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DECAY FOR THE KELVIN-VOIGT DAMPED WAVE EQUATION: PIECEWISE SMOOTH DAMPING

We study the energy decay rate of the Kelvin-Voigt damped wave equation with piecewise smooth damping on the multi-dimensional domain. Under suitable geometric assumptions on the support of the damping, we obtain the optimal polynomial decay rate which turns out to be different from the one-dimensional case studied in [LR05]. This optimal decay rate is saturated by high energy quasi-modes localised on geometric optics rays which hit the interface along non orthogonal neither tangential directions. The proof uses semi-classical analysis of boundary value problems.

The damping a(x) ≥ 0 is assumed to be piecewise smooth. Denote by H 1 = H 1 0 × L 2 . The solution of (1.1) can be written as

U(t) = u(t) ∂ t u(t) = e tA u 0 u 1 ,
where the generator

A = 0 1 ∆ diva∇ (1.2)
with domain

D(A) = {(u 0 , u 1 ) ∈ H 1 0 × L 2 : ∆u 0 + diva∇u 1 ∈ L 2 , u 1 ∈ H 1 0 }. Note that the energy E[u](t) = 1 2 e tA (u 0 , u 1 ) 2 H 1 = 1 2 Ω |∂ t u| 2 + |∇u| 2 dx satisfies E[u](t) -E[u](0) = - t 0 Ω a(x)|∇ x ∂ t u| 2 (s, x)ds 1
It was proved in [START_REF] Burq | Imperfect geometric control and overdamping for the damped wave equation[END_REF] and [START_REF] Burq | Decay rates for the Kelvin-Voigt damped wave equation II: The geometric control condition[END_REF] (see also [START_REF] Liu | Exponential stability for the wave equation with local kelvin-voigt damping[END_REF], [START_REF] Tebou | Stabilization of some elastodynamic systems with localized Kelvin-Voigt damping[END_REF] for related results) that if a is smooth, vanishing nicely and the region {x ∈ Ω : a(x) > 0} controls geometrically Ω, then the rate of decay of the energy is exponential:

E[u](t) ≤ Ce -ct E[u](0).
In this article, we investigate the different case where the damping a(x) is piecewise smooth and has a jump across some hypersurface Σ ⊂ Ω. Unlike the smooth damping vanishing nicely, the problem with piecewise damping can be seen as an elliptic-hyperbolic transmission system on the two sides of the interface Σ connected by some transmission condition. The interface becomes a wall to reduce the energy transmission from the hyperbolic region to the damped region. This phenomenon is known as overdamping. It turns out that this discontinuous Kelvin-Voigt damping ∇ • (a(x)∇∂ t u) does not follow the principle that the "geometric control condition" implies the exponential stabilization, which holds for the wave equation with localized viscous damping a(x)∂ t u (see [START_REF] Liu | Characterization of polynomial decay rate for the solution of linear evolution equation[END_REF][START_REF] Zhang | Polynomial decay of an elastic/viscoelastic waves interaction system[END_REF] for results using the multiplier methods) 1.2. The main result. To state our main result, we first make some geometric assumptions.

Let Ω ⊂ R d with d ≥ 2. We consider the piecewise smooth damping a ∈ C ∞ (Ω 1 ), a| Ω\Ω 1 = 0, such that there exists α 0 > 0, inf

x∈∂Ω 1 a(x) ≥ α 0 ,
where Ω 1 ⊂ Ω. We assume that ∂Ω 1 consists of ∂Ω and Σ = ∂Ω 1 \ ∂Ω where Σ ⊂ Ω. Denote by Ω 2 = Ω \ (Ω 1 ∪ Σ), then ∂Ω 2 = Σ is the interface. We will fix this geometry in this article and assume that Ω 1 , Ω 2 and Σ are smooth (C ∞ , though this assumption could be relaxed to a finite number of derivatives).

Ω 1 : a(x) ≥ α 0 Ω 2 : a(x) = 0 ν Σ Geometry of the damped region Definition 1.1 (Geometric control condition). We say that Ω 1 satisfies the geometric control condition, if all generalized rays (geometric optics reflecting on the boundary ∂Ω according to the laws of geometric optics) of Ω eventually reach the set Ω 1 in finite time.

An alternative (equivalent in this context) property is the following (H) All the bicharacteristics of Ω 2 will reach a non-diffractive point (with respect to the domain Ω 2 ) at the boundary Σ.

Theorem 1. Assume that Ω, Ω 1 , Ω 2 and a(x) satisfy the above geometric conditions. Then under the hypothesis (H), there exists a uniform constant C > 0, such that for every (u 0 , u 1 ) ∈ D(A) and t ≥ 0, e tA (u 0 , u 1 ) ≤ C 1 + t (u 0 , u 1 ) D(A) .

(1.3)

Moreover, the decay rate is optimal in the following sense: when Ω ⊂ R d , d ≥ 2 and Ω 2 = D ⊂ Ω is a unit ball, Ω 1 = Ω\Ω 2 , the semi-group e tA associated with the damping a(x) = 1 Ω 1 (x) satisfies sup 0 =(u 0 ,u 1 )∈D(A)

e tA (u 0 , u 1 ) H 1 (u 0 , u 1 )

D(A) ≥ C ′ 1 + t , (1.4) 
for all t ≥ 0, where C ′ > 0 is a uniform constant.

Remark 1.2. In [START_REF] Burq | Decays for Kelvin-Voigt damped wave equation I[END_REF], under the geometric control condition, a weaker decay rate, namely 1 √ 1+t was achieved with a simpler and very robust general proof requiring much less rigidity on the geometric setting. Notice also that in dimension 1, a stronger decay rate, namely 1 (1+t) 2 is known to hold [LR05, Section 3, Example 1]. It is hence remarquable that in higher dimensions we can construct examples of geometries where the 1 (1+t) decay rate is saturated. This phenomenon is linked to the fact that in higher dimensions there exists sequences of eigenfunctions of the Laplace operator in Ω 2 with Dirichlet boundary condidtions (or at least high order quasimodes), with mass concentrated along rays which do not encounter the boundary at normal incidence (a fact which is clearly false in dimension 1, seeing that in this case the incidence is always normal).

Ω 1 Ω 2 Σ Angle of incidence is acute Remark 1.3.
Let us mention that the non-exponential stability for (1.1) and a more general (theromo)viscoelastic system were studied in [MRa], where the authors obtained a rougher polynomial decay rate O(t -1 3 ). Moreover, in our result, the damped region (Ω 1 ) only needs to satisfy the geometric control condition, so the geometric configuration in Munoz Rivera-Racke is contained in our assumption.

Remark 1.4. The choice of Dirichlet boundary conditions on ∂Ω plays no particular role, and we could have taken any type of boundary conditions for which the system is well posed and we have propagation of singularities (e.g. Neumann boundary conditions)

Remark 1.5. The picture for Kelvin Voigt damping is now quite complete for smooth (essentially C 2 ) dampings [START_REF] Burq | Imperfect geometric control and overdamping for the damped wave equation[END_REF] and [START_REF] Burq | Decay rates for the Kelvin-Voigt damped wave equation II: The geometric control condition[END_REF] (and also [START_REF] Liu | Exponential stability for the wave equation with local kelvin-voigt damping[END_REF], [START_REF] Tebou | Stabilization of some elastodynamic systems with localized Kelvin-Voigt damping[END_REF]), or discontinuous dampings, see in dimension 1 [LR05, Section 3, Example 1], and the present paper. It would be interesting to understand the intermediate situation (C α , α ∈ (0, 2), dampings). We refer to [HZZ] for resuts in this direction in dimension 1.

Remark 1.6. In this article, we do not treat the case where Σ ∩ ∂Ω = ∅. In that case, ∂Ω 2 can be only Lipchitz, and more technical treatments for the propagation of singularities are needed near the points Σ ∩ ∂Ω.

Theorem 2. We have Spec(A) ∩ iR = ∅. Moreover, there exists C > 0, such that for all

λ ∈ R, |λ| ≥ 1, (iλ -A) -1 L(H) ≤ C|λ|. (1.5) Moreover, when Ω ⊂ R d , d ≥ 2 and Ω 2 = D ⊂ Ω is a unit ball, Ω 1 = Ω \ Ω 2 , we actually have a lower bound: lim sup λ→+∞ λ -1 (iλ -A) -1 L(H) = c > 0.
In other words, there exist sequences (U n ) ⊂ H 1 and λ n → +∞ such that

U n H = 1, (iλ n -A)U n H = O(λ -1 n ).
(1.6)

• Theorem 1 and Theorem 2 are essentially equivalent. Indeed, the equivalence between the resolvent estimate (1.5) and the decay rate (1.3) is covered by Theorem 2.4 of [START_REF] Borichev | Optimal polynomial decay of functions and operator semigroups[END_REF]. It is very likelly that (1.4) and (1.5) are also equivalent. However, we prove here only the fact that (1.6) implies (1.4). We argue as follows: Let U n be a sequence of quasi-modes associated with λ n (λ n → +∞) that saturates (1.5). Denote by F n = (iλ n -A)U n . We have

U n H = 1, F n H = O(λ -1 n ), U n D(A) ∼ λ n .
Define U n (t) = e tA U n and we write

U n (t) = e iλnt U n + R n (t), then (∂ t -A)R n = -(iλ n -A)e itλn U n = O H (λ -1 n ), R n (0) = 0. Since R n (t) = - t 0 e (t-s)A (iλ n -A)e isλn U n ds, we deduce that R n (t) H = O(λ -1 n t) for t > 0. Assume that κ(t)
is the optimal decay rate of the energy, then by E[U n (t)]

1 2 = U n (t) H ≤ κ(t) 1 2 U n D(A) we have C 1 κ(t) 1 2 λ n ≥ 1 -R n (t) H = 1 -C 2 λ -1 n t.
For fixed t > 0, we choose n large enough such that C 2 λ -1 n t = 1 2 , thus we obtain that

κ(t) 1 2 ≥ 1 2C 1 λ n = 1 C 1 C 2 t .
This proves (1.4). As a consequence, we shall in the sequel reduce the analysis to the proof of Theorem 2.

This article is organized as follows. We present the proof of (1.5) of Theorem 2 in Section 2, Section 3 and Section 4. The proof follows from a contradiction argument which reduces the matter to study the associated high energy quasi-modes. In Section 2, we reduce the equation of quasi-modes to a transmission problem, consisting of an elliptic system in Ω 1 and a hyperbolic system in Ω 2 , coupled at the interface Σ. Both systems are semi-classical but with different scales h, = h 1/2 . Next in Section 3, we study the elliptic system and obtain the information of the quasi-modes restricted to the interface by transmission conditions. Then in Section 4, we prove the propagation theorem for the hyperbolic problem in Ω 2 which will lead to a contradiction. We need to analyze two semi-classical scales corresponding to the elliptic and hyperbolic region, connected by the transmission condition on the interface. Finally in Section 5, we construct a sequence of quasi-modes saturating the inequality (1.5) in a simple geometry. In particular this proves the optimality of the resolvent estimate. We collect various toolboxes in the final section of the appendix.

Throughout this article, we adopt the standard notations in semi-classical analysis (see for example [START_REF] Zworski | Semiclassical analysis[END_REF]). We will use the standard quantization for classical and semi-classical pseudodifferential operators Op, Op h , Op . We will also adopt the usual asymptotic notations, such as O(h α ), O( α ) and o(h α ), o( α ), as h → 0. Moreover, for a Banach space X and h-dependent families of functions f h , g h , we mean

f h = O X (h α ), g h = o X (h α ), if f h X = O(h α ), g h X = o(h α ), as h → 0.
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Reduction to a transmission problem

It was proved by the first author in [START_REF] Burq | Decays for Kelvin-Voigt damped wave equation I[END_REF] that (Aiλ) -1 L(H) ≤ Ce c|λ| under more general conditions for the damping. Therefore, the proof of the first part of Theorem 2 (i.e. (1.5)) is reduced to the high energy regime |λ| → +∞. For this, we argue by contradiction. Assume that (1.5) is not true, then there exist h-dependent functions U = u v , F = f g , such that

U j H 1 ×L 2 = O(1), F j H 1 ×L 2 = o(h) (2.1) (A -ih -1 )U = F. (2.2)
Let ν be the unit normal vector pointing to the undamped region Ω. Denote by a 1 (x) = a(x)1 Ω 1 Let U = u v and F = f g . Then for U ∈ D(A) and F ∈ H, the equation (Aiλ)U = F is equivalent to (h = λ -1 ) the following system for u j = u1 Ω j , f j = f 1 Ω j , and

g j = g1 Ω j , j = 1, 2:            u 1 = ih(f 1 -v 1 ), in Ω 1 h∆u 1 + h∇ x • (a 1 (x)∇v 1 ) -iv 1 = hg 1 , in Ω 1 u 2 = ih(f 2 -v 2 ), in Ω 2 h∆u 2 -iv 2 = hg 2 , in Ω 2 (2.3)
with boundary condition on the interface

u 1 | Σ = u 2 | Σ , ∂ ν u 2 | Σ = (∂ ν u 1 + a 1 ∂ ν v 1 )| Σ , (2.4) 
Indeed, the equations inside Ω 1 , Ω 2 can be verified directly. The first boundary condition is just the fact that the function u equal to u j in Ω j must have no jump at the interface to enssure taht ity belongs to H 1 (Ω). To check the second boundary condition, we take an arbitrary test function ϕ ∈ C ∞ c (Ω) and multiply the equation h∆uiv + hdiva∇v = 0 by ϕ. We obtain that

0 = -h Ω ∇u • ∇ϕ -h Ω a∇v • ∇ϕ -i Ω vϕ = - 2 j=1 Ω j h∇u j • ∇ϕ -iv j ϕ -h Ω 1 a 1 (x)∇v 1 • ∇ϕ = 2 j=1 Ω j h∆u j ϕ -iv j ϕ + Ω 1 h∇ x • (a 1 (x)∇v 1 ) • ϕ + h Σ (∂ ν u 2 -∂ ν u 1 -a 1 ∂ ν v 1 )| Σ • ϕ.
Using the differential equations in Ω 1 , Ω 2 , the last term on the right side is equal to

h Σ (∂ ν u 2 -∂ ν u 1 -a 1 ∂ ν v 1 )| Σ • ϕ| Σ ,
hence it must vanish for all ϕ. This verifies (2.4).

First we prove an a priori estimate for these functions:

Lemma 2.1 (A priori estimate). Denote by U j = u j v j , F j = f j g j , for j = 1, 2. Assume that U j H 1 ×L 2 = O(1) and F j H 1 ×L 2 = o(h), then we have

∇v 1 L 2 = o(h 1 2 ), v 1 L 2 = o(h) and ∇u 1 L 2 = o(h 3 2 ), u 1 L 2 = o(h 2 ).
Consequently, by the trace theorem, we have

u 1 H 1 2 (Σ) = o(h 3 2 ), v H 1 2 (Σ) = o(h 1 2 ).
Proof. First we observe that, from the relation between u and v, we deduce that ∇v ∈ L 2 (Ω) and

∇v j L 2 (Ω j ) = O(h -1 ), j = 1, 2. (2.5)
Moreover, by the trace theorem,

v 1 | Σ = v 2 | Σ as functions in H 1 2 ( 
Σ). From the system (2.3), we have

(∇u 1 , ∇v 1 ) L 2 (Ω 1 ) = ih(∇f 1 , ∇v 1 ) L 2 (Ω 1 ) -ih ∇v 1 2 L 2 (Ω 1 ) -(∇u 1 , ∇v 1 ) L 2 (Ω 1 ) -a 1/2 1 ∇v 1 2 L 2 (Ω 1 ) + (∂ ν u 1 + a 1 ∂ ν v 1 , v 1 ) L 2 (Σ) (2.6) = ih -1 v 1 2 L 2 (Ω 1 ) + (g 1 , v 1 ) L 2 (Ω 1 ) -(∇u 2 , ∇v 2 ) L 2 (Ω 2 ) (2.7) = ih(∇f 2 , ∇v 2 ) L 2 (Ω 2 ) -ih ∇v 2 2 L 2 (Ω 2 ) -(∇u 2 , ∇v 2 ) L 2 (Ω 2 ) -(∂ ν u 2 , v 2 ) L 2 (Σ) (2.8) = ih -1 v 2 2 L 2 (Ω 2 ) + (g 2 , v 2 ) L 2 (Ω 2 ) .
(2.9)

Taking the real part of (2.6)+(2.7)-(2.8)+(2.9), we deduce that ∇v 1 2 L 2 (Ω 1 ) = o(h), thanks to the boundary condition (2.4) and v 1 | Σ = v 2 | Σ . Therefore, from the first equation of (2.3), we have ∇u 1 2 L 2 (Ω 1 ) = o(h 3 ). Then, using this fact and the second equation of (2.3), we deduce that

iv 1 = h∆u 1 + h∇ • (a 1 ∇v 1 ) -hg 1 = O H -1 (Ω 1 ) (h 3 2 ).
By interpolation, we have v 1 = o L 2 (Ω 1 ) (h), and from

u 1 = ih(f 1 -v 1 ), u 1 = o L 2 (Ω 1 ) (h 2
). This completes the proof of Lemma 2.1.

Estimates of the elliptic system

3.1. Standard theory. We briefly recall the semiclassical elliptic boundary value problem near the interface Σ. In what follows, we will sketch the parametrix construction for (3.1), following [START_REF] Burq | Mesures de défaut de compacité, application au système de Lamé[END_REF]. Near a point x 0 ∈ Σ, we use the coordinate system (y, x ′ ) where

Ω 1 = {(y, x ′ ) : y > 0} near x 0 . L w = κ = o L 2 ( 2 ), w| Ω 1 = o H 1 ( ), w| Σ = o H 1 2 ( ) (3.1)
where in the local coordinate chart,

L := 2 D 2 y -R(y, x ′ , D x ′ ) + d-1 j=1 M j (y, x ′ ) ∂ x ′ j + H(y, x ′ ) ∂ y .
Here R(y, x ′ , D x ′ ) is a second order semiclassical differential operator in x ′ with the principal symbol r(y, x ′ , ξ ′ ). The principal symbol of L is

l(y, x ′ , η, ξ ′ ) = η 2 -r(y, x ′ , ξ ′ ),
and we denote by

m(y, x ′ , η, ξ ′ ) = d-1 j=1 M j (y, x ′ )ξ ′ j + H(y, x ′ )η.
The set of elliptic points in T * ∂Ω is given by

E := {(y = 0, x ′ , ξ ′ ) : r(0, x ′ , ξ ′ ) < 0} By homogeneity, near a point ρ 0 ∈ E -r(y, x ′ , ξ ′ ) ≥ c(ρ 0 )|ξ ′ | 2 . (3.2)
Denote by w := w1 y≥0 the extension by zero of w, and the same for κ, etc. Then w satisfies the equation

L w = -( ∂ y w)| y=0 ⊗ δ y=0 + 2 w| y=0 ⊗ δ ′ y=0 + 2 H(0, x ′ )w| y=0 ⊗ δ y=0 + κ. (3.3) Let ϕ(y, x ′ ) be a cut-off to the local chart. Let ψ ∈ C ∞ (R d-1
), be a Fourier multiplier in S 0 ξ ′ such that on the support of ϕ(y, x ′ )ψ(ξ ′ ), (3.2) holds and ϕ(y, x ′ )ψ(ξ ′ ) = 1 near ρ 0 . We define

e 0 (y, x ′ , η, ξ ′ ) := ϕ(y, x ′ )ψ(ξ ′ ) l(y, x ′ , η, ξ ′ ) (3.4)
and e j , j ≥ 1 inductively by

e 1 • l = - |α|=1 1 i ∂ α ξ ′ ,η e 0 • ∂ α x ′ ,y l -e 0 • m, e j • l = - |α|+k=n,k =n 1 i |α| ∂ α ξ ′ ,η e k • ∂ α x ′ ,y l - |α|+k=n-1 1 i |α| ∂ α ξ ′ ,η e k • ∂ α x ′ ,y m.
For any N ∈ N, we define

e N = N j=0 j e j , E N = Op (e N ),
and then

E N L = ϕ(y, x ′ )ψ(ξ ′ )Id + R N , where R N = O( N +1 ) : L 2 x ′ ,y → L 2 x ′ ,y , R N = O( N +1-2M ) : H s x ′ ,y → H s+2M x ′ ,y , and 
E N = O(1) : L 2 x ′ ,y → L 2 x ′ ,y , E N = O( -2 ) : H s x ′ ,y → H s+2 x ′ ,y ,
thanks to Lemma 6.2. Applying E N to the equation (3.3), we obtain that

ϕ(y, x ′ )ψ( D x ′ )w = -2 E N ((∂ y w)| y=0 ⊗ δ y=0 ) + 2 E N (w| y=0 ⊗ δ ′ y=0 ) + 2 E N (Hw| y=0 ⊗ δ y=0 ) +E N κ -R N w. Note that e N (y, x ′ , η, ξ ′ ) is meromorphic in η with poles η ± = ±i -r(y, x ′ , ξ ′ ). Denote by G(x ′ ) = ∂ y w(0, x ′ ) + H(0, x ′ )w(0, x ′ ), we calculate for y > 0, x ′ ∈ R d-1 that 2 E N ((∂ y w + Hw)| y=0 ⊗ δ y=0 )(y, x ′ ) = 2 (2π ) d G( x ′ )e i(x ′ -x ′ )•ξ ′ d x ′ dξ ′ e N (y, x ′ , η, ξ ′ )e iyη dη = i (2π ) d-1 e iyη + n N (y, x ′ , ξ ′ )e i(x ′ -x ′ )•ξ ′ G( x ′ )d x ′ dξ ′ , where n N (y, x ′ , ξ ′ ) = Res(e N (y, x ′ , η, ξ ′ ); η = η + ). Similarly, for y > 0, x ′ ∈ R d-1 , 2 E N (w| y=0 ⊗ δ ′ y=0 )(y, x ′ ) = i (2π ) d w(0, x ′ )e i(x ′ -x ′ )•ξ ′ d x ′ dξ ′ ηe iyη e N (y, x ′ , η, ξ ′ )dη = - 1 (2π ) d-1 e iyη + d N (y, x ′ , ξ ′ )e i(x ′ -x ′ )•ξ ′ w(0, x ′ )d x ′ dξ ′ ,
where

d N = η + n N . Therefore, ϕ(y, x ′ )ψ( D x ′ )w = iOp (e iyη + / n N (y, •)) -( ∂ y w)| y=0 + (Hw)| y=0 -Op (e iyη + / d N (y, •))(w| y=0 ) + E N κ -R N w, (3.5)
where the two operators in the expression above are tangential. Note that by Lemma 6.2

R N w, E N κ = o L 2 x ′ ,y ( 2 ) = o H 2 x ′ ,y (1) 
, hence from the interpolation and the trace theorem, we have

(R N w)| y=0 = o H 1/2 x ′ ( ), (E N κ)| y=0 = o H 1/2 x ′ ( ).
Taking the trace y = 0 for (3.5), we obtain that

Op (ϕ(0, x ′ )ψ(ξ ′ ) + d N (0))(w| y=0 ) = -Op (in N (0))(( ∂ y w)| y=0 + (Hw)| y=0 ) + o H 1/2 x ′ ( ). (3.6) Note that the principal symbols of n N (0), d N (0) are σ(in N (0)) = ϕ(0, x ′ )ψ(ξ ′ ) 2 -r(0, x ′ , ξ ′ ) , σ(d N (0)) = ϕ(0, x ′ )ψ(ξ ′ ) 2 .
In summary, there exists (near ρ 0 ) a -P.d.O N , elliptic and of order 1 classic and of order 0 semi-classic, in the sense that

N = O( ) : H s x ′ → H s-1 x ′ , such that ( ∂ y w)| y=0 = N (w| y=0 + O H 1/2 ( )).
3.2. Control of the semi-classical wave-front set of the trace. For the further need, we should also control the wave front set of the precise elliptic equation (with = h

1 2 ) 2 ∆w - i a 1 w + ∇a 1 a 1 • ∇w = κ,
where the h-semiclassical wave front set of the Neumann data WF h (∂ ν w| Σ ). Here we need to pay attention to two different semi-classical scales.

Proposition 3.1. Assume that w satisfies the -semiclassical elliptic equation (with

= h 1 2 ) 2 ∆w - i a 1 w + ∇a 1 a 1 • ∇w = κ with Neumann trace ∂ ν w| Σ and WF h (∂ ν w| Σ ) is contained in a compact subset of T * Σ \ {0}. Assume moreover that w = O H 1 (h 1 2 ) and κ = O L 2 (h), then we have WF h (w| Σ ) ⊂ WF h (∂ ν w| Σ ) ∪ π WF h (κ) ,
where π : T * Ω 1 → T * Σ is the projection defined for points near T * Σ, and

π WF h (κ) = ρ 0 ∈ T * Σ : ∃ρ ∈ T * Ω 1 , near T * Σ, such that ρ ∈ WF h (κ) and π(ρ) = ρ 0 . Proof. Let (x 0 , ξ 0 ) / ∈ WF h (∂ ν w| Σ ) ∪ π WF h (κ) .
Locally near x 0 ∈ Σ, we can choose local coordinate system as in the previous subsection. Here the cutoff ψ(ξ ′ ) can be chosen as 1, since the operator 2 ∆i is always elliptic. Consider the tangential h-P.d.O A h which is elliptic near (x 0 , ξ 0 ) and its principal symbol is supported away from WF h (∂ ν w| Σ ) ∪ π WF h (κ) . We need to show that (

A h w)| y=0 = O L 2 (Σ) (h ∞ ). From (3.5) we have ϕ(y, x ′ )w =iOp e iyη + n N (y) -( ∂ y w)| y=0 + (Hw)| y=0 -Op e iyη + d N (y) (w| y=0 ) +E N κ + O H 1 (h N 2 ),
where we gain N for R N w. By taking the trace y = 0 and using the fact that d N (0) =1 2 ϕ(0, x ′ ), we obtain that

(A h ϕ(y, x ′ )w)| y=0 + A h Op h (d N (0))w | y=0 -i (A h Op (n N )(Hw)| y=0 = -iA h Op (n N (0))( ∂ y w)| y=0 + (A h E N κ)| y=0 + O H 1 2 y=0 (h N/2 ).
We claim that it suffices to show that

A h Op (n N (0))( ∂ y w)| y=0 = O L 2 y=0 (h ∞ ) and (A h E N κ)| y=0 = O L 2 y=0 (h ∞ ). (3.7)
Indeed, once this is done, we obtain that, at least (A h w)| y=0 = O L 2 ( ) 1 . Now we can replace A h by another tangential operator A h with principal symbol a such that a is supported in a slightly larger region containing supp(a) and a = 1 on supp(a). We still have (

A h w)| y=0 = O L 2 ( ). Now we write A h Op (n N )Hw = A h Op (n N )H A h w + A h Op (n N )H(1 -A h )w.
From Lemma 3.2, the trace of the second term on the right side is O L 2 (h ∞ ). Therefore, the trace of the first term on the right side is

O L 2 ( 2 ), hence (A h w)| y=0 = O L 2 ( 2 ).
Then we can continuously apply this argument to conclude.

It remains to prove (3.7). For this, we just need to interchange the operator A h with E N and Op (n N (0)). Here additional attentions are needed, since Op (n N (0)), E N are -P.d.O. This can be verified from the following lemma:

Lemma 3.2. Assume that a, b, q ∈ S 0 (R n x × R n ξ ), compactly supported in the x variable such that dist supp(a), supp(b) ≥ c 0 > 0. Then for any s ∈ R, N ∈ N, N ≥ 2n, we have a(x, hD x )q(x, h 1 2 D x )b(x, hD x ) = O L 2 →L 2 (h N ).

Proof. Denote by

A(x, y, ξ, η) = a(x, h(ξ + η))q(x + y, h 1 2 ξ).

Then from Lemma 6.3, a(x, hD x )q(x, h

1 2 D x ) = |β|≤N Op h |β| i |β| β! (∂ β ξ a)(x, hξ)(∂ β x q)(x, h 1 2 ξ) +O L(L 2 ) (h N +1-n ), since for any β ∈ N 2n , sup |α|=N +1 sup (x,ξ) R 2n |∂ β x,ξ ∂ α z ∂ α ζ (a(x, h(ξ + ζ))q(x + z, h 1 2 ξ))|dzdζ = O(h N +1-n ).
Using the fact that

h |β| i |β |β! ∂ β ξ a • ∂ β x q • b
= 0, thanks to the support property, we have, using again Lemma 6.3, a(x, hD x )q(x, h

1 2 D x )b(x, hD x ) = O L(L 2 ) (h N )
for any N large enough. This completes the proof.

Therefore the proof of Proposition 3.1 is now complete.

3.3. Estimate of the traces. Let u 1 , v 1 be solutions of the first two equations of (2.3). Consider w = u 1 + a 1 v 1 , then under the assumption of Lemma 2.1,

w = o H 1 (h 1 2 ), w = o L 2 (h), w| Σ = o H 1 2 (h 1 2 ).
Note that w satisfies the elliptic equation (with = h 1 2 )

2 ∆w + ∇a 1 a 1 • ∇w - i a 1 w = 2 g 1 -2 ∆a 1 • v 1 + 2 |∇a 1 | 2 a 1 v 1 - ∇a 1 a 1 • ∇u 1 + i a 1 u 1 (3.8)
In particular,

2 ∆w - i a 1 w + ∇a 1 a 1 • ∇w = o L 2 ( 2 ).
In this case, N defined in the last subsection is the usual -semiclassical Dirichlet-Neumann operator:

N (w| Σ + o H 1/2 ( 2 )) := ( ∂ ν w)| Σ .
We can apply the standard theory (to h -1 w)with the particular choice ψ(ξ ′ ) ≡ 1 in (3.4) and obtain the following:

Proposition 3.3. Let χ ∈ C ∞ c (R).
Then under the hypothesis of Lemma 2.1 and in the local chart near Σ, we have ϕχ(hD

x ′ )ϕ(∂ y w)| y=0 = o L 2 x ′ (1), where h = 2 . Consequently, u 2 | Σ = o H 1/2 (h 3 2 ), ϕχ(hD x ′ )ϕh∂ y u 2 | y=0 = o L 2 (Σ) (h).
Proof. Assume that ϕ, ϕ 1 are supported in a local chart and satisfy ϕ 1 | supp(ϕ) = 1. In apriori, we have ϕ∂ y (ϕ

1 w)| y=0 = ϕ -1 N ((ϕ 1 w)| y=0 ) = o H -1/2
x ′ ( ). Thus by Lemma 6.2 we have

ϕ -1 χ( 2 D x ′ )ϕN ((ϕ 1 w)| y=0 ) = o L 2
x ′ (1).

Propagation estimate

In this section, we will deal with the propagation estimate for u 2 in H 1 , satisfying

(h 2 ∆ + 1)u 2 = ihf 2 + h 2 g 2 = o H 1 (h 2 ) + o L 2 (h 3 ), in Ω 2 , u 2 H 1 (Ω 2 ) = O(1), u 2 | Σ H 1/2 (Σ) = o(h 3/2 ), h∂ ν u 2 | Σ H -1/2 (Σ) = o(h 3/2 ), ϕψ(hD x ′ )ϕh∂ ν u 2 | Σ L 2 (Σ) = o(h). (4.1) Set w 2 = h -1 u 2 . From (4.1), -∇u 2 2 L 2 (Ω 2 ) + h -1 u 2 2 L 2 (Ω 2 ) = (∂ ν u 2 )| Σ • u 2 | Σ H 1/2 (Σ) H -1/2 (Σ) + o(1) = o(1)
. Hence we could equivalently deal with the propagation estimate for w 2 in L 2 , satisfying

(h 2 ∆ + 1)w 2 = if 2 + hg 2 = o H 1 (h) + o L 2 (h 2 ), in Ω 2 , w 2 H 1 (Ω 2 ) = O(h -1 ), w 2 L 2 (Ω 2 ) = O(1), w 2 | Σ H 1/2 (Σ) = o(h 1/2 ), h∂ ν w 2 | Σ H -1/2 (Σ) = o(h 1/2 ), ϕψ(hD x ′ )ϕh∂ ν w 2 | Σ L 2 (Σ) = o(1). (4.2)
The goal of this section is to prove the invariance of the semiclassical measure µ associated with (a subsequence of) w 2 and finally prove that µ = 0 from the boundary conditions in (4.2) on the interface Σ. This will end the contradiction argument.

4.1. Propagation away from Σ. The defect measure in the interior of Ω 2 for u 2 is defined via the following quadratic form:

φ(Q h , w 2 ) = (Q h w 2 , w 2 ) L 2 (Ω 2 ) := Ω 2 Q h w 2 • w 2 dx. Proposition 4.1 (Interior propagation). Let Q h = χQ h χ be a h-pseudodifferential operator of order 0, where χ ∈ C ∞ c (Ω 2 ), then we have 1 ih [h 2 ∆ + 1, Q h ]w 2 , w 2 L 2 = o(1).
Proof. By developing the commutator and using the equation (4.1), we have

1 ih [h 2 ∆ + 1, Q h ]w 2 , w 2 = 1 ih (h 2 ∆ + 1)Q h w 2 , w 2 - 1 ih Q h (if 2 + hg 2 ), w 2 = 1 ih Q h w 2 , if 2 + hg 2 + 1 ih Q h (if 2 + hg 2 ), w 2 =o(1),
where we used the integration by part without boundary terms, since the kernel of Q h is supported away from the boundary Σ = ∂Ω 2 . This completes the proof of Proposition 4.1.

4.2. Geometry near the interface. Near Σ = ∂Ω 2 , we adopt the local coordinate system x = (y, x ′ ) in U := (-ǫ 0 , ǫ 0 ) y × X x ′ for the tubular neighborhood of Σ, similar as in the previous section but with the new convention Ω 2 ∩ U = (0, ǫ 0 ) y × X x ′ . In this coordinate system, the Euclidean metric dx 2 is identified as the matrix

g = 1 0 0 g(y, x ′ ) , or g -1 := 1 0 0 g -1 (y, x ′ ) .
Near Σ, the defect measure µ for w 2 is defined via the quadratic form for tangential operators:

φ(Q h , w 2 ) := U Q h w 2 • w 2 |g|dydx ′ ,
where |g| := det(g). The principal symbol of the operator

P h,0 = -(h 2 ∆ + 1) is p(y, x ′ , η, ξ ′ ) = η 2 + |ξ ′ | 2 g -1 := η 2 + ξ ′ , g -1 ξ ′ R d-1 -1.
By Char(P ) we denote the characteristic variety of p:

Char(P ) := {(x, ξ) ∈ T * R d | Ω : p(x, ξ) = 0}.
Denote by b T Ω 2 the vector bundle whose sections are the vector fields X(p) on Ω 2 with X(p) ∈ T p ∂Ω 2 if p ∈ ∂Ω 2 . Moreover, denote by b T * Ω 2 the Melrose's compressed cotangent bundle which is the dual bundle of b T Ω 2 . Let

j : T * Ω 2 → b T * Ω 2
be the canonical map. In our geodesic coordinate system near ∂Ω 2 , b T Ω 2 is generated by the vector fields

∂ ∂x ′ 1 , • • •, ∂ ∂x ′ d-1
, y ∂ ∂y and thus j is defined by

j(y, x ′ ; η, ξ ′ ) = (y, x ′ ; v = yη, ξ ′ ).
Let Z := j(Char(P )). By writing in another way

p = η 2 -r(y, x ′ , ξ ′ ), r(y, x ′ , ξ ′ ) = 1 -|ξ ′ | 2 g , we have the standard decomposition T * ∂Ω 2 = E ∪ H ∪ G,
according to the value of r 0 := r| y=0 where

E = {r 0 < 0}, H = {r 0 > 0}, G = {r 0 = 0}.
The sets E, H, G are called elliptic, hyperbolic and glancing, with respectively. We define also the set

H δ := {δ < r 0 < 1 -δ} with 0 < δ < 1
2 for the non-tangential and non incident points. Note that here the elliptic points E is different from those defined in Section 3.

To classify different situations as a ray approaching the boundary, we need more accurate decomposition of the glancing set G. Let r 1 = ∂ y r| y=0 and define

G k+3 = {(x ′ , ξ ′ ) : r 0 (x ′ , ξ ′ ) = 0, H j r 0 (r 1 ) = 0, ∀j ≤ k; H k+1 r 0 (r 1 ) = 0}, k ≥ 0} G 2,± := {(x ′ , ξ ′ ) : r 0 (x ′ , ξ ′ ) = 0, ±r 1 (x ′ , ξ ′ ) > 0}, G 2 := G 2,+ ∪ G 2,-.
Next we recall the definition of the generalized bicharacteristic:

Definition 4.2. A generalized bicharacteristic of Ω 2 is a piecewise continuous map from R to b T * Ω 2 such that at any discontinuity point s 0 , the left and right limits γ(s 0 ∓) exist and are the two points above the same hyperbolic point on the boundary (this property translates the specular reflection of geometric optics) and except at these isolated points the curve is C 1 and satisfies

• dγ ds (s) = H p (γ(s)) if γ(s) ∈ T * Ω 2 or γ(s) ∈ G 2,+ • dγ ds (s) = H p (γ(s)) - H 2 p y H 2 y p H y if γ(s) ∈ G \ G 2,+
where y is the boundary defining function.

Remark 4.3. The first property in the definition above is the fact that the curve is a geodesic in the interior or passing though a non diffractive point. The second one is that passing through a non diffractive gliding point it is curved to be forced to remain in the interior of T * ∂Ω 2 for a while. When the domain is smooth and does not have infinite order of contact with its tangents, then (see [MS]) through each point passes a unique generalized bicharacteristic. In general only existence is known.

Remark 4.4. In the statement of the geometric control condition 1.1, the generalized rays are the projection of the generalized bicharacteristics of Ω onto Ω.

Elliptic regularity.

Lemma 4.5. Denote by λ(y, x ′ , ξ

′ ) = |ξ ′ | 2 g -1. Let ψ ∈ C ∞ (R d-1 ), ϕ 1 , ϕ 2 ∈ C ∞ c (R d ), such that on the support of ψ(ξ ′ )ϕ 1 (y, x ′ ) and ψ(ξ ′ )ϕ 2 (y, x ′ ), |ξ ′ | g > 1 + δ for some δ > 0. Then we have Op h 1 y≥0 ϕ 2 e -yλ h ψ(ξ ′ ) ϕ 1 = O(1) : H -1 2 (R d-1 x ′ ) → L 2 (R d + )
Proof. Denote by T y := Op h 1 y≥0 ϕ 2 e -yλ h ψ(ξ ′ ) . By definition, we have for

f 0 ∈ H -1/2 x ′ and y > 0 that (T y f 0 )(x ′ ) := 1 (2πh) d-1 e -yλ(y,x ′ ,ξ ′ ) h ψ(ξ ′ )ϕ 2 (y, x ′ )e i(x ′ -z ′ )•ξ ′ h f 0 (z ′ )dz ′ dξ ′ .
Denote by F 0 := D ′

x -1/2 f 0 , then this term can be written as Op e -yλ(y,x ′ ,hξ ′ )

h ψ(hξ ′ ) ξ ′ 1 2 ϕ 2 (y, x ′ ) F 0 .
For fixed y > 0, from the Calderón-Vaillancourt theorem and the support property of ψ, we have, for any M > 0 that Op e -yλ(y,x ′ ,hξ ′ )

h ψ(hξ ′ ) ξ ′ 1 2 ϕ 2 (y, x ′ ) F 0 L 2 x ′ ≤ C M h -1 2 e -cy h 1 + y M h M F 0 L 2 x ′
. and the constants C M , c are independent of y. Squaring the inequality above and integrating in y yields the bound

O(1) F 0 2 L 2 x ′ = O(1) f 0 2 H -1 2 x ′
. This completes the proof of Lemma 4.5. Proposition 4.6.

µ1 E = 0. Proof. Applying (3.5) to κ = o H 1 (h) + o L 2 (h 2 ) and = h, we obtain that ϕ(y, x ′ )ψ(hD x ′ )w 2 = -Op h e iyη + h in N (y, •) (h∂ y w 2 | y=0 ) -Op h e iyη + h d N (y, •) (w 2 | y=0 ) +Op h e iyη + h in N (y, •) (hH(0, x ′ )w 2 | y=0 ) + o L 2 y,x ′ (h 2 ). (4.3) Applying Lemma 4.5, we have Op h e iyη + h in N (y, •) (h∂ y w 2 | y=0 ) = o L 2 y,x ′ (h 1 
2 ). By the same way, the other terms on the right side of (4.3) are at most o L 2 y,x ′ (h

1 2 ). Hence ϕ(y, x ′ )ψ(hD x ′ )w 2 = o L 2 y,x ′ (h 1 
2 ), and this completes the proof of Proposition 4.6.

4.4. Propagation formula near the interface. Consider the operator

B h = B 0,h + B 1,h h∂ y
where B j,h = χ 1 Op h (b j ) χ 1 , j = 0, 1 are two tangential operators and χ 1 has compact support near a point z 0 ∈ Σ. The symbols b j are compactly supported in (x ′ , ξ ′ ) variables. Note that in the local coordinate system,

P h,0 = -h 2 ∆ -1 = - 1 |g| h∂ y |g|h∂ y -R h ,
where R h is a self-adjoint tangential differential operator of order 2 classic and of order 0 semiclassic.

Lemma 4.7 (Boundary propagation). Let ( w h ) be a h-dependent family of functions satisfying

w h = O L 2 (Ω 2 ) = O(1) and w h = O H 1 (Ω 2 ) (h -1
). Assume moreover that w h satisfies the equation

P h,0 w h = o H 1 (Ω 2 ) (h) + o L 2 (Ω 2 ) (h 2 )
and the boundary condition:

w h | Σ = o H 1 2 (h 1 2 ) and h∂ ν w h = O H -1 2 (h 1 2 ). Then we have 1 ih [P h,0 , B h ] w h , w h L 2 (Ω 2 ) = i B 1,h | y=0 (h∂ y w h )| y=0 , (h∂ y w h )| y=0 L 2 (Σ) + o(1). (4.4)
Proof. First we remark that the right hand side of (4.4) makes sense, since B 1,h | y=0 is a classical smoothing operator (but of semi-classical order 0). We denote by w = w h for simplicity. Without loss of generality, we may assume that B 0,h = 0, since the treatment for the term 1 ih [P h,0 , B 0,h ] w, w L 2 is the same as in the proof of Proposition 4.1, which contributes only o(1) terms. By expanding the commutator, we have 1 ih

[P 0,h , B h ] w, w L 2 = 1 ih P 0,h B 1,h h∂ y w, w - 1 ih B 1,h h∂ y P 0,h w, w L 2 = 1 ih B 1,h h∂ y w, P 0,h w L 2 - 1 ih B 1,h h∂ y P 0,h w, w L 2 +i B 1,h | y=0 (h∂ y w)| y=0 , (h∂ y w)| y=0 L 2 (Σ) -i (h∂ y B 1,h h∂ y w)| y=0 , w| y=0 L 2 (Σ) Observe that B 1,h h∂ y w = O L 2 (Ω 2 ) (1), P 0,h w = o H 1 (Ω 2 ) (h) + o L 2 (Ω 2 ) (h 2 ), and B 1,h h∂ y P 0,h w = o L 2 (Ω 2 ) (h) + o H -1 (Ω 2 (h 2 ), thus 1 ih B 1,h h∂ y w 2 , P 0,h w L 2 - 1 ih B 1,h h∂ y P 0,h w, w L 2 = o(1)
as h → 0. Write h∂ y B 1,h h∂ y w = h(∂ y B 1,h )h∂ y w + B 1,h h 2 ∂ 2 y w and using the equation satisfied by w, we obtain that

h∂ y B 1,h h∂ y w = A h h∂ y w -B 1,h R h w -B 1,h P h,0 w,
where A h is a tangential operator of order 0 semi-classic. Thanks to Lemma 6.2,

B 1,h = O L 2 →H 1 (h -1 ), thus B 1,h P h,0 w = o H 1 (Ω 2 ) (h) and by the trace theorem (B 1,h P h,0 w)| Σ = o H 1 2 (Σ) (h). Next since R h w| Σ = o H 1 2 (Σ) (h 1 2 ) + o H -3 2 (Σ) (h 5 2 ), we have B 1,h R h w| Σ = o H 1 2 (Σ) (h 1 
2 ). We then deduce that (h∂

y B 1,h h∂ y w)| y=0 = O H -1 2 (Σ) (h 1 
2 ), which implies that

(h∂ y B 1,h h∂ y w)| y=0 , w| y=0 L 2 (Σ) = o(1).
This completes the proof of Lemma 4.7.

To derive the propagation formula for the semiclassical measure, we consider a family of functions ( w h ) satisfying the equation

P h,0 w h = o H 1 (Ω 2 ) (h) + o L 2 (Ω 2 ) (h 2 )
with a weaker boundary conditions, compared with (4.2).

w h L 2 (Ω 2 ) = O(1), h∇ w h L 2 (Ω) = O(1), w h | Σ H 1 2 (Σ) = o(h 1 2 ), (h∂ ν w h )| Σ H -1 2 (Σ) = O(h 1 2 ).
Denote by µ is the semiclassical measure associated with ( w h ).

Proposition 4.8.

(1) µ1 H = 0; (4.5)

(2) lim sup

h→0 Op h (b 0 )h∂ y w h , w h L 2 ≤ sup ρ∈supp(b 0 ) |r(ρ)| 1 2 |b 0 (ρ)|, (4.6)
for any tangential symbol b 0 (y, x ′ , ξ ′ ) of order 0.

Proof.

(1) follows from the transversality of the rays reaching H, and the proof is the same as in [START_REF] Burq | Mesures de défaut de compacité, application au système de Lamé[END_REF] (see also the proof of Proposition 2.14 in [START_REF] Burq | Decay rates for the Kelvin-Voigt damped wave equation II: The geometric control condition[END_REF] by taking M h = 0 there). The proof of (2) is also similar as in [START_REF] Burq | Decay rates for the Kelvin-Voigt damped wave equation II: The geometric control condition[END_REF], with an additional attention when doing the integration by part. Indeed, by Cauchy-Schwartz,

Op h (b 0 )h∂ y w h , w h L 2 ≤ Op h (b 0 )h∂ y w h , Op h (b 0 )h∂ y w h 1 2 w h L 2 .
Doing the integration by part,

Op h (b 0 )h∂ y w h , Op h (b 0 )h∂ y w h L 2 = O(h) -Op h (b 0 )h 2 ∂ 2 y w h , Op h (b 0 ) w h L 2 ,
where O(h) comes from the commutators and the boundary term, since by the assumption on

w h , Op h (b 0 )(h∂ y w h )| y=0 , hOp h (b 0 )( w h | y=0 ) L 2 x ′ = o(h 2 ). For the rest argument, we just replace -h 2 ∂ 2 y w h by -R h w h plus errors in O L 2 (h).
From the symbolic calculus, the contribution sup ρ |r|

1 2 |b 0 (ρ)| comes from the principal term Op h (b 0 )R h w h , Op h (b 0 ) w h L 2 1 2
, after taking limsup in h. This completes the proof of Proposition 4.8. Lemma 4.9. Let B 0,h , B 1,h are tangential semiclassical operators of order 0, with principal symbols b 0 , b 1 with respectively, supported near a point ρ 0 of T * Σ. Then

B 0,h + B 1,h h i ∂ y w h , w h = µ, b 0 + b 1 η + o(1), (4.7)
as h → 0.

Proof. First we remark that the expression µ, b 0 + b 1 η is well-defined, since µ belongs to the dual of C 0 (Z) and µ(H) = 0, and in particular, by elliptic regularity, µ1 |η|>1 = 0. The convergence of the quadratic form (B 0,h w h , w h ) to µ, b 0 is just the definition of the semiclassical measure µ. If ρ 0 ∈ E, the contributions of both sides of (4.7) is o(1), thanks to the elliptic regularity (see the proof of Proposition 4.6). Next we assume that ρ 0 ∈ H ∪ G. Take ϕ ∈ C ∞ c (-1, 1), ϕ is equal to 1 in a neighborhood of (-1/2, 1/2). For ǫ > 0, we write

B 1,h,ǫ := 1 -ϕ y ǫ B 1,h , B ǫ 1,h := B 1,h -B 1,h,ǫ . Taking h → 0 first we obtain that B 1,h,ǫ h i ∂ y w h , w h L 2 (Ω 2 ) → µ, 1 -ϕ y ǫ b 1 η . If ρ 0 ∈ H, then taking ǫ → 0, we obtain that lim ǫ→0 µ, 1 -ϕ y ǫ b 1 η = µ, 1 y>0 b 1 η = µ, b 1 η , since µ1 H∪E = 0. It remains to estimate the contribution of B ǫ 1,h h i ∂ y w h , w h . For fixed ǫ > 0, we have lim sup h→0 B ǫ 1,h h∂ y w h , w h L 2 (Ω 2 ) ≤ lim sup h→0 ϕ(y/ǫ)B * 1,h w h L 2 (Ω 2 ) h∂ y w h L 2 (Ω 2 ) .
Since on supp(µ1 y>0 ), |η| ≤ 1, together with the fact that ρ 0 ∈ H ∩ E, we deduce that the right side converges to 0 as ǫ → 0. Now suppose that ρ 0 ∈ G. For any ǫ > 0, δ > 0, we decompose

B 1,h = B ǫ 1,h + B ǫ,δ 1,h + B ǫ 1,h,δ , with B 1,h,ǫ = 1 -ϕ y ǫ B 1,h , B ǫ,δ 1,h = Op h ϕ y ǫ ϕ r δ B 1,h , B ǫ 1,h,δ = Op h ϕ y ǫ 1 -ϕ r δ B 1,h .
By the same argument, we have lim

ǫ→0 lim h→0 B 1,h,ǫ hD y w h , w h L 2 (Ω 2 ) = µ, b 1 η1 y>0 = µ, b 1 η1 ρ / ∈H ,
since µ1 H∪E = 0. Next, from (2) of Proposition 4.8, we have lim sup

ǫ→0 lim sup h→0 B ǫ,δ 1,h hD y w h , w h L 2 (Ω 2 ) ≤ Cδ,
which converges to 0 if we let δ → 0. Finally, by Cauchy-Schwartz,

B ǫ 1,h,δ hD y w h , w h L 2 (Ω 2 ) ≤ hD y w h L 2 (Ω 2 ) B * 1,h Op h ϕ y ǫ 1 -ϕ r δ * w h L 2
.

Taking the triple limit, we have lim sup

δ→0 lim sup ǫ→0 lim sup h→0 B ǫ 1,h,δ hD y w h , w h L 2 (Ω 2 ) ≤ µ, |b 1 | 2 1 y=0 1 r =0 = 0,
since µ1 E∪H = 0. This completes the proof of Lemma 4.9.

As in [START_REF] Burq | Mesures de défaut de compacité, application au système de Lamé[END_REF], we define the function

θ(y, x ′ ; η, ξ ′ ) = η |ξ ′ | if y > 0; θ(y, x ′ , η, ξ ′ ) = i -r 0 (x ′ , ξ ′ ) |ξ ′ | on E.
Since µ1 H = 0, θ is µ almost everywhere defined as a function on Z. Formally,

σ i h [P h,0 , B h ] = {η 2 -r, b 0 + b 1 η} = a 0 + a 1 η + a 2 η 2 ,
where

a 0 = b 1 ∂ y r -{r, b 0 } ′ , a 1 = 2∂ y b 0 -{r, b 1 } ′ , a 2 = 2∂ y b 1 , (4.8) 
and {•, •} ′ is the Poisson bracket for (x ′ , ξ ′ ) variables. By expanding the commutator, we find i h

[P h,0 , B h ] = A 0 + A 1 hD y + A 2 h 2 D 2 y + hOp h (S 0 ∂ + S 0 ∂ η), (4.9) 
where A 0 , A 1 , A 2 are tangential operators with symbols a 0 , a 1 , a 2 , with respectively, and S 0 ∂ stands for the tangential symbol class of order 0. We now have all the ingredients to present the propagation formula for the defect measure in the spirit of [START_REF] Burq | Mesures de défaut de compacité, application au système de Lamé[END_REF]:

Proposition 4.10. Assume that B h = B h,0 +B h,1 hD y , where B h,0 , B h,1 are tangential operators of order 0 with symbols b 0 , b 1 , with respectively. Assume that b = b 0 + b 1 η. Define the formal Poisson bracket {p, b} = (a 0 + a 2 r) + a 1 θ|ξ ′ |1 ρ / ∈H , where a 0 , a 1 , a 2 are given by (4.8). Then any defect measures µ, ν 0 of ( w h ), (h∂

ν w h )| Σ satisfy the relation µ, {p, b} = -ν 0 , b 1 . Moreover, if b ∈ C 0 (Z), we have µ, {p, b} = 0. (4.10)
Proof. See [START_REF] Burq | Mesures de défaut de compacité, application au système de Lamé[END_REF].

Moreover, we have

Proposition 4.11. µ G 2,+ = 0.

As showed in [START_REF] Burq | Mesures de défaut de compacité, application au système de Lamé[END_REF], we obtain that the measure µ is invariant by the flow of Melrose-Sjöstrand. More precisely, we have Theorem 3 ([BL03]). Assume that µ is a semi-classical measure on b T * Ω associated with the sequence ( w h ) satisfying (4.10) and Proposition 4.11. Then µ is invariant under the Melrose-Sjöstrand flow φ s .

Remark 4.12. This is a consequence of Theorem 1 in [START_REF] Burq | Mesures de défaut de compacité, application au système de Lamé[END_REF] which asserts the equivalence between the measure invariance and the propagation formula H p (µ) = 0 together with µ(G 2,+ ) = 0. Though Theorem 1 in [START_REF] Burq | Mesures de défaut de compacité, application au système de Lamé[END_REF] is stated and proved in the context of micro-local defect measure, it also holds true in the context of the semiclassical measure from the word-by-word translation.

4.5. The last step to the proof of the resolvent estimate in Theorem 2. In this subsection, we take w h = w 2 . To finish the contradiction argument in the proof of (1.5), it suffices to show that µ = 0. Let µ be the corresponding semiclassical measure and ν 0 be the semiclassical measure of

h∂ ν u 2 | Σ . Since h∂ ν u 2 | Σ = o H -1 2 (Σ (h 1 
2 ), we have that ν 0 , b 1 = 0 for any compactly supported symbol b 1 (x ′ , ξ ′ ). Thanks to (H), along the Melrose-Sjöstrand flow of b T * Ω 2 issued from points in b T * Ω 2 , there must be some points reaching H(Σ) ∪ G 2,-(Σ). By the property of the Melrose-Sjöstrand flow on b T * Ω 2 , to show that µ = 0, we need to verify that µ G 2,-(Σ) = 0 and µ = 0 near a neighborhood of ρ 0 ∈ H(Σ).

Proposition 4.13. µ G 2,-(Σ) = 0.
Proof. The proof is exactly the same as the proof of Proposition 4.11. We will make use of the formula

µ, {p, b} = ν 0 , b 1 by choosing b = b 1,ǫ η with b 1,ǫ (y, x ′ , ξ ′ ) = ψ y ǫ 1 2 ψ r(y, x ′ , ξ ′ ) ǫ κ(y, x ′ , ξ ′ ),
where ψ ∈ C ∞ c (R) equals to 1 near the origin and κ(y, x ′ , ξ ′ ) ≥ 0 near a point ρ 0 ∈ G 2,-. Note that {p, b ǫ } = (a 0 + a 2 r) + a 1 η1 ρ / ∈H , and a 0 , a 1 , a 2 are given by the relation (4.8). In particular for our choice, by direct calculation we have

a 0 = b 1,ǫ ∂ y r, a 1 = -{r, κ} ′ ψ y ǫ 1 2 ψ r ǫ ,
and

a 2 = 2∂ y b 1,ǫ = 2ǫ -1 2 ψ ′ y ǫ 1 2 ψ r ǫ κ + 2 ∂ y r ǫ ψ y ǫ 1 2 ψ ′ r ǫ κ + 2ψ y ǫ 1 2 ψ r ǫ ∂ y κ.
Observe that a 2 is uniformly bounded in ǫ and for any fixed (y, x ′ , ξ ′ ), ra 2 → 0 as ǫ → 0. Thus from the dominating convergence, we have

lim ǫ→0 µ, {p, b ǫ } = µ, κ| y=0 ∂ y r1 r=0 .
Since ∂ y r < 0 on G 2,-, whileν 0 , b ǫ = 0, we deduce that µ1 G 2,-= 0. This completes the proof of Proposition 4.13.

Proposition 4.14. Let ρ 0 ∈ H(Σ). Let b(y, x ′ , ξ ′ ) be a tangential symbol, supported near ρ 0 . Then

Op h (b)w 2 L 2 (Ω 2 ) + h∂ y Op h (b)w 2 L 2 (Ω 2 ) = o(1), as h → 0.
Proof. Since the Melrose-Sjöstrand flow is transverse to H, by localizing the symbol b, it suffices to prove the same estimate by replacing b to q ± , where q ± is the solutions of

∂ y q ± ∓ H √ r(y,x ′ ,ξ ′ ) q ± = 0, q ± | y=0 = q 0 ,
and q 0 is supported in a sufficiently small neighborhood of ρ 0 . Near ρ 0 , it follows from [START_REF] Burq | Mesures de défaut de compacité, application au système de Lamé[END_REF] that we can factorize P h,0 as hD y -Λ + h (y, x ′ , hD x ′ ) hD y + Λ - h (y, x ′ , hD x ′ ) + O H ∞ (h ∞ ), and also hD y -Λ + h (y, x ′ , hD x ′ ) hD y + Λ - h (y, x ′ , hD x ′ ) +O H ∞ (h ∞ ), where Λ ± h and Λ ± h have principal symbols ± r(y, x ′ , ξ ′ ). Denote by Q ± h = Op h (q ± ) and set

w + 2 := ϕ(y)Q + h (hD y -Λ - h )w 2 , w - 2 := ϕ(y)Q - h (hD y -Λ + h )w 2 ,
where the cutoff ϕ(y) is supported on 0 ≤ y ≤ ǫ 0 ≪ 1 and is equal to 1 for 0 ≤ y ≤ ǫ 0 /2. From the equation of w 2 , we have

(hD y -Λ + h )w + 2 =ϕ(y)[hD y -Λ + h , Q + h ](hD y -Λ - h )w 2 -ihϕ ′ (y)Q + h (hD y -Λ - h )w 2 + o L 2 y,x ′ (h) = -ihϕ ′ (y)Q + h (hD y -Λ - h )w 2 + o L 2 y,x ′ (h), since the principal symbol of 1 ih [hD y -Λ + h , Q + h ]
is zero, thanks to the choice of symbols q ± . Multiplying by w + 2 to both sides and integrating, we have for y ≤ ǫ 0 /2 (thus ϕ ′ (y) = 0) that

h w + 2 (y, •) 2 L 2 x ′ ≤ h w + 2 (0, •) 2 L 2 x ′ + o(h). (4.11) Since Op h (q 0 )(h∂ y w 2 )| y=0 = o L 2 x ′
(1), we deduce by definition that w + 2 (0) = o L 2 x ′ (1). This together with (4.11) yields w + 2 (y) = o L 2 x ′ (1), uniformly for all 0 ≤ y ≤ ǫ 0 /2. Thus w + 2 = o L 2 y,x ′ (1). Similar argument for w - 2 yields w - 2 = o L 2 y,x ′ (1). Note that hD y -Λ - h is elliptic on the support of q + , we deduce that Q + h w 2 = o L 2 y,x ′ (1). This means that µ is zero near the support of q + , hence the proof of Proposition 4.14 is complete.

Consequently, we have shown that the measure µ is invariant along the bicharacteristic flow on Ω 2 , it vanishes near every hyperbolic point of Σ, and µ(G 2,-) = 0. Thus µ is supported on bicharacteristics which encounter Σ only at points of

G 2< = ∪ k≥3 G k .
These bicharacteristics are consequently near Σ integral curves of H p (because in Definition 4.2, the two vector fields H p and H p -

H 2 p (y H 2
y p H y coincide on G 2< ). However, according to the geometric condition assumption, all such bicharacteristics must leave Ω 2 . As a consequence, µ is supported on the emptyset, and hence µ = 0. This gives a contradiction. The proof of (1.5) in Theorem 2 is now complete.

Optimality of the resolvent estimate

In this section we prove the second part of Theorem 2. For simplicity, we consider the model case Ω 2 = D := {x ∈ R 2 : |x| < 1} and a(x) = 1 Ω 1 and Σ = S 1 . To prove the second part in Theorem 2 we need to construct functions u

1 , v 1 , u 2 , v 2 , such that (u j , v j ) H 1 ×L 2 (Ω j ) ∼ 1, (f j , g j ) H 1 ×L 2 (Ω j ) = O(h), j = 1, 2            u 1 = ih(f 1 -v 1 ), in Ω 1 h∆u 1 + h∆v 1 -iv 1 = hg 1 , in Ω 1 u 2 = ih(f 2 -v 2 ), in Ω 2 h∆u 2 -iv 2 = hg 2 , in Ω 2
together with the boundary condition on the interface

u 1 | Σ = u 2 | Σ , ∂ ν u 2 | Σ = (∂ ν u 1 + ∂ ν v 1 )| Σ ,
The key point in the construction is that in Ω 1 , we construct quasi-modes concentrated at the scale

|D x | ∼ -1 = h -1
2 while in Ω 2 , the quasi-modes are concentrated at the scale

|D x ′ | ∼ |D y | ∼ |D x | ∼ h -1
near the interface Σ, where x ′ is the tangential variable near Σ and y is the normal variable. Now we describe the construction.

• Step 1: Construction at the zero order: We first choose u

(0) 2 , such that h 2 ∆u (0) 2 + u (0) 2 = 0, u (0) 2 | Σ = 0; ∇u (0) 2 L 2 (Ω 2 ) ∼ h -1 u (0) 2 L 2 (Ω 2 ) ∼ 1.
Moreover, we require that u (0)

2 such that they are hyperbolically localized, in the sense that

∂ ν u (0) 2 | Σ H s (Σ) ∼ h -s , WF h (∂ ν u (0) 2 | Σ ) ⊂ H δ (Σ) := {(x ′ , ξ ′ ) : δ < r 0 (x ′ , ξ ′ ) < 1 -δ} (5.1) for some 0 < δ < 1 2 .
The existence of such sequence of eigenfunctions is not difficult to prove in the case of a disc or an ellipse, we postpone this fact in Lemma 6.5 of the Appendix. This will actually be the only point where in Theorem 1 we use the particular choice Ω 2 = D.

Next we define

v (0) 2 = ih -1 u (0) 2 , f (0) 2 = g (0)
2 = 0. From (5.1), we have

∂ ν u (0) 2 | Σ =        O L 2 (Σ) (1) O H -1 2 (Σ) (h 1 2 ) O H 1 2 (Σ) (h -1 2 ).
(5.2)

We remark that here we use the fact that the dimension d ≥ 2.

Next we solve the elliptic equation with the mixed Dirichlet-Neumann data (with = h 1 2 ):

( 2 ∆ -i)w (0) = 0, ∂ ν w (0) | Σ = ∂ ν u (0) 2 | Σ , w (0)
| ∂Ω 1 \Σ = 0. From Proposition 6.1, there exists a unique solution w (0) of this system, which satisfies

w (0) =        O H 2 (Ω 1 ) ( -1 ) O H 1 (Ω 1 ) ( ) O L 2 (Ω 1 ) ( 2 ),
(5.3) and hence by interpolation

w (0) = O H 3 2 (Ω 1 ) (1)
and by trace theorems

w (0) | Σ = O H 1 2 (Σ) ( ) O H 1 (Σ) (1) (5.4) Moreover, from the information of WF h (∂ ν u (0) 2 | Σ ) and Proposition 3.1, we have WF h (w (0) | Σ ) ⊂ WF h (∂ ν w 0 | Σ ) ⊂ H δ (Σ). Hence w (0) | Σ H 1 (Σ) ∼ h -1 2 w (0) | Σ H 1 2 (Σ) = O(1) Next we define u (0) 1 , v (0) 1 such that v (0) 1 = ih -1 u (0) 1 , w (0) = u (0) 1 + v (0) 1 = (1 + ih -1 )u (0) 1 ; f (0) 1 = 0, g (0) 1 = ih -1 u (0) 1 = v (0) 1 . This implies u (0) 1 = O H 1 (Ω 1 ) (h 3 2 ) O L 2 (Ω 1 ) (h 2 ),
(5.5) and consequently g

(0) 1 = O L 2 (Ω 1 ) (h).
Proof. We just sketch the proof which is a variation around very classical ideas. Multiplying (6.1) by ϕ vanishing on ∂Ω 1 \ Σ and integrating by parts using Greens formula, we get

0 = Ω 1 ( 2 ∆ -i)wϕ(x)dx = Ω 1 -2 ∇ x w∇ x ϕ -iwϕ(x)dx + Σ 2 ∂ ν wϕ(x)dσ
As a consequence, if the function w satisifes (6.1) (6.2) if an only if

∀v ∈ H 1 0 (Ω 1 ), Q(w, v) := Ω 1 2 ∇ x w∇ x v + iwv(x)dx = T F (v) := Σ 2 F v(x)dσ. (6.3)
From the trace theorem, the map

v ∈ H 1 0 (Ω 1 ) → v | Σ ∈ H 1 2 (Σ)
is continuous and hence for any

F ∈ H -1 2 (Σ), the map v → T F (v) ∈ C
is a continuous antilinear form on H 1 0 (Ω 1 ). The existence of a unique solution to (6.3) (and consequently the solution to (6.1), (6.2)) now follows from Lax-Milgram Theorem. Applying (6.3) to v = w, we get

h∇ x w 2 L 2 (Ω 1 ) + w 2 L 2 (Ω 1 ) ≤ 2|T F (w)| ≤ C 2 F H -1 2 (Σ) w H 1 (Ω 1 ) , which implies w H 1 (Ω 1 ) ≤ C F H -1 2 (Σ) ,
and using again (6.3) with v = w,

w 2 L 2 (Ω 1 ) ≤ 2 ∇ x w L 2 (Ω 1 ) + 2 |T F (w)| ≤ C 2 F 2 H -1 2 (Σ)
.

This proves the first part in Proposition 6.1. The proof of the second part is standard elliptic regularity results. Indeed, we have

∆w = i -2 w, ∂ ν w | Σ = F ∈ H 1 2 (Σ), w | ∂Ω 1 \Σ = 0,
and we deduce by standard elliptic regularity results,

w H 2 (Ω 1 ) ≤ C -2 w L 2 (Ω 1 ) + F H 1 2 (Σ) ≤ C -1 F H -1 2 (Σ) + F H 1 2 (Σ)
This completes the proof of Proposition 6.1.

6.2.

Estimates for some operators. Lemma

6.2. If b(x, ξ) ∈ S -m (m ≥ 0) is compactly supported in x ∈ R n , then for any s ∈ R, Op h (b) = O(h -θ ) : H s (R n ) → H s+θ (R n ), ∀θ ∈ [0, m].
Proof. First we show that Op h (b) is bounded from H s to H s . It is equivalent to show that the operator

T h := D x s Op h (b) D x -s is bounded (independent of h) from L 2 to L 2 . By definition, we have (T h f )(ξ) = 1 (2π) d R n ξ s b(ξ -η, hη) η -s f (η)dη, where b(ζ, η) = (F x→ζ a)(ζ, η
) is a well-defined function. Thus T h f can be viewed as an operator acting on f ∈ L 2 (R d ξ ) with Schwartz kernel

K h (ξ, η) := 1 (2π) d ξ s η -s b(ξ -η, hη).
By Schur's test, to check the boundedness of this operator, it suffices to check that sup

ξ,h R n |K h (ξ, η)|dη < ∞, sup η,h R n |K h (ξ, η)|dξ < ∞.
Since K h (ξ, η) is rapidly decaying in ξη , these conditions can be simply verified by the elementary convolution inequalities:

R n 1 η s ξ -η M dη ≤ C M ξ -s , ∀M > d, s ≥ 0, (6.4) and R n η σ ξ -η M dη ≤ C M,σ ξ σ , ∀M > d + σ, σ ≥ 0. (6.5)
By interpolation, to finish the proof, it suffices to estimate the operator bound of Op h (b) from H s to H s+m . Similarly, we need to check that the kernel

G h (ξ, η) = h m ξ s+m b(ξ -η, hη) η -s
satisfies the conditions for Schur's test. First note that for any α

∈ N n , (i(ξ -η)) α b(ξ -η, η) = 1 (2π) d R n (∂ α x b)(x, η)e -ix•(ξ-η) dx, thus b(ξ -η, hη) = O ξ -η -M hη -m for any M ∈ N. Note that hm -m ∼ (1 + h|η|) -m ≤ h -m η -m . This implies that |G h (ξ, η)| ≤ C M ξ s+m η -(s+m) ξ -η -M .
Now the boundeness of the integration G h (ξ, η)dη or G h (ξ, η)dξ follows from the same convolution inequalities (6.4) and (6.5). This completes the proof of Lemma 6.2. Moreover, there exists 0 < β 1 < β 2 , such that for all α ≥ 1,

1 + β 1 α -2 3 < ι(α) α ≤ 1 + β 2 α -2 3 .
Thanks to this proposition, we have: for n ≫ 1. Let 0 < ǫ 0 < δ(α), χ ∈ C ∞ (R) such that χ(s) ≡ 0 if |s| > 1ǫ 0 . From (6.7) we have w n = χ(h n ∂ θ )w n . Since ∂ 2 θ is just the Laplace operator on L 2 (∂D), we have, near ∂D, WF h (w n ) is contained in r > ǫ 0 > 0, thus w n is microlocalized near H(Σ). The estimate ∂ r w n | r=1 L 2 (∂D) = O(1) then follows from the hyperbolicity and the fact that ∇w n H 1 (D) = 1. This completes the proof of Lemma 6.5.

Concentration of the eigenfunctions ϕ αn,n as n → ∞ 6.4. Geometric optics construction. In this part we recall the geometric optics construction for the hyperbolic boundary value problem. In the tubular neighborhood of the interface Σ, we use the geodesic normal coordinate x = (y, x ′ ), such ∆ = 1 κ ∂ y (κ∂ y ) + 1 κ ∂ i (g ij 0 κ∂ j ), where κ = det(g 0 ) and ∂ j = ∂ x ′ j . The semiclassical operator

P h = h 2 ∆ g 0 + 1 = h 2 ∂ 2 y + h 2 g ij 0 ∂ i ∂ j + 1 + h κ (∂ y κ)h∂ y + h κ ∂ i (g ij 0 κ)h∂ j . Let f ± 0 ∈ L 2 (R d-1
x ′ ) such that WF h (f ± 0 ) lies in a neighborhood of (y = 0, x ′ 0 ; η = 0, ξ ′ 0 ), such that r 0 (0, x ′ 0 , ξ ′ 0 ) ≥ c 0 > 0. Denote by θ ± (ξ) = F h (χf ± 0 )(ξ), where χ ∈ C ∞ c (R d-1 x ′ ), supported near x ′ 0 . Consider the semi-classical Fourier integral operators U ± , represented by

U ± (χf ± 0 )(y, x ′ ) = 1 (2πh) d-1 R d-1 e i h ϕ ± (y,x ′ ,ξ ′ ) b ± (y, x ′ , ξ ′ )θ ± (ξ ′ )dξ ′ .
We have

P h (U ± (χf ± 0 )) = 1 (2πh) d-1 R d-1 (h 2 ∆ g + 1)(e iϕ ± h b ± )θ ± (ξ ′ )dξ ′ .
Observing that (h 2 ∆ g 0 + 1)(e

iϕ ± h b ± ) =(1 -|∇ g 0 ϕ ± | 2 )b ± e iϕ ± h + ih(2∇ g 0 ϕ ± • ∇ g 0 b ± + ∆ g 0 ϕ ± b ± )e iϕ ± h +h 2 (∆ g 0 b ± )e iϕ ± h .

  Kelvin-Voigt damped wave equation. In this article, we study the decay rate of the Kelvin-Voigt damped wave equation on the multi-dimensional bounded domain Ω ⊂ R d , d ≥ 2: -∆diva(x)∇∂ t u = 0, (t, x) ∈ R t × Ω, u(t, •)| ∂Ω = 0, (u, ∂ t u)| t=0 = (u 0 , u 1 ) (1.1)

Lemma 6. 3 .

 3 Let a ∈ S 0 (R 2n ), b ∈ S 0 (R 2n ) be two symbols with compact support in the x variable. Then for any N ∈ N, N ≥ 2n,Op(a)Op(b) -∂ α z ∂ α ζ A(x, z, ξ, ζ) dzdζ, where A(x, x, ξ, ζ) = a(x, ξ + ζ)b(x + z, ξ).Proof. The symbol of the operatorOp(a)Op(b)t) N |α 1 |+|α 2 |=N +1 (∂ α 1 y ∂ α 2 η A)(x, tz, ξ, tζ)z α 1 ζ α 2 e -iz•ζ dzdζdt, with A(x, z, ξ, ζ) = a(x, ξ + ζ)b(x + z, ξ).Using the identityz α 1 ζ α 2 e -iz•ζ = i N +1 ∂ α 2 z ∂ α 1 ζ (e -iz•ζ) and doing the integration by part, we haver N (x, ξ) = |α|=N +1 t) N t N +1 dt R 2n (∂ α z ∂ α ζ A)(x, tz, ξ, tζ)e -iz•ζ dzdζ = t) N t N +1-2n dt R 2n (∂ α z ∂ α ζ A)(x, z, ξ, ζ)e -it -2 z•ζ dzdζHence the integral converges absolutely. Viewing r N (x, ξ) as a symbol of order 0, we obtain the desired bound, thanks to the Caldrón-Vaillancourt theorem.6.3. Special sequence of eigenfunctions of a disc. First we recall thatJ m (z) = z 2 m + k)!are the Bessel functions satisfying the Bessel differential equation:z 2 J ′′ m (z) + zJ ′ m (z) + (z 2m 2 )J m (z) = 0.By definition, one hasJ m+1 (z) + J m-1 (z) = 2m z J m (z), J m-1 (z) -J m+1 (z) = 2J ′ m (z). (6.6)Denote by λ m,n the n-th zero of J m (z). It is well known thatλ m,1 < λ m,2 < • • • < λ m,n < • • •and the functions ϕ m,n (r, θ) = J m (λ m,n r)e imθ form an orthogonal sequence of eigenfunctions of ∆ D , associated with eigenvalues {λ 2 m,n : m ∈ Z, n ∈ N}. We will chose a special sequence J αn (λ αn,n r)e iαnθ for some α ∈ N, to be fixed later. Let us recall some facts about the zeros of Bessel functions: Proposition 6.4 ([E84]). There exists a continuous function ι : [-1, ∞), such that λ αn,n < nι(α), and lim n→∞ λ αn,n n = ι(α).

Lemma 6. 5 .

 5 Fix α ∈ N, large enough and letw n := ϕ αn,n λ αn,n ϕ αn,n L 2 (D).Then we have(∂ ν w n )| ∂D L 2 (∂D) = O(1), WF h (∂ ν w h | Σ ) ⊂ H δ (∂D) := {δ < r 0 < 1 -δ} where h = (h n ) n∈N , h n = λ -1 αn,n ∼ (ι(α)n) -1and the semiclassical wave-front set is taken for the sequence (w n ) n∈N , with a little abuse of the notation. Proof. To simplify the notation, we write m = αn and ι := ι(α). From Proposition 6.4, we have1 + β 1 α -β 2 α -2 3 , as n → ∞. Note that at r = 1, ∂ ν = ∂r and |∇w| 2 = |∂ r w| 2 + 1 r 2 |∂ θ w| 2 . The hyperbolicity at the boundary is essentially due to the fact that ∂ θ w n = imw n and |m| λ m,n = α ι + o(1) ≤ 1δ(α) (6.7)

The operator A h is of the form χA h χ for some cutoff χ such that χ ≡ 1 on supp(ϕ).

In summary, as the first step, we have constructed quasi-modes (u

2 ) and (f

2v (0) 1

2 ),

(5.6) and to conclude the proof of Theorem 2, it remains to eliminate the error term in the last boundary condition in (5.6). An important point is that both u (0) 2 and u (0)

1 (and hence also uv(0) 2 and v (0) 1 ) have their wave front included in H δ (Σ).

• Step 2: Construction at the first order: We now introduce correction terms to eliminate the error term in the last boundary condition of (5.6). We are looking for a correction term e

2 , while keeping all other terms identical

First, using the geometric optics construction (see Appendix), we construct e (1) 2 , solving near Σ, solving for N large enough to be fixed later

near Σ, and the boundary conditions

(5.7) with h-semiclassical wave front sets of all the functions are localized near H δ (Σ).

(h 2 ∆ + 1) e

(1)

2 = (u

locally near x 0 ∈ Σ. We then take a cutoff χ, such that χ ≡ 1 on Σ, and with support sufficiently close to Σ so that e is defined on the support of χ (i.e. χ vanishes along the bicharacteristics, before the formation of the caustics). Let e

(1)

2 . Hence (h 2 ∆ + 1)e

(1)

(5.9) Again, all the functions and the errors are microlocalized near (x 0 , ξ 0 ) ∈ H δ (Σ). Moreover, from the boundary conditions (5.7) which determine the values of the symbols b ± in the geometric optics construction, we have e (1) 2

The geometric optics constructions in the appendix are local, but using a partition of unity of Σ, we choose a finite cutoff functions (χ j ) M j=1 to replace χ and modify the function e

(1)

2 by e

(1)

where e

(1) 2,j is the corresponding geometric optics near supp(χ j ). Next we define g

2v

(1) 1

(5.10)

It now remains to eliminate completely the errors in the last boundary condition in (5.10). For this we just use the trace operators. Recall that if s > 3 2 , the map

is continuous surjective and admits a bounded right inverse. As a consequence, if N is large enough, there exists e

(2)

2 = g

(1)

2 + h -1 (h 2 ∆ + 1)e

(2) 2

and keeping the other terms identical

This ends the proof of the construction of quasi-modes in Theorem 2.

6. Appendix: Technical ingredients 6.1. Elliptic problem with mixed Dirichlet Neumann data. Let U ⊂ R d be a bounded domain with smooth boundary. For F ∈ C ∞ (U ), we denote by

the Dirichlet and Neumann trace, with respectively. From the trace theorem, we know that

is bounded and surjective. Let

We prove the following existence result of the mixed Dirichlet-Neumann boundary value problem: Proposition 6.1. For any F ∈ H -1 2 (Σ), the boundary value problem (note that ∂Ω 1 = Σ ∪ ∂Ω and Σ, ∂Ω are separated)

admits a unique solution w ∈ H 1 0 (Ω 1 ) satisfying

Near WF h (f 0 ) and for small y, we can solve the eikonal equation

, for each fixed ξ ′ , we find a Lagrangian submanifold of T * Σ, locally of the form

At each point (x ′ , ξ = ξ ′ ) ∈ L 0,ξ ′ , there are two distinct roots η ± of the equation

and each root determines a flow Φ ± y of the bicharacteristics p = η 2r(y, x ′ , ξ ′ ) on {p = 0}. Then we can define the Lagrangian L ± y,ξ ′ := exp(Φ ± y )(L 0,ξ ′ ) locally, which is again a Lagrangian of T * Σ (viewing y as a parameter) and can be written locally as L ± y,ξ ′ = {(x ′ , ∂ x ′ ϕ ± )}. Then ϕ ± is the desired solutions of (6.8) with the property

with coefficients b j solving the transport equations

(6.9)

To determine the datum b ± j | y=0 , we need the boundary conditions. Note that the approximate quasi-mode is given by

and we want to determine f ± 0 .

Denote by B

), then the Dirichlet trace is given by

and the Neumann trace is given by

is invertible. For such an elliptic system, we can construct a symbol (matrix-valued) Υ, such that Op

In particular, for a given Dirichlet trace σ Dir and Neumann trace σ N eu with wave front sets located near (x ′ 0 , ξ ′ 0 ), we find χf + 0 χf - 0 = χOp h (Υ)χ σ Dir σ N eu .

Then microlocally near (x ′ 0 , ξ ′ 0 ) ∈ H(Σ), u h satisfies (h 2 ∆ g 0 + 1)

2 (h N ), and microlocally near (x ′ 0 , ξ ′ 0 ), u h = O L 2 (1),WF h (u h ) lies in a small neighborhood of (x ′ 0 , ξ ′ 0 ). Finally, due to the microlocalisation in the hyperbolic region, we can exchange in the error terms powers of h against derivatives, leading to (h 2 ∆ g 0 + 1)u h = O H k (h N -k ), u| h=0 = σ Dir + O H 1 2 +k (h N -k ), h∂ y u h | y=0 = σ N eu + O H -1 2 +k (h N -k ).