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In this paper we prove time estimates for solutions to a general nonhomogeneous parabolic problem whose operator satisfies nonstandard growth conditions. We also study the asymptotic behaviour of solutons to an anisotropic problem.

Introduction.

In this paper we investigate the time dependence of solutions for a wide class of nonuniformly parabolic equations whose model case is the following one:

(1.1)

   u t -div G (|∇u|) |∇u| ∇u = 0 in Ω T u(x, t) = 0 on ∂Ω × (0, T ) u(x, 0) = u 0 (x)
in Ω, where for some N ≥ 2, Ω is a bounded domain in R N with Lipschitz boundary ∂Ω, T is a positive number and Ω T = Ω × (0, T ). We assume that u 0 ∈ L 2 (Ω) and G : R + → R + is a C 1 convex function satisfying, for some k > 0 and p ≥ 2 the following conditions

(1.2)    (j) G(0) = 0; G(2s) ≤ kG(s) ∀s > 0 (jj) G(s)
s p is increasing on (0, ∞) We refer to [START_REF] Krasnosel | Convex functions and Orlicz spaces[END_REF][START_REF] Rao | Theory of Orlicz spaces[END_REF] for the properties of G that follow from assumptions (1.2). The functions listed below do satisfy the above assumptions for s ≥ 0 :

1) G(s) = s p p , p ≥ 2; 2) G(s) = s p log(1 + s), p ≥ 2; 3) G(s) = s p L k (s), p ≥ 2, L i (s) = log(1+L i-1 (s)), i = 1, ...., k, L 0 (s) = log(1+s) 4) G(s) = s 0 g(ρ)dρ where g : R + → R + is a C 1 function satisfying p -1 ≤ sg (s) g(s) ≤ q -1, ∀s > 0 with 2 ≤ p ≤ q < ∞ such that lim s→+∞ g(s) s = +∞ , see [START_REF] Baroni | The Cauchy-Dirichlet problem for a general class of parabolic equations[END_REF] where the properties of such a function G were investigated.

Date: December 3, 2019. If u ∈ L ∞ loc ((0, ∞); L2 (Ω))∩L 1 loc ((0, ∞); W 1,1 0 (Ω)) and the above holds true for all T > 0, then u is called a weak solution to Problem (1.1) on (0, ∞) × Ω.

In [START_REF] Cai | Existence and uniqueness of weak solutions for a non-uniformly parabolic equation[END_REF] the authors have shown that under (1.2) and some additional structural assumptions, there exists a unique weak solution u ∈ C([0, T ]; L 2 (Ω)) to problem (1.1). When G is as in example 4), the existence and the uniqueness of a solution u ∈ C(Ω T ) to a Cauchy-Dirichlet problem for evolution equation in (1.1) have been investigated in [START_REF] Baroni | The Cauchy-Dirichlet problem for a general class of parabolic equations[END_REF], again under several additional hypothesis.

In the elliptic framework equation in (1.1) is the Euler equation of the energy functional

Ω G(|∇u|)dx,
where the convex integrand may have nonstandard growth conditions. Note that the function G in 2) satisfies for every > 0 the growth condition

s p ≤ G(s) ≤ L (1 + s) p+ .
whenever s is sufficiently large and where L > 0 is a constant depending only on and G.

Starting with the pioneering papers by P. Marcellini [START_REF] Marcellini | Regularity of minimizers of integrals of the calculus of variations with non standard growth conditions[END_REF][START_REF] Marcellini | Regularity and existence of solutions of elliptic equations with p, q-growth conditions[END_REF], the theory in the stationary case, especially the regularity theory, has been extensively studied ([2, 10, 14, 15, 18, 24, 22, 23]). For an almost complete treatment see the survey [START_REF] Mingione | Regularity of minima: an invitation to the dark side of the calculus of variations[END_REF] and the references therein. See also the recent paper [START_REF] Cupini | Nonuniformly elliptic energy integrals with p, q-growth[END_REF]. Following the elliptic scheme, in [START_REF] Bögelein | Parabolic systems with p,q-growth: a variational approach[END_REF] the authors recently studied variational solutions in the sense of [START_REF] Lichnewsky | Pseudosolutions of the time-dependent minimal surface problem[END_REF] to the Cauchy Dirichlet problem (1.1). The existence of such solution has been proved in [START_REF] Bögelein | Existence of evolutionary variational solutions via the calculus of variations[END_REF].

The objective of the present work is to obtain time estimates on weak solutions to (1.1) in terms of the G function. More precisely, we get the following result: Theorem 1.1. Assume (1.2) and let u : Ω T → R be a weak solution to problem (1.1).

Then for any

t ∈ [0, T ], u(•, t) 2 L 2 (Ω) ≤ 2|Ω|x(t) where x(•) is the unique solution of the problem (1.3) x (t) = -c G( x(t)) a.e. x(0) = 1 2|Ω| u 0
Due to the nature of the problem, obtaining such estimates on solutions to (1.1) is not a trivial fact. As far as we know, Theorem 1.1 is the first result in this direction. Moreover, Theorem 1.1 implies time estimates also for evolution problems related to operators having standard growth conditions, as, for instance, for parabolic p-Laplace equation. Indeed Theorem 1.1 improves the results on the behaviour of a solution contained in [START_REF] Moscariello | Quantitative asymptotic estimates for evolution problems[END_REF] and in [START_REF] Farroni | A nonlinear parabolic equation with drift term[END_REF] (see Remark 4.2 below).

The main ingredient to achieve our result is a version of the Gronwall Lemma that has an interest by itself (see Lemma 3.1 and its two Corollaries in Section 3.). An energy balance equality for solutions to (1.1) (see Proposition 2.1) is also fundamental.

More generally, in this paper we prove time estimates, similar to those of Theorem 1.1 for solutions to a nonhomogeneous parabolic problem of the type

   u t -div A(x, t, ∇u) = -div f in Ω T u(x, t) = 0 on ∂Ω × (0, T ) u(x, 0) = u 0 (x)
in Ω,

where A : Ω T ×R N → R N is a Carathéodory function satisfying some nonstandard growth conditions and f : Ω T → R N satisfies the integrability condition (2.6) below. Another application of our techniques is given in Section 5, where we study the asymptotic behaviour of solutions to an anisotropic problem.

The plan of the paper is as follows: In Section 2 we provide notations and preliminary results. In Section 3 we prove a generalized Gronwall Lemma. In Sections 4 and 5 we state and prove our main results.

Notation and preliminary results

Let us consider the parabolic problem (2.1)

   u t -div A(x, t, ∇u) = -div f in Ω T u(x, t) = 0 on ∂Ω × (0, T ) u(x, 0) = u 0 (x) in Ω,
where Ω is a Lipschitz bounded domain of R N , N ≥ 2, Ω T = Ω × (0, T ) and u 0 ∈ L 2 (Ω). We assume that the field A : Ω T × R N → R N is a Carathéodory function such that for a.e. (x, t) ∈ Ω T and for any ξ ∈ R N

(2.2)

   (i) A(x, t, ξ), ξ ≥ νG(|ξ|), 0 < ν ≤ 1 (ii) |A(x, t, ξ)| ≤ µ G(|ξ|) |ξ| ξ = 0, 1 ≤ µ (iii) A(x, t, 0) = 0, where G : R + → R + is a non zero convex function satisfying (1.2).
Let us remark that (2.2) could be imposed, equivalently, for 0 < ν < µ.

If G is a C 1 non-trivial convex function satisfying (j) in (1.2), then the field A(x, t, ξ) = G (|ξ|)
|ξ| ξ, ξ = 0, considered in the model case of Section 1 satisfies conditions (2.2). Indeed, in this case, since G(0) = 0. The convexity of G implies for all ξ ∈ R N , ξ = 0,

G(|ξ|) = 1 0 G (s|ξ|)|ξ|ds ≤ G (|ξ|) |ξ| ξ, ξ
and condition (i) follows. Moreover, by the convexity of G and from the second relation in (j), we get for all t > 0,

kG(t) ≥ G(2t) = 2t 0 G (s)ds ≥ 2t t G (s)ds ≥ tG (t)
from which (ii) follows.

The Fenchel conjugate of G is defined by G(r) = sup s≥0 (rs -G(s)).

Then the Fenchel's inequality

(2.3) sr ≤ G(s) + G(r)
holds true for every r, s ≥ 0. Note that G : R → R + , G(0) = 0 and G is increasing (in this paper we say increasing for nondecreasing). Another useful property is (see [START_REF] Rao | Theory of Orlicz spaces[END_REF] Chapt. II, (1))

(2.4) G G(r) r ≤ G(r) for every r > 0.
Observe that G is increasing and it is not difficult to realise that unless G is the zero function, (j) implies that G(s) > 0 for all s > 0. Condition (j), which is known as the ∆ 2 -condition, is equivalent to the assumption that there exists q > 1 such that G(t) t q is decreasing. On the other hand (jj) is equivalent to ∆ 2 condition for the conjugate function G of G, i.e. there exists k > 0 such that G(2r) ≤ k G(r) for every r > 0 (see [START_REF] Krasnosel | Convex functions and Orlicz spaces[END_REF] Sect. 4). Consequently, G(•) > 0 on (0, ∞).

Notice that ∆ 2 condition yields

(2.5) G(λs) ≤ λ k G(s), G(λs) ≤ λ k G(s) ∀s ≥ 0, λ ≥ 1.
For other properties of function G we refer to [START_REF] Krasnosel | Convex functions and Orlicz spaces[END_REF][START_REF] Rao | Theory of Orlicz spaces[END_REF].

In Problem (2.1) the datum f : Ω T → R N is assumed to be a measurable function such that (2.6)

T 0 Ω G(|f (x, s)|)dxds < +∞. Definition 2.1. A function u : Ω T → R is a weak solution to Problem (2.1) iff u ∈ L ∞ (0, T ; L 2 (Ω)) ∩ L 1 (0, T ; W 1,1 0 (Ω)) (2.7) T 0 Ω A(x, s, ∇u), ∇u dxds < +∞ (2.8)
and for every φ ∈ C 1 (Ω T ) with φ(•, t)| ∂Ω = 0 the following equality holds (2.9)

Ω uφ(x, t)dx- Ω u 0 φ(x, 0)dx+ t 0 Ω [-uφ s + A(x, s, ∇u), ∇φ ]dxds = t 0 Ω f, ∇φ dxds for any t ∈ [0, T ]. If u ∈ L ∞ loc ((0, ∞); L 2 (Ω))∩L 1 loc ((0, ∞); W 1,1 0 (Ω))
and the above holds true for all T > 0, then u is called a weak solution to Problem (2.1) on (0, ∞) × Ω.

Notice that assumption (2.8) is equivalent to the following condition (2.10)

T 0 Ω G(|∇u|)dxdt < +∞.
Indeed, since G is increasing, by (2.3), (ii), (2.4) and (2.5), for any (x, s) ∈ Ω T with ∇u(x, s) = 0 we have (2.11)

| A(x, s, ∇u(x, s)), ∇u(x) | ≤ |A(x, s, ∇u(x, s))| • |∇u(x)| ≤ G(|A(x, s, ∇u(x, s))|) + G(|∇u(x)|) ≤ G µ G(|∇u(x,s)|) |∇u(x,s)| + G(|∇u(x)|) ≤ µ k G G(|∇u(x,s)|) |∇u(x,s)| + G(|∇u(x)|) ≤ µ kG(|∇u(x, s)|) + G(|∇u(x)|).
The equivalence between (2.8) and (2.10) follows from the first condition in (2.2) and from (2.11).

Remark 2.1. Using conditions (2.3), (2.6) and (2.10) respectively, an argument similar to (2.11) proves that f (•), ∇φ(•) and A(•, •, ∇u(•, •)), ∇φ(•) are integrable on Ω T , for every φ ∈ C 1 (Ω T ). These considerations imply that under our assumptions, all integrals in (2.9) are well defined.

Remark 2.2. By assumptions (1.2), for any r > 0 we have

λ 1 r q ≤ G(r) ≤ λ 2 (r p + 1)
for some positive constants λ 1 , λ 2 and pp = p + p , and qq = q + q (see [START_REF] Rao | Theory of Orlicz spaces[END_REF] Chapt. 2). Then, from (2.9) we deduce that u t ∈ L q (0, T ; L q (Ω)) with 1 < q < 2, and so there exists ũ ∈ C([0, T ]; L q (Ω)) such that u(•, t) = ũ(•, t) for almost all t ∈ (0, T ). In what folllows we identify u with its continuous representant ũ.

Lemma 2.1. Let u ∈ L ∞ (0, T ; L 2 (Ω))∩L 1 (0, T ; W 1,1 0 (Ω)), be a solution to Problem (2.1). Then, u ∈ C w ([0, T ]; L 2 (Ω)). Proof. Let t ∈ [0, T ] be fixed. Let {t n } be a sequence in [0, T ] with t n → t as n → +∞ such that u(•, t n ) ∈ L 2 (Ω) ∀n ∈ N. Since u ∈ L ∞ (0, T ; L 2 (Ω)), the sequence {u(•, t n )} is bounded in L 2 (Ω). Then, there exists a subsequence {u(•, t kn )} and ξ ∈ L 2 (Ω) such that u(•, t kn ) → ξ weakly in L 2 (Ω) as n → +∞.
On the other hand, by Remark 2.2 u ∈ C([0, T ]; L q (Ω)). Therefore

u(•, t kn ) → u(•, t) strongy in L q (Ω) as n → +∞. This implies that ξ = u(•, t) and u ∈ C w ([0, T ]; L 2 (Ω)).
We also recall the following useful result.

Lemma 2.2. Let G : R + → R + be a function satisfying (1.2). Then there exists a convex function F : R + → R + satisfying (j) such that (2.12)

F (t p ) ≤ G(t) ≤ kF (t p ).
where k and p are as in (1.2).

Proof. Since G(s 1 p )/s is increasing, it is not difficult to realize that the function

F (t) = t 0 G(s 1 p ) s ds
is well defined on (0, ∞) and can be extended by continuity to zero by setting F (0) = 0. Its first derivative is a continuous increasing function (0, ∞). Hence F is convex on R + . Moreover, by (jj), the integrand is increasing and therefore

F (t) ≤ t 0 G(t 1 
p ) t ds = G(t 1 p )
implying the first inequality. We show next that F satisfies (j). Indeed, since G satisfies (j),

F (2t) = t 0 G((2s) 1 p ) s ds ≤ t 0 G(2s 1 p ) s ds ≤ k t 0 G(s 1 p ) s ds = kF (t).
The second inequality in (2.12) follows from the following estimates

G(t 1 p ) = 2t t G(t 1 p ) t ds ≤ 2t t G(s 1 p ) s ds ≤ F (2t) ≤ kF (t).
In this paper we do not investigate the existence of a solution to (2.1) and refer to [START_REF] Baroni | The Cauchy-Dirichlet problem for a general class of parabolic equations[END_REF][START_REF] Bögelein | Existence of evolutionary variational solutions via the calculus of variations[END_REF][START_REF] Cai | Existence and uniqueness of weak solutions for a non-uniformly parabolic equation[END_REF] for some existence results. Instead, we establish some properties of weak solutions. We first show that every such solution satisfies an energy balance equality. Proposition 2.1. Assume (2.2) and (2.6) and let u : Ω T → R be a weak solution to (2.1). Then for any 0

< t ≤ T 1 2 u(t) 2 L 2 (Ω) + t 0 Ω A(x, s, ∇u), ∇u dxds = 1 2 u 0 2 L 2 (Ω) + t 0 Ω f (x, s), ∇u dxds.
where

u(t) 2 L 2 (Ω) := Ω |u(x, t)| 2 dx.
Proof. Let u : Ω T → R be a weak solution to (2.1). We first extend solution u(x, t) by the initial value u 0 (x) when t < 0. As ∂Ω is Lipschitz, we can cover ∂Ω by a finite open family {U i } m i=1 and we can find corresponding positive numbers λ i and vectors p i such that for > 0 the ball B(x + λ i p i , ) ⊂ Ω for all x ∈ U i ∩ Ω (cf. [START_REF] Evans | Partial Differential Equations[END_REF]).

Choose an open set U 0 ⊂⊂ Ω such that {U i } m i=0 forms a covering of Ω and let {η i } m i=0 be a smooth partition of unity corresponding to this covering. For

x ∈ U i ∩ Ω, i = 1, ..., m, denote u i (x, t) = u(x + λ i p i , t) and let u i (•, t) be its mollification in U i ∩ Ω. Finally we mollify u(x, t) in U 0 to get u 0 . The functions u : Ω T → R defined as u = m i=0 η i u i , are C ∞ 0 (Ω) and converge to u in W 1,1 0 (Ω) when → 0 + for a.e. t ∈ [0, T ]. Consider the mollifier in time of u (x, •) defined for any natural n ∈ N such that 1 n < , as: [u ] n (x, t) = e -nt u (x, t 0 ) + n t 0 e n(s-t) u (x, s)ds, where t 0 ∈ (0, T ). Since u ∈ L ∞ (0, T ; L 2 (Ω)) ∩ L 1 (0, T ; W 1,1 0 (Ω)) and u (x, t 0 ) ∈ L 2 (Ω), we get that (2.13) [u ] n → u in L 2 (Ω T ) as n → ∞. [u ] n (x, 0) = u (x, t 0 ) ∀n ∈ N. (2.14) [u ] n ∈ L 1 [0, T ]; W 1,1 0 (Ω) (2.15) ∇ [u ] n (•, t) = [∇u ] n (•, t) [∇u ] n → ∇u in L 1 (Ω T ) when n → ∞.
Properties (2.13), (2.14) and (2.15) can be deduced from Lemma B2 in [START_REF] Bögelein | Parabolic systems with p,q-growth: a variational approach[END_REF]. See also [START_REF] Bögelein | Giuseppe Degenerate problems with irregular obstacles[END_REF]. Now we define for any > 0, n ∈ N, 0 < h << 1 such that 0

< 1 n < < h < t 0 , the Steklov average of [u ] n φ n ,h (x, t) := ([u ] n ) h = 1 2h t+h t-h [u ] n (x, τ )dτ
where we assume that [u ] n (x, t) = u (x, t 0 ) for any t ≤ 0. First let us assume that u is bounded. Then the function φ n ,h ∈ C 1 ( ΩT ) and φ n ,h (•, t) | ∂Ω = 0 for every t ∈ [0, T ], and so we can use it as a test function in (2.9) to get that for any

t ∈ [0, T ], Ω uφ n ,h dx t 0 + t 0 Ω [-u(φ n ,h ) s + A(x, s, ∇u), ∇φ n ,h ]dxds = t 0 Ω f, ∇φ n ,h dxds. Set I ,h 1,n := Ω uφ n ,h (x, t)dx - Ω u 0 φ n ,h (x, 0)dx - t 0 Ω u(φ n ,h ) s dxds.
For 0 < h < t, by definition of φ n ,h

I ,h 1,n = Ω u(x, t) 1 2h t+h t-h [u ] n (x, τ )dτ dx - Ω u 0 (x) 1 2h h -h [u ] n (x, τ )dτ dx - 1 2h t 0 Ω u(x, τ ) ([u ] n (x, τ + h) -[u ] n (x, τ -h)) dxdτ. = J ,h 1,n + J ,h 2,n + J ,h 3,n .
Observe that

J ,h 2,n = - Ω u 0 (x) 1 2h 0 -h u (x, t 0 ) dτ + 1 2h h 0 [u ] n (x, τ ) dτ dx J ,h 3,n = - 1 2h t+h t Ω u(x, τ -h)[u ] n (x, τ ) dx dτ - 1 2h t h Ω u(x, τ -h)[u ] n (x, τ ) dx dτ + 1 2h h 0 Ω u (x, t 0 )u(x, τ ) dx dτ + 1 2h t h Ω [u ] n (x, τ -h)u(x, τ ) dx dτ
From (2.13), if we pass to the limit first as n → +∞ and then as → 0 + we get

(2.16) lim →0+ lim n→+∞ I ,h 1,n = Ω u(x, t) 1 2h t+h t-h u(x, τ )dτ dx -1 2 Ω u 0 (x)u(x, t 0 ) dx -1 2h Ω u 0 (x) h 0 u(x, τ ) dτ dx -1 2h t+h t Ω u(x, τ -h)u(x, τ ) dx dτ + 1 2h h 0 Ω u(x, t 0 )u(x, τ ) dx dτ.
Then by Lemma 2.1, passing to the limit in (2.16) as h → 0 + , we get for any

t ∈ [0, T ] lim h→0 lim →0 lim n→+∞ I ,h 1,n = 1 2 Ω |u(x, t)| 2 dx - 1 2 Ω |u 0 (x)| 2 dx. Define I ,h 2,n := t 0 Ω A(x, s, ∇u), ∇φ n ,h dxds, I ,h 3,n := t 0 Ω f, ∇φ n ,h dxds.
Then,

I ,h 2,n = m i=0 t 0 Ω A(x, s, ∇u), ( u i n ) h (x, s)∇η i dxds + m i=0 t 0 Ω A(x, s, ∇u), η i (x)( ∇u i n ) h (x, s) dxds.
Observe that

| A(x, s, ∇u), η i (x)( ∇u i n ) h (x, s) | ≤ G(|A(x, s, ∇u)|) + G(η i (x)|([∇u i ] n ) h |)(x, s) ≤ µ kG(|∇u(x, s)|) + G(η i (x)|([∇u i ] n ) h |)(x, s), (2.17)
where we used condition (ii) and inequalities (2.3), (2.4), (2.5).

Let 0 < h ≤ s. By the Fubini theorem

| ∇u i n h |(x, s) ≤ 1 2h s+h s-h e -nr |∇u i (x, t 0 )| + n r 0 e n(τ -r) |∇u i (x, τ )|dτ dr = - 1 2hn [e -n(s+h) -e -n(s-h) ]|∇u i (x, t 0 )| + n 2h s+h s-h s+h τ e n(τ -r) |∇u i (x, τ )|dr dτ = 1 2hn [e -n(s-h) -e -n(s+h) ]|∇u i (x, t 0 )| + 1 2h s+h s-h 1 -e -n((s+h)-τ ) |∇u i (x, τ )|dτ ≤ 1 2hn |∇u i (x, t 0 )| + 1 2h s+h s-h |∇u i (x, τ )|dτ.
(2.18) Inequality (2.18), the monotonicity of G and the Jensen inequality imply that for (x, s)

∈ Ω × (h, t) G(η i | ∇u i n ) h | (x, s) ≤ G(|( ∇u i n ) h |)(x, s) = G 1 2hn |∇u i (x, t 0 )| + 1 2h s+h s-h |∇u i (x, τ )|dτ ≤ 1 2 G 1 hn |∇u i (x, t 0 )| + 1 2 G 2 1 2h s+h s-h |∇u i (x, τ )|dτ ≤ 1 2 G 1 hn |∇u i (x, t 0 )| + 2 k-1 1 2h s+h s-h G |∇u i (x, τ )| dτ.
(2.19) When 0 < s < h, again by the Fubini theorem, we get

| ∇u i n h |(x, s) ≤ 1 2h 0 s-h |∇u i (x, t 0 )|dr + 1 2h s+h 0 e -nr |∇u i (x, t 0 )| + n r 0 e n(τ -r) |∇u i (x, τ )|dτ dr = h -s 2h |∇u i (x, t 0 )| + 1 2hn [1 -e -n(s+h) ]|∇u i (x, t 0 )| + n 2h s+h 0 s+h τ e n(τ -r) |∇u i (x, τ )|dr dτ ≤ 1 2 + 1 2hn |∇u i (x, t 0 )| + 1 2h s+h 0 1 -e -n((s+h)-τ ) |∇u i (x, τ )|dτ ≤ 1 2 + 1 2hn |∇u i (x, t 0 )| + 1 2h s+h s-h |∇u i (x, τ )|dτ (2.20)
Arguing as in (2.19), from (2.20) we get, for (x, s)

∈ Ω × (0, h) G(η i | ∇u i n ) h | (x, s) ≤ 1 2 G 1 + 1 hn |∇u i (x, t 0 )| + 2 k-1 1 2h s+h s-h G |∇u i (x, τ )| dτ. (2.21)
Moreover, by the definition of u i ,h , the Fubini theorem and the Jensen inequality, we know that

(2.22) G(|∇u i |) h (x, s) ≤ [G(|∇u|)] ,h (x, s)
Combining (2.17), (2. [START_REF] Marcellini | Regularity of minimizers of integrals of the calculus of variations with non standard growth conditions[END_REF]) and (2.22), for almost every (x, s) ∈ Ω × (h, t),

| A(x, s, ∇u(x, s)), ( ∇u i n ) h (x, s)η i (x) | ≤ µ kG(|∇u(x, s))|) + 1 2 G 1 hn |∇u i (x, t 0 )| + 2 k-1 [G(|∇u|)] ,h (x, s)
On the other hand, combining (2.17), (2.21) and (2.22), for almost every (x, s) ∈ Ω × (0, h),

| A(x, s, ∇u(x, s)), η i (x)( ∇u i n ) h (x, s) | ≤ µ kG(|∇u(x, s))|) + 1 2 G 1 + 1 hn |∇u i (x, t 0 )| + 2 k-1 [G(|∇u|)] ,h (x, s)
Last inequalities, the continuity of G and the Lebesgue dominated convergence theorem imply that lim

h→0+ lim →0+ lim n→∞ t h Ω A(x, s, ∇u(x, s)), η i (x)( ∇u i n ) h (x, s) dxds = t 0 Ω
A(x, s, ∇u(x, s)), η i (x)∇u(x, s) dxds and lim

h→0+ lim →0+ lim n→∞ h 0 Ω A(x, s, ∇u(x, s)), η i (x)( ∇u i n ) h (x, s) dxds = 0.
Finally, observe that

m i=0 t 0 Ω A(x, s, ∇u(x, s)), ∇u(x, s)η i (x) dxds = t 0 Ω
A(x, s, ∇u(x, s)), ∇u(x, s) dxds.

Consequently, (2.23)

lim h→0+ lim →0+ lim n→∞ m i=0 t 0 Ω A(x, s, ∇u(x, s)), η i (x)([∇u i ] n ) h (x, s)(x) dxds = t 0 Ω A(x, s, ∇u(x, s)), ∇u(x, s) dxds.
On the other hand, since G is increasing, by the Fenchel inequality, (ii), (2.4), (2.5), (2.13) and the boundedness of u, for some c 0 > 0, for any i ∈ {0, 1, ..., m} and every (x, s) ∈ Ω T with ∇u(x, s) = 0 we have (2.24) A(x, s, ∇u), ∇u dxds.

| A(x, s, ∇u(x, s)), ([u i ] n ) h (x, s)∇η i | ≤ |A(x, s, ∇u(x, s))| • |([u i ] n ) h (x, s)∇η i | ≤ G(|A(x, s, ∇u(x, s))|) + G(|([u i ] n ) h (x, s)∇η i |) ≤ G µ G(|∇u(x,s)|) |∇u(x,s)| + c 0 ≤ µ k G G(|∇u(x,s)|) |∇u(x,s)| + c 0 ≤ µ kG(|∇u(x, s)|) + c 0 . Hence (2.10) implies that | A(•, •, ∇u(•, •)), ([u i ] n (•, •)) h ∇η i (x) | is
In the same way, by using (2.3), (2.5) and (2.6), we can prove that lim

h→0+ lim →0+ lim n→∞ I ,h 3,n = t 0 Ω f, ∇u dxds.
If u is not bounded, define for any j ∈ N, u j = 1 2 (|u + j| -|u -j|). Then,

u j ∈ L ∞ (0, T ; L 2 (Ω)) ∩ L 1 (0, T ; W 1,1 0 (Ω)) ∩ L ∞ (Ω T ).
We can constuct (u j ) as before and we can apply the above arguments by using (φ j ) n ,h as test function in (2.9) Finally we can pass to the limit as j → +∞ since |u j | ≤ |u| a.e. A(x, s, ∇u) -A(x, s, ∇v), ∇w dxds = 0.

Hence, (2.26) yields u = v a.e. in Ω T .

A Version of the Gronwall Lemma

For arbitrary non-empty closed sets in D , D ⊂ R n , define

d D (D ) := inf{β > 0 | D ⊂ D + βB} .
where B denotes the closed unit ball in R n . Consider reals 0 ≤ t 0 < T and a multifunction P : [t 0 , T ] ; R n with non-empty closed values. P is called left absolutely continuous if the following condition is satisfied: given any > 0 there exists δ > 0 such that, for any finite partition

t 0 ≤ s 1 < τ 1 ≤ s 2 < τ 2 ≤ . . . ≤ s m < τ m ≤ T satisfying m i=1 (τ i -s i ) < δ, we have m i=1 d P (τ i ) (P (s i )) < .
For any y ∈ P (t) the contingent derivative DP (t, y)(1) is the set of all v ∈ R n such that there exist h i → 0+ and v i → v satisfying y + h i v i ∈ P (t + h i ).

A function γ : [t 0 , T ] → R + is called upper semicontinuous from the right, if for every t ∈ [t 0 , T ) we have lim sup s→t+ γ(s) ≤ γ(t). Similarly, it is called lower semicontinuous from the left, if for every t ∈ (t 0 , T ] we have lim inf s→t-γ(s) ≥ γ(t). Lemma 3.1. Consider a Carathéodory function ψ : [t 0 , T ] × R → R + such that for every r > 0 there exists k r ∈ L 1 (t 0 , T ; R + ) satisfying for a.e. t ∈ [t 0 , T ] sup |x|≤r ψ(t, x) ≤ k r (t).

Let g ∈ L 1 (t 0 , T ; R) and γ : [t 0 , T ] → R + be measurable, bounded and satisfy

(3.1) γ(t 2 ) -γ(t 1 ) + t 2 t 1 ψ(t, γ(t))dt ≤ t 2 t 1 g(t)dt t 0 ≤ t 1 ≤ t 2 ≤ T.
Then there exists a solution x(•) ∈ W 1,1 ([t 0 , T ]) of the Cauchy problem

(3.2) x (t) = -ψ(t, x(t)) + g(t), a.e. x(t 0 ) = γ(t 0 ) such that γ(t) ≤ x(t) for all t ∈ [t 0 , T ]. Furthermore, if g ∈ L 1 (t 0 , ∞; R), ψ is defined on [t 0 , +∞) × R, γ : [t 0 , +∞) → R + is measurable
and locally bounded and for every T > t 0 the above assumptions hold true, then there exists a solution x to (3.2) defined on [t 0 , ∞) such that γ ≤ x. In particular,

lim sup t→∞ γ(t) ≤ lim sup t→∞ x(t).
Proof. By (3.1), γ is upper semicontinuous from the right and lower semicontinuous from the left. Define the set-valued map P : [t 0 , T ] ; R by

P (t) = γ(t) + R + t ∈ [t 0 , T ) R t ≥ T.
By our assumptions for all t 0 ≤ t i < τ i < T γ(τ i ) -

τ i t i g(t)dt ≤ γ(t i ).
This implies that P (•) is left absolutely continuous. Let t ∈ (t 0 , T ) be a Lebesgue point of ψ(•, γ(•)) and of g(•). The set A of all such points is of full Lebesgue measure in [t 0 , T ]. By the assumptions of our lemma for every t ∈ A,

Dγ(t) := lim inf ε→0+ γ(t + ε) -γ(t) ε ≤ -ψ(t, γ(t)) + g(t).
This and the definition of P (•) imply that -ψ(t, γ(t)) + g(t) ∈ DP (t, γ(t))(1). Since γ is upper semicontinuous from the right, it enjoys the following property: if y > γ(t), then for every r ∈ R and all small ε > 0 we have y + εr > γ(t + ε). Therefore, DP (t, y)(1) = R for any y > γ(t). Consequently for all t ∈ A and y ∈ P (t) we have -ψ(t, y) + g(t) ∈ DP (t, y) [START_REF] Adams | Anisotropic Sobolev inequalities[END_REF]. By [13, Theorem 4.2] and our assumptions, for some S ∈ (t 0 , T ] there exists a solution of (3.2) satisfying x(t) ∈ P (t) on [t 0 , S). Therefore 0 ≤ γ(t) ≤ x(t) for all t ∈ [t 0 , S). Furthermore, x(t) ≤ x(t 0 ) + To prove the last statement assume that g ∈ L 1 (t 0 , ∞; R), ψ is defined on [t 0 , +∞) × R, γ is locally bounded on [t 0 , +∞) and for every T > t 0 the assumptions of Lemma hold true. Then the same construction allows one to get x(•) defined on [t 0 , +∞) satisfying for every t > τ ≥ t 0 ,

0 ≤ γ(t) ≤ x(t) ≤ x(τ ) + t τ g(s)ds.
Since lim τ →∞ ∞ τ g(s)ds = 0 the proof follows. 2 Remark 3.1. Indeed, assume that the solution x : [t 0 , T ] → R + of (3.2) is unique. Then for γ = x we have

γ(t 2 ) -γ(t 1 ) + t 2 t 1 ψ(t, γ(t))dt = t 2 t 1 g(t)dt t 0 ≤ t 1 ≤ t 2 ≤ T.
That is (3.1) holds true. The estimate γ ≤ x obtained in Lemma 3.1 can not be further improved.

Corollary 3.1. Under all the assumptions of Lemma 3.1 suppose that ψ(t, a) = 0 for all a ≤ 0, g(•) ≥ 0, ψ(t, •) is increasing for a.e. t ∈ [t 0 , T ] and that for any R > r > 0 there exists kR,r ∈ L 1 (t 0 , T ; R + ) satisfying for a.e. t ∈ [t 0 , T ]

|ψ(t, x) -ψ(t, y)| ≤ k R,r (t)|x -y| ∀ x, y ∈ [r, R].
Then the solution z(•) of

(3.3) z (t) = -ψ(t, z(t)), a.e. z(t 0 ) = γ(t 0 )
is unique and well defined on [t 0 , T ], z(•) ≥ 0 and γ(t) ≤ x(t) ≤ z(t) + t t 0 g(s)ds for all t ∈ [t 0 , T ].

Proof. Clearly, if z(•) is a solution of (3.3), then it is decreasing on its interval of existence. Moreover, if for some t ≥ t 0 , z(t) = 0, then z(s) = 0 for any t ≤ s ≤ T. This and the Lipschitz continuity assumption imply the existence and uniqueness on the whole time interval [t 0 , T ]. Consider any solution x(•) of (3.2) defined on [t 0 , T ]. Then it is not difficult to realize that x(•) ≥ 0.

We claim that z ≤ x on [t 0 , T ]. Indeed otherwise we can find

t 0 ≤ s 0 < t 1 < T such that z(s 0 ) = x(s 0 ) and z(s) > x(s) on [s 0 , t 1 ]. Then -ψ(t, z(t)) ≤ -ψ(t, x(t)) for a.e. t ∈ [s 0 , t 1 ]. Thus x (s) -z (s) ≥ g(s) ≥ 0 a.e. in [s 0 , t 1 ]. This implies that x(t) ≥ z(t) for t ∈ [s 0 , t 1 ]
leading to a contradiction. Let x(•) be as in Lemma 3.1. Observe that for a.e. t ∈ [t 0 , T ] we have

x (t) = -ψ(t, x(t)) + g(t) ≤ -ψ(t, z(t)) + g(t) = z (t) + g(t).
Integrating we obtain that x(t) ≤ z(t) + t t 0 g(s)ds for all t ∈ [t 0 , T ]. This and Lemma 3.

1 yield γ(t) ≤ x(t) ≤ z(t) + t t 0 g(s)ds . 2 Corollary 3.2. Consider g ∈ L 1 (t 0 , ∞; R + ), a Carathéodory function ψ : [t 0 , ∞) × R → R + ,
a measurable locally bounded γ : [t 0 , ∞) → R + and let assumptions of Corollary 3.1 hold true on [t 0 , T ] for every T > t 0 . If for every r > 0 there exists α r > 0 such that inf x≥r ψ(t, x) ≥ α r for a.e. t ≥ t 0 , then lim t→∞ γ(t) = 0.

Proof. Fix any sequence t i → ∞ and consider the solutions z i to (3.3) with t 0 replaced by t i . By Corollary 3.1 applied with t 0 replaced by t i , we know that z i ≥ 0. Notice that z i is decreasing for every i. Observe next that if for some i we have lim t→∞ z i (t) =: r > 0, then, z i (t) ≥ r for every t ≥ t i and

0 ≤ z i (t) = z i (t i ) - t t i ψ(s, z i (s))ds ≤ z i (t i ) -(t -t i )α r .
When t is sufficiently large, the right-hand side of the above expression becomes negative. Thus implies that lim t→∞ z i (t) = 0 for all i. This and Corollary 3.1 imply that for every i, every ε > 0 and all large t we have

γ(t) ≤ ε 2 + t t i g(s)ds.
Taking i sufficiently large, we deduce that for every ε > 0 and all large t we have γ(t) ≤ ε completing the proof. 2

In [START_REF] Moscariello | Quantitative asymptotic estimates for evolution problems[END_REF] a particular instance of ψ(t, x) was considered, namely ψ(t, x) = M |x| 1+ν , where M and ν are non negative constants. It was shown then that for any continuous γ : [t 0 , T ] → R + satisfying the inequality (3.1) we have

(3.4) γ(t) ≤ y(t) := γ(t 0 ) [1 + νM γ(t 0 ) ν (t -t 0 )] 1 ν + Γ(t) ∀ t ∈ [t 0 , T ]
for every choice of continuous function Γ : [t 0 , T ] → R + satisfying

(3.5) Γ(t 1 ) ≤ Γ(t 2 ) + M t 2 t 1 Γ(t) 1+ν dt - t 2 t 1 g(t)dt t 0 ≤ t 1 ≤ t 2 ≤ T,
where g ∈ L 1 ([t 0 , T ], R). Let Γ, M, ν be as above and x be the solution of

(3.6) x = -M |x| 1+ν + g(t), a.e. t > t 0 x(t 0 ) = γ(t 0 )
We already know that x(t) ≥ γ(t) ≥ 0 for all t ∈ [t 0 , T ]. We claim that x(t) ≤ y(t), which implies that our result provides a better estimate on the time behavior of γ than the one from [START_REF] Moscariello | Quantitative asymptotic estimates for evolution problems[END_REF]. Indeed, since y(t 0 ) = γ(t 0 ) + Γ(t 0 ) ≥ x(t 0 ), if for some t 1 ∈ (t 0 , T ] we have y(t 1 ) < x(t 1 ), then we can find s 0 ∈ [t 0 , t 1 ] such that x(s 0 ) = y(s 0 ) and y(s) < x(s) for all s ∈ (s 0 , t 1 ].

Note that -y(•) is continuous on [t 0 , T ). By the same arguments as in the proof of Lemma 3.1, we check that t ; -Γ(t) + R + is left absolutely continuous on [t 0 , T ] and that the map

t → γ(t 0 ) [1 + νM γ(t 0 ) ν (t -t 0 )] 1 ν
is Lipschitz. Therefore t ; P (t) = -y(t) + R + is left absolutely continuous on [t 0 , T ]. Furthermore, for a.e. s ∈ (s 0 , t 1 ) we have

D(-Γ)(s) ≤ M Γ(s) 1+ν -g(s).
Hence, for a.e. s ∈ (s 0 , t 1 ),

D(-y)(s) ≤ M γ(t 0 ) 1+ν [1 + νM γ(t 0 ) ν (t -t 0 )] 1+ν ν + M Γ(s) 1+ν -g(s) ≤ M y(s) 1+ν -g(s)
= M y(s) 1+ν -M x(s) 1+ν -x (s) ≤ -x (s). Therefore, for a.e. s ∈ [s 0 , t 1 ] and all z ∈ P (s) we have -x (s) ∈ DP (s, z) [START_REF] Adams | Anisotropic Sobolev inequalities[END_REF]. From [START_REF] Frankowska | Measurable viability theorems and Hamilton-Jacobi-Bellman equation[END_REF]Theorem 4.2] applied to the single-valued map s → {-x (s)} we deduce that -x(t) ∈ P (t) for all t ∈ [s 0 , t 1 ]. This yields x(t) ≤ y(t) on [s 0 , t 1 ] contradicting the choice of t 1 .

It was observed in [START_REF] Moscariello | Quantitative asymptotic estimates for evolution problems[END_REF] that if g ≥ 0, then Γ(t) = t t 0 g(s)ds verifies (3.5) and that for any continuous γ : [t 0 , T ] → R + satisfying the inequality (3.1), the estimate (3.4) holds true for this choice of Γ. In particular, if g ∈ L 1 (t 0 , ∞; R + ), then (3.4) is verified with this Γ and t 0 replaced by any τ > t 0 and T > τ . This implies that lim t→∞ γ(t) = 0.

Define ψ(t, x) = M |x| 1+ν for x ≥ 0 and ψ(t, x) = 0 for x < 0 and observe that it satisfies the assumptions of Corollary 3.2. Thus the equality lim t→∞ γ(t) = 0 is a consequence of Corollary 3.2.

The main results

In this section we assume that the function G : R + → R + in (2.2) is continuous, convex and satisfies (1.2) for some k > 0 and p ≥ 2.

We state next the main result of this paper. 

   ẋ(t) = -c G( x(t) ) + g(t) x(0) = 1 2|Ω| u 0 2 L 2 (Ω)
for some c > 0 depending only on p, k, N, |Ω|, ν and g(t

) = 1 |Ω| G( 2 ν |f (•, t)|) L 1 (Ω) . If f : Ω → R is a integrable function on Ω, we set Ω |f |dx = 1 |Ω| Ω |f |dx
where |Ω| > 0 denotes the Lebesgue measure of Ω.

Proof. For 0 < t 

G 1 2 Ω |u(x, t)| 2 dx 1 2 ≤ G Ω |u(x, t)| 2 dx 1 2 ≤ C Ω G(|∇u|)dx. (4.5) 
Going back to (4.2), we deduce from (4.5) the following inequality

1 2 Ω |u(x, t 2 )| 2 dx - 1 2 Ω |u(x, t 1 )| 2 dx + ν 2C t 2 t 1 G 1 2 Ω |u(x, t)| 2 dx 1/2 dt ≤ 1 |Ω| t 2 t 1 Ω G 2 ν |f (x, s)| dxds. (4.6) 
Now we are in position to apply Lemma 3.1 with

γ(t) =: 1 2 Ω |u(x, t)| 2 dx and ψ(t, x) =: ν 2C G( √ x ).
By the measurable viability theorem, cf. [START_REF] Frankowska | Measurable viability theorems and Hamilton-Jacobi-Bellman equation[END_REF], there exists a solution x(•) : R + → R + of (4.1). We claim that it is unique. Indeed, for positive reals z ≥ y, we have √ z ≥ √ y and ψ(t, z) ≥ ψ(t, y). Hence (ψ(t, z) -ψ(t, y))(z -y) ≥ 0. Similarly, it can be verified that if z ≤ y, the same inequality holds true.

Consider any solution y : [t 0 , T ] → R + of (4.1). Then

d dt 1 2 |x -y| 2 (t) = -(ψ(t, x(t)) -ψ(t, y(t)))(x(t) -y(t)) ≤ 0
and therefore x = y on [t 0 , T ]. Setting ψ(t, a) = 0 for a < 0, we may apply Lemma 3.1 and so to get the desired estimate.

Corollaries 3.1 and 3.2 yield the following result. Theorem 4.2. In Theorem 4.1 assume that g ∈ L 1 ([0, ∞)). Let u : Ω × [0, ∞) → R be a weak solution to (2.1). Then, for any t 0 ≥ 0 and t > t 0 ,

u(t, •) 2 L 2 (Ω) ≤ 2|Ω|x(t) ≤ 2|Ω| z(t) + t t 0 g(s)ds
where z(•) is the unique solution of the problem

ż(t) = -c G( z(t) ) z(t 0 ) = 1 2|Ω| u(•, t 0 ) L 2 (Ω)
for some c > 0 depending only on p, k, N, |Ω|, ν.

Furthermore, lim t→∞ u(t, •) [START_REF] Moscariello | Quantitative asymptotic estimates for evolution problems[END_REF] and the reference therein). For istance, when p = 2, Theorem 4.1 implies that for any t ∈ [0, T ]

u(t) 2 L 2 (Ω) ≤ e -c 2 t u 0 2 L 2 (Ω) + 2 t 0 e -c 2 (t-s) f (•, s) 2 L 2 (Ω) ds
where c is the constant in Problem (4.1).

We conclude this section by an example. Let us consider for simplicity problem (1.1) with

G(s) = (s 2 + 1) log(1 + s 2 ).
Then, if u is the weak solution of problem (1.1), we get that

(4.7) u(•, t) 2 L 2 (Ω ≤ 2|Ω| exp log(1 + 1 2|Ω| u 0 L 2 (Ω) )e -ct - 1 
for some c > 0 and all t ≥ 0. Estimate (4.7) is new and cannot be achieved by the arguments of [START_REF] Moscariello | Quantitative asymptotic estimates for evolution problems[END_REF].

Solutions of an anisotropic problem

In this section we consider the following anisotropic problem (5.1)

           u t -N i=1 ∂ ∂x i (|u x i | q i -2 u x i ) = 0 in Ω T , u(x, t) = 0 on ∂Ω × (0, T ), u(x, 0) = u 0 (x) in Ω,
where u 0 ∈ L 2 (Ω) and 1 < q i , i ∈ {1, ..., N }.

Here, for any ξ ∈ R N the vector field is A(ξ) =: N i=1 |ξ i | q i -2 ξ i . In [START_REF] Cai | Existence and uniqueness of weak solutions for a non-uniformly parabolic equation[END_REF] the authors prove that there exists a unique function u ∈ C ([0, T ], L 2 (Ω)) ∩ L 2 0, T, W 

|u x i | q i dxdt = 1 2 u 0 2 L 2 (Ω) .
The proof of (5.2) is similar to the one of Proposition 2.1. In this case the mollifier in time of test functions is not necessary and we can argue directly on the convex vector field A(ξ). (See also [START_REF] Cai | Existence and uniqueness of weak solutions for a non-uniformly parabolic equation[END_REF]).

Set 1 q =: 1 N N i=1 1 q i , q =: max{q i , i = 1, ..., N } p =: min{q i , i = 1, ..., N } and B(t) =: max{1, u x i (t) L q i (Ω), i=1,...,N }.

Theorem 5.1. Assume that 2 ≤ q and 2N N +2 < q < N . Let u : Ω T → R be a weak solution to problem (5.1). Then for any t ∈ [0, T ], u(•, t) 2 L 2 (Ω) ≤ 2x(t) where x(t) is the unique solution of the problem (5.3) x (t) = -c B(t) p-q x(t) q 2

x(0) = 1 2 u 0 2 L 2 (Ω) . for some c > 0 depending only on |Ω|, q and N . Proof. By (5.2) for any 0 ≤ t 1 < t 2 ≤ T (5.4)

1 2 u(t 2 ) 2 L 2 (Ω) - 1 2 u(t 1 ) 2 L 2 (Ω) + t 2 t 1 Ω N i=1 |u x i | q i dxdt = 0
We claim that, for a.e. t ∈ (0, T ), (5.5)

Ω |u| q * dx q q * ≤ cB(t) q-p Ω N i=1 |u x i | q i dx,
where c depends on N, |Ω|, q.

In fact, by the definition of B(t), since q i ≥ p and B(t) ≥ 1, for any i = 1, . . . , N we have u x i q L q i (Ω) ≤ B(t) q-q i u x i q i L q i (Ω) ≤ B(t) q-p u x i q i L q i (Ω)

The convexity of the real function t → t q implies 1 N N i=1

u x i L q i (Ω) q ≤ 1 N N i=1 u x i q L q i (Ω)
Then, since 2N N +2 < q < N , we can apply the anisotropic Sobolev-type inequality [START_REF] Troisi | Teoremi di inclusione per spazi di Sobolev non isotropi[END_REF] to obtain

u q L q * (Ω) ≤ c q 0 1 N N i=1 u x i L q i (Ω) q ≤ c q 0 N -1 B(t) q-p N i=1 u x i q i L q i (Ω)
where c 0 depends on N, |Ω|, q. Then, (5.5) follows.

The elliptic version of relation (5.5) has been proved in [START_REF] Boccardo | L ∞ -regularity for variational problems with sharp non-standard growth conditions[END_REF]. Now, from (5.5) we get (5.6) B(t) p-q

Ω |u| 2 dx q 2 ≤ B(t) p-q |Ω| q 2 -q q * Ω |u| q * dx q q * ≤ c 1 Ω N i=1 |u x i | q i dx
where c 1 depends on N, |Ω|, q. Integrating (5.5) on (t 1 , t 2 ), from the relations (5.4) and (5. dt ≤ 0 for some c > 0 depending only on N, |Ω|, q, q. Now if γ(t) = 1 2 u(t) 2 L 2 (Ω) we can rewrite (5.7) as γ(t 2 ) -γ(t 1 ) + t 2 t 1 ψ(t, γ(t)) dt ≤ 0 where ψ(t, x) = cB(t) p-q x q 2 ∀ x ≥ 0, ψ(t, x) = 0 ∀ , x < 0.

We apply Corollary 3.1 to achieve the announced result. Indeed the above proof can be applied as well.

Definition 1 . 1 .

 11 A function u : Ω T → R is called a weak solution to Problem (1.1) iff u ∈ L ∞ (0, T ; L 2 (Ω)) ∩ L 1 (0, T ; W 1)dxdt < +∞and for every φ ∈ C 1 (Ω T ) with φ(•, t)| ∂Ω = 0 the following equality holds Ω uφ(x, t)dx -Ω u 0 φ(x, 0)dx + t 0 Ω -uφ s + G (|∇u|) |∇u| ∇u, ∇φ dxds = 0 for any t ∈ [0, T ].

Theorem 4 . 1 .

 41 Assume (2.2) and (2.6). Let u : Ω T → R be a weak solution to (2.1). Then, for any t ∈ [0, T ], u(•, t) 2 L 2 (Ω) ≤ 2|Ω|x(t) where x(•) is the unique solution of the problem (4.1)

Remark 5 . 1 .

 51 Let β : [0, T ] → (1, +∞) be a measurable function. The statement of Theorem 5.1 still holds if we replace the function B(t), t ∈ [0, T ], with the function B(t) = max{ u x i (t) q i , β(t) : i = 1, . . . , N }.

  is bounded. Hence, by our assumptions and since x(•) is a solution of (3.2), it can be extended, by continuity, on [t 0 , S]. Furthermore, γ(S) ≤ x(S) because γ is lower semicontinuous from the left. Applying the Zorn lemma and [13, Theorem 4.2], we extend this solution x(•) to the time interval [t 0 , T ].

t t 0 g(s)ds for all t ∈ [t 0 , S) implying that x(•)

  1 < t 2 < T , applying Proposition 2.1 at times t 1 and t

	By (i) and Fenchel's inequality (2.3) we get	
	(4.2)										
	1 2	u(t 2 ) 2 L 2 (Ω) -	1 2	u(t 1 ) 2 L 2 (Ω) +	ν 2	t 2 t 1		Ω	G(|∇u|)dxds ≤	t 2 t 1	Ω	G 2 ν	|f (x, s)| dxds.
	Applying Hölder inequality we obtain, since p ≥ 2,
										p	
	(4.3)					|u| 2 dx	2	≤ c	|∇u| p dx
						Ω					Ω
	where c > 0 depends only on p, N, |Ω|.				
	Now, let F be the convex function as in the claim of Lemma 2.2. Since F is positive
	and F (0) = 0, it is nondecreasing on R + . From (4.3) we deduce that
									p			
	(4.4)			F	|u| 2 dx	2			≤ F c
					Ω							
													2 and subtracting
	the results we get										
	1 2	u(t 2 ) 2 L 2 (Ω) -	1 2	u(t 1 ) 2 L 2 (Ω) +	t 2 t 1	Ω	A(x, s, ∇u), ∇u dxds =	t 2 t 1	Ω	f, ∇u dxds.

Ω |∇u| p dx .

In what follows C denotes a positive constant depending only on N, p, k, |Ω|, which may vary from line to line. From (2.5), (2.12), (4.4) and the Hölder and Jensen inequalities we deduce that for any t ∈ [0, T ],

  2 L 2 (Ω) = 0. Remark 4.1. Theorem 1.1 follows trivially from Theorem 4.1 and Theorem 4.2. Remark 4.2. If G(s) = s p p , p ≥ 2,, as observed in Section 3, the statement of Theorem 4.1 improves the behaviour in time of a solution to Problem (2.1) for a p-Laplace type operator (see

L 2 (Ω)
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