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Value Function of an Infinite Dimensional Infinite Horizon Problem

Helene Frankowska1 and Nobusumi Sagara2

Abstract— We investigate the value function of an infinite
horizon problem in the setting of an infinite-dimensional differ-
ential inclusion. In particular, we provide an upper estimate of
its Gateaux subdifferential in terms of the Clarke subdifferen-
tial of the integrand and the Clarke normal cone to the graph of
the set-valued dynamics. We also derive a necessary optimality
condition in the form of an Euler–Lagrange inclusion, the
maximum principle and a sensitivity relation.

I. INTRODUCTION
Optimal control and dynamic programming are instru-

mental cornerstones of modern economic growth theory
originated in [28]. In the general reduced model of capi-
tal accumulation, necessary (and sufficient) conditions for
optimality are employed under the convexity assumptions
on utility functions and technologies to investigate the exis-
tence of competitive equilibria and support prices [7], [27],
[34], transversality conditions at infinity [1], [7], and the
uniqueness and global stability of stationary states [11],
[14], [30], [31]. One of the advantages of convex economic
models lies in the crucial observation that the differentiability
of the value function is guaranteed under the smoothness
assumptions on data, see [6], [7], [9], [29].

On the contrary, the absence of convexity and smoothness
are two major sources of complex economic dynamics in
continuous time as illustrated in [2], [8], [20], [25], [33],
[35]. The lack of convexity results in the failure of the
differentiability of the value function even if the underlying
data are smooth. One can expect at best the local Lipschitz
continuity of the value function. This causes problems with
expressing optimal synthesis in many nonconvex economic
growth models when one attempts to apply the Hamilton–
Jacobi–Bellman (HJB) theory.

The failure of differentiability of the value function has
stimulated two alternative approaches. One is the application
of a “generalized” subdifferential calculus along the lines of
[15], leading to the formulation of a relation between the
maximum principle and the value function [16], [17]. The
other one is the concept of “viscosity solutions” to the asso-
ciated HJB equation (initiated in [18], [19]), whose unique
(viscosity) solution is the value function. For the connections
between the maximum principle and the superdifferentials of
the value function, see also [13], [21], [23].
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The purpose of this paper is twofold. Firstly, we provide
an upper estimate of the Gateaux subdifferential of the value
function in terms of the Clarke subdifferential and the Clarke
normal cone to the set-valued mapping describing dynamics.

Secondly, we derive a necessary condition for optimality in
the form of an adjoint inclusion, the maximum principle and
a relation of the adjoint variable to the subdifferentials of the
value function along the optimal trajectory. To deal with the
adjoint variable in dual spaces, we use the Gelfand integrals
of the Gateaux and Clarke subdifferential mappings, which
is a new feature that does not arise in the context of finite-
dimensional control systems. We also consider the relaxed
variational problem, which is a suitable convexification of
the original variational problem, and derive the necessary
condition that narrows the class of candidates for optimality.
Our dynamical system in the form of a differential inclusion
being very general, these results are derived under quite
restrictive “interiority assumption” (H8). In the particular
case of dynamics described by a control system we may
remove assumption (H8).

For the finite-dimensional infinite horizon problem, nec-
essary conditions without convexity assumptions using
Gateaux, Clarke, and limiting subdifferentials were derived
in [3], [13], [32], [36], while for the control systems in
Hilbert spaces, a necessary condition under the convexity
assumption was obtained in [5]. For the semilinear control
systems in Banach spaces, the necessary and sufficient con-
ditions were derived in [12] in the finite horizon setting when
the sets of admissible velocities are convex.

The outline of the paper is as follows. Section 2 collects
some definitions. In Section 3 we formulate the nonconvex
variational problem and investigate the Lipschitz continuity
and subdifferentiability of the value function. We derive in
Sections 4, 5, 6 some necessary optimality conditions for
the original and relaxed variational problems. Because of
the lack of space some of proofs are omitted. They will be
published elsewhere.

II. PRELIMINARIES

Let (E, ‖ · ‖) be a real separable Banach space with the
dual system 〈E∗, E〉, where E∗ is the norm dual of E. For
a nonempty subset C ⊂ E denote by dC : E → IR+ the
distance function from the set C, by KC(x) and TC(x)
respectively the contingent and Clarke tangent cones to C
at x ∈ C and let NC(x) stand for the Clarke normal cone
to C at x ∈ C, see for instance [4, Chapter 4] or [15] for
the precise definitions. The lower (resp. upper) directional
derivative of ϕ : E → IR ∪ {+∞} at x̄ ∈ domϕ in the



direction v ∈ E is defined by

ϕ−(x̄; v) := lim inf
u→v
θ↓0

ϕ(x̄+ θu)− ϕ(x̄)

θ
∈ IR ∪ {±∞},

ϕ+(x̄; v) := lim sup
u→v
θ↓0

ϕ(x̄+ θu)− ϕ(x̄)

θ
∈ IR ∪ {±∞}.

respectively. The Dini-Hadamard subdifferential of ϕ at x̄ is

∂−ϕ(x̄) := {x∗ ∈ E∗ | 〈x∗, v〉 ≤ ϕ−(x̄; v) ∀ v ∈ E}

and the Dini-Hadamard superdifferential of ϕ at x̄ is defined
by

∂+ϕ(x̄) := {x∗ ∈ E∗ | 〈x∗, v〉 ≥ ϕ+(x̄; v) ∀ v ∈ E}.

If ϕ is locally Lipschitz at x̄, denote by ϕ◦(x̄; v) the Clarke
directional derivative of ϕ at x̄ in the direction v, see [15]
for the definition.

We denote by IR+ the set of all nonnegative reals. Below,
by measurable, we shall always mean Lebesgue measurable.
Let W 1,1

loc ([t,∞);E), where t ≥ 0, denote the Sobolev space
of continuous functions x : [t,∞) → E, whose derivative
ẋ(s) exists for a.e. s ≥ t, ẋ(·) is locally Bochner integrable
on [t,∞) and x(τ) =

∫ τ
t
ẋ(s)ds+x(t) for every τ ∈ [t,∞).

III. VALUE FUNCTION

Let L : IR+ × E × E → IR ∪ {+∞} be an integrand.
Given an arc x(·) ∈W 1,1

loc ([t,∞), E), define∫ ∞
t

L(s, x(s), ẋ(s))ds = lim
T→∞

∫ T

t

L(s, x(s), ẋ(s))ds

for every t ∈ IR+ provided the above limit does exist.
Let Γ : IR+×E  E be a multifunction. Define the set of

admissible trajectories starting at time t ∈ IR+ from a given
initial condition ξ ∈ E by A(t,ξ) ={
x(·) ∈W 1,1

loc ([t,∞), E) | ẋ(s) ∈ Γ(s, x(s)) a.e., x(t) = ξ
}
.

Then the value function V : IR+ × E → IR ∪ {±∞} is

V (t, ξ) = inf
x(·)∈A(t,ξ)

∫ ∞
t

L(s, x(s), ẋ(s))ds. (Pt)

In the above we set V (t, ξ) = +∞ if A(t,ξ) is empty or if
for every x(·) ∈ A(t,ξ) the integral

∫∞
t
L(s, x(s), ẋ(s))ds

is not well-defined. The effective domain of V is domV =
{(t, x) ∈ IR+ × E | V (t, x) < +∞}. For every (t, ξ) ∈
domV , an admissible trajectory x(·) ∈ A(t,ξ) is said to be
optimal for (Pt) if

∫∞
t
L(s, x(s), ẋ(s))ds = V (t, ξ) > −∞.

The standing hypothesis are as follows.
(H1) A(t,ξ) is nonempty for every (t, ξ) ∈ IR+ × E.
(H2) L(·, x, y) is measurable for every (x, y) ∈ E × E.
(H3) There exist integrable functions l0, l1 : IR+ →

IR+, and a locally bounded, integrable function
l2 : IR+ → IR+ such that |L(t, 0, 0)| ≤ l0(t),

|L(t, x, y)−L(t, x′, y′)| ≤ l1(t)‖x−x′‖+l2(t)‖y−y′‖

for a.e. t ∈ IR+ and all (x, y), (x′, y′) ∈ E × E.
(H4) Γ has nonempty closed values.

(H5) Γ(·, x) is measurable for every x ∈ E.
(H6) There exist locally integrable γ0 : IR+ → IR+ and

γ1 : IR+ → IR+ such that Γ(t, 0) ⊂ γ0(t)B,

Γ(t, x) ⊂ Γ(t, x′) + γ1(t)‖x− x′‖B

for a.e. t ∈ IR+ and all x, x′ ∈ E.
(H7) ∫ ∞

0

exp

(∫ s

0

γ1(τ)dτ

)(
1 +

∫ s

0

γ0(τ)dτ

)
×

(l1(s) + l2(s)γ1(s))ds <∞.

The above assumptions and the results from [22] imply
Theorem 1: If (H1)–(H7) hold, then V is bounded, lower

semicontinuous on IR+×E, and V (t, · ) is Lipschitz of rank
k(t) on E for every t ∈ IR+ with a continuous decreasing
function k : IR+ → IR+ satisfying k(t)→ 0 as t→∞.

A. Subdifferentiability of the Value Function

Let us denote by L−x (t, x̄, ȳ; v) (resp. L+
x (t, x̄, ȳ; v)) the

lower (resp. upper) partial directional derivative of L(t, ·, ȳ)
at x̄ ∈ E in the direction v ∈ E; L−y (t, x̄, ȳ; v) and
L+
y (t, x̄, ȳ; v) have obvious meanings. Then ∂−x L(t, x̄, ȳ)

(resp. ∂+
x L(t, x̄, ȳ)) denotes the Dini-Hadamard partial

subdifferential (resp. superdifferential) of L(t, ·, ȳ) at x̄;
∂−y L(t, x̄, ȳ) and ∂+

y L(t, x̄, ȳ) have similar meanings.
The Clarke partial directional derivatives L◦x(t, x̄, ȳ; v)
and L◦y(t, x̄, ȳ; v), and the Clarke partial subdifferentials
∂◦xL(t, x̄, ȳ) and ∂◦yL(t, x̄, ȳ) are defined in a similar way.

We need another continuity assumption on Γ:

(H′5) Γ(·, x) is lower semicontinuous for every x ∈ E.

Using the Filippov type theorem from [22] we prove
Lemma 1: Suppose (H4), (H′5), (H6). Let x0(·) ∈ A(0,ξ0)

and t ∈ IR+ be such that ẋ0(t) ∈ Γ(t, x0(t)). Fix any
v ∈ Γ(t, x0(t)). Then for every h > 0 there exists xh(·) ∈
W 1,1([t, t+ h];E) such that:

(i) ẋh(s) ∈ Γ(s, xh(s)) a.e., xh(t+ h) = x0(t+ h);
(ii) ‖xh(t)− x0(t)− h(ẋ0(t)− v)‖ = o(h);

(iii) ‖ẋh(·)− v‖L1([t,t+h]) = o(h).
The results below substantially improve those from [6],

[7], [9], [29].
Let x0(·) ∈ A(0,ξ0) be optimal and [t] := (t, x0(t), ẋ0(t)).
Theorem 2: Assume (H1)–(H4), (H

′
5), (H6) and (H7).

Then for a.e. t ≥ 0 and any v ∈ Γ(t, x0(t)),

(i) V −x (t, x0(t); ẋ0(t)− v) ≤ L(t, x0(t), v)− L[t] ;
(ii) −∂−x V (t, x0(t)) ⊂ ∂◦yL[t] +NΓ(t,x0(t))(ẋ0(t)).

Moreover, if for a.e. t ≥ 0, L(t, x0(t), ·) is Gateaux differ-
entiable at ẋ0(t), then for a.e. t ≥ 0,

−∂−x V (t, x0(t)) ⊂ {∇yL[t]}+NΓ(t,x0(t))(ẋ0(t)).

Proof: (i): Let t > 0 be such that the two inclusions in
(H6) hold, v ∈ Γ(t, x0(t)) and xh(·) ∈ W 1,1([t, t + h];E)
be as in the claim of Lemma 1. Then, for every s ∈ [t, t+h]



we have
‖xh(s) −x0(t)‖ ≤ ‖xh(s)− xh(t)‖+ ‖xh(t)− x0(t)‖

≤ h‖v‖+ h‖ẋ0(t)− v‖+ o(h)
≤ h(γ0(t) + γ1(t)‖xh(t)‖+ ‖ẋ0(t)− v‖) + o(h)
≤ h(γ0(t) + γ1(t)(‖x0(t)‖+ h‖ẋ0(t)− v‖)

+h‖ẋ0(t)− v‖+ o(h)
= h(γ0(t) + γ1(t)‖x0(t)‖+ ‖ẋ0(t)− v‖) + o(h)

which yields the following estimates:∣∣∣∫ t+ht
L(s, xh(s), ẋh(s))ds−

∫ t+h
t

L(s, x0(t), v)ds
∣∣∣

≤
∫ t+h
t

(l1(s)‖xh(s)− x0(t)‖+ l2(s)‖ẋh(s)− v‖) ds
≤ (h(γ0(t) + γ1(t)‖x0(t)‖+ ‖ẋ0(t)− v‖) + o(h))×∫ t+h
t

l1(s)ds+ sups∈[t,t+h] l2(s)‖ẋh(·)− v‖L1([t,t+h]).

So the above is equal to o(h). By the separability of E and
[24, Theorem 2.5], there exists a subset I of IR+ such that
the Lebesgue measure of its complement IR+ \ I is zero
with limh↓0 h

−1
∫ t+h
t

L(s, x, v)ds = L(t, x, v) for every
(t, x, v) ∈ I × E × E. We thus obtain: for every t ∈ I ,

lim
h↓0

1

h

∫ t+h

t

L(s, xh(s), ẋh(s))ds = L(t, x0(t), v).

Let t ∈ IR+ be a Lebesgue point of L(·, x0(·), ẋ0(·)). By
the dynamic programming,

V (t, xh(t)) ≤
∫ t+h

t

L(s, xh(s), ẋh(s))ds+V (t+h, x0(t+h)).

Subtracting V (t, x0(t)) =
∫ t+h
t

L[s]ds+V (t+h, x0(t+h))
and using that V (t, ·) is locally Lipschitz, we get∫ t+h

t

L(s, xh(s), ẋh(s))ds−
∫ t+h

t

L[s]ds

≥ V (t, xh(t))− V (t, x0(t))

≥ V (t, x0(t) + h(ẋ0(t)− v))− V (t, x0(t))− o(h).

Dividing by h > 0 and taking the limit as h→ 0 yields

V −x (t, x0(t); ẋ0(t)− v) ≤ L(t, x0(t), v)− L[t].

Since v ∈ Γ(t, x0(t)) is arbitrary, we proved (i).
(ii): Let x∗ ∈ ∂−x V (t, x0(t)), u ∈ KΓ(t,x0(t))(ẋ0(t)).

Then for some θn → 0+ and un ∈ E with un → u we
have ẋ0(t) + θnun ∈ Γ(t, x0(t)) for each n ∈ N. Since
V −x (t, x0(t);−θnun) ≤ L(t, x0(t), ẋ0(t) + θnun)− L[t],

〈x∗,−un〉 ≤
L(t, x0(t), ẋ0(t) + θnun)− L[t]

θn
.

Letting n→∞ yields

〈−x∗, u〉 ≤ L+
y (t, x0(t), ẋ0(t);u) ≤ L◦y(t, x0(t), ẋ0(t);u)

(1)
for every u ∈ KΓ(t,x0(t))(ẋ0(t)). Suppose for a moment that
−x∗ 6∈ ∂◦yL[t] +NΓ(t,x0(t))(ẋ0(t)). Since ∂◦yL[t] is weakly∗

compact, and NΓ(t,x0(t))(ẋ0(t)) is weakly∗ closed, ∂◦yL[t] +
NΓ(t,x0(t))(ẋ0(t)) is weakly∗ closed. Then, by the separation
theorem, there exists v ∈ E such that

〈−x∗, v〉 > sup
y∗∈∂◦

yL[t]

〈y∗, v〉+ sup
z∗∈NΓ(t,x0(t))(ẋ0(t))

〈z∗, v〉.

Thus 〈z∗, v〉 ≤ 0 for every z∗ ∈ NΓ(t,x0(t))(ẋ0(t)). This
means that v ∈ TΓ(t,x0(t))(ẋ0(t)) ⊂ KΓ(t,x0(t))(ẋ0(t)).
The above inequality also implies that 〈−x∗, v〉 >
L◦y(t, x0(t), ẋ0(t); v), in contradiction with (1). This proves
(ii). If t is so that L(t, x0(t), ·) is Gateaux differentiable and
locally Lipschitz at ẋ0(t), then (1) can be replaced by

〈−x∗, u〉 ≤ ∇yL(t, x0(t), ẋ0(t);u)

for every u ∈ KΓ(t,x0(t))(ẋ0(t)). The above arguments are
also valid when we replace ∂◦yL[t] and L◦y(t, x0(t), ẋ0(t); v)
respectively by ∇yL[t] and 〈∇yL[t], v〉.

IV. MAXIMUM PRINCIPLE

A function p : IR+ → E∗ is locally absolutely continuous
if its restriction to any bounded closed interval is absolutely
continuous. A function p(·) is said to be weakly∗ differen-
tiable at t > 0 if there exists x∗ ∈ E∗ such that

lim
h→0

〈
p(t+ h)− p(t)

h
, x

〉
= 〈x∗, x〉.

for every x ∈ E. Then x∗ is called the weak∗ derivative of
p at t and is denoted by ṗ(t) with d

dt 〈p(t), x〉 = 〈ṗ(t), x〉.
The weak∗ differentiability of locally absolutely contin-

uous functions is fundamental in the sequel and can be
deduced from the proof of [26, Lemma].

(H8) For every t ∈ IR+ there exists η > 0 such that

(x0(s) + ηB, ẋ0(s)) ⊂ gph Γ(s, ·) a.e. s ∈ [0, t],

where gph Γ(s, ·) stands for the graph of Γ(s, ·).
Define the Hamiltonian H : IR+×E×E∗ → IR∪{+∞}

H(t, x, x∗) := sup
y∈Γ(t,x)

{〈x∗, y〉 − L(t, x, y)} . (2)

Theorem 3: Assume (H1)–(H4), (H
′
5), (H6)–(H8). If

∂−x V (0, x0(0)) 6= ∅ and ∂+
x L[t] is nonempty a.e., then for

every x∗ ∈ ∂−x V (0, x0(0)) there exists a locally absolutely
continuous p : IR+ → E∗ with p(0) = −x∗ such that

(i) −p(t) ∈ ∂−x V (t, x0(t)) for every t ∈ IR+;
(ii) p(t) ∈ ∂◦yL[t] +NΓ(t,x0(t))(ẋ0(t)) a.e.;

(iii) ṗ(t) ∈ ∂+
x L[t] a.e.;

(iv) H(t, x0(t), p(t)) = 〈p(t), ẋ0(t)〉 − L(t, x0(t)), ẋ0(t))
a.e.;

(v) lim
t→∞

p(t) = 0,

where ṗ(t) denotes the weak∗ derivative of p(·). In partic-
ular, if ∂−x V (0, x0(0)) is nonempty, then ∂−x V (t, x0(t)) is
nonempty for every t ∈ IR+.

Proof: Let t ∈ IR+ and η > 0 be as in (H8). Fix
any x∗ ∈ ∂−x V (0, x0(0)) and let f : [0, t] → E∗ be a
Gelfand integrable selector of the mapping s 7→ ∂+

x L[s]
over the interval [0, t]. Define p(t) =

∫ t
0
f(s)ds − x∗ as a

Gelfand integral. We claim that −p(t) ∈ ∂−x V (t, x0(t)). To
this end, fix any v ∈ E and consider the local perturbation
of x0(·) over [0, t] given by xθ(s) := x0(s) + θv for
s ∈ [0, t]. By construction, ẋθ(s) = ẋ0(s) a.e. s ∈ [0, t]



and xθ(s) ∈ x0(s) + ηB whenever 0 < θ ≤ (1 + ‖v‖)−1η,
and hence, (xθ(s), ẋθ(s)) ∈ gph Γ(s, ·) a.e. s ∈ [0, t]. Thus

V (0, xθ(0)) ≤
∫ t

0

L(s, xθ(s), ẋθ(s))ds+ V (t, xθ(t)).

Subtracting V (0, x0(0)) =
∫ t

0
L[s]ds+ V (t, x0(t)) yields

V (0, xθ(0))− V (0, x0(0)) ≤ V (t, xθ(t))− V (t, x0(t))+∫ t

0

(L(s, xθ(s), ẋθ(s))− L[s]) ds.

Let θn → 0+ be such that

V −x (t, x0(t); v) = lim
n→∞

V (t, x0(t) + θnv)− V (t, x0(t))

θn
.

Using the Lebesgue dominated convergence theorem and
Fatou’s lemma and taking the limit as n→∞ yields

V −x (0, x0(0); v) ≤
∫ t

0
L+
x (s, x0(s), ẋ0(s); v)ds+

V −x (t, x0(t); v) ≤
∫ t

0
〈f(s), v〉ds+ V −x (t, x0(t); v)

= 〈p(t), v〉+ 〈x∗, v〉+ V −x (t, x0(t); v) ∀ v ∈ E.

Since 〈x∗, v〉 ≤ V −x (0, x0(0); v), we obtain 〈−p(t), v〉 ≤
V −x (t, x0(t); v) for every v ∈ E and (i) follows.

Since 〈p(t), y〉 =
∫ t

0
〈f(s), y〉ds− 〈x∗, y〉 for all t ∈ IR+,

y ∈ E and |〈f(s), y〉| ≤ ‖f(s)‖‖y‖ ≤ l1(s)‖y||, we get
|〈p(t + h) − p(t), y〉| ≤ ‖y‖

∫ t+h
t

l1(s)ds, and therefore,
‖p(t + h) − p(t)‖ ≤

∫ t+h
t

l1(s)ds for every h > 0. Hence
p is locally absolutely continuous and its weak∗ derivative
ṗ(t) = f(t) exists a.e. This proves (iii). By Theorem 2 and
(i), 〈p(t), ẋ0(t)〉 −L[t] ≥ 〈p(t), y〉 −L(t, x0(t), y) for every
y ∈ Γ(t, x0(t)) implying the maximum principle (iv). Thus,
for a.e. t ∈ IR+ and every v ∈ TΓ(t,x0(t))(ẋ0(t)), we have
〈p(t), v〉 ≤ L−y (t, x0(t), ẋ0(t); v) ≤ L◦y(t, x0(t), ẋ0(t); v)
and condition (ii) follows from the separation argument as
in the proof of Theorem 2. To get (v) recall that by Theorem
1, V (t, ·) is Lipschitz of rank k(t) with k(t)→ 0 as t→∞.
Therefore, ‖p(t)‖ ≤ k(t)→ 0.

V. RELAXED VARIATIONAL PROBLEMS

The significance of Theorems 2 and 3 is severely lim-
ited whenever, ẋ0(t) happens to be an isolated point in
Γ(t, x0(t)) on a set of positive measure, because on this
set NΓ(t,x0(t))(ẋ0(t)) is the whole space. To overcome this
limitation, the relaxation technique provides some additional
information on the subdifferentiability of the value function.

Define the multifunction Γ̃ : IR+ × E  IR× E by

Γ̃(t, x) = {(r, y) ∈ IR× E | r = L(t, x, y), y ∈ Γ(t, x)} .

Then Γ̃(t, x) is the augmented velocity set. The relaxed
variational problem, which is a convexified problem corre-
sponding to (Pt), is as follows.

Ṽ (t, ξ) = inf
ψ(·)∈L1(IR+)

x(·)∈W 1,1
loc ([t,∞);E)

∫ ∞
t

ψ(s)ds

(ψ, ẋ)(s) ∈ co Γ̃(s, x(s)) a.e., x(t) = ξ.

(RPt)

Ṽ : IR×E → IR∪{±∞} is the value function of the relaxed
problem. Define the set of admissible relaxed trajectories
starting at time t ≥ 0 from the initial condition ξ ∈ E by

Ã(t,ξ) :=
{(∫ ·

0
ψ(τ)dτ, x(·)

)
∈W 1,1

loc ([t,∞); IR× E) |

(ψ(s), ẋ(s)) ∈ co Γ̃(s, x(s)) a.e. s ∈ [t,∞), x(t) = ξ
}
.

For (t, ξ) ∈ dom Ṽ , a trajectory (
∫ ·

0
ψ(τ)dτ, x(·)) ∈ Ã(t,ξ)

is said to be optimal for (RPt) if it satisfies
∫∞
t
ψ(s)ds =

Ṽ (t, ξ) > −∞. Then Ṽ (t, ξ) ≤ V (t, ξ), ∀ (t, ξ) ∈ dom Ṽ .
Denote by B̃ the open unit ball in IR×E, where the norm

in IR×E is given by ‖(r, x)‖ := |r|+ ‖x‖. It is easy to see
that if (H2)–(H6) hold, then Γ̃ has nonempty closed values,
is measurable with respect to the first variable and satisfies
assumptions similar to (H6).

The following relaxation result for differential inclusions
is a special case of [22, Theorem 2.5].

Lemma 2: Let 0 ≤ t0 < t1. If (H4), (H5) and (H6)
hold, then for any y(·) ∈ W 1,1([t0, t1];E) with ẏ(t) ∈
co Γ(t, y(t)) a.e. and every ε > 0 there exists x(·) ∈
W 1,1([t0, t1];E) with ẋ(t) ∈ Γ(t, x(t)) a.e. such that
x(t0) = y(t0) and supt∈[t0,t1] ‖x(t)− y(t)‖ < ε.

It implies the following theorem.
Theorem 4: If (H1)–(H7) hold, then V coincides with

Ṽ . In particular, If x(·) ∈ A(t,ξ) is optimal for (Pt), then
(
∫ ·
t
L(τ, x(τ), ẋ(τ))dτ, x(·)) ∈ Ã(t,ξ) is optimal for (RPt).

Define the “relaxed” Lagrangian L̃ : IR+ × E × E →
IR ∪ {+∞} of L by: for any y ∈ co Γ(t, x)

L̃(t, x, y) = inf
{
r ∈ IR | (r, y) ∈ co Γ̃(t, x)

}
and set L̃(t, x, y) = +∞ if y /∈ co Γ(t, x).

Then L̃ ≤ L on gph co Γ̃, and L̃(t, x, ·) is lower semicon-
tinuous and convex on E for every (t, x) ∈ IR+.

(H′2) L(·, x, y) is continuous for every (x, y) ∈ E × E.
Theorem 5: If (H1), (H′2), (H3), (H4), (H

′
5), (H6) and

(H7) hold, then:
(i) V −x (t, x0(t); ẋ0(t)− v) ≤ L̃(t, x0(t), v)− L̃[t] for a.e.

t ∈ IR+ and every v ∈ co Γ(t, x0(t));
(ii) −∂−x V (t, x0(t)) ⊂ ∂−y L̃[t] a.e. t ∈ IR+;

(iii) ∂−y L̃[t] ⊂ ∂◦yL[t] +Nco Γ(t,x0(t))(ẋ0(t)) a.e. t ∈ IR+.
Proof: (i): (H3) implies that for a.e. t ≥ 0, L̃(t, ·, ·) has

finite values on gph co Γ(t, ·). Since l2(·) is locally bounded,
(H′2) guarantees that L(·, x, ·) is continuous on IR+×E for
every x ∈ E. Then Γ̃(·, x) is lower semicontinuous, and
hence, co Γ̃(·, x) is also lower semicontinuous. Let t ∈ IR+

be a Lebesgue point of s 7→
∫ s

0
L(τ, x0(τ), ẋ0(τ))dτ such

that ẋ0(t) ∈ Γ(t, x0(t)). Take any (r, v) ∈ co Γ̃(t, x0(t)).
Applying Lemma 1 to co Γ̃, for every h > 0 there exists
(ah(·), xh(·)) ∈W 1,1([t, t+ h]; IR× E) such that:
(a) (ȧh, ẋh)(s) ∈ co Γ̃(s, xh(s)) a.e., xh(t+h) = x0(t+h);
(b) ‖xh(t)− x0(t)− h(ẋ0(t)− v)‖ = o(h);
(c) ‖ȧh(·)− r‖L1([t,t+h]) + ‖ẋh(·)− v‖L1([t,t+h]) = o(h).
By Theorem 4, V (t, xh(t)) =

Ṽ (t, xh(t)) ≤
∫ t+h

t

ȧh(s)ds+ V (t+ h, x0(t+ h)).



Subtracting V (t, x0(t)) =
∫ t+h
t

L[s]ds+V (t+h, x0(t+h))
from the both sides of the above inequality yields∫ t+h

t

ȧh(s)ds−
∫ t+h

t

L[s]ds ≥ V (t, xh(t))− V (t, x0(t))

≥ V (t, x0(t) + h(ẋ0(t)− v))− V (t, x0(t))− o(h).

Thus V −x (t, x0(t); ẋ0(t)− v) ≤ r−L[t]. We proved that for
every v ∈ co Γ(t, x0(t))

V −x (t, x0(t); ẋ0(t)− v) ≤ L̃(t, x0(t), v)− L̃[t].

(ii): Take any x∗ ∈ ∂−x V (t, x0(t)). In the same way as in
the proof of Theorem 2(ii), we obtain

〈−x∗, v〉 ≤ L̃−y (t, x0(t), ẋ0(t); v) (3)

∀ v ∈ Kco Γ(t,x0(t))(ẋ0(t)). If v /∈ Kco Γ(t,x0(t))(ẋ0(t)), then
L̃−y (t, x0(t), ẋ0(t); v) = +∞. Thus inequality (3) is true for
every v ∈ E. Therefore, −x∗ ∈ ∂−y L̃[t].

(iii): If ∂−y L̃[t] is empty, then the inclusion is trivial.
Assume next that ∂−y L̃[t] is nonempty. Observe that L̃[t] =
L[t] a.e. t ∈ IR+, for otherwise we must have V (0, ξ0) 6=
Ṽ (0, ξ0), which contradicts to Theorem 4. Since L̃ ≤ L,

L̃−y (t, x0(t), ẋ0(t); v) ≤ L◦y(t, x0(t), ẋ0(t); v) (4)

for every v ∈ E. Take any x∗ ∈ ∂−y L̃[t] and assume for a
moment that x∗ 6∈ ∂◦yL[t]+Nco Γ(t,x0(t))(ẋ0(t)). In the same
way as before we derive a contradiction.

Corollary 1: Assume (H1), (H′2), (H3), (H4), (H
′
5),

(H6)–(H8). If ∂−x V (0, x0(0)) is nonempty and ∂+
x L[t]

is nonempty for a.e. t ∈ IR+, then for every x∗ ∈
∂−x V (0, x0(0)) there exists a locally absolutely continuous
function p : IR+ → E∗ with p(0) = −x∗ such that all
conclusions of Theorem 3 hold with Γ replaced by co Γ and
moreover p(t) ∈ ∂−y L̃[t] a.e. In particular, if ∂−x V (0, x0(0))
is nonempty, then ∂−x V (t, x0(t)) is nonempty for every
t ∈ IR+.

VI. NECESSARY CONDITIONS WITHOUT THE
INTERIORITY ASSUMPTION

Hypothesis (H8) in Theorem 3 is stringent, mostly be-
cause the velocity multifunction Γ is too general. Hence, a
“structural assumption” on x0(·) compensates this generality.
If instead some “structural” assumptions are imposed on
Γ, then hypothesis (H8) can be omitted. To illustrate this
observation, we consider a standard optimal control problem.

Let X be a complete separable metric space, f : IR+ ×
E × X → E be a velocity function, and U : IR+  X
be a control multifunction. Denote byM(IR+, X) the space
of measurable functions on IR+ with values in X . Define
the integrand L̃ : IR+ × E × X → IR by L̃(t, x, u) :=
L(t, x, f(t, x, u)). The optimal control problem under con-
sideration is as follows:

inf
x(·)∈W 1,1

loc (IR+,E)
u(·)∈M(IR+,X)

∫ ∞
0

L̃(t, x(t), u(t))dt

s.t. u(t) ∈ U(t) a.e. t ∈ IR+,

ẋ(t) = f(t, x(t), u(t)) a.e. t ∈ IR+, x(0) = ξ.

(P̃0)

The Hamiltonian for problem (P̃0) is given by:

H(t, x, x∗) = sup
u∈U(t)

{
〈x∗, f(t, x, u)〉 − L̃(t, x, u)

}
.

The velocity multifunction is defined by Γ(t, x) :=
f(t, x, U(t)). Now impose “usual” assumptions on f and U
in order that Γ satisfies (H1)–(H4), (H

′
5), (H6), and (H7).

Note that ∂+
x L̃(t, x, u) is nonempty at (t, x, u) ∈ IR+×E×X

whenever so is ∂+
x,yL(t, x, f(t, x, u)) and f(t, ·, u) is locally

Lipschitz and Gateaux differentiable at x. Denote by L(E)
the space of bounded linear operators on E.

The following reasonable hypothesis is a “structural as-
sumption” on f that dispenses with (H8).

(H9)(i) f is a Carathéodory function, i.e., f(·, x, u) is
measurable for every (x, u) ∈ E×X and f(t, ·, ·)
is continuous for every t ∈ IR+.

(ii) For every R > 0 and T > 0 there exists an
integrable function k : [0, T ]→ IR such that:
a) ‖f(t, x, u)‖ ≤ k(t) for every t ∈ [0, T ], x ∈

RB, and u ∈ U(t);
b) f(t, ·, u) is Lipschitz of rank k(t) on RB for

every t ∈ [0, T ] and u ∈ U(t).
(iii) f(t, ·, u) is Fréchet differentiable on E for every

(t, u) ∈ IR+ × X and the mapping (t, x, u) 7→
∇xf(t, x, u) is continuous in the uniform oper-
ator topology of L(E).

Conditions (H9)-(i), (ii) guarantee the existence of solutions
of the integral equation

x(t) =

∫ t

0

f(s, x(s), u(s))ds+ ξ for every t ∈ IR+

for any control u(·) ∈ M(IR+, X). Moreover the locally
absolutely continuous function x(·) : IR+ → E is a unique
mild solution to the ordinary differential equation (ODE) in
(P̃0)), which has the strong derivative ẋ(t) a.e. t ∈ IR+ (in
view of the separability of E and the Lebesgue theorem).

Let (x0(·), u0(·)) ∈ W 1,1
loc (IR+, E) ×M(IR+, X) be an

optimal trajectory-control pair for optimal control problem
(P̃0). Denote by ∇xf(s, x0(s), u0(s))∗ ∈ L(E∗) the adjoint
operator of ∇xf(s, x0(s), u0(s)) ∈ L(E).

Theorem 6: Suppose that (H1)–(H4), (H
′
5), (H6),

(H7), and (H9) hold with Γ(t, x) = f(t, x, U(t)).
If ∂−x V (0, x0(0)) is nonempty and the mapping
∂+
x L̃(·, x0(·), u0(·)) : IR+  E∗ admits a locally Bochner

integrable selector, then there exists a locally absolutely
continuous function p : IR+ → E∗ such that:

−p(t) ∈ ∂−x V (t, x0(t)) for every t ∈ IR+;

p(t) ∈ ∂◦yL(t, x0(t), f(t, x0(t), u0(t)))+
NΓ(t,x0(t))(f(t, x0(t), u0(t))) a.e. t ∈ IR+;

−ṗ(t) ∈ ∇xf(t, x0(t), u0(t))∗p(t)−
∂+
x L̃(t, x0(t), u0(t)) a.e. t ∈ IR+;

H(t, x0(t), p(t)) = 〈p(t), f(t, x0(t), u0(t))〉−
L̃(t, x0(t), u0(t)) a.e. t ∈ IR+;

limt→∞ p(t) = 0,



where ṗ(t) denotes the strong derivative of p(·) at t ∈
IR+. In particular, if ∂−x V (0, x0(0)) is nonempty, then
∂−x V (t, x0(t)) is nonempty for every t ∈ IR+.
The proof of the above theorem is quite technical and will
be published elsewhere.

Remark 1: The existence of locally Bochner inte-
grable selectors from the superdifferential mapping t  
∂+
x L̃(t, x0(t), u0(t)) follows from (H3) and (H9) when-

ever E∗ is separable in the dual norm. For the case
with nonseparable E∗, the Fréchet differentiability of
the integrand L(t, ·, ·) on E × E and the continuity of
(t, x, y) 7→ (∇xL(t, x, y),∇yL(t, x, y)) in the dual norm
of E∗ × E∗ guarantee the local Bochner integrability of
t 7→ ∇xL̃(t, x0(t), u0(t)) in E∗ under (H3) and (H9). If
∂+
x,yL(t, x0(t), ẋ0(t)) is nonempty, then take any (p, q) ∈
∂+
x,yL(t, x0(t), ẋ0(t)) and observe that for every v ∈ E and
u ∈ U(t), we have:

L̃+
x (t, x, u; v) ≤ L+

x,y(t, x, f(t, x, u); v,∇xf(t, x, u)v)

≤ 〈p, v〉+ 〈q,∇xf(t, x, u)v〉 = 〈p+∇xf(t, x, u)∗q, v〉.

VII. CONCLUSIONS

It is well known that in optimal control of finite horizon
problems the adjoint state can be related to generalized gradi-
ents of the value function. In the present paper we considered
an infinite horizon problem with dynamics described by a
differential inclusion and derived relations of subdifferential
of the value function to generalized gradients of the integrand
and normals to the set of admissible velocities along the
optimal trajectories. Under an additional assumption we have
also shown that for any optimal trajectory there exist solu-
tions of the Euler-Lagrange inclusions satisfying in addition
the Weierstrass type conditions and a sensitivity relation.
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Boston, 1990.

[5] Barbu, V., “Convex control problems and Hamiltonian systems on
infinite intervals”, SIAM J. Control Optim. 16 (1978), 895–911.

[6] Benveniste, L. M. and J. A. Scheinkman, “On the differentiability of
the value function in dynamic models of economics”, Econometrica
47 (1979), 727–732.

[7] Benveniste, L. M. and J. A. Scheinkman, “Duality theory for dynamic
optimization models of economics: The continuous time case”, J.
Econom. Theory 27 (1982), 1–19.

[8] Beyn, W.-J., T. Pampel and W. Semmer, “Dynamical optimization and
Skiba sets in economic examples”, Optim. Control Appl. Mech. 22
(2001), 251–280.

[9] Bonnisseau, J. M. and C. Le Van, “On the subdifferential of the value
function in economic optimization problems”, J. Math. Econom. 25
(1996), 55–73.

[10] Boucekkine, R., C. Camacho and G. Fabbric, “Spatial dynamics and
convergence: The spatial AK model”, J. Econom. Theory 148 (2013),
2719–2736.

[11] Brock, W. A. and J. A. Scheinkman, “Global asymptotic stability of
optimal control systems with applications to the theory of economic
growth”, J. Econom. Theory 12 (1976), 164–190.

[12] Cannarsa, P. and H. Frankowska, “Value function and optimality
conditions for semilinear control problems”, Appl. Math. Optim. 26
(1992), 139–169.

[13] Cannarsa, P. and H. Frankowska, “Value functions, relaxation, and
transversality conditions in infinite horizon optimal control”, J. Math.
Anal. Appl. 457 (2018), 1188–1217.

[14] Cass, D. and K. Shell, “The structure and stability of competitive
dynamical systems”, J. Econom. Theory 12 (1976), 31–70.

[15] Clarke, F. H., Optimization and Nonsmooth Analysis, John Wiley &
Sons, New York, 1983.

[16] Clarke, F. H. and R. B. Vinter, “Local optimality conditions and Lips-
chitzian solutions to the Hamilton–Jacobi equation”, SIAM J. Control
Optim. 21 (1983), 856–870.

[17] Clarke, F. H. and R. B. Vinter, “The relationship between the maximum
principle and dynamic programming”, SIAM J. Control Optim. 25
(1987), 1291–1311.

[18] Crandall, M. G., L. C. Evans and P. L. Lions, “Some properties of
viscosity solutions of Hamilton–Jacobi equations”, Trans. Amer. Math.
Soc. 282 (1984), 487–502.

[19] Crandall, M. G. and P. L. Lions, “Viscosity solutions of Hamilton–
Jacobi equations”, Trans. Amer. Math. Soc. 277 (1983), 1–42.

[20] Davidson, R. and R. Harris, “Non-convexities in continuous-time
investment theory”, Rev. Econ. Stud. 48 (1981), 235–253.

[21] Frankowska, H., “Optimal trajectories associated with a solution of the
contingent Hamilton–Jacobi equation”, Appl. Math. Optim. 19 (1989),
291–311.

[22] Frankowska, H., “A priori estimates for operational differential inclu-
sions”, J. Differential Equations 84 (1990), 100–128.

[23] Frankowska, H. and M. Mazzola, “On relations of the adjoint state to
the value function for optimal control problems with state constraints”,
Nonlinear Differential Equations and Applications, 20 (2013), 361–
383.

[24] Frankowska, H., S. Plaskacz and T. Rzeżuchowski, “Measurable
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