating Uncertainty With Three-Dimensional Poses for Use in Estimation Problems[END_REF].

When one uses an IMU, a sensor that embeds gyrometers and accelerometers, one manipulates the pose of the sensor and its velocity that we refer in this paper to as an extended pose. An extended pose cannot be modeled as an element of SE [START_REF] Dellaert | Factor Graphs for Robot Perception[END_REF]. As a result, the IMU propagation equations are not amenable to the framework of [START_REF] Wang | Nonparametric Second-Order Theory of Error Propagation on Motion Groups[END_REF][START_REF] Barfoot | Associating Uncertainty With Three-Dimensional Poses for Use in Estimation Problems[END_REF]. M. Brossard, A. Barrau and S. Bonnabel are with MINES ParisTech, PSL Research University, Centre for Robotics, 60 Boulevard Saint-Michel, 75006 Paris, France. A. Barrau is with Safran Tech, Groupe Safran, Rue des Jeunes Bois-Châteaufort, 78772, Magny Les Hameaux Cedex, France. P. Chauchat is with ISAE, 31400 Toulouse, France. S. Bonnabel is with University of New Caledonia, ISEA, 98851, Noumea Cedex, New Caledonia. (e-mail: martin.brossard@mines-paristech.fr; axel.barrau@safrangroup.com; paul.chauchat@isae-supaero.fr; silvere.bonnabel@unc.nc) pose. An IMU moves from origin to the right at constant translational speed during 10 s and stops at the blue dot (15, 0, 0). We preintegrate noisy IMU measurements in a factor and generate a dispersion of the factor belief at the end-point. The true dispersion (black dots) is based on Monte-Carlo using the actual IMU noise model, green dots are generated through the proposed uncertainty model and red dots are generated using state-of-the-art [START_REF] Forster | On-Manifold Preintegration for Real-Time Visual-Inertial Odometry[END_REF]. The true distribution is curved in xzand yz-planes, and only the proposed scheme captures this effect and agrees with true dispersion.

Besides, the theory of IMU preintegration [START_REF] Forster | On-Manifold Preintegration for Real-Time Visual-Inertial Odometry[END_REF][START_REF]IMU Preintegration on Manifold for Efficient Visual-Inertial Maximum-a-Posteriori Estimation[END_REF] allows defining a unique factor between two keyframes from a sequence of inertial measurements, independently from the current estimate. In this field "it is of paramount importance to accurately model the noise covariance [of the preintegrated factor]" [START_REF] Forster | On-Manifold Preintegration for Real-Time Visual-Inertial Odometry[END_REF], i.e. the factor belief. Figure 1 illustrates how the uncertainty representation of an extended pose advocated in this paper correctly computes the underlying factor belief.

In this work, which is an extension of preliminary results [START_REF] Barrau | A Mathematical Framework for IMU Error Propagation with Applications to Preintegration[END_REF], we define 5×5 matrices to model extended poses, and show how our approach allows transposing the framework dealing with the Lie group approach to pose uncertainty to the context of IMUs. Our contributions are as follows:

1) we show how to propagate uncertainty of an extended pose through the IMU kinematic model, where we provide a substantial extension of the results of [START_REF] Barfoot | Associating Uncertainty With Three-Dimensional Poses for Use in Estimation Problems[END_REF] to position, orientation plus velocity when using IMUs; 2) we address IMU preintegration. This paper provides a theoretical framework for preintegrating IMU on the Lie group of extended poses. It notably simplifies and improves the preintegration on manifold [START_REF] Forster | On-Manifold Preintegration for Real-Time Visual-Inertial Odometry[END_REF], provides a rigorous treatment of Coriolis force, and handles IMU biases slightly more accurately than the approach of [START_REF] Forster | On-Manifold Preintegration for Real-Time Visual-Inertial Odometry[END_REF]; 3) we numerically demonstrate the efficiency of our theoretical framework through massive simulations and real experiments; 4) we implement a loosely-coupled approach based on iSAM2 [START_REF] Kaess | iSAM2: Incremental Smoothing and Mapping using the Bayes Tree[END_REF] that obtains reliable estimates for one hour long sequences acquired with our car equipped with an IMU, and a LiDAR that outputs relative translations; 5) an accompanying set of Python scripts to implement many of the key equations and regenerate the plots in the paper, and our GTSAM fork, are downloadable from https://github.com/mbrossar/SE2-3-; 6) the supplementary material 1 that accompanies the present paper contains detailed proofs along with comprehensive technical derivations.

A. Relations with SE(3) based Uncertainty Propagation

One contribution of [START_REF] Wang | Nonparametric Second-Order Theory of Error Propagation on Motion Groups[END_REF], and [START_REF] Barfoot | Associating Uncertainty With Three-Dimensional Poses for Use in Estimation Problems[END_REF] also, consists in compounding pose uncertainties based on a discrete-time integration of the SE(3) kinematic equation as

T i+1 = T i Υ i , (1) 
where T i is a global pose and Υ i is a local increment, a scheme which is not applicable to IMU kinematic equations. We generalize [START_REF] Hartley | Multiple View Geometry in Computer Vision[END_REF] and propagate an extended pose as

T i+1 = Γ i Φ(T i )Υ i , (2) 
where T i is a global extended pose, Γ i is a global increment, Υ i a local increment, and Φ(•) a function that depends only on the time between instants i and i + 1. The scheme (1) models a robot driving in the environment where Υ i is given by, e.g., differential wheel speeds or visual relative pose estimates. To derive kinematic model (2), we build on a novel representation of extended poses by 5×5 matrices, namely the group SE 2 (3), introduced in the recent paper [START_REF] Barrau | The Invariant Extended Kalman Filter as a Stable Observer[END_REF] for navigation.

To express how pose uncertainty evolves, [START_REF] Barfoot | Associating Uncertainty With Three-Dimensional Poses for Use in Estimation Problems[END_REF] associates uncertainty to poses as

T i = Ti exp(ξ i ), Υ i = Υi exp(η i ), (3) 
where Ti and Υi are noise-free variables, exp(•) is the SE(3) exponential map, and ξ i ∼ N (0 6 , Σ i ) and η i ∼ N (0 6 , Q) are uncertainties, a.k.a. errors or noises. In a probabilistic context, the compound (1) is then rewritten as

Ti+1 exp(ξ i+1 ) = Ti exp(ξ i ) Υi exp(η i ). (4) 
1 For a public link, please see https://github.com/mbrossar/ SE2-3-/raw/master/supplementary_material.pdf.

Given nominal values and associated uncertainties { Ti , Σ i }, { Υi , Q}, [START_REF] Barfoot | Associating Uncertainty With Three-Dimensional Poses for Use in Estimation Problems[END_REF] shows how to compute { Ti+1 , Σ i+1 }.

By similarly leveraging (3), we investigate in this paper how extended pose uncertainties propagate through [START_REF] Barfoot | State Estimation for Robotics[END_REF] as

Ti+1 exp(ξ i+1 ) = Γ i Φ Ti exp(ξ i ) Υi exp(η i ),
where naturally exp(•) denotes the exponential map of SE 2 (3), which is an extension of SE(3) suited to robot state estimation involving IMUs. The obtained formulas have very concrete implications for preintegration, see Section V.

B. Links and Differences with Existing Literature

In robotics, it is well established that estimating uncertain spatial relationships is fundamentally important for stateestimation [START_REF] Smith | On the Representation and Estimation of Spatial Uncertainty[END_REF][START_REF] Park | A Lie Group Formulation of Robot Dynamics[END_REF], robot control [START_REF] Calinon | Gaussians on Riemannian Manifolds : Applications for Robot Learning and Adaptive Control[END_REF], or active SLAM [START_REF] Rodriguez-Arevalo | On the Importance of Uncertainty Representation in Active SLAM[END_REF].

The pioneering works [START_REF] Thrun | A Real-Time Algorithm for Mobile Robot Mapping with Applications to Multi-Robot and 3D Mapping[END_REF][START_REF] Long | The Banana Distribution is Gaussian: A Localization Study with Exponential Coordinates[END_REF] notices that mobile robots dispersion under the effect of sensor noise resembles more a "banana" than a standard ellipse, which is accurately approximated with Gaussian distributions in Lie exponential coordinates of SE(2) [START_REF] Chirikjian | Stochastic Models, Information Theory, and Lie Groups[END_REF]. This paves the ways for defining uncertainty on manifolds, see e.g. [START_REF] Wang | Error Propagation on the Euclidean Group with Applications to Manipulator Kinematics[END_REF][START_REF] Wolfe | Bayesian Fusion on Lie Groups[END_REF], and for Gaussians on SE(3) [START_REF] Long | The Banana Distribution is Gaussian: A Localization Study with Exponential Coordinates[END_REF][START_REF] Wang | Error Propagation on the Euclidean Group with Applications to Manipulator Kinematics[END_REF]. [START_REF] Wang | Nonparametric Second-Order Theory of Error Propagation on Motion Groups[END_REF] obtained the first results about uncertainty propagation on SE(3) in a general and non-parametric context, which are complemented by the results of [START_REF] Barfoot | Associating Uncertainty With Three-Dimensional Poses for Use in Estimation Problems[END_REF] in discrete time. The approach is extended to continuous time in [START_REF] Wong | A Data-Driven Motion Prior for Continuous-Time Trajectory Estimation on SE(3)[END_REF]- [START_REF] Anderson | Full STEAM Ahead: Exactly Sparse Gaussian Process Regression for Batch Continuous-time Trajectory Estimation on SE(3)[END_REF], and to correlated pose uncertainties in [START_REF] Mangelson | Characterizing the Uncertainty of Jointly Distributed Poses in the Lie Algebra[END_REF].

Preintegrating IMU is an alternative to the standard inertial measurement integration which has de facto been adopted in optimization-based estimation framework such as GTSAM [START_REF] Dellaert | Factor Graphs and GTSAM: A Hands-on Introduction[END_REF] and OKVIS [START_REF] Leutenegger | Keyframe-Based Visual-Inertial Odometry Using Nonlinear Optimization[END_REF]. It was initiated by [START_REF] Lupton | Visual-Inertial-Aided Navigation for High-Dynamic Motion in Built Environments Without Initial Conditions[END_REF] and later improved in [START_REF] Forster | On-Manifold Preintegration for Real-Time Visual-Inertial Odometry[END_REF][START_REF]IMU Preintegration on Manifold for Efficient Visual-Inertial Maximum-a-Posteriori Estimation[END_REF][START_REF] Indelman | Information Fusion in Navigation Systems via Factor Graph based Incremental Smoothing[END_REF][START_REF] Carlone | Eliminating Conditionally Independent Sets in Factor Graphs: A Unifying Perspective Based on Smart Factors[END_REF] notably for avoiding singularities due to the use of Euler angles. IMU preintegration is adapted, e.g., for legged robot odometry [START_REF] Wisth | Preintegrated Velocity Bias Estimation to Overcome Contact Nonlinearities in Legged Robot Odometry[END_REF][START_REF] Hartley | Hybrid Contact Preintegration for Visual-Inertial-Contact State Estimation Using Factor Graphs[END_REF], differential drive motion model [START_REF] Deray | Joint On-Manifold Self-Calibration of Odometry Model and Sensor Extrinsics using Pre-Integration[END_REF], unknown time offset [START_REF] Yang | Analytic Combined IMU Integration (ACI 2) For Visual Inertial Navigation[END_REF], wheel odometry [START_REF] Quan | Tightly-Coupled Monocular Visual-Odometric SLAM Using Wheels and a MEMS Gyroscope[END_REF][START_REF] Zheng | Visual-Odometric Localization and Mapping for Ground Vehicles Using SE(2)-XYZ Constraints[END_REF], and covariance preintegration [START_REF] Allak | Covariance Pre-Integration for Delayed Measurements in Multi-Sensor Fusion[END_REF]. This paper generalizes and goes beyond the manifold representation of [START_REF] Forster | On-Manifold Preintegration for Real-Time Visual-Inertial Odometry[END_REF]. Indeed the latter is concerned with the manifold structure of Lie group SO(3) only, and treats the remainder of the state linearly, whereas we embed the whole state into the group SE 2 (3). Beyond the "on-manifold" approach we hence also benefit from the fact the very structure of SE 2 (3) proves much more accurate for describing IMU-related equations and uncertainty propagation. The choice of the SE 2 (3) Lie group formalism takes its roots in invariant Kalman filtering, see [START_REF] Barrau | The Invariant Extended Kalman Filter as a Stable Observer[END_REF][START_REF] Barrau | Invariant Kalman Filtering[END_REF], which has led to more accurate and consistent extended Kalman filters and has yet prompted a high-end industrial product [START_REF]alignment method for an inertial unit[END_REF].

The work of [START_REF] Shen | Tightly-Coupled Monocular Visual-Inertial Fusion for Autonomous Flight of Rotorcraft MAVs[END_REF], later extended in a visual-inertial navigation system in [START_REF] Qin | VINS-Mono: A Robust and Versatile Monocular Visual-Inertial State Estimator[END_REF], introduces preintegration in its continuous form, [START_REF] Le Gentil | Gaussian Process Preintegration for Inertial-Aided State Estimation[END_REF] proposes asynchronous preintegration with Gaussian processes, [START_REF] Fourie | Multi-Modal and Inertial Sensor Solutions for Navigation-Type Factor Graphs[END_REF] addresses continuous preintegration as a higher-order Taylor expansion, [START_REF] Henawy | Accurate IMU Factor Using Switched Linear Systems For VIO[END_REF] describes a scheme based on switched linear systems, and [START_REF] Eckenhoff | Direct Visual-Inertial Navigation with Analytical Preintegration[END_REF][START_REF]Closed-form Preintegration Methods for Graph-Based Visual-Inertial Navigation[END_REF] provide closed-form expressions for computing analytically the preintegration factors. This work improves the Euler integration scheme of [START_REF] Forster | On-Manifold Preintegration for Real-Time Visual-Inertial Odometry[END_REF] to limit discretization errors, whose integration schemes remain compatible with our approach based on exact discretization.

A. SE 2 (3), the Lie Group of Extended Poses

Estimating the orientation R, velocity v and position p of a rigid body in space is a common problem in robotic navigation and perception. We represent in this paper rotation R with the special orthogonal group

SO(3) := R ∈ R 3×3 | RR T = I 3 , det R = 1 .
The set of poses may be defined using homogeneous matrices of the special Euclidean group

SE(3) := T = R p 0 T 3 1 ∈ R 4×4 R ∈ SO(3) p ∈ R 3 .
This paper describes extended poses through the following group first introduced to the best of our knowledge in [START_REF] Barrau | The Invariant Extended Kalman Filter as a Stable Observer[END_REF] 

SE 2 (3) := T = R v p 0 2×3 I 2 ∈ R 5×5 R ∈ SO(3) v, p ∈ R 3 . SO(3), SE (3 
) and SE 2 (3) are matrix Lie groups where matrix multiplication provides group composition of two elements, and matrix inverse provides element inverse. The linear operator ∧ maps elements ξ ∈ R 9 to the Lie algebra of SE 2 (3)

ξ ∧ :=   φ ν ρ   ∧ := φ × ν ρ 0 2×3 0 2×2 ∈ se 2 (3), (5) 
where

φ ∈ R 3 , ν ∈ R 3 , ρ ∈ R 3 , and 
φ × :=   φ 1 φ 2 φ 3   × :=   0 -φ 3 φ 2 φ 3 0 -φ 1 -φ 2 φ 1 0   (6) 
denotes the skew symmetric matrix associated with cross product with φ, which maps also a 3×1 vector to an element of so(3), the Lie algebra of SO(3).

1) Exponential, Logarithm, & Adjoint Operator: the exponential map conveniently maps an element ξ ∈ R 9 to SE 2 (3)

exp(ξ) := exp m (ξ ∧ ) = ∞ k=0 1 k! ξ ∧ k , (7) 
and its local inverse, the logarithm map, defined as

log(T) = ∞ k=1 (-1) k+1 (T -I 5 ) k k ∨ , ( 8 
)
where ∨ is the inverse of ∧, enables to map the small perturbation exp(ξ) ∈ SE 2 (3) to R 9 such that ξ = log exp (ξ) .

We conveniently define the adjoint operator

Ad T :=   R 0 3×3 0 3×3 v × R R 0 3×3 p × R 0 3×3 R   (10) 
as an operator acting directly on R 9 . The following relations prove extremely useful:

T exp(ξ)T -1 = exp(Ad T ξ), (11) 
⇒ T exp(ξ) = exp(Ad T ξ)T, (12) 
Ad Γ Ad T = Ad ΓT . (13) 
2) Baker-Campbell-Hausdorff (BCH) Formula: the BCH formula provides powerful tools to manipulate uncertainty on Lie groups, which can be used to compound two matrix exponentials

log m exp m (A) exp m (B) = A + B + 1 2 [A, B] + 1 12 ([A, [A, B]] + [B, [B, A]]) - 1 24 [B, [A, [A, B]]] + . . .
in terms of infinite series, where the Lie bracket is given by

[A, B] := AB -BA.
In the particular case of SE 2 (3), we have

[ξ ∧ , η ∧ ] := ξ ∧ η ∧ -ξ ∧ η ∧ = ξ η ∧ , (14) 
where the "curlywedge" operator is defined as

ξ :=   φ ν ρ   :=   φ × 0 3×3 0 3×3 ν × φ × 0 3×3 ρ × 0 3×3 φ ×   , (15) 
which is 9×9. We note that

log exp (ξ) exp (η) = ξ + η + 1 2 ξ η + 1 12 ξ ξ η + η η ξ - 1 24 η ξ ξ η + . . . , (16) 
showing exp(ξ) exp(η) = exp(ξ + η). We thus require approximations to compute the logarithm of a product of exponentials. If we assume, e.g., that η is a small noise while ξ is non-negligible, we get

log exp (ξ) exp (η) = ξ + J -1 ξ η + O( η 2 ), (17) 
where J -1 ξ is the 9×9 inverse left-Jacobian of SE 2 (3). If both ξ and η are small quantities, we recover the first-order approximation

log exp (ξ) exp (η) = ξ + η + O( ξ 2 , η 2 ). (18) 
Closed-form expressions of exp(•), log(•) and Jacobians are given in Appendix.

Remark 1 (Overloading Operators). We overload the exp(•), log(•), and Jacobian in the sense that they can be applied to both 3×1 and 9×1 vectors for respectively SO(3) and SE 2 (3) exponential, logarithm and Jacobian.

B. Uncertainty & Random Variables on SE 2 (3)

Let T ∈ SE 2 (3) represent a noise-free value, and ξ ∈ R 9 a small perturbation. The approach based on additive uncertainty " T+ξ" is not valid as these quantities are not vector elements. In contrast, we define a random variable on SE 2 (3)

T := T exp(ξ), ( 19 
)
where T is a noise-free "mean" of the distribution and ξ ∼ N (0 9 , Σ) is a zero-mean multivariate Gaussian in R 9 . We thus describe statistical dispersion of extended poses with the exponential map. This approach is referred to as "concentrated Gaussian" [START_REF] Wang | Error Propagation on the Euclidean Group with Applications to Manipulator Kinematics[END_REF][START_REF] Bourmaud | Continuous-Discrete Extended Kalman Filter on Matrix Lie groups Using Concentrated Gaussian Distributions[END_REF], and has been largely advocated for Lie groups, see [START_REF] Barfoot | Associating Uncertainty With Three-Dimensional Poses for Use in Estimation Problems[END_REF][START_REF] Barrau | The Invariant Extended Kalman Filter as a Stable Observer[END_REF][START_REF] Barrau | Invariant Kalman Filtering[END_REF][START_REF] Brossard | Unscented Kalman Filtering on Lie Groups[END_REF].

Remark 2 (Left and Right Perturbations). We apply perturbations in [START_REF] Wolfe | Bayesian Fusion on Lie Groups[END_REF] on the right rather than the left as in [START_REF] Barfoot | Associating Uncertainty With Three-Dimensional Poses for Use in Estimation Problems[END_REF]. Both are valid, right perturbations are more convenient to propagate extended pose uncertainties in the context of this paper, and one can move from right perturbations to left perturbations and vice-versa through the relation [START_REF] Park | A Lie Group Formulation of Robot Dynamics[END_REF].

III. IMU EQUATIONS ON FLAT EARTH REVISITED

This section presents the IMU kinematic model on flat Earth (e.g. with an inertial frame of reference) and transposes it into the form (2). This was introduced in the bias-and noise-free case in [START_REF] Barrau | Linear Observed Systems on Groups[END_REF], see proofs therein. Noises, biases and rotating Earth are progressively addressed in the following sections.

A. IMU Kinematic Equations on Flat Earth

Let R denote the rotation matrix encoding the orientation of the IMU, i.e. the rotation from the global frame to the local inertial frame, and let v and p denote the velocity and the position of the IMU expressed in the global frame. An IMU collects angular velocity ω m and proper acceleration a m measurements which relate to the corresponding true values ω and a as

ω m = ω + b ω + η ω , (20) 
a m = a + b a + η a . ( 21 
)
The measurements are corrupted both by the time-varying biases b ω and b a , and zero-mean white Gaussian noises η ω and η a . The motion equations of the IMU sensor on flat Earth write

Ṙ = R (ω m -b ω -η ω ) × , (22) v = R (a m -b a -η a ) + g, (23) ṗ = v, (24) 
where g = [0 0 -9.81] T ∈ R 3 is the global gravity vector.

B. Revisiting IMU Equations for Extended Poses

Following [START_REF] Barrau | Linear Observed Systems on Groups[END_REF], we may rewrite the model ( 22)- [START_REF] Dellaert | Factor Graphs and GTSAM: A Hands-on Introduction[END_REF] in the form (2) as follows. First, we associate a matrix T t ∈ SE 2 (3) to the extended pose {R, v, p} at time t. Then, we write T 0 the solution initialized at t 0 = 0, such that

T t = Γ t Φ t (T 0 )Υ t , (25) 
where Φ t (•) and Γ t only depend on t as

Φ t (T) := R v p + tv 0 2×3 I 2 , ( 26 
)
Γ t := I 3 tg gt 2 /2 0 2×3 I 2 , (27) 
and where Υ t is solution to differential equations leading to

Υ t := ∆R t ∆v t ∆p t 0 2×3 I 2 , (28) 
where

∆R t = exp t 0 ωdt = exp t 0 (ω m -b ω -η ω ) dt , (29) 
∆v t = t 0 ∆R t adt = t 0 ∆R t (a m -b a -η a ) dt, ( 30 
)
∆p t = t 0 ∆v t dt. (31) 
The reader can check differentiating the product (25) and using ( 26)-( 28) that we recover ( 22)- [START_REF] Dellaert | Factor Graphs and GTSAM: A Hands-on Introduction[END_REF]. ∆R t , ∆v t and ∆p t , referred to as the preintegrated measurements in [START_REF] Forster | On-Manifold Preintegration for Real-Time Visual-Inertial Odometry[END_REF], are quantities based solely on the inertial measurements and do not depend on the initial state T 0 . This allows to define a unique factor between extended poses at arbitrary temporally distant keyframes based on a unique integration of IMU outputs. We now consider discrete time steps with time interval ∆t. Denoting Γ i := Γ ∆t , Φ := Φ ∆t , and Υ i := Υ ∆t we get

T i+1 = Γ i Φ(T i )Υ i , (32) 
where Γ i , T i , and Υ i all live in SE 2 (3). The reader may readily check that Φ(ΓT) = Φ(Γ)Φ(T) and Φ (exp (ξ)) = exp(Fξ), that we combine as

Φ T exp(ξ) = Φ (T) exp (Fξ) , (33) 
where

F := F ∆t :=   I 3 0 3×3 0 3×3 0 3×3 I 3 0 3×3 0 3×3 ∆tI 3 I 3   . ( 34 
)
Remark 3 (Exact Discretization). The formula (32) is an exact discretization of ( 22)- [START_REF] Dellaert | Factor Graphs and GTSAM: A Hands-on Introduction[END_REF]. However it involves (29)-( 31) that need to be numerically solved at some point. As IMU measurements come in discrete-time at a high rate, we may call ∆t the discretization step, assume measurements to be constant over time intervals ∆t, and perform Euler, midpoint, or more sophisticated integration schemes [START_REF] Forster | On-Manifold Preintegration for Real-Time Visual-Inertial Odometry[END_REF][START_REF] Shen | Tightly-Coupled Monocular Visual-Inertial Fusion for Autonomous Flight of Rotorcraft MAVs[END_REF][START_REF] Henawy | Accurate IMU Factor Using Switched Linear Systems For VIO[END_REF][START_REF]Closed-form Preintegration Methods for Graph-Based Visual-Inertial Navigation[END_REF].

C. Noise Model and Approximation

An IMU actually measures noisy observations ( 20)-( 21) and we consider IMU noise in the form of

Υ i := Υi exp(η i ), η i ∼ N (0 9 , Q), (35) 
where Υ i refers to the true quantity and Υi = Υi ( bi ) refers to the estimated one that has been computed with estimated biases bi := bω

i ba i . ( 36 
)
To justify [START_REF] Allak | Covariance Pre-Integration for Delayed Measurements in Multi-Sensor Fusion[END_REF], let us integrate IMU kinematics ( 22)-( 24) for one time step with constant global acceleration:

Υi = exp( ωi ∆t) âi ∆t âi ∆t 2 /2 0 2×3 I 2 , (37) 
where ωi = ω m i -bω i and âi = a m i -ba i . This leads to the first-order in the noise terms to

Υ i (17) = Υi exp G i η ω i η a i η i +O( η i 2 ) , (38) 
where we define the 9×6 matrix

G i = -   J -1 ωi∆t ∆t 0 3×3 0 3×3 exp(-ωi ∆t)∆t 0 3×3 exp(-ωi ∆t)∆t 2 /2   , (39) 
such that the zero-mean noise η i has covariance

Q i = G i cov η ω i η a i G T i , (40) 
where it is not necessary to assume that IMU noises are isotropic. We fix Q i = Q through this paper instead of defining a time varying Q i for convenience of exposition.

Remark 4 (Bias Error). As in [START_REF] Forster | On-Manifold Preintegration for Real-Time Visual-Inertial Odometry[END_REF], we start assuming in [START_REF] Allak | Covariance Pre-Integration for Delayed Measurements in Multi-Sensor Fusion[END_REF] that biases are known. We then investigate how an estimated bias update affects Υi in Section V-D.

Remark 5 (Integration Scheme). We assume in (37) piecewise constant global acceleration as in [START_REF] Forster | On-Manifold Preintegration for Real-Time Visual-Inertial Odometry[END_REF] for convenience of exposition. Opting for a different integration scheme, e.g., with constant local acceleration [START_REF]Closed-form Preintegration Methods for Graph-Based Visual-Inertial Navigation[END_REF], would modify the values inside (37) and (39) and leave the rest of paper unchanged (details are given in the supplementary material). There also exists polynomial structures for higher order uncertainty tracking [START_REF] Farrell | Aided Navigation: GPS with High Rate Sensors[END_REF], see and [START_REF] Musoff | Fundamentals of Kalman Filtering: a Practical Approach[END_REF] for discussions in the Gaussian context.

IV. PROPAGATING UNCERTAINTY OF EXTENDED POSES

The goal of the present section is to compute uncertainty of an extended pose given an initial uncertainty and IMU noises. The green (second-order) and cyan (fourth-order) lines are the principal great circles of the 3σ covariance ellipsoid, given by Σ K , mapped to the xy-plane. Looking at the area around the green dot (112.5, 0), corresponding to straight ahead and noise-free model, the fourth-order scheme has some nonzero uncertainty similarly to the Monte-Carlo samples (black dots), whereas the second-order scheme does not. The small cyan lemniscate around (112.5, 0) corresponds to a great circle of the fourth-order distribution which is absent in the second-order one.

A. Propagating Uncertainty through Noise-Free IMU Model

Let

T i := Ti exp(ξ i ), ξ i ∼ N (0 9 , Σ i ), (41) 
be our extended pose estimate with error ξ i . The propagation of T i through noise-free model [START_REF] Yang | Analytic Combined IMU Integration (ACI 2) For Visual Inertial Navigation[END_REF] writes

T i+1 (32) 
= Γ i Φ(T i ) Υi (41) = Γ i Φ Ti exp(ξ i ) Υi (33) = Γ i Φ( Ti )Φ F exp(ξ i ) Υi (12) = Γ i Φ( Ti ) Υi Ti+1 exp(Ad Υ-1 i Fξ i ξ i+1
).

By defining the new mean Ti+1 , the covariance of the discrepancy evolves without approximation as

Σ i+1 := E[ξ i+1 ξ T i+1 ] (42) = Ad Υ-1 i F :=Ai Σ i Ad Υ-1 i F T . (43) 
This is remarkable as it proves that IMU noise-free equations, albeit nonlinear, preserve concentrated Gaussians on SE 2 (3) and the moments evolve through closed-form formulas.

B. Propagating Uncertainty through Noisy IMU Model

We now consider IMU noise in the form of [START_REF] Allak | Covariance Pre-Integration for Delayed Measurements in Multi-Sensor Fusion[END_REF]. Our Lie group approach to extended poses allows transposing the developments of [START_REF] Barfoot | Associating Uncertainty With Three-Dimensional Poses for Use in Estimation Problems[END_REF] exposed for the evolution model ( 4). The propagation of T i through noisy model writes

T i+1 = Γ i Φ( Ti ) Υi Ti+1 exp(Ad Υ-1 i Fξ i ξ ) exp (η i ) , (44) 
where we recover [START_REF] Henawy | Accurate IMU Factor Using Switched Linear Systems For VIO[END_REF] with noise injected on the right. For our approach to hold, we require that E[ξ i+1 ] = 0 9 , where

ξ i+1 (41) = log( T-1 i+1 T i+1 ) (44) 
= log exp (ξ) exp (η i ) .

Applying the BCH formula ( 16), we get

ξ i+1 = ξ + η i + 1 2 ξ η i + 1 12 ξ ξ η i + η i η i ξ - 1 24 η i ξ ξ η i + O( ξ i+1 5 ) (46) 
As ξ and η i are uncorrelated, we have

E[ξ i+1 ] = - 1 24 η i ξ ξ η i + O( ξ i+1 6 ) (47) 
since everything except the fourth-order term has zero mean.

In the present paper we use "fourth-order" in the sense of [START_REF] Barfoot | Associating Uncertainty With Three-Dimensional Poses for Use in Estimation Problems[END_REF] but it is important to note it corresponds to "second-order" in the original terminology of [START_REF] Wang | Nonparametric Second-Order Theory of Error Propagation on Motion Groups[END_REF]. Thus, to third-order, we can safely assume that E[ξ i+1 ] = 0 9 , and thus, Ti+1 seems to be a reasonable way to compound the mean. Our goal is now to compute an approximation of Σ i+1 . Multiplying out E[ξ i+1 ξ T i+1 ] to fourth-order (second-order in the sense of [START_REF] Wang | Nonparametric Second-Order Theory of Error Propagation on Motion Groups[END_REF]), the resulting covariance is then

Σ i+1 A i Σ i A T i + Q + S 4th , (48) 
where A i is defined in [START_REF] Eckenhoff | Direct Visual-Inertial Navigation with Analytical Preintegration[END_REF], Q is the input noise covariance, and S 4th is the third-and fourth-order corrections to allow [START_REF] Brossard | Unscented Kalman Filtering on Lie Groups[END_REF] to be correct to the fourth-order, see Appendix for its expression. This result is essentially the same as [START_REF] Wang | Nonparametric Second-Order Theory of Error Propagation on Motion Groups[END_REF][START_REF] Barfoot | Associating Uncertainty With Three-Dimensional Poses for Use in Estimation Problems[END_REF] but worked out for the time time-varying model [START_REF] Yang | Analytic Combined IMU Integration (ACI 2) For Visual Inertial Navigation[END_REF] which is more complex than (4). In summary, to propagate an extended pose, we compute the mean using (44) and the covariance using [START_REF] Brossard | Unscented Kalman Filtering on Lie Groups[END_REF].

C. Simple Propagation Example

This subsection presents a simple example of extended pose propagation. This can be viewed as a discrete-time integration of the IMU kinematic equations ( 22)-( 24) with biases absent or perfectly known. To see the qualitative difference between the proposed second-and fourth-order methods, respectively without and with S 4th , let us propagate an extended pose many times in a row. We apply [START_REF] Yang | Analytic Combined IMU Integration (ACI 2) For Visual Inertial Navigation[END_REF] for i = 0, . . . , K -1 with acceleration about the x-axis and rotational noise about the z-axis as

T0 = I 5 , ξ 0 ∼ N (0 9 , 0 9×9 ), cov(η ω i ) = diag(0, 0, σ 2 ), cov(η a i ) = 0 3×3 , Υi = I 3 ā∆t ā∆t 2 /2 0 2×3 I 2 , ā =   a 0 9.81   -g.
This models a robot driving in the plane with a constant translational acceleration and slightly uncertain rotational speed.

We are interested in how the covariance matrix fills in over time. According to the second-order scheme, we have

TK =      Ka∆t K 2 a 2 ∆t 2 /2 I 3 0 0 0 0 0 T 3 I 2      , Σ K =                0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 Σ φv 0 0 Σ φp 0 0 0 0 0 0 0 0 0 0 0 0 Σ φv 0 Σ vv 0 0 Σ vp 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Σ φp 0 Σ vp 0 0 Σ pp 0 0 0 0 0 0 0 0 0 0                Kσ 2 ,
where

Σ φv = - (K -1) 2 a∆t, Σ φp = (K -1) (2K -1) 12 a∆t 2 , Σ vv = (K -1) (2K -1) 6 a 2 ∆t 2 , Σ vp = (K -1) 2 K 8 a 2 ∆t 3 , Σ pp = (K -1) (2K -1) 3 (K -1) 2 + 3K -4 120 a 2 ∆t 4 .
We see that the entry of Σ K corresponding to uncertainty in the x-direction (underlined zero just left above Σ pp ), does not grow. However, in the fourth-order scheme, the fill-in pattern is such that this entry is nonzero. This leaking of uncertainty into an additional degree of freedom cannot be captured by keeping only the second-order terms. Figure 2 provides a numerical example of this effect, where we set K = 300, dt = 0.05 s, a = 1 m/s 2 and σ = 0.03 rad/s. It shows that: 1) both the second-and fourth-order schemes capture the actual "banana"-shaped distribution over extended poses of the Monte-Carlo samples. This is owed to the use of the exponential of SE 2 (3); 2) the fourth-order scheme has some finite uncertainty in the straight-ahead direction (the gray dot to the green dot) similarly to the sampled trajectories, while the second-order scheme does not; 3) the samples never cross a circle of radius 112.5 m, as rotation uncertainty tends to reduce the travelled distance, and none of the approximate methods perfectly models this non-Gaussian behavior. 1) Comparison with SE 2 (3) Monte-Carlo Distribution: assuming the actual distribution to be a concentrated Gaussian on SE 2 (3), the Monte-Carlo estimate of its covariance reads propagation noise σ (rad/s) covariance error second-order fourth-order Fig. 3. Error in computing covariance using second-and fourth-order methods for propagating an extended pose, as compared to Monte-Carlo. The input noise is gradually scaled up, highlighting the improved performance of the fourth-order method.

Σ mc := E log( T-1 K T K ) log( T-1 K T K ) T 1 N -1 N n=1 log( T-1 K T K,n ) log( T-1 K T K,n ) T .
By letting N = 10 6 this provides a benchmark to compare the covariance matrices computed with second-order accuracy and fourth-order accuracy based on the Frobenius norm [START_REF] Barfoot | Associating Uncertainty With Three-Dimensional Poses for Use in Estimation Problems[END_REF] cov. err.

:= trace (Σ i-th -Σ mc ) T (Σ i-th -Σ mc ) .
Results are displayed in Figure 3. We see the fourth-order is a slightly better. All methods degrade as magnitude of noise increases and fourth-order is the closest to the true covariance.

2) Comparison with SO(3)×R 6 Monte-Carlo Distribution: we compare the SE 2 (3) uncertainty representation to the goldstandard SO(3)×R 6 distribution used in [START_REF] Forster | On-Manifold Preintegration for Real-Time Visual-Inertial Odometry[END_REF] for preintegration, see Section V. This distribution defines uncertainty as

T := T ξ, ξ ∼ N (0 9 , Σ),
where the retraction substitutes our SE 2 (3) exponential map and is defined in Figure 4. This avoids the computation of 3×3 Jacobian but comes at the price of loosing the ability to model the "banana" shape of the actual dispersion.

We compute the best mean and covariance related to the SO(3) × R 6 distribution by averaging Monte-Carlo samples

TK := E[T K ] := E[R K ] E[v K ] E[p K ] 0 2×3 I 2 , Σ := E T K TK T K TK T 1 N -1 N n=1 T K,n TK T K,n TK T ,
where

E[R K ] 1/N exp( N n=1 log( Rn K )), E[v K ] 1/N N n=1 vn K and E[p K ] 1/N N n=1
pn K . Both approaches are compared in Figure 5. We see that 1) the covariance ellipse (orange line) is not a good fit for samples with large deviation as compared to the SE 2 (3) distribution for the same experiment; 2) the mean of the samples (orange dot) is distant from 5 m of the noise-free estimate (red dot). Let us explain why our SE 2 (3)-based method improves on point 2). Consider the position extracted from the extended pose

p K = T K 0 4 1 (41) 
= TK exp(ξ K ) 0 4 1

(16) = pK + ρ + 1 2 φ × ρ + O( ξ K 3 ). ( 49 
)
where pK = [112.5 m, 0 m, 0 m] up to third-order, see [START_REF] Bourmaud | Continuous-Discrete Extended Kalman Filter on Matrix Lie groups Using Concentrated Gaussian Distributions[END_REF].

Let us compute the expectation of the position as

E[p K ] (49) = pK + E[ρ] =03 + 1 2 E[φ × ρ] =03 +O( ξ K 3 ) = pK , (50) 
where we see a shift appear due to the correlation between orientation and position. Using the values of the covariance Σ K of the SE 2 (3) second-order distribution, we find E[p K ] = [107.5 m, 0 m, 0 m] which matches with the Monte-Carlo mean value (orange dot) of Figure 5.

3) Comparison with SO(3) × R 6 2 nd -Order Distribution: in practice, e.g., in an extended Kalman filter, the covariance Σ is recursively computed with second-order accuracy, i.e. similarly as [START_REF] Brossard | Unscented Kalman Filtering on Lie Groups[END_REF] with S 4th = 0 9×9 . We compute the covariance Σ with the second-order accuracy adapted to the SO(3)×R 6 uncertainty representation. The covariance reflects null uncertainty along the x-axis due to linearization error, see the red "ellipse" in Figure 5, and see also Figure 1 where accelerometer noises are considered. We provide quantitative comparisons between SO(3) × R 6 and SE 2 (3) distributions in the context of preintegration in Section V-C.

4) Summary: given its apparent simplicity, the latter instructive simulation evidences the SE 2 (3) distribution is especially suited to extended pose uncertainty in the two following situations:

1) when initial uncertainty predominates input noise uncertainty, as the method is then exact, see formula (43); 2) when orientation uncertainty dominates translational uncertainty, leading to a "banana"-shaped dispersion.

An interesting question is whether to choose the noise-free mean pK or the "stochastic" one [START_REF] Musoff | Fundamentals of Kalman Filtering: a Practical Approach[END_REF] for use in sensorfusion or outlier detection algorithms based on the SO(3)×R 6 distribution, e.g. [START_REF] Ch'ng | Outlier-Robust Manifold Pre-Integration for INS/GPS Fusion[END_REF]. Yet, it is left for future work.

D. Batch & Incremental Extended Pose Propagation

The previous subsections provide incremental expressions while we infer here batch expressions to compute the mean and the uncertainty of the extended pose

T j = Γ ij Φ ij (T i )Υ ij , (51) 
after the integration between two arbitrary instants t i and t j = t i + (j -i)∆t, which is helpful for preintegration theory, see Section V. Propagating an extended pose through model [START_REF] Yang | Analytic Combined IMU Integration (ACI 2) For Visual Inertial Navigation[END_REF] between two consecutive time steps, we obtain

T i+2 (32) = Γ i+1 Φ (T i+1 ) Υ i+1 (32) = Γ i+1 Φ Γ i Φ (T i ) Υ i Υ i+1 (33) = Γ i+1 Φ (Γ i ) Γ i(i+2) Φ 2∆t (T i ) Φ i(i+2) (Ti) Φ (Υ i ) Υ i+1 Υ i(i+2) . ( 52 
)
SO(3) × R 6 [6] T = T ξ = R exp(φ) v ν p + Rρ 02×3 I2 ξ = T T =   log( RT R) v - v RT (p -p)   SE 2 (3) T = T exp(ξ) = R exp(φ) v + J φ ν p + J φ ρ 0 2×3 I 2 ξ = log( T-1 T) SO(3) × R 6 SE2(3)
Fig. 4. between the retraction and its inverse used in the preintegration on manifold [START_REF] Forster | On-Manifold Preintegration for Real-Time Visual-Inertial Odometry[END_REF] (left), and the ones based on SE 2 (3) exponential advocated in the present paper (center, detailed formulas are given in Appendix). On the right, the SE 2 (3) distribution (green dots) is curved whereas the SO(3) × R 6 one (red dots) is limited to ellipses. The blue points show the mean estimate. Based on ( 44) and ( 52), a recursion provides the following batch and incremental formulas

Υij = j-1 k=i Φ k(j-1) Υk = Φ Υi(j-1) Υj , (53) 
Γ ij = j-i k=1 Φ (j-k)(j-1) (Γ j-k ) = Γ i(j-1) Φ (Γ j ) , (54) 
ξ i+1 = log exp(A i ξ i ) exp(η i ) = log exp A i 0 ξ 0 i k=0 exp i l=k+1 A l :=A i k+1 η k (55) (18) 
A i ξ i + η i = A i 0 ξ 0 + i k=0 A i k+1 η k , (56) 
Σ i-1 A i 0 Σ 0 A iT 0 + i k=0 A i k+1 QA iT k+1 , (57) 
which coincide with the continuous model ( 22)-( 24) without approximation, e.g. we recover

Φ ij (•) (26) = Φ (j-i)∆t (•), Γ ij (27) 
= Γ (j-i)∆t .

Remarkably, we have an exact formula for the evolution of the discrepancy [START_REF] Crassidis | Sigma-point Kalman Filtering for Integrated GPS and Inertial Navigation[END_REF], which is rare in nonlinear estimation.

V. ON LIE GROUP IMU PREINTEGRATION

This section first evidences the relations between the IMU preintegration on manifold [START_REF] Forster | On-Manifold Preintegration for Real-Time Visual-Inertial Odometry[END_REF] and our approach on the Lie group SE 2 (3). Then we describe how to compute the preintegrated factor along with its noise covariance matrix on SE 2 (3). Finally we address incorporation of bias updates in Lie exponential coordinates.

A. Links with the IMU Preintegration on Manifold [START_REF] Forster | On-Manifold Preintegration for Real-Time Visual-Inertial Odometry[END_REF] While (44) could be readily seen as a probabilistic constraint in a factor-graph, it would require to include states in a factorgraph at the high IMU rate. It indeed relates states at time t i and t i+1 = t i + ∆t, where ∆t is the sampling period of the IMU. Lupton and Sukkarieh [START_REF] Lupton | Visual-Inertial-Aided Navigation for High-Dynamic Motion in Built Environments Without Initial Conditions[END_REF] and then Forster et. al. [START_REF] Forster | On-Manifold Preintegration for Real-Time Visual-Inertial Odometry[END_REF] show that all measurements between two chosen instants t i and t j can be summarized in a single factor, which constrains the motion between times t i and t j .

Our approach differs from [START_REF] Forster | On-Manifold Preintegration for Real-Time Visual-Inertial Odometry[END_REF] in three ways: i) the situation where the mathematical framework applies; ii) the retraction used to compute Gaussian uncertainty; and iii) how bias updates modify the preintegrated factor. Regarding i), [START_REF] Forster | On-Manifold Preintegration for Real-Time Visual-Inertial Odometry[END_REF] addresses preintegration by computing factors between two arbitrary timestamps t i and t j as

∆R ij = R T i R j , (58) 
∆v ij = R T i (v j -v i -g∆t ij ) , (59) 
∆p ij = R T i p j -p i -v i ∆t ij - 1 2 g∆t 2 ij , (60) 
where ∆t ij := t j -t i = (j -i)∆t, which is specific to the model ( 22)- [START_REF] Dellaert | Factor Graphs and GTSAM: A Hands-on Introduction[END_REF]. Our preintegration factor between two extended poses is given as

Υ ij (51) = Γ ij Φ ij (T i ) -1 T j , (61) 
and is derived for flat Earth model in this section, but may be adapted to rotating Earth model, see Section VI.

The difference ii) is the retraction function used to represent uncertainty. While [START_REF] Forster | On-Manifold Preintegration for Real-Time Visual-Inertial Odometry[END_REF] opts for the SO(3) × R 6 uncertainty

T := T ξ, ξ ∼ N (0 9 , Σ), (62) 
where the operator is defined in Figure 4, we advocate the uncertainty based on the SE 2 (3) exponential map, see Section II-B, which proves better suited to propagate extended pose uncertainty (see Section IV-C).

Remark 6. In the implementation of [START_REF] Forster | On-Manifold Preintegration for Real-Time Visual-Inertial Odometry[END_REF] on GTSAM [START_REF] Dellaert | Factor Graphs and GTSAM: A Hands-on Introduction[END_REF], the retraction updates the velocity in the navigation frame. Since the only difference is the use of an invertible matrix, this is in fact equivalent. We thus do not distinguish both retractions.

Finally, given a bias update b+ i ← bi + δb, [START_REF] Forster | On-Manifold Preintegration for Real-Time Visual-Inertial Odometry[END_REF] addresses iii) by updating the preintegrated measurements using a firstorder Taylor expansion as

∆ Rij ( b+ i ) = ∆ Rij ( bi ) exp ∂∆ Rij ∂b | bi δb + O( δb 2 ) , ∆v ij ( b+ i ) = ∆v ij ( bi ) + ∂∆v ij ∂b | bi δb + O( δb 2 ), ∆p ij ( b+ i ) = ∆p ij ( bi ) + ∂∆p ij ∂b | bi δb + O( δb 2 ).
To be consistent with our framework, we address the bias update as a first-order Taylor expansion in the Lie exponential coordinates as

Υij ( b+ i ) = Υij ( bi ) exp ∂ Υij ∂b | bi δb + O( δb 2 ) .
Remark 7. The implementation of [START_REF] Forster | On-Manifold Preintegration for Real-Time Visual-Inertial Odometry[END_REF] in GTSAM [START_REF] Dellaert | Factor Graphs and GTSAM: A Hands-on Introduction[END_REF] takes into account the uncertainty in the bias estimates for preintegration, such that the preintegration covariance matrix preserves the correlation between the bias uncertainty and the preintegrated measurements uncertainty. We follow [START_REF] Forster | On-Manifold Preintegration for Real-Time Visual-Inertial Odometry[END_REF] for clarity of exposition. However our approach is fully compatible with accounting for the correlation between IMU navigation state and biases states, as is detailed in the supplementary material.

B. Proposed IMU Preintegration

As in [START_REF] Forster | On-Manifold Preintegration for Real-Time Visual-Inertial Odometry[END_REF], we first assume the bias estimates are exact and fixed between t i and t j as bi = bi+1 = • • • = bj-1 .

(63)

1) Preintegrating IMU Measurements: we relate the states at times t i and t j to the IMU measurement through

Υ ij = Υij exp(η ij ) (61) = Γ ij Φ ij (T i ) -1 T j , (64) 
which provides a measurement model where the noise terms of the individual inertial measurements is isolated in η ij and where Υij is integrated with inertial measurements through [START_REF] Indelman | Factor Graph Based Incremental Smoothing in Inertial Navigation Systems[END_REF], which can be substituted by the integration (29)- [START_REF] Deray | Joint On-Manifold Self-Calibration of Odometry Model and Sensor Extrinsics using Pre-Integration[END_REF]. Indeed, our approach has the same preintegration measurement as [START_REF] Forster | On-Manifold Preintegration for Real-Time Visual-Inertial Odometry[END_REF] but the uncertainty is encoded in Lie exponential coordinates. 2) Noise Propagation: we derive the statistics of the noise vector η ij ∼ N (0 9 , Σ ij ). Following Section IV, η ij is zeromean up to the third-order. To model the noise covariance, we develop the batch expression as follows

Υ ij (53) = j-1 k=i Φ k(j-1) (Υ k ) (35) = j-1 k=i Φ k(j-1) Υk exp(η k ) (12) = j-1 k=i Φ k(j-1) Υk (53) = Υij j-1 k=i exp j-1 l=k+1 Ad Υ-1 l F (55) = A j-1 k+1 η k (18) = Υij exp j-1 k=i A j-1 k+1 η k + O( η k 2 ) , (65) 
that corresponds to integrating the uncertainty of an extended pose without initial uncertainty. We resort to [START_REF] Brossard | Unscented Kalman Filtering on Lie Groups[END_REF] to compute the covariance with second-order accuracy as

Σ i(j+1) = Ad Υ-1 j FΣ ij Ad Υ-1 j F T + Q, ( 66 
)
and starting from initial condition Σ ii = 0 9×9 .

C. Numerical Example without Biases

To quantitatively assess our preintegration technique against state-of-the-art based on closed-form integration scheme [START_REF]Closed-form Preintegration Methods for Graph-Based Visual-Inertial Navigation[END_REF] and uncertainty representation [START_REF] Forster | On-Manifold Preintegration for Real-Time Visual-Inertial Odometry[END_REF], we run a numerical experiment where the IMU follows the car trajectory of Figure 6. We gather the path of the sequence 9 of the KITTI dataset [START_REF] Geiger | Vision Meets Robotics: The KITTI Dataset[END_REF], from which we differentiate ground-truth and infer true inertial measurements at ∆t = 0.1 s. The ground-truth is then recomputed with model ( 22)-( 24) to remove integration errors that occur when assuming constant measurements in ( 29)- [START_REF] Deray | Joint On-Manifold Self-Calibration of Odometry Model and Sensor Extrinsics using Pre-Integration[END_REF]. We then add Gaussian noise whose covariance is defined as where σ ω and σ a are the same as in simulations of [START_REF] Forster | On-Manifold Preintegration for Real-Time Visual-Inertial Odometry[END_REF], i.e. 7 • 10 -4 rad/(s √ Hz) and 1.9 • 10 -2 m/(s 2 √ Hz), and with α a scaling parameter for testing purposes.

cov(η ω i ) = ασ 2 ω I 3 , cov(η a i ) = ασ 2 a I 3 ,
The factor covariance is computed using four methods:

1) SE 2 (3), which computes the covariance based on (66) with accuracy up to second-order; 2) SO(3) × R 6 [START_REF] Forster | On-Manifold Preintegration for Real-Time Visual-Inertial Odometry[END_REF][START_REF]Closed-form Preintegration Methods for Graph-Based Visual-Inertial Navigation[END_REF], same as the method 1) but adapted to uncertainty on SO(3) × R 6 , i.e. with uncertainty representation of [START_REF] Forster | On-Manifold Preintegration for Real-Time Visual-Inertial Odometry[END_REF] and integration scheme of [START_REF]Closed-form Preintegration Methods for Graph-Based Visual-Inertial Navigation[END_REF]; 3) SE(3) × R 3 , same as the method 1) but adapted to uncertainty on SE(3) × R 3 (this method has not appeared before to our knowledge); 4) SE 2 (3) (Monte-Carlo), which is a slow yet accurate approach. At each time step, we draw a large number M = 10 6 of random samples ξ m ij and η m j , propagate the resulting states, and compute the covariance as

Σ i(j+1) = 1 M -1 M m=1 ξ m ξ mT with T m = Γ j Φ Tij exp(ξ m ij ) Υj exp(η m j ),
and ξ m = log( T-1 i(j+1) T m ). It requires, e.g., 50M = 5 • 10 7 samples for one preintegration factor of length ∆t ij = 5 s. It indicates the best recursive distribution based on SE 2 (3) one may obtain.

To evidence the fact that our approach is more consistent, we compute the average Normalized Estimation Error Squared (NEES) as

NEES = 1 9N N n=1 e T n Σ -1 e n ,
where the error is defined as

e SE2(3) n = log T-1 ij Tn ij , or e SO(3)×R 6 n = T n ij Tij .
We sample N = 10 6 Monte-Carlo noisy preintegrations T n ij for each factor T ij , where for each Monte-Carlo realization n, we compute one realization of each noise η i , . . . , η j-1 . If the NEES is higher than 1, the approach is overconfident, if it stays below 1, it is conservative. One usually wants to avoid overconfident estimates.

Results are displayed in Figure 7 for three noise scale parameters and increasing values of the preintegration time. We observe that:

1) SE 2 (3) distribution is the most consistent approach. This becomes visible as the preintegration time increases for each level of IMU noises; 2) SO(3)×R 6 distribution poorly approximates long preintegration uncertainty, where the median value is close to the 33% percentile while the 67% percentile is much larger. It indicates that there exists some types of trajectory (that correspond to high rotation motions) where the performances of the SO(3) × R 6 on manifold method might degrade. This confirms the results of Section IV-C where we see the average error should be not zero and that linearization errors do occur; 3) SE(3) × R 3 obtains similar results as SO(3) × R 6 , and we see that despite the use of SE(3) which is known to describe well uncertainty associated with poses, the full SE 2 (3) structure is desirable in the context of IMUs; 4) all methods degrade as noise and preintegration time increase because the preintegrated measurements become non-Gaussian. Interestingly, the linearization errors of our SE 2 (3)-based scheme (as opposed to Monte-Carlo estimate) are only visible for high noise (α = 10) and sufficiently high preintegration time.

D. Bias Correction via Lie Exponential First-Order Updates

This subsection shows the impact of computing first-order bias corrections using the representation of errors based on exponential coordinates of SE 2 (3). In the context of preintegration, given a bias update b+ i ← bi + δb, one needs to compute how the preintegrated quantities Υij change. Assume we have computed Υij ( bi ) corresponding to bias bi and let Υij ( b+ i ) denote the measurement associated to new bias estimation. We define the first-order update as

Υij ( b+ i ) = Υij ( bi ) exp ∂ Υij ∂b | bi δb + O( δb 2 ) . ( 67 
)
The derivation of the Jacobian is similar to the one we use to express the measurements as a large value plus a small perturbation. We first define the variation for one time step bias update magnitude δb ∆pij (mm) Fig. 8. Error committed when using the first-order approximation instead of repeating the integration, for different magnitude of bias updates. Solid curves are the median value, and dashed curves are the 33% and 67% percentiles of the errors. Both methods coincide for the rotation error as they use the same update rule. Solid and dashed curves coincide for the velocity and position errors. Our approach better approximates velocity and position preintegration updates. Statistics are computed over 10 6 Monte-Carlo runs for each of the 166 preintegration factors. as similarly done in Section III-C, where G i is defined in [START_REF] Qin | VINS-Mono: A Robust and Versatile Monocular Visual-Inertial State Estimator[END_REF]. We then compute

Υ i ( b+ i ) = Υ i ( bi + δb) = Υi ( bi ) exp G i δb + O( δb 2 ) (68) 
Υ ij ( b+ i ) (53) = j-1 k=i Φ k(j-1) Υk ( bi ) exp (G k δb) (12) 
= Υij ( bi )

j-1 k=i exp A j-1 k+1 G k δb (18) 
= Υij ( bi ) exp

j-1 k=i A j-1 k+1 G k δb + O( δb 2 ) . (69) 
As in (66), we resort to [START_REF] Brossard | Unscented Kalman Filtering on Lie Groups[END_REF] to compute the Jacobian recursively as

∂ Υi(j+1) ∂b | bi = Ad Υj F ∂ Υij ∂b | bi + G j , (70) 
starting from initial condition ∂ Υii ∂b | bi = 0 9×6 .

E. Numerical Example with Biases

This section shows our matrix formalism and the use of exponential coordinates yield slightly more accurate first-order bias correction than in the theory of [START_REF] Forster | On-Manifold Preintegration for Real-Time Visual-Inertial Odometry[END_REF] (with integration scheme of [START_REF]Closed-form Preintegration Methods for Graph-Based Visual-Inertial Navigation[END_REF]). The accuracy of this first-order bias correction is reported in Figure 8. To compute the statistics, we integrated the noise-free IMU measurements of Section V-C with a given bias estimate bi = 0 3 during ∆t ij = 1 s, which results in the preintegrated measurements ∆R ij ( bi ), ∆v ij ( bi ) and ∆p ij ( bi ). Subsequently, a random perturbation δb with fixed magnitude was applied to both the gyroscope and accelerometer bias (the magnitude of accelerometer bias is 30 times higher than the gyro one). We repeat the integration at bi + δb to obtain ∆R ij ( bi + δb), ∆v ij ( bi + δb) and ∆p ij ( bi + δb). This ground-truth result was then compared against the first-order correction to compute the error of the approximation based on N = 10 6 random perturbation δb for each preintegration factor. The errors resulting from the firstorder approximation are small, even for the relatively large bias perturbations, and we see approach coincides with [START_REF] Forster | On-Manifold Preintegration for Real-Time Visual-Inertial Odometry[END_REF][START_REF]Closed-form Preintegration Methods for Graph-Based Visual-Inertial Navigation[END_REF] regarding orientation but obtains more accurate velocity and position preintegration factors.

VI. IMU PREINTEGRATION ON ROTATING EARTH

This section provides exact closed-form expressions for computing the right-hand side of the factors (58)-( 60) when taking into account the Earth rotation, Coriolis acceleration, and centrifugal acceleration. We obtain results that are independent of the uncertainty representation and as such may be used in previous preintegration formalisms [START_REF] Forster | On-Manifold Preintegration for Real-Time Visual-Inertial Odometry[END_REF][START_REF]Closed-form Preintegration Methods for Graph-Based Visual-Inertial Navigation[END_REF]. This allows applying factor-graph based optimization techniques to military and civilian applications that require localization over long time scales based on accurate inertial sensors.

A. IMU Equations with Rotating Earth

Accounting for Earth rotation, ( 22)-( 24) become [START_REF] Farrell | Aided Navigation: GPS with High Rate Sensors[END_REF] 

Ṙ = -Ω × R + R(ω m -b ω -η ω ) × , (71) 
v = R(a m -b a -η a ) + g -2Ω × v -Ω 2 × p, (72) 
ṗ = v, (73) 
where the Earth rotation vector

Ω = Earth rate 7.292×10 -5 rad/s ×   cos(latitude) 0 -sin(latitude)   ∈ R 3 (74) 
is written in the local, i.e. geographic (north, east, down), reference frame, where the Earth rate is approximately 15 deg/h. The term -2Ω × v is called Coriolis acceleration while the term -Ω 2 × p is called centrifugal acceleration. To be perfectly accurate, this second term is the varying part of the centrifugal acceleration, which actually writes -Ω 2 × (p -p 0 ) with p 0 a point of the Earth rotation axis. But expanding the parenthesis we obtain a constant term Ω 2 × p 0 which can be simply added to g. And this is already the case: the g of approximate value 9.81 m/s 2 we are familiar with is actually the sum of the Newton gravitation force and the centrifugal acceleration due to Earth rotation. Hence the residual term -Ω 2 × p. Remark 8. In the model (71)-(74) and in the experiments of Section VII, we consider navigation in a local North-East-Down (NED) frame, where we assume the gravity g and Earth rate Ω are fixed at their initial values. Although it simplifies the exposition, and is a valid assumption for trajectories that span a dozen of kilometers as in the following experiments, it is by no means a required assumption in our theory. Indeed, the only required assumption is that g, Ω be fixed during the computation of each factor (which is painless as the latitude virtually does not change during one preintegration): at the beginning of each preintegration g, Ω may be updated based on the estimated position. In this regard, the algorithm needs to know at least its initial latitude. There is however no way around this assumption, which applies to all algorithms which perform highly precise inertial navigation.

B. Revisiting IMU Equations with Rotating Earth

Model (71)-(73) does seemingly not lend itself to application of the form [START_REF] Leutenegger | Keyframe-Based Visual-Inertial Odometry Using Nonlinear Optimization[END_REF]. However, let us introduce the variable

T := R v + Ω × p p 0 2×3 I 2 . ( 75 
)
This trick allows embedding the auxiliary state T t into the form of (25) as

T t = Γ t Φ t (T 0 )Υ t , (76) 
where Υ t is the same as in [START_REF] Leutenegger | Keyframe-Based Visual-Inertial Odometry Using Nonlinear Optimization[END_REF] and Γ t is obtained solving the differential equations t := ΓR Γv Γp

0 2×3 I 2 , (77) 
where

ΓR = -Ω × Γ R , Γv = g -Ω × Γ v , Γp = Γ v -Ω × Γ p , initialized at Γ R = I 3 , Γ v = 0 3 , Γ p = 0 3
, and that do not involve the state, see proofs in [START_REF] Barrau | A Mathematical Framework for IMU Error Propagation with Applications to Preintegration[END_REF] and supplementary materials.

We solve for T t and apply our framework for preintegration as follows. First, we define an exact discrete model

T j = Γ ij Φ ij (T i )Υ ij , (78) 
between instants t i and t j , as performed in Section IV-D, that leads to

R j = Γ R ij R i ∆R ij , (79) 
v j = Γ v ij + Γ R ij (R i ∆v ij + v i + Ω × p i ) -Ω × p j , (80) 
p j = Γ p ij + Γ R ij (R i ∆p ij + (v i + Ω × p i ) ∆t ij + p i ) , (81) 
where ∆R ij , ∆v ij , ∆p ij are yet given through ( 29)-( 31)

while Γ R ij , Γ v ij , Γ p ij are defined as Γ R ij = exp(-∆t ij Ω), (82) Γ v ij = J -∆tij Ω ∆t ij g, (83) 
Γ p ij = ∆t 2 2 I 3 + aΩ × + bΩ 2 × g, (84) 
with φ = Ω , a = φ -3 (φ∆t ij cos(φ∆t ij ) -sin(φ∆t ij )),

and b = φ -4 ( φ 2 ∆t 2 ij 2
-cos(φ∆t ij ) -φ∆t ij sin(∆t ij φ) + 1). To express preintegration factors as function of states, we compute

Υ ij (78) = Γ ij Φ ij (T i ) -1 T j , (85) 
see the similarity with (61), that we finally develop as

∆R ij (79) = Γ R ij R i T R j , (86) 
∆v ij (80) = R T i Γ RT ij v j + Ω × p j -Γ v ij -v i -Ω × p i , (87) 
∆p ij (81) = R T i Γ RT ij p j -Γ p ij -(v i + Ω × p i ) ∆t ij -p i . (88) 
To summarize, preintegrating IMU with rotating Earth consists in substituting ( 58)-( 60) by ( 86)-( 88), and leaving the covariance noise computation unchanged, as Coriolis and centrifugal accelerations leave the left-hand side of the preintegrated factors unchanged, and thus the quantity Υ ij in ( 85) is yet defined in (64). These results are obtained independently from a choice for uncertainty representation, and as such they may also be used in current implementations such as [START_REF] Forster | On-Manifold Preintegration for Real-Time Visual-Inertial Odometry[END_REF]. We confirm our results with a numerical example, see Figure 9, where we preintegrate bias-and noise-free IMU measurements for a long car trajectory. Similarly as in Section V-C, we differentiate the ground-truth trajectory of the sequence 1 of our real experiments (see Section VII) to obtain true inertial measurements. Then the ground-truth is recomputed with model ( 71)-(73) to remove integration errors. We compute the error when neglecting the rotation of the Earth (Ω = 0 3 ) versus our approach with ∆t ij = 5 s. We see no error at the beginning of the sequence as the car is static. Then the error committed when neglecting the rotating Earth grows, whereas our approach is exact. Remark 9. [START_REF] Indelman | Information Fusion in Navigation Systems via Factor Graph based Incremental Smoothing[END_REF][START_REF] Indelman | Factor Graph Based Incremental Smoothing in Inertial Navigation Systems[END_REF] attack factor-graph based accurate navigation, and provide the following formulas for preintegration with Coriolis acceleration in the appendix of [START_REF] Indelman | Factor Graph Based Incremental Smoothing in Inertial Navigation Systems[END_REF] 

v Lj j = R L j Li v Li i + R Li bi ∆v bi i→j + [g Li - (w Li iLi ) × v Lj j 2 ]∆t ij .
The authors obtain a term -2(ω

i L i ) × v Li i in place of the expected -2(ω i L i ) × v Lj j
(index i of v should be j): we see the Coriolis term of [START_REF] Indelman | Factor Graph Based Incremental Smoothing in Inertial Navigation Systems[END_REF] 

VII. REAL EXPERIMENTS

This section addresses sensor-fusion of a high-grade IMU with relative translations provided by a LiDAR in a fixed-lag smoother for long-term navigation. Building on the preintegration with rotating Earth and Coriolis effect formulas developed in Section VI, we implement our loosely-coupled approach with the GTSAM factor-graph library [START_REF] Dellaert | Factor Graphs and GTSAM: A Hands-on Introduction[END_REF].

We gathered more than 150 km and four hours of data divided into six sequences. The vehicle acquires data around the R&T centre of SafranTech2 located at Magny-Les-Hameaux, France. The car embeds a high-grade IMU manufactured by Safran Electronics and Defense, whose increments are acquired at 100 Hz, and a Velodyne LiDAR VLP32C which is mounted on top of the car. Table 1 indicates the IMU noise specifications that we set in our algorithms and which are two orders of magnitude lower than those used in the simulations of [START_REF] Forster | On-Manifold Preintegration for Real-Time Visual-Inertial Odometry[END_REF]. The 3D laser scans between keyframes are preprocessed to obtain relative transformations using scan matching algorithms. The vehicle is finally equipped with a RTK-GPS antenna which outputs positions and yaws that we consider as ground-truth. This dataset is challenging regarding the length of the sequences, the car velocity (up to 30 m/s), and the presence of many bumps, sharp curves and roundabouts on the way.

A. Compared Methods & Algorithm Setting

Owing the precision of the gyroscopes, relative orientation between LiDAR's point clouds does not bring additional relevant information, and we focus only on the relative translations returned by the LiDAR. We compare three approaches for estimating the vehicle pose using the IMU and the LiDAR:

1) LiDAR, which is the compound of the relative poses estimated by the scan matching algorithms as in (1); 2) LiDAR-IMU w/o Coriolis, which is the fusion between the relative translations given by the scan matching algorithms and the inertial signals, without considering rotating Earth and Coriolis force, i.e. assuming Ω = 0 3 ; 3) LiDAR-IMU w Coriolis, same as method 2), but where rotating Earth and Coriolis force are considered and Ω defined with the latitude at which each sequence starts (48.73 deg). The LiDAR-aided approaches are described as follows. We implement a fixed-lag smoother based on iSAM2 [START_REF] Kaess | iSAM2: Incremental Smoothing and Mapping using the Bayes Tree[END_REF] from the GTSAM library [START_REF] Dellaert | Factor Graphs and GTSAM: A Hands-on Introduction[END_REF]. Our GTSAM fork3 computes the bias update correction with Lie exponential coordinates (67), preintegrates with rotating Earth and Coriolis force (79)-(81), and leaves the retraction of the extended pose (a.k.a. navigation state in [START_REF] Dellaert | Factor Graphs and GTSAM: A Hands-on Introduction[END_REF]) unchanged. Biases are estimated along with extended poses through CombinedImuFactor, and initialized with the beginning of each sequence, where the car is static. Each approach performs odometry estimation, i.e., it estimates the car trajectory relative to its starting position without using global information from GNSS or LiDAR loop-closure.

Scan matching algorithms return relative orientation and translation, where the level of rotation uncertainty between LiDAR scans is much higher than the gyro's uncertainty (assuming the gyro bias is known, the gyro only drifts of less than a few degrees in one hour, which is lower than the Earth rotation rate). Therefore, we fed the factor-graph with IMU preintegrated factors, relative translation factors, and zero upward velocity factor with a relatively small standard deviation of 1 m/s to prevent the upward velocity from drifting, as used, e.g., in [START_REF] Ye | Tightly Coupled 3D Lidar Inertial Odometry and Mapping[END_REF].

We set the smoother with a lag of 20 s, insert each factor at 4 Hz, and define its noise parameters as follows. Then the covariance of the discrete-time noise η d is computed as a function of the sampling rate and relates to the continuous-time spectral noise η c via cov(η d ) = cov(η c )/∆t [START_REF] Crassidis | Sigma-point Kalman Filtering for Integrated GPS and Inertial Navigation[END_REF]. Relative translations are given with an uncertainty of 20 cm in each direction, and we make the translation factor more robust during high motions with a Huber loss. Finally, the initial orientation and position are provided from the ground-truth, and the initial velocity is null.

B. Evaluation Metrics

To assess performances we recall the error metrics proposed in the KITTI dataset [START_REF] Geiger | Vision Meets Robotics: The KITTI Dataset[END_REF]:

• Relative translation error, which is computed as trans. err. = R T i (p j -p i ) -RT i (p j -pi ) 2 
after an alignment transformation for all sub-sequences of length 100 m, . . . , 800 m; • Relative rotational error, which is computed as

rot. err. = log (R T i R j ) T ( RT i Rj ) 2 
for all sub-sequences of length 100 m, . . . , 800 m. As advocated in [START_REF] Zhang | A Tutorial on Quantitative Trajectory Evaluation for Visual(-Inertial) Odometry[END_REF], these metrics are recommended for comparing odometry estimation methods since they are barely sensitive to the time when the estimation error occurs. We adapt theses metrics as follows: the approaches are evaluated in the horizontal plan as the ground-truth is as accurate as the estimation algorithms to compute the pitch and the roll, and we compute both short-and long-term metrics. In total, we compute three sets of pairs {rot. err., trans. err.}: 

C. Result Analysis & Discussion

Table 2 provides numerical results for the two first sets of evaluation metrics, and Figure 11 displays results for the third set. We observe:

1) the LiDAR estimates highly efficiently the distances and stays accurate in straight lines. However, it has difficulties in areas with tight curves, roundabouts (where visual ambiguity might play a role), or when the car is moving fast; 2) as the LiDAR loses accuracy in decisive but rare moments such as roundabouts, the short-term results of Table 2 are correct, and one mainly tries to improve the long-term metrics; 3) only relative translation information is sufficient to obtain a robust loosely-coupled estimation from the IMU and the LiDAR. This solves most of the problems encountered by the LiDAR during sharp curves and roundabouts; 4) the two LiDAR inertial approaches have similar results

for the shortest sequences 3 and 5, see Table 2. Indeed, for a small sequence, Coriolis force is negligible and the Earth rotation rate may be inserted in bias; 5) taking into account Coriolis increases accuracy for long distances, see the long-term metrics in Table 2, where the one that considers Coriolis is about one hundred meter away from the ground after more than one hour of odometry, without GNSS or LiDAR loop-closure; 6) Figure 11 shows approximately linear grow of the error with respect to time. Considering rotating Earth and Coriolis effect improves the translation metric from 130 m to 103 m, i.e. an improvement of 21%, with subsequences of length 15 min. These results show how beneficial it is to consider rotating Earth and Coriolis force in IMU preintegration theory. However, our experiments do not show the advantage of the Lie exponential update of the bias. Indeed, the differences between the proposed bias update and the standard one remains below, e.g., parameter tuning. The benefit of bias update with exponential Lie update does not necessary require long sequences but more accurate localization systems and larger preintegration times.

In our experiments, we take into account the rotation of the Earth but not its curvature (otherwise it would be necessary to consider the variations of longitude, latitude, ellipsoidal altitude, and transport rate). This point is justified by the relatively small area covered by the trajectories, and the fact that we are estimating relative trajectories. We anticipate the proposed approach would provide even more improvements for long-term navigation with absolute measurements and long distances, e.g. for a plane, a drone, or autonomous underwater vehicles equipped with accurate inertial sensors.

VIII. CONCLUSION

This paper presents some generic techniques to associate uncertainty to an extended pose (three dimensional orientation, velocity and position of a rigid body) and shows how to propagate associated uncertainties with fourth-order accuracy in noise variables and second order in the associated covariances. The framework additionally provides an elegant mathematical approach that brings further maturity to the theory of preintegration on manifold. It unifies flat and rotating Earth IMU equations within a single framework, hence providing extensions of the theory of preintegration with Coriolis force. The method compares favorably against state-of-the-art in extensive simulations, and has been validated for one hour long car navigation in an efficient fixed-lag smoother that fuses IMU and relative translations provided by a LiDAR.

Looking forward, we believe these techniques open up for novel implementations of factor-graph based methods to the context of long term inertial-aided navigation systems, hence genuine industrial navigation systems. Finally, the theory could find application in other problems requiring detailed bookkeeping of extended pose uncertainties. Indeed, our approach with fine uncertainty representation may prove decisive for finely detecting GNSS outliers with preintegration [START_REF] Ch'ng | Outlier-Robust Manifold Pre-Integration for INS/GPS Fusion[END_REF], or when we search to accurately define the uncertainty of distant relative extended poses in an (extended) pose-graph. This is outlined by the example of Section IV-C where our approach improves the mean and the uncertainty of the estimates of existing approaches it is compared to.

Fig. 1 .

 1 Fig.1. Comparison between uncertainty propagation models of an extended pose. An IMU moves from origin to the right at constant translational speed during 10 s and stops at the blue dot (15, 0, 0). We preintegrate noisy IMU measurements in a factor and generate a dispersion of the factor belief at the end-point. The true dispersion (black dots) is based on Monte-Carlo using the actual IMU noise model, green dots are generated through the proposed uncertainty model and red dots are generated using state-of-the-art[START_REF] Forster | On-Manifold Preintegration for Real-Time Visual-Inertial Odometry[END_REF]. The true distribution is curved in xzand yz-planes, and only the proposed scheme captures this effect and agrees with true dispersion.

Fig. 2 .

 2 Fig.2. Example of propagation of an extended pose with SE 2 (3) uncertainty representation. The green (second-order) and cyan (fourth-order) lines are the principal great circles of the 3σ covariance ellipsoid, given by Σ K , mapped to the xy-plane. Looking at the area around the green dot (112.5, 0), corresponding to straight ahead and noise-free model, the fourth-order scheme has some nonzero uncertainty similarly to the Monte-Carlo samples (black dots), whereas the second-order scheme does not. The small cyan lemniscate around (112.5, 0) corresponds to a great circle of the fourth-order distribution which is absent in the second-order one.

Fig. 5 .

 5 Fig. 5. Same example as Figure 2 adapted to the SO(3) × R 6 uncertainty representation. The mean and the 3σ covariance ellipse relative to the Monte-Carlo distribution (orange) are fitted to the black samples to show what keeping xy-covariance relative to the start looks like. The red line is the 3σ ellipsoid when incrementally computing the covariance with second-order accuracy, which wrongly reveals null uncertainty in the x-direction. The position mean of the samples (orange dot) differs from the noise-free mean (red dot).

Fig. 6 .

 6 Fig.6. Reference trajectory used during the simulation experiments. It corresponds to a 1.7 km car trajectory of the KITTI dataset[START_REF] Geiger | Vision Meets Robotics: The KITTI Dataset[END_REF] whose duration is 166 s.

10 Fig. 7 .

 107 Fig. 7. IMU preintegration experiment. NEES criterion based on Monte-Carlo simulations for low noise (above), medium noise (middle), and high noise (bottom). Target value is one, solid curves are the median value, and dashed curves are the 33% and 67% percentiles of the errors. Solid and dashed curves coincide for the SE 2 (3) methods. The improved performances of the SE 2 (3) methods are highlighted as the preintegration time gradually scales up.

Fig. 9 .

 9 Fig. 9. Error committed in term of velocity when neglecting rotating Earth and Coriolis accelerations (red), for a preintegration time interval ∆t ij = 5 s. IMU measurements are bias-and noise-free, in simulation. The proposed preintegration approach (green) based on (79)-(81) is exact.

Fig. 11 .

 11 Fig. 11. Real experiment results in terms of relative rotation (rot. err.) and relative translation (trans. err.) errors based on sub-sequences of duration 3, . . . , 15 minutes. Solid curves are the median value, and dashed curves are the 33% and 67% percentiles of the errors. Considering rotating Earth and Coriolis force appears beneficial for orientation and translation from sub-sequences of length 7 minutes.

Table 1 .

 1 is actually approximated by its value at initial time t i . Values of the IMU noise parameters used in our algorithms during real experiments, compared to the ones of[START_REF] Forster | On-Manifold Preintegration for Real-Time Visual-Inertial Odometry[END_REF].

	IMU noise parameters		ours	simu. of [6]
	gyro rand. walk, rad/(s	√	Hz)	9.4 • 10 -6	7 • 10 -4
	acc. rand. walk, m/(s 2 √	Hz)	4.2 • 10 -3	1.9 • 10 -2
	gyro bias rand. walk, rad/(s 2 √	Hz)	1.6 • 10 -6	4 • 10 -4
	acc. bias rand. walk, m/(s 3 √	Hz)	5.4 • 10 -5	1.2 • 10 -2

Table 2 .

 2 Real experiment results in terms of relative translation (trans. err.) and relative rotational (rot. err.) errors based on short (left) and long (right) sub-sequences. Taking into account IMU during estimation improves each metric. Considering rotating Earth and Coriolis acceleration is more beneficial for long-term navigation.1) a set of short-term errors based on sub-sequences of length 100 m, . . . , 800 m as in[START_REF] Geiger | Vision Meets Robotics: The KITTI Dataset[END_REF]; 2) a set of long-term errors based on sub-sequences of length 1 km, . . . , 8 km, as rotating Earth and Coriolis effect are more visible after long traveled distances; 3) a set of errors for sub-sequences of duration 3 min, . . . , 15 min. Indeed, the error of odometry methods based on LiDAR or vision should grow with distance whereas that methods based on IMU should grow with time.

	seq.	length	dur.	LiDAR	LiDAR-IMU w/o Coriolis	LiDAR-IMU w Coriolis (proposed)
		km	min	rot. err. (deg/km)	trans. err. (m/km)	rot. err. (deg/km)	trans. err. (m/km)	rot. err. (deg/km)	trans. err. (m/km)
	1	27	73	1.6 / 0.9	15 / 19	1.3 / 0.6	15 / 8	0.9 / 0.3	15 / 6
	2	37	101	1.5 / 0.9	14 / 12	0.9 / 0.6	13 / 10	0.6 / 0.3	13 / 7
	3	3	7	3.0 / 1.7	16 / 9	1.5 / 0.2	14 / 4	1.4 / 0.3	15 / 4
	4	8	19	1.7 / 1.1	19 / 22	0.8 / 0.3	18 / 11	1.1 / 0.3	17 / 6
	5	4	11	2.7 / 1.6	16 / 9	1.0 / 0.4	16 / 5	1.0 / 0.5	16 / 5
	6	74	73	3.9 / 0.9	37 / 26	2.6 / 0.4	38 / 25	2.6 / 0.4	35 / 24
	total	153	284	2.6 / 0.9	25 / 19	1.7 / 0.5	25 / 16	1.6 / 0.3	23 / 14

SafranTech is a research centre of the company Safran, a French multinational aircraft engine, rocket engine, aerospace-component and defense company. The second author is working there as an engineer.

Our GTSAM repo is available at https://github.com/mbrossar/ gtsam. We also modify the initial Coriolis effect correction, see Remark 9, which proved to be bugged.

APPENDIX

A. SO(3) & SE 2 (3) Closed-Form Expressions

Let φ ∈ R 3 and R ∈ SO [START_REF] Dellaert | Factor Graphs for Robot Perception[END_REF]. The exponential, logarithm, left-Jacobian and inverse left-Jacobian of SO(3) are given as

where ∨ is the linear inverse operator of ∧, φ = φ and ϕ = cos -1 ( trace(R)-1 2

). Let ξ ∈ R 9 and T ∈ SE 2 (3). The exponential and logarithm of SE 2 (3) are computed in overloaded operators as

(93) The Jacobian for SE 2 (3) and its inverse are derived from those for SE(3) introduced in [START_REF] Barfoot | Associating Uncertainty With Three-Dimensional Poses for Use in Estimation Problems[END_REF] as

and Q φ,ρ is defined similarly as (96), replacing ν by ρ.

B. Third-and Fourth-Order Contributions

We compute the quantity S 4th in [START_REF] Brossard | Unscented Kalman Filtering on Lie Groups[END_REF] along the lines of [START_REF] Barfoot | Associating Uncertainty With Three-Dimensional Poses for Use in Estimation Problems[END_REF].

Les us define the operators

and

We obtain

where