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1. Introduction.

In this paper we investigate the time dependence of solutions for a wide class of nonuni-
formly parabolic equations whose model case is the following one:

(1.1)

 ut − div G′(|∇u|)
|∇u| ∇u = 0 in ΩT

u(x, t) = 0 on ∂Ω× (0, T )
u(x, 0) = u0(x) in Ω,

where for some N ≥ 2, Ω is a bounded domain in RN with Lipschitz boundary ∂Ω, T is
a positive number and ΩT = Ω× (0, T ).

We assume that u0 ∈ L2(Ω) and G : R+ → R+ is a C1 convex function satisfying, for
some k > 0 and p ≥ 2 the following conditions

(1.2)


(j) G(0) = 0; G(2s) ≤ kG(s) ∀s > 0

(jj) G(s)
sp

is increasing on (0,∞)

We refer to [16, 26] for the properties of G that follow from assumptions (1.2). The
functions listed below do satisfy the above assumptions for s ≥ 0 :

1) G(s) = sp

p
, p ≥ 2;

2) G(s) = sp log(1 + s), p ≥ 2;
3) G(s) = spLk(s), p ≥ 2, Li(s) = log(1+Li−1(s)), i = 1, ...., k, L0(s) = log(1+s)
4) G(s) =

∫ s
0
g(ρ)dρ where g : R+ → R+ is a C1 function satisfying

p− 1 ≤ sg′(s)

g(s)
≤ q − 1, ∀s > 0

with 2 ≤ p ≤ q <∞ such that lim
s→+∞

g(s)

s
= +∞ , see [3] where the properties of such a

function G were investigated.
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Definition 1.1. A function u : ΩT → R is called a weak solution to Problem (1.1) iff
u ∈ L∞(0, T ;L2(Ω)) ∩ L1(0, T ;W 1,1

0 (Ω)),∫ T

0

∫
Ω

G(|∇u|)dxdt < +∞

and for every φ ∈ C1(ΩT ) with φ(·, t)|∂Ω = 0 the following equality holds∫
Ω

uφ(x, t)dx−
∫

Ω

u0φ(x, 0)dx+

∫ t

0

∫
Ω

[
−uφs +

〈
G′(|∇u|)
|∇u|

∇u,∇φ
〉]

dxds = 0

for any t ∈ [0, T ].
If u ∈ L∞loc((0,∞);L2(Ω))∩L1

loc((0,∞);W 1,1
0 (Ω)) and the above holds true for all T > 0,

then u is called a weak solution to Problem (1.1) on (0,∞)× Ω.

In [8] the authors have shown that under (1.2) and some additional structural assump-
tions, there exists a unique weak solution u ∈ C([0, T ];L2(Ω)) to problem (1.1). When
G is as in example 4), the existence and the uniqueness of a solution u ∈ C(ΩT ) to a
Cauchy-Dirichlet problem for evolution equation in (1.1) have been investigated in [3],
again under several additional hypothesis.

In the elliptic framework equation in (1.1) is the Euler equation of the energy functional∫
Ω

G(|∇u|)dx,

where the convex integrand may have nonstandard growth conditions.
Note that the function G in 2) satisfies for every ε > 0 the growth condition

sp ≤ G(s) ≤ Lε(1 + s)p+ε.

whenever s is sufficiently large and where Lε > 0 is a constant depending only on ε and G.
Starting with the pioneering papers by P. Marcellini [19, 20], the theory in the stationary
case, especially the regularity theory, has been extensively studied ([2, 10, 14, 15, 18, 24,
22, 23]). For an almost complete treatment see the survey [21] and the references therein.
See also the recent paper [9].

Following the elliptic scheme, in [5] the authors recently studied variational solutions
in the sense of [17] to the Cauchy Dirichlet problem (1.1). The existence of such solution
has been proved in [7].

The objective of the present work is to obtain time estimates on weak solutions to (1.1)
in terms of the G function. More precisely, we get the following result:

Theorem 1.1. Assume (1.2) and let u : ΩT → R be a weak solution to problem (1.1).
Then for any t ∈ [0, T ],

‖u(·, t)‖2
L2(Ω) ≤ 2|Ω|x(t)

where x(·) is the unique solution of the problem

(1.3)

{
x′(t) = −cG(

√
x(t)) a.e.

x(0) = 1
2|Ω|‖u0‖2

L2(Ω)

and the constant c > 0 depends only on p, k, |Ω|.
Furthermore, if T =∞, then limt→∞ ‖u(·, t)‖2

L2(Ω) = 0.
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Due to the nature of the problem, obtaining such estimates on solutions to (1.1) is not a
trivial fact. As far as we know, Theorem 1.1 is the first result in this direction. Moreover,
Theorem 1.1 implies time estimates also for evolution problems related to operators having
standard growth conditions, as, for instance, for parabolic p-Laplace equation. Indeed
Theorem 1.1 improves the results on the behaviour of a solution contained in [25] and in
[12] (see Remark 4.2 below).

The main ingredient to achieve our result is a version of the Gronwall Lemma that has
an interest by itself (see Lemma 3.1 and its two Corollaries in Section 3.). An energy
balance equality for solutions to (1.1) (see Proposition 2.1) is also fundamental.

More generally, in this paper we prove time estimates, similar to those of Theorem 1.1
for solutions to a nonhomogeneous parabolic problem of the type ut − div A(x, t,∇u) = −div f in ΩT

u(x, t) = 0 on ∂Ω× (0, T )
u(x, 0) = u0(x) in Ω,

where A : ΩT×RN → RN is a Carathéodory function satisfying some nonstandard growth
conditions and f : ΩT → RN satisfies the integrability condition (2.6) below.

Another application of our techniques is given in Section 5, where we study the asymp-
totic behaviour of solutions to an anisotropic problem.

The plan of the paper is as follows: In Section 2 we provide notations and preliminary
results. In Section 3 we prove a generalized Gronwall Lemma. In Sections 4 and 5 we
state and prove our main results.

2. Notation and preliminary results

Let us consider the parabolic problem

(2.1)

 ut − div A(x, t,∇u) = −div f in ΩT

u(x, t) = 0 on ∂Ω× (0, T )
u(x, 0) = u0(x) in Ω,

where Ω is a Lipschitz bounded domain of RN , N ≥ 2, ΩT = Ω× (0, T ) and u0 ∈ L2(Ω).
We assume that the field A : ΩT × RN → RN is a Carathéodory function such that for
a.e. (x, t) ∈ ΩT and for any ξ ∈ RN

(2.2)


(i) 〈A(x, t, ξ), ξ〉 ≥ νG(|ξ|), 0 < ν ≤ 1

(ii) |A(x, t, ξ)| ≤ µG(|ξ|)
|ξ| ξ 6= 0, 1 ≤ µ

(iii) A(x, t, 0) = 0,

where G : R+ → R+ is a non zero convex function satisfying (1.2).
Let us remark that (2.2) could be imposed, equivalently, for 0 < ν < µ.

If G is a C1 non–trivial convex function satisfying (j) in (1.2), then the field A(x, t, ξ) =
G′(|ξ|)
|ξ| ξ, ξ 6= 0, considered in the model case of Section 1 satisfies conditions (2.2). Indeed,

in this case, since G(0) = 0. The convexity of G implies for all ξ ∈ RN , ξ 6= 0,

G(|ξ|) =

∫ 1

0

G′(s|ξ|)|ξ|ds ≤
〈
G′(|ξ|)
|ξ|

ξ, ξ

〉
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and condition (i) follows. Moreover, by the convexity of G and from the second relation
in (j), we get for all t > 0,

kG(t) ≥ G(2t) =

∫ 2t

0

G′(s)ds ≥
∫ 2t

t

G′(s)ds ≥ tG′(t)

from which (ii) follows.
The Fenchel conjugate of G is defined by

G̃(r) = sup
s≥0

(rs−G(s)).

Then the Fenchel’s inequality

(2.3) sr ≤ G(s) + G̃(r)

holds true for every r, s ≥ 0. Note that G̃ : R → R+, G̃(0) = 0 and G̃ is increasing (in
this paper we say increasing for nondecreasing).

Another useful property is (see [26] Chapt. II, (1))

(2.4) G̃

(
G(r)

r

)
≤ G(r) for every r > 0.

Observe that G is increasing and it is not difficult to realise that unless G is the zero
function, (j) implies that G(s) > 0 for all s > 0.

Condition (j), which is known as the ∆2-condition, is equivalent to the assumption

that there exists q > 1 such that G(t)
tq

is decreasing. On the other hand (jj) is equivalent

to ∆2 condition for the conjugate function G̃ of G, i.e. there exists k̃ > 0 such that
G̃(2r) ≤ k̃G̃(r) for every r > 0 (see [16] Sect. 4). Consequently, G̃(·) > 0 on (0,∞).

Notice that ∆2 condition yields

(2.5) G(λs) ≤ λkG(s), G̃(λs) ≤ λk̃G̃(s) ∀s ≥ 0, λ ≥ 1.

For other properties of function G we refer to [16, 26].
In Problem (2.1) the datum f : ΩT → RN is assumed to be a measurable function such

that

(2.6)

∫ T

0

∫
Ω

G̃(|f(x, s)|)dxds < +∞.

Definition 2.1. A function u : ΩT → R is a weak solution to Problem (2.1) iff

u ∈ L∞(0, T ;L2(Ω)) ∩ L1(0, T ;W 1,1
0 (Ω))(2.7) ∫ T

0

∫
Ω

〈A(x, s,∇u),∇u〉dxds < +∞(2.8)

and for every φ ∈ C1(ΩT ) with φ(·, t)|∂Ω = 0 the following equality holds
(2.9)∫

Ω

uφ(x, t)dx−
∫

Ω

u0φ(x, 0)dx+

∫ t

0

∫
Ω

[−uφs+〈A(x, s,∇u),∇φ〉]dxds =

∫ t

0

∫
Ω

〈f,∇φ〉dxds

for any t ∈ [0, T ].
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If u ∈ L∞loc((0,∞);L2(Ω))∩L1
loc((0,∞);W 1,1

0 (Ω)) and the above holds true for all T > 0,
then u is called a weak solution to Problem (2.1) on (0,∞)× Ω.

Notice that assumption (2.8) is equivalent to the following condition

(2.10)

∫ T

0

∫
Ω

G(|∇u|)dxdt < +∞.

Indeed, since G̃ is increasing, by (2.3), (ii), (2.4) and (2.5), for any (x, s) ∈ ΩT with
∇u(x, s) 6= 0 we have

(2.11)

|〈A(x, s,∇u(x, s)),∇u(x)〉| ≤ |A(x, s,∇u(x, s))| · |∇u(x)|

≤ G̃(|A(x, s,∇u(x, s))|) +G(|∇u(x)|) ≤ G̃
(
µG(|∇u(x,s)|)
|∇u(x,s)|

)
+G(|∇u(x)|)

≤ µk̃G̃
(
G(|∇u(x,s)|)
|∇u(x,s)|

)
+G(|∇u(x)|) ≤ µk̃G(|∇u(x, s)|) +G(|∇u(x)|).

The equivalence between (2.8) and (2.10) follows from the first condition in (2.2) and
from (2.11).

Remark 2.1. Using conditions (2.3), (2.6) and (2.10) respectively, an argument similar
to (2.11) proves that 〈f(·),∇φ(·)〉 and 〈A(·, ·,∇u(·, ·)),∇φ(·)〉 are integrable on ΩT , for
every φ ∈ C1(ΩT ). These considerations imply that under our assumptions, all integrals
in (2.9) are well defined.

Remark 2.2. By assumptions (1.2), for any r > 0 we have

λ1r
q′ ≤ G̃(r) ≤ λ2(rp

′
+ 1)

for some positive constants λ1, λ2 and pp′ = p + p′, and qq′ = q + q′ (see [26] Chapt. 2).
Then, from (2.9) we deduce that ut ∈ Lq

′
(0, T ;Lq

′
(Ω)) with 1 < q′ < 2, and so there exists

ũ ∈ C([0, T ];Lq
′
(Ω)) such that u(·, t) = ũ(·, t) for almost all t ∈ (0, T ). In what folllows

we identify u with its continuous representant ũ.

Lemma 2.1. Let u ∈ L∞(0, T ;L2(Ω))∩L1(0, T ;W 1,1
0 (Ω)), be a solution to Problem (2.1).

Then, u ∈ Cw([0, T ];L2(Ω)).

Proof. Let t ∈ [0, T ] be fixed. Let {tn} be a sequence in [0, T ] with tn → t as n → +∞
such that u(·, tn) ∈ L2(Ω) ∀n ∈ N. Since u ∈ L∞(0, T ;L2(Ω)), the sequence {u(·, tn)} is
bounded in L2(Ω). Then, there exists a subsequence {u(·, tkn)} and ξ ∈ L2(Ω) such that

u(·, tkn)→ ξ weakly in L2(Ω) as n→ +∞.

On the other hand, by Remark 2.2 u ∈ C([0, T ];Lq
′
(Ω)). Therefore

u(·, tkn)→ u(·, t) strongy in Lq
′
(Ω) as n→ +∞.

This implies that ξ = u(·, t) and u ∈ Cw([0, T ];L2(Ω)). �

We also recall the following useful result.
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Lemma 2.2. Let G : R+ → R+ be a function satisfying (1.2). Then there exists a convex
function F : R+ → R+ satisfying (j) such that

(2.12) F (tp) ≤ G(t) ≤ kF (tp).

where k and p are as in (1.2).

Proof. Since G(s
1
p )/s is increasing, it is not difficult to realize that the function

F (t) =

∫ t

0

G(s
1
p )

s
ds

is well defined on (0,∞) and can be extended by continuity to zero by setting F (0) = 0.
Its first derivative is a continuous increasing function (0,∞). Hence F is convex on R+.

Moreover, by (jj), the integrand is increasing and therefore

F (t) ≤
∫ t

0

G(t
1
p )

t
ds = G(t

1
p )

implying the first inequality. We show next that F satisfies (j). Indeed, since G satisfies
(j),

F (2t) =

∫ t

0

G((2s)
1
p )

s
ds ≤

∫ t

0

G(2s
1
p )

s
ds ≤ k

∫ t

0

G(s
1
p )

s
ds = kF (t).

The second inequality in (2.12) follows from the following estimates

G(t
1
p ) =

∫ 2t

t

G(t
1
p )

t
ds ≤

∫ 2t

t

G(s
1
p )

s
ds ≤ F (2t) ≤ kF (t).

�

In this paper we do not investigate the existence of a solution to (2.1) and refer to [3, 7, 8]
for some existence results. Instead, we establish some properties of weak solutions. We
first show that every such solution satisfies an energy balance equality.

Proposition 2.1. Assume (2.2) and (2.6) and let u : ΩT → R be a weak solution to
(2.1). Then for any 0 < t ≤ T

1

2
‖u(t)‖2

L2(Ω) +

∫ t

0

∫
Ω

〈A(x, s,∇u),∇u〉dxds =
1

2
‖u0‖2

L2(Ω) +

∫ t

0

∫
Ω

〈f(x, s),∇u〉dxds.

where ‖u(t)‖2
L2(Ω) :=

∫
Ω
|u(x, t)|2dx.

Proof. Let u : ΩT → R be a weak solution to (2.1). We first extend solution u(x, t) by
the initial value u0(x) when t < 0. As ∂Ω is Lipschitz, we can cover ∂Ω by a finite open
family {Ui}mi=1 and we can find corresponding positive numbers λi and vectors pi such
that for ε > 0 the ball B(x+ λiεpi, ε) ⊂ Ω for all x ∈ Ui ∩ Ω (cf. [11]).

Choose an open set U0 ⊂⊂ Ω such that {Ui}mi=0 forms a covering of Ω and let {ηi}mi=0 be
a smooth partition of unity corresponding to this covering. For x ∈ Ui ∩ Ω, i = 1, ...,m,
denote uεi(x, t) = u(x + λiεpi, t) and let uiε(·, t) be its mollification in Ui ∩ Ω. Finally we
mollify u(x, t) in U0 to get u0

ε .
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The functions uε : ΩT → R defined as

uε =
m∑
i=0

ηiu
i
ε,

are C∞0 (Ω) and converge to u in W 1,1
0 (Ω) when ε→ 0+ for a.e. t ∈ [0, T ].

Consider the mollifier in time of uε(x, ·) defined for any natural n ∈ N such that 1
n
< ε,

as:

[uε]n (x, t) = e−ntuε(x, t0) + n

∫ t

0

en(s−t)uε(x, s)ds,

where t0 ∈ (0, T ). Since uε ∈ L∞(0, T ;L2(Ω)) ∩ L1(0, T ;W 1,1
0 (Ω)) and uε(x, t0) ∈ L2(Ω),

we get that

(2.13) [uε]n → uε in L2(ΩT ) as n→∞.

[uε]n (x, 0) = uε(x, t0) ∀n ∈ N.

(2.14) [uε]n ∈ L
1
(
[0, T ];W 1,1

0 (Ω)
)

(2.15) ∇ [uε]n (·, t) = [∇uε]n (·, t)

[∇uε]n → ∇uε in L1(ΩT ) when n→∞.
Properties (2.13), (2.14) and (2.15) can be deduced from Lemma B2 in [5]. See also [6].
Now we define for any ε > 0, n ∈ N, 0 < h << 1 such that 0 < 1

n
< ε < h < t0, the

Steklov average of [uε]n

φnε,h(x, t) := ([uε]n)
h

=
1

2h

∫ t+h

t−h
[uε]n (x, τ)dτ

where we assume that [uε]n (x, t) = uε(x, t0) for any t ≤ 0.
First let us assume that u is bounded. Then the function φnε,h ∈ C1(Ω̄T ) and φnε,h(·, t)|∂Ω

=
0 for every t ∈ [0, T ], and so we can use it as a test function in (2.9) to get that for any
t ∈ [0, T ],∫

Ω

uφnε,hdx

∣∣∣∣t
0

+

∫ t

0

∫
Ω

[−u(φnε,h)s + 〈A(x, s,∇u),∇φnε,h〉]dxds =

∫ t

0

∫
Ω

〈f,∇φnε,h〉dxds.

Set

Iε,h1,n :=

∫
Ω

uφnε,h(x, t)dx−
∫

Ω

u0φ
n
ε,h(x, 0)dx−

∫ t

0

∫
Ω

u(φnε,h)sdxds.

For 0 < h < t, by definition of φnε,h
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Iε,h1,n =

∫
Ω

u(x, t)

(
1

2h

∫ t+h

t−h
[uε]n (x, τ)dτ

)
dx

−
∫

Ω

u0(x)

(
1

2h

∫ h

−h
[uε]n (x, τ)dτ

)
dx

− 1

2h

∫ t

0

∫
Ω

u(x, τ) ([uε]n (x, τ + h)− [uε]n (x, τ − h)) dxdτ.

= J ε,h1,n + J ε,h2,n + J ε,h3,n.

Observe that

J ε,h2,n = −
∫

Ω

u0(x)

(
1

2h

∫ 0

−h
uε(x, t0) dτ +

1

2h

∫ h

0

[uε]n(x, τ) dτ

)
dx

J ε,h3,n = − 1

2h

∫ t+h

t

∫
Ω

u(x, τ − h)[uε]n(x, τ) dx dτ

− 1

2h

∫ t

h

∫
Ω

u(x, τ − h)[uε]n(x, τ) dx dτ

+
1

2h

∫ h

0

∫
Ω

uε(x, t0)u(x, τ) dx dτ

+
1

2h

∫ t

h

∫
Ω

[uε]n(x, τ − h)u(x, τ) dx dτ

From (2.13), if we pass to the limit first as n→ +∞ and then as ε→ 0+ we get

(2.16)

limε→0+ limn→+∞ I
ε,h
1,n =

∫
Ω
u(x, t)

(
1

2h

∫ t+h
t−h u(x, τ)dτ

)
dx

−1
2

∫
Ω
u0(x)u(x, t0) dx− 1

2h

∫
Ω
u0(x)

(∫ h
0
u(x, τ) dτ

)
dx

− 1
2h

∫ t+h
t

∫
Ω
u(x, τ − h)u(x, τ) dx dτ

+ 1
2h

∫ h
0

∫
Ω
u(x, t0)u(x, τ) dx dτ.

Then by Lemma 2.1, passing to the limit in (2.16) as h→ 0+, we get for any t ∈ [0, T ]

lim
h→0

lim
ε→0

lim
n→+∞

Iε,h1,n =
1

2

∫
Ω

|u(x, t)|2dx− 1

2

∫
Ω

|u0(x)|2dx.

Define

Iε,h2,n :=

∫ t

0

∫
Ω

〈A(x, s,∇u),∇φnε,h〉dxds, Iε,h3,n :=

∫ t

0

∫
Ω

〈f,∇φnε,h〉dxds.
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Then,

Iε,h2,n =
m∑
i=0

∫ t

0

∫
Ω

〈A(x, s,∇u), (
[
uiε
]
n
)h(x, s)∇ηi〉dxds

+
m∑
i=0

∫ t

0

∫
Ω

〈A(x, s,∇u), ηi(x)(
[
∇uiε

]
n
)h(x, s)〉dxds.

Observe that

|〈A(x, s,∇u), ηi(x)(
[
∇uiε

]
n
)h(x, s)〉| ≤ G̃(|A(x, s,∇u)|) +G(ηi(x)|([∇uiε]n)h|)(x, s)

≤ µk̃G(|∇u(x, s)|) +G(ηi(x)|([∇uiε]n)h|)(x, s),(2.17)

where we used condition (ii) and inequalities (2.3), (2.4), (2.5).
Let 0 < h ≤ s. By the Fubini theorem

|
([
∇uiε

]
n

)
h
|(x, s) ≤ 1

2h

∫ s+h

s−h

(
e−nr|∇uiε(x, t0)|+ n

∫ r

0

en(τ−r)|∇uiε(x, τ)|dτ
)
dr

= − 1

2hn
[e−n(s+h) − e−n(s−h)]|∇uiε(x, t0)|+ n

2h

∫ s+h

s−h

(∫ s+h

τ

en(τ−r)|∇uiε(x, τ)|dr
)
dτ

=
1

2hn
[e−n(s−h) − e−n(s+h)]|∇uiε(x, t0)|+ 1

2h

∫ s+h

s−h

(
1− e−n((s+h)−τ)

)
|∇uiε(x, τ)|dτ

≤ 1

2hn
|∇uiε(x, t0)|+ 1

2h

∫ s+h

s−h
|∇uiε(x, τ)|dτ.

(2.18)

Inequality (2.18), the monotonicity of G and the Jensen inequality imply that for (x, s) ∈
Ω× (h, t)

G(ηi|
([
∇uiε

]
n
)h|
)

(x, s) ≤ G(|(
[
∇uiε

]
n
)h|)(x, s)

= G

[
1

2hn
|∇uiε(x, t0)|+ 1

2h

∫ s+h

s−h
|∇uiε(x, τ)|dτ

]

≤ 1

2
G

(
1

hn
|∇uiε(x, t0)|

)
+

1

2
G

(
2

1

2h

∫ s+h

s−h
|∇uiε(x, τ)|dτ

)

≤ 1

2
G

(
1

hn
|∇uiε(x, t0)|

)
+ 2k−1 1

2h

∫ s+h

s−h
G
(
|∇uiε(x, τ)|

)
dτ.

(2.19)
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When 0 < s < h, again by the Fubini theorem, we get

|
([
∇uiε

]
n

)
h
|(x, s) ≤ 1

2h

∫ 0

s−h
|∇uiε(x, t0)|dr

+
1

2h

∫ s+h

0

(
e−nr|∇uiε(x, t0)|+ n

∫ r

0

en(τ−r)|∇uiε(x, τ)|dτ
)
dr

=
h− s

2h
|∇uiε(x, t0)|+ 1

2hn
[1− e−n(s+h)]|∇uiε(x, t0)|

+
n

2h

∫ s+h

0

(∫ s+h

τ

en(τ−r)|∇uiε(x, τ)|dr
)
dτ

≤
(

1

2
+

1

2hn

)
|∇uiε(x, t0)|+ 1

2h

∫ s+h

0

(
1− e−n((s+h)−τ)

)
|∇uiε(x, τ)|dτ

≤
(

1

2
+

1

2hn

)
|∇uiε(x, t0)|+ 1

2h

∫ s+h

s−h
|∇uiε(x, τ)|dτ

(2.20)

Arguing as in (2.19), from (2.20) we get, for (x, s) ∈ Ω× (0, h)

G(ηi|
([
∇uiε

]
n
)h|
)

(x, s)

≤ 1

2
G

((
1 +

1

hn

)
|∇uiε(x, t0)|

)
+ 2k−1 1

2h

∫ s+h

s−h
G
(
|∇uiε(x, τ)|

)
dτ.(2.21)

Moreover, by the definition of uiε,h, the Fubini theorem and the Jensen inequality, we
know that

(2.22)
[
G(|∇uiε|)

]
h

(x, s) ≤ [G(|∇u|)]ε,h (x, s)

Combining (2.17), (2.19) and (2.22), for almost every (x, s) ∈ Ω× (h, t),

|〈A(x, s,∇u(x, s)), (
[
∇uiε

]
n
)h(x, s)ηi(x)〉|

≤ µk̃G(|∇u(x, s))|) +
1

2
G

(
1

hn
|∇uiε(x, t0)|

)
+ 2k−1 [G(|∇u|)]ε,h (x, s)

On the other hand, combining (2.17), (2.21) and (2.22), for almost every (x, s) ∈
Ω× (0, h),

|〈A(x, s,∇u(x, s)), ηi(x)(
[
∇uiε

]
n
)h(x, s)〉|

≤ µk̃G(|∇u(x, s))|) +
1

2
G

((
1 +

1

hn

)
|∇uiε(x, t0)|

)
+ 2k−1 [G(|∇u|)]ε,h (x, s)



BEHAVIOUR AT INFINITY OF SOLUTIONS OF A PDE 11

Last inequalities, the continuity of G and the Lebesgue dominated convergence theorem
imply that

lim
h→0+

lim
ε→0+

lim
n→∞

∫ t

h

∫
Ω

〈A(x, s,∇u(x, s)), ηi(x)(
[
∇uiε

]
n
)h(x, s)〉dxds

=

∫ t

0

∫
Ω

〈A(x, s,∇u(x, s)), ηi(x)∇u(x, s)〉dxds

and

lim
h→0+

lim
ε→0+

lim
n→∞

∫ h

0

∫
Ω

〈A(x, s,∇u(x, s)), ηi(x)(
[
∇uiε

]
n
)h(x, s)〉dxds = 0.

Finally, observe that
m∑
i=0

∫ t

0

∫
Ω

〈A(x, s,∇u(x, s)),∇u(x, s)ηi(x)〉dxds =

∫ t

0

∫
Ω

〈A(x, s,∇u(x, s)),∇u(x, s)〉dxds.

Consequently,
(2.23)

limh→0+ limε→0+ limn→∞
∑m

i=0

∫ t
0

∫
Ω
〈A(x, s,∇u(x, s)), ηi(x)([∇uiε]n)h(x, s)(x)〉dxds

=
∫ t

0

∫
Ω
〈A(x, s,∇u(x, s)),∇u(x, s)〉dxds.

On the other hand, since G̃ is increasing, by the Fenchel inequality, (ii), (2.4), (2.5),
(2.13) and the boundedness of u, for some c0 > 0, for any i ∈ {0, 1, ...,m} and every
(x, s) ∈ ΩT with ∇u(x, s) 6= 0 we have

(2.24)

|〈A(x, s,∇u(x, s)), ([uiε]n)h(x, s)∇ηi〉| ≤ |A(x, s,∇u(x, s))| · |([uiε]n)h(x, s)∇ηi|

≤ G̃(|A(x, s,∇u(x, s))|) +G(|([uiε]n)h(x, s)∇ηi|) ≤ G̃
(
µG(|∇u(x,s)|)
|∇u(x,s)|

)
+ c0

≤ µk̃G̃
(
G(|∇u(x,s)|)
|∇u(x,s)|

)
+ c0 ≤ µk̃G(|∇u(x, s)|) + c0.

Hence (2.10) implies that |〈A(·, ·,∇u(·, ·)), ([uiε]n (·, ·))h∇ηi(x)〉| is integrably bounded
by a function not depending on i, ε, n, h.

Therefore

lim
h→0+

lim
ε→0+

lim
n→∞

∫ t

0

∫
Ω

〈A(x, s,∇u(x, s)), (
[
uiε
]
n

(x, s))h∇ηi(x)〉dxds

=

∫ t

0

∫
Ω

〈A(x, s,∇u(x, s)), u(x, s)∇ηi〉dxds.

Finally, observe that
m∑
i=0

∫ t

0

∫
Ω

〈A(x, s,∇u(x, s)), u(x, s)∇ηi(x)〉 dx ds = 0.

Consequently,

(2.25) lim
h→0+

lim
ε→0+

lim
n→∞

m∑
i=0

∫ t

0

∫
Ω

〈A(x, s,∇u(x, s)), (
[
uiε
]
n
)h(x, s)∇ηi(x)〉dx ds = 0.
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From (2.23) and (2.25) we get

lim
h→0+

lim
ε→0+

lim
n→∞

Iε,h2,n =

∫ t

0

∫
Ω

〈A(x, s,∇u),∇u〉dxds.

In the same way, by using (2.3), (2.5) and (2.6), we can prove that

lim
h→0+

lim
ε→0+

lim
n→∞

Iε,h3,n =

∫ t

0

∫
Ω

〈f,∇u〉dxds.

If u is not bounded, define for any j ∈ N, uj = 1
2
(|u+ j| − |u− j|). Then,

uj ∈ L∞(0, T ;L2(Ω)) ∩ L1(0, T ;W 1,1
0 (Ω)) ∩ L∞(ΩT ).

We can constuct (uj)ε as before and we can apply the above arguments by using (φj)
n
ε,h

as test function in (2.9) Finally we can pass to the limit as j → +∞ since |uj| ≤ |u| a.e.
�

The uniqueness of a weak solution follows under the additional monotonicity condition

(2.26) 〈A(x, s, ξ)− A(x, s, η), ξ − η〉 ≥ 0

for a.e. (x, s) ∈ ΩT and for any ξ, η ∈ Rn.

Proposition 2.2. Assume (2.2), (2.6) and (2.26). Let u : ΩT → R be a weak solution to
(2.1). Then u is unique.

Proof. The proof proceeds as in the homogeneous case. Let v : ΩT → R be a weak
solution to (2.1). Apart of the approximation argument as in Proposition 2.1, we can use
w = u− v as test function in the definition of solutions u and v.

Then, by subtracting we get for any 0 < t ≤ T

1

2
‖w(t)‖2

L2(Ω) +

∫ t

0

∫
Ω

〈A(x, s,∇u)− A(x, s,∇v),∇w〉dxds = 0.

Hence, (2.26) yields u = v a.e. in ΩT .
�

3. A Version of the Gronwall Lemma

For arbitrary non-empty closed sets in D′, D ⊂ Rn, define

dD(D′) := inf{β > 0 |D′ ⊂ D + βB} .
where B denotes the closed unit ball in Rn. Consider reals 0 ≤ t0 < T and a multifunction
P : [t0, T ] ; Rn with non-empty closed values. P is called left absolutely continuous if
the following condition is satisfied: given any ε > 0 there exists δ > 0 such that, for any
finite partition

t0 ≤ s1 < τ1 ≤ s2 < τ2 ≤ . . . ≤ sm < τm ≤ T

satisfying
∑m

i=1(τi − si) < δ, we have
m∑
i=1

dP (τi)(P (si)) < ε .
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For any y ∈ P (t) the contingent derivative DP (t, y)(1) is the set of all v ∈ Rn such
that there exist hi → 0+ and vi → v satisfying y + hivi ∈ P (t+ hi).

A function γ : [t0, T ] → R+ is called upper semicontinuous from the right, if for every
t ∈ [t0, T ) we have lim sups→t+ γ(s) ≤ γ(t). Similarly, it is called lower semicontinuous
from the left, if for every t ∈ (t0, T ] we have lim infs→t− γ(s) ≥ γ(t).

Lemma 3.1. Consider a Carathéodory function ψ : [t0, T ]×R→ R+ such that for every
r > 0 there exists kr ∈ L1(t0, T ;R+) satisfying for a.e. t ∈ [t0, T ]

sup
|x|≤r

ψ(t, x) ≤ kr(t).

Let g ∈ L1(t0, T ;R) and γ : [t0, T ]→ R+ be measurable, bounded and satisfy

(3.1) γ(t2)− γ(t1) +

∫ t2

t1

ψ(t, γ(t))dt ≤
∫ t2

t1

g(t)dt t0 ≤ t1 ≤ t2 ≤ T.

Then there exists a solution x(·) ∈ W 1,1([t0, T ]) of the Cauchy problem

(3.2)

{
x′(t) = −ψ(t, x(t)) + g(t), a.e.
x(t0) = γ(t0)

such that γ(t) ≤ x(t) for all t ∈ [t0, T ].
Furthermore, if g ∈ L1(t0,∞;R), ψ is defined on [t0,+∞) × R, γ : [t0,+∞) → R+

is measurable and locally bounded and for every T > t0 the above assumptions hold true,
then there exists a solution x to (3.2) defined on [t0,∞) such that γ ≤ x. In particular,

lim sup
t→∞

γ(t) ≤ lim sup
t→∞

x(t).

Proof. By (3.1), γ is upper semicontinuous from the right and lower semicontinuous
from the left. Define the set-valued map P : [t0, T ] ; R by

P (t) =

{
γ(t) + R+ t ∈ [t0, T )
R t ≥ T.

By our assumptions for all t0 ≤ ti < τi < T

γ(τi)−
∫ τi

ti

g(t)dt ≤ γ(ti).

This implies that P (·) is left absolutely continuous. Let t ∈ (t0, T ) be a Lebesgue point
of ψ(·, γ(·)) and of g(·). The set A of all such points is of full Lebesgue measure in [t0, T ].
By the assumptions of our lemma for every t ∈ A,

Dγ(t) := lim inf
ε→0+

γ(t+ ε)− γ(t)

ε
≤ −ψ(t, γ(t)) + g(t).

This and the definition of P (·) imply that −ψ(t, γ(t)) + g(t) ∈ DP (t, γ(t))(1). Since γ is
upper semicontinuous from the right, it enjoys the following property: if y > γ(t), then
for every r ∈ R and all small ε > 0 we have y+ εr > γ(t+ ε). Therefore, DP (t, y)(1) = R
for any y > γ(t). Consequently for all t ∈ A and y ∈ P (t) we have −ψ(t, y) + g(t) ∈
DP (t, y)(1). By [13, Theorem 4.2] and our assumptions, for some S ∈ (t0, T ] there
exists a solution of (3.2) satisfying x(t) ∈ P (t) on [t0, S). Therefore 0 ≤ γ(t) ≤ x(t)

for all t ∈ [t0, S). Furthermore, x(t) ≤ x(t0) +
∫ t
t0
g(s)ds for all t ∈ [t0, S) implying
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that x(·) is bounded. Hence, by our assumptions and since x(·) is a solution of (3.2), it
can be extended, by continuity, on [t0, S]. Furthermore, γ(S) ≤ x(S) because γ is lower
semicontinuous from the left. Applying the Zorn lemma and [13, Theorem 4.2], we extend
this solution x(·) to the time interval [t0, T ].

To prove the last statement assume that g ∈ L1(t0,∞;R), ψ is defined on [t0,+∞)×R,
γ is locally bounded on [t0,+∞) and for every T > t0 the assumptions of Lemma hold
true. Then the same construction allows one to get x(·) defined on [t0,+∞) satisfying for
every t > τ ≥ t0,

0 ≤ γ(t) ≤ x(t) ≤ x(τ) +

∫ t

τ

g(s)ds.

Since limτ→∞
∫∞
τ
g(s)ds = 0 the proof follows. 2

Remark 3.1. Indeed, assume that the solution x : [t0, T ]→ R+ of (3.2) is unique. Then
for γ = x we have

γ(t2)− γ(t1) +

∫ t2

t1

ψ(t, γ(t))dt =

∫ t2

t1

g(t)dt t0 ≤ t1 ≤ t2 ≤ T.

That is (3.1) holds true. The estimate γ ≤ x obtained in Lemma 3.1 can not be further
improved.

Corollary 3.1. Under all the assumptions of Lemma 3.1 suppose that ψ(t, a) = 0 for all
a ≤ 0, g(·) ≥ 0, ψ(t, ·) is increasing for a.e. t ∈ [t0, T ] and that for any R > r > 0 there
exists k̄R,r ∈ L1(t0, T ;R+) satisfying for a.e. t ∈ [t0, T ]

|ψ(t, x)− ψ(t, y)| ≤ kR,r(t)|x− y| ∀ x, y ∈ [r, R].

Then the solution z(·) of

(3.3)

{
z′(t) = −ψ(t, z(t)), a.e.
z(t0) = γ(t0)

is unique and well defined on [t0, T ], z(·) ≥ 0 and γ(t) ≤ x(t) ≤ z(t) +
∫ t
t0
g(s)ds for all

t ∈ [t0, T ].

Proof. Clearly, if z(·) is a solution of (3.3), then it is decreasing on its interval of
existence. Moreover, if for some t ≥ t0, z(t) = 0, then z(s) = 0 for any t ≤ s ≤ T. This
and the Lipschitz continuity assumption imply the existence and uniqueness on the whole
time interval [t0, T ]. Consider any solution x(·) of (3.2) defined on [t0, T ]. Then it is not
difficult to realize that x(·) ≥ 0.

We claim that z ≤ x on [t0, T ]. Indeed otherwise we can find t0 ≤ s0 < t1 < T such
that z(s0) = x(s0) and z(s) > x(s) on [s0, t1]. Then −ψ(t, z(t)) ≤ −ψ(t, x(t)) for a.e.
t ∈ [s0, t1]. Thus x′(s)− z′(s) ≥ g(s) ≥ 0 a.e. in [s0, t1]. This implies that x(t) ≥ z(t) for
t ∈ [s0, t1] leading to a contradiction. Let x(·) be as in Lemma 3.1. Observe that for a.e.
t ∈ [t0, T ] we have

x′(t) = −ψ(t, x(t)) + g(t) ≤ −ψ(t, z(t)) + g(t) = z′(t) + g(t).

Integrating we obtain that x(t) ≤ z(t) +
∫ t
t0
g(s)ds for all t ∈ [t0, T ]. This and Lemma 3.1

yield γ(t) ≤ x(t) ≤ z(t) +
∫ t
t0
g(s)ds . 2
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Corollary 3.2. Consider g ∈ L1(t0,∞;R+), a Carathéodory function ψ : [t0,∞)× R→
R+, a measurable locally bounded γ : [t0,∞) → R+ and let assumptions of Corollary 3.1
hold true on [t0, T ] for every T > t0. If for every r > 0 there exists αr > 0 such that
infx≥r ψ(t, x) ≥ αr for a.e. t ≥ t0, then limt→∞ γ(t) = 0.

Proof. Fix any sequence ti →∞ and consider the solutions zi to (3.3) with t0 replaced
by ti. By Corollary 3.1 applied with t0 replaced by ti, we know that zi ≥ 0. Notice that zi
is decreasing for every i. Observe next that if for some i we have limt→∞ zi(t) =: r > 0,
then, zi(t) ≥ r for every t ≥ ti and

0 ≤ zi(t) = zi(ti)−
∫ t

ti

ψ(s, zi(s))ds ≤ zi(ti)− (t− ti)αr.

When t is sufficiently large, the right-hand side of the above expression becomes negative.
Thus implies that limt→∞ zi(t) = 0 for all i. This and Corollary 3.1 imply that for every
i, every ε > 0 and all large t we have

γ(t) ≤ ε

2
+

∫ t

ti

g(s)ds.

Taking i sufficiently large, we deduce that for every ε > 0 and all large t we have
γ(t) ≤ ε completing the proof. 2

In [25] a particular instance of ψ(t, x) was considered, namely ψ(t, x) = M |x|1+ν , where
M and ν are non negative constants. It was shown then that for any continuous γ :
[t0, T ]→ R+ satisfying the inequality (3.1) we have

(3.4) γ(t) ≤ y(t) :=
γ(t0)

[1 + νMγ(t0)ν(t− t0)]
1
ν

+ Γ(t) ∀ t ∈ [t0, T ]

for every choice of continuous function Γ : [t0, T ]→ R+ satisfying

(3.5) Γ(t1) ≤ Γ(t2) +M

∫ t2

t1

Γ(t)1+νdt−
∫ t2

t1

g(t)dt t0 ≤ t1 ≤ t2 ≤ T,

where g ∈ L1([t0, T ],R). Let Γ,M, ν be as above and x be the solution of

(3.6)

{
x′ = −M |x|1+ν + g(t), a.e. t > t0
x(t0) = γ(t0)

We already know that x(t) ≥ γ(t) ≥ 0 for all t ∈ [t0, T ].
We claim that x(t) ≤ y(t), which implies that our result provides a better estimate on

the time behavior of γ than the one from [25]. Indeed, since y(t0) = γ(t0) + Γ(t0) ≥ x(t0),
if for some t1 ∈ (t0, T ] we have y(t1) < x(t1), then we can find s0 ∈ [t0, t1] such that
x(s0) = y(s0) and y(s) < x(s) for all s ∈ (s0, t1].

Note that −y(·) is continuous on [t0, T ). By the same arguments as in the proof of
Lemma 3.1, we check that t ; −Γ(t) + R+ is left absolutely continuous on [t0, T ] and
that the map

t 7→ γ(t0)

[1 + νMγ(t0)ν(t− t0)]
1
ν
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is Lipschitz. Therefore t ; P (t) = −y(t) + R+ is left absolutely continuous on [t0, T ].
Furthermore, for a.e. s ∈ (s0, t1) we have

D(−Γ)(s) ≤MΓ(s)1+ν − g(s).

Hence, for a.e. s ∈ (s0, t1),

D(−y)(s) ≤ Mγ(t0)1+ν

[1 + νMγ(t0)ν(t− t0)]
1+ν
ν

+MΓ(s)1+ν − g(s) ≤My(s)1+ν − g(s)

= My(s)1+ν −Mx(s)1+ν − x′(s) ≤ −x′(s).
Therefore, for a.e. s ∈ [s0, t1] and all z ∈ P (s) we have −x′(s) ∈ DP (s, z)(1). From [13,
Theorem 4.2] applied to the single-valued map s 7→ {−x′(s)} we deduce that −x(t) ∈ P (t)
for all t ∈ [s0, t1]. This yields x(t) ≤ y(t) on [s0, t1] contradicting the choice of t1.

It was observed in [25] that if g ≥ 0, then Γ(t) =
∫ t
t0
g(s)ds verifies (3.5) and that for

any continuous γ : [t0, T ] → R+ satisfying the inequality (3.1), the estimate (3.4) holds
true for this choice of Γ. In particular, if g ∈ L1(t0,∞;R+), then (3.4) is verified with
this Γ and t0 replaced by any τ > t0 and T > τ . This implies that limt→∞ γ(t) = 0.

Define ψ(t, x) = M |x|1+ν for x ≥ 0 and ψ(t, x) = 0 for x < 0 and observe that it satisfies
the assumptions of Corollary 3.2. Thus the equality limt→∞ γ(t) = 0 is a consequence of
Corollary 3.2.

4. The main results

In this section we assume that the function G : R+ → R+ in (2.2) is continuous, convex
and satisfies (1.2) for some k > 0 and p ≥ 2.

We state next the main result of this paper.

Theorem 4.1. Assume (2.2) and (2.6). Let u : ΩT → R be a weak solution to (2.1).
Then, for any t ∈ [0, T ],

‖u(·, t)‖2
L2(Ω) ≤ 2|Ω|x(t)

where x(·) is the unique solution of the problem

(4.1)

 ẋ(t) = −cG(
√
x(t) ) + g(t)

x(0) = 1
2|Ω|‖u0‖2

L2(Ω)

for some c > 0 depending only on p, k, N, |Ω|, ν and g(t) = 1
|Ω|‖G̃( 2

ν
|f(·, t)|)‖L1(Ω).

If f : Ω→ R is a integrable function on Ω, we set∫
Ω

|f |dx =
1

|Ω|

∫
Ω

|f |dx

where |Ω| > 0 denotes the Lebesgue measure of Ω.

Proof. For 0 < t1 < t2 < T , applying Proposition 2.1 at times t1 and t2 and subtracting
the results we get

1

2
‖u(t2)‖2

L2(Ω) −
1

2
‖u(t1)‖2

L2(Ω) +

∫ t2

t1

∫
Ω

〈A(x, s,∇u),∇u〉dxds =

∫ t2

t1

∫
Ω

〈f,∇u〉dxds.
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By (i) and Fenchel’s inequality (2.3) we get
(4.2)

1

2
‖u(t2)‖2

L2(Ω) −
1

2
‖u(t1)‖2

L2(Ω) +
ν

2

∫ t2

t1

∫
Ω

G(|∇u|)dxds ≤
∫ t2

t1

∫
Ω

G̃

(
2

ν
|f(x, s)|

)
dxds.

Applying Hölder inequality we obtain, since p ≥ 2,

(4.3)

(∫
Ω

|u|2dx
) p

2

≤ c

∫
Ω

|∇u|pdx

where c > 0 depends only on p,N, |Ω|.
Now, let F be the convex function as in the claim of Lemma 2.2. Since F is positive

and F (0) = 0, it is nondecreasing on R+. From (4.3) we deduce that

(4.4) F

((∫
Ω

|u|2dx
) p

2

)
≤ F

(
c

∫
Ω

|∇u|pdx
)
.

In what follows C denotes a positive constant depending only on N, p, k, |Ω|, which may
vary from line to line. From (2.5), (2.12), (4.4) and the Hölder and Jensen inequalities
we deduce that for any t ∈ [0, T ],

(4.5) G

((
1

2

∫
Ω

|u(x, t)|2dx
) 1

2

)
≤ G

((∫
Ω

|u(x, t)|2dx
) 1

2

)
≤ C

∫
Ω

G(|∇u|)dx.

Going back to (4.2), we deduce from (4.5) the following inequality

1

2

∫
Ω

|u(x, t2)|2dx− 1

2

∫
Ω

|u(x, t1)|2dx+
ν

2C

∫ t2

t1

G

[(
1

2

∫
Ω

|u(x, t)|2dx
)1/2

]
dt

≤ 1

|Ω|

∫ t2

t1

∫
Ω

G̃

(
2

ν
|f(x, s)|

)
dxds.

(4.6)

Now we are in position to apply Lemma 3.1 with

γ(t) =:
1

2

∫
Ω

|u(x, t)|2dx

and

ψ(t, x) =:
ν

2C
G(
√
x ).

By the measurable viability theorem, cf. [13], there exists a solution x(·) : R+ → R+ of
(4.1). We claim that it is unique. Indeed, for positive reals z ≥ y, we have

√
z ≥ √y and

ψ(t, z) ≥ ψ(t, y). Hence (ψ(t, z)− ψ(t, y))(z − y) ≥ 0. Similarly, it can be verified that if
z ≤ y, the same inequality holds true.

Consider any solution y : [t0, T ]→ R+ of (4.1). Then

d

dt

1

2
|x− y|2(t) = −(ψ(t, x(t))− ψ(t, y(t)))(x(t)− y(t)) ≤ 0

and therefore x = y on [t0, T ].
Setting ψ(t, a) = 0 for a < 0, we may apply Lemma 3.1 and so to get the desired

estimate.
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�

Corollaries 3.1 and 3.2 yield the following result.

Theorem 4.2. In Theorem 4.1 assume that g ∈ L1([0,∞)). Let u : Ω× [0,∞)→ R be a
weak solution to (2.1). Then, for any t0 ≥ 0 and t > t0,

‖u(t, ·)‖2
L2(Ω) ≤ 2|Ω|x(t) ≤ 2|Ω|

(
z(t) +

∫ t

t0

g(s)ds

)
where z(·) is the unique solution of the problem{

ż(t) = −cG(
√
z(t) )

z(t0) = 1
2|Ω|‖u(·, t0)‖L2(Ω)

for some c > 0 depending only on p, k, N, |Ω|, ν.
Furthermore, limt→∞ ‖u(t, ·)‖2

L2(Ω) = 0.

Remark 4.1. Theorem 1.1 follows trivially from Theorem 4.1 and Theorem 4.2.

Remark 4.2. If G(s) = sp

p
, p ≥ 2,, as observed in Section 3, the statement of Theorem

4.1 improves the behaviour in time of a solution to Problem (2.1) for a p-Laplace type
operator (see [25] and the reference therein). For istance, when p = 2, Theorem 4.1
implies that for any t ∈ [0, T ]

‖u(t)‖2
L2(Ω) ≤ e−

c
2
t‖u0‖2

L2(Ω) + 2

∫ t

0

e−
c
2

(t−s)‖f(·, s)‖2
L2(Ω)ds

where c is the constant in Problem (4.1).

We conclude this section by an example.
Let us consider for simplicity problem (1.1) with

G(s) = (s2 + 1) log(1 + s2).

Then, if u is the weak solution of problem (1.1), we get that

(4.7) ‖u(·, t)‖2
L2(Ω ≤ 2|Ω|

(
exp

(
log(1 +

1

2|Ω|
‖u0‖L2(Ω))e

−ct
)
− 1

)
for some c > 0 and all t ≥ 0.

Estimate (4.7) is new and cannot be achieved by the arguments of [25].

5. Solutions of an anisotropic problem

In this section we consider the following anisotropic problem

(5.1)


ut −

∑N
i=1

∂
∂xi

(|uxi |qi−2uxi) = 0 in ΩT ,

u(x, t) = 0 on ∂Ω× (0, T ),

u(x, 0) = u0(x) in Ω,
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where u0 ∈ L2(Ω) and 1 < qi, i ∈ {1, ..., N}.
Here, for any ξ ∈ RN the vector field is A(ξ) =:

∑N
i=1 |ξi|qi−2ξi.

In [8] the authors prove that there exists a unique function u ∈ C ([0, T ], L2(Ω)) ∩
L2
(
0, T,W 1,1

0 (Ω)
)

with ∫ T

0

∫
Ω

N∑
i=1

|uxi |qi dxdt < +∞

that solves (5.1). Moreover, for every t ∈ (0, T ] we have

(5.2)
1

2
‖u(t)‖2

L2(Ω) +

∫ t

0

∫
Ω

N∑
i=1

|uxi |qi dxdt =
1

2
‖u0‖2

L2(Ω).

The proof of (5.2) is similar to the one of Proposition 2.1. In this case the mollifier
in time of test functions is not necessary and we can argue directly on the convex vector
field A(ξ). (See also [8]).

Set

1

q̄
=:

1

N

N∑
i=1

1

qi
, q =: max{qi, i = 1, ..., N}

p =: min{qi, i = 1, ..., N}
and

B(t) =: max{1, ‖uxi(t)‖Lqi (Ω), i=1,...,N}.

Theorem 5.1. Assume that 2 ≤ q and 2N
N+2

< q̄ < N . Let u : ΩT → R be a weak solution
to problem (5.1). Then for any t ∈ [0, T ],

‖u(·, t)‖2
L2(Ω) ≤ 2x(t)

where x(t) is the unique solution of the problem

(5.3)

{
x′(t) = −cB(t)p−qx(t)

q
2

x(0) = 1
2
‖u0‖2

L2(Ω).

for some c > 0 depending only on |Ω|, q̄ and N .

Proof. By (5.2) for any 0 ≤ t1 < t2 ≤ T

(5.4)
1

2
‖u(t2)‖2

L2(Ω) −
1

2
‖u(t1)‖2

L2(Ω) +

∫ t2

t1

∫
Ω

N∑
i=1

|uxi |qi dxdt = 0

We claim that, for a.e. t ∈ (0, T ),

(5.5)

(∫
Ω

|u|q̄∗ dx
) q

q̄∗

≤ cB(t)q−p
∫

Ω

N∑
i=1

|uxi |qi dx,

where c depends on N, |Ω|, q̄.
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In fact, by the definition of B(t), since qi ≥ p and B(t) ≥ 1, for any i = 1, . . . , N we
have

‖uxi‖
q
Lqi (Ω) ≤ B(t)q−qi‖uxi‖

qi
Lqi (Ω) ≤ B(t)q−p‖uxi‖

qi
Lqi (Ω)

The convexity of the real function t 7→ tq implies(
1

N

N∑
i=1

‖uxi‖Lqi (Ω)

)q

≤ 1

N

N∑
i=1

‖uxi‖
q
Lqi (Ω)

Then, since 2N
N+2

< q̄ < N , we can apply the anisotropic Sobolev–type inequality [27] to
obtain

‖u‖q
Lq̄∗ (Ω)

≤ cq0

(
1

N

N∑
i=1

‖uxi‖Lqi (Ω)

)q

≤ cq0N
−1B(t)q−p

N∑
i=1

‖uxi‖
qi
Lqi (Ω)

where c0 depends on N, |Ω|, q̄. Then, (5.5) follows.
The elliptic version of relation (5.5) has been proved in [4].
Now, from (5.5) we get

(5.6) B(t)p−q
(∫

Ω

|u|2 dx
) q

2

≤ B(t)p−q|Ω|
q
2
− q
q̄∗

(∫
Ω

|u|q̄∗ dx
) q

q̄∗

≤ c1

∫
Ω

N∑
i=1

|uxi |qi dx

where c1 depends on N, |Ω|, q̄.
Integrating (5.5) on (t1, t2), from the relations (5.4) and (5.6) we get

(5.7)
1

2
‖u(t2)‖2

L2(Ω) −
1

2
‖u(t1)‖2

L2(Ω) + c

∫ t2

t1

B(t)p−q
(

1

2

∫
Ω

|u(x, t)|2 dx
) q

2

dt ≤ 0

for some c > 0 depending only on N, |Ω|, q̄, q. Now if γ(t) = 1
2
‖u(t)‖2

L2(Ω) we can rewrite

(5.7) as

γ(t2)− γ(t1) +

∫ t2

t1

ψ(t, γ(t)) dt ≤ 0

where

ψ(t, x) = cB(t)p−qx
q
2 ∀x ≥ 0, ψ(t, x) = 0 ∀,x < 0.

We apply Corollary 3.1 to achieve the announced result.
�

Remark 5.1. Let β : [0, T ] → (1,+∞) be a measurable function. The statement of
Theorem 5.1 still holds if we replace the function B(t), t ∈ [0, T ], with the function

B̃(t) = max{‖uxi(t)‖qi , β(t) : i = 1, . . . , N}.

Indeed the above proof can be applied as well.
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