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DECAY FOR THE KELVIN-VOIGT DAMPED WAVE EQUATION:

PIECEWISE SMOOTH DAMPING

NICOLAS BURQ AND CHENMIN SUN

Abstract. We study the energy decay rate of the Kelvin-Voigt damped wave equation with

piecewise smooth damping on the multi-dimensional domain. Under suitable geometric as-

sumptions on the support of the damping, we obtain the optimal polynomial decay rate which

turns out to be different from the one-dimensional case studied in [LR05]. This optimal de-

cay rate is saturated by high energy quasi-modes localised on geometric optics rays which hit

the interface along non orthogonal neither tangential directions. The proof uses semi-classical

analysis of boundary value problems.

1. Introduction

1.1. Kelvin-Voigt damped wave equation. In this article, we study the decay rate of the

Kelvin-Voigt damped wave equation on the multi-dimensional bounded domain Ω ⊂ Rd, d ≥ 2:




(
∂2t −∆− diva(x)∇∂t

)
u = 0, (t, x) ∈ Rt × Ω,

u(t, ·)|∂Ω = 0,

(u, ∂tu)|t=0 = (u0, u1)

(1.1)

The damping a(x) ≥ 0 is assumed to be piecewise smooth. Denote by H1 = H1
0 × L2. The

solution of (1.1) can be written as

U(t) =

(
u(t)

∂tu(t)

)
= etA

(
u0
u1

)
,

where the generator

A =

(
0 1

∆ diva∇

)
(1.2)

with domain

D(A) = {(u0, u1) ∈ H1
0 × L2 : ∆u0 + diva∇u1 ∈ L2, u1 ∈ H1

0}.
Note that the energy

E[u](t) =
1

2
‖etA(u0, u1)‖2H1 =

1

2

∫

Ω

(
|∂tu|2 + |∇u|2

)
dx

satisfies

E[u](t)− E[u](0) = −
∫ t

0

∫

Ω

a(x)|∇x∂tu|2(s, x)ds
1
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It was proved in [BC15] and [BS20] (see also [LR06],[Te16] for related results) that if a is

smooth, vanishing nicely and the region {x ∈ Ω : a(x) > 0} controls geometrically Ω, then the

rate of decay of the energy is exponential:

E[u](t) ≤ Ce−ctE[u](0).

In this article, we investigate the different case where the damping a(x) is piecewise smooth

and has a jump across some hypersurface Σ ⊂ Ω. Unlike the smooth damping vanishing nicely,

the problem with piecewise damping can be seen as an elliptic-hyperbolic transmission system

on the two sides of the interface Σ connected by some transmission condition. The interface be-

comes a wall to reduce the energy transmission from the hyperbolic region to the damped region.

This phenomenon is known as overdamping. It turns out that this discontinuous Kelvin-Voigt

damping ∇ · (a(x)∇∂tu) does not follow the principle that the “geometric control condition”

implies the exponential stabilization, which holds for the wave equation with localized viscous

damping a(x)∂tu (see [LR05, Zh18] for results using the multiplier methods)

1.2. The main result. To state our main result, we first make some geometric assumptions.

Let Ω ⊂ Rd with d ≥ 2. We consider the piecewise smooth damping a ∈ C∞(Ω1), a|Ω\Ω1
= 0,

such that there exists α0 > 0,

inf
x∈∂Ω1

a(x) ≥ α0,

where Ω1 ⊂ Ω. We assume that ∂Ω1 consists of ∂Ω and Σ = ∂Ω1 \ ∂Ω where Σ ⊂ Ω. Denote

by Ω2 = Ω \ (Ω1 ∪ Σ), then ∂Ω2 = Σ is the interface. We will fix this geometry in this article

and assume that Ω1,Ω2 and Σ are smooth (C∞, though this assumption could be relaxed to a

finite number of derivatives).

Ω1 : a(x) ≥ α0

Ω2 : a(x) = 0

ν

Σ

Geometry of the damped region

Definition 1.1 (Geometric control condition). We say that Ω1 satisfies the geometric control

condition, if all generalized rays (geometric optics reflecting on the boundary ∂Ω according to

the laws of geometric optics) of Ω eventually reach the set Ω1 in finite time.

An alternative (equivalent in this context) property is the following
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(H) All the bicharacteristics of Ω2 will reach a non-diffractive point (with respect to the

domain Ω2) at the boundary Σ.

Theorem 1. Assume that Ω,Ω1,Ω2 and a(x) satisfy the above geometric conditions. Then

under the hypothesis (H), there exists a uniform constant C > 0, such that for every (u0, u1) ∈
D(A) and t ≥ 0,

‖etA(u0, u1)‖ ≤ C

1 + t
‖(u0, u1)‖D(A). (1.3)

Moreover, the decay rate is optimal in the following sense: when Ω ⊂ Rd, d ≥ 2 and Ω2 = D ⊂ Ω

is a unit ball, Ω1 = Ω\Ω2, the semi-group etA associated with the damping a(x) = 1Ω1(x)
satisfies

sup
06=(u0,u1)∈D(A)

‖etA(u0, u1)‖H1

‖(u0, u1)‖D(A)

≥ C ′

1 + t
, (1.4)

for all t ≥ 0, where C ′ > 0 is a uniform constant.

Remark 1.2. In [Bu19], under the geometric control condition, a weaker decay rate, namely
1√
1+t

was achieved with a simpler and very robust general proof requiring much less rigidity on

the geometric setting. Notice also that in dimension 1, a stronger decay rate, namely 1
(1+t)2

is

known to hold [LR05, Section 3, Example 1]. It is hence remarquable that in higher dimensions

we can construct examples of geometries where the 1
(1+t)

decay rate is saturated. This phenom-

enon is linked to the fact that in higher dimensions there exists sequences of eigenfunctions of

the Laplace operator in Ω2 with Dirichlet boundary condidtions (or at least high order quasi-

modes), with mass concentrated along rays which do not encounter the boundary at normal

incidence (a fact which is clearly false in dimension 1, seeing that in this case the incidence is

always normal).

Ω1

Ω2

Σ

Angle of incidence is acute

Remark 1.3. Let us mention that the non-exponential stability for (1.1) and a more general

(theromo)viscoelastic system were studied in [MRa], where the authors obtained a rougher

polynomial decay rate O(t−
1
3 ). Moreover, in our result, the damped region (Ω1) only needs to

satisfy the geometric control condition, so the geometric configuration in Munoz Rivera-Racke

is contained in our assumption.
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Remark 1.4. The choice of Dirichlet boundary conditions on ∂Ω plays no particular role, and

we could have taken any type of boundary conditions for which the system is well posed and

we have propagation of singularities (e.g. Neumann boundary conditions)

Remark 1.5. The picture for Kelvin Voigt damping is now quite complete for smooth (essen-

tially C2) dampings [BC15] and [BS20] (and also [LR06],[Te16]), or discontinuous dampings,

see in dimension 1 [LR05, Section 3, Example 1], and the present paper. It would be interesting

to understand the intermediate situation (Cα, α ∈ (0, 2), dampings). We refer to [HZZ] for

resuts in this direction in dimension 1.

Remark 1.6. In this article, we do not treat the case where Σ∩∂Ω 6= ∅. In that case, ∂Ω2 can

be only Lipchitz, and more technical treatments for the propagation of singularities are needed

near the points Σ ∩ ∂Ω.
Theorem 2. We have Spec(A) ∩ iR = ∅. Moreover, there exists C > 0, such that for all

λ ∈ R, |λ| ≥ 1, ∥∥(iλ−A)−1
∥∥
L(H)

≤ C|λ|. (1.5)

Moreover, when Ω ⊂ Rd, d ≥ 2 and Ω2 = D ⊂ Ω is a unit ball, Ω1 = Ω \ Ω2, we actually have

a lower bound:

lim sup
λ→+∞

λ−1
∥∥(iλ−A)−1

∥∥
L(H)

= c > 0.

In other words, there exist sequences (Un) ⊂ H1 and λn → +∞ such that

‖Un‖H = 1, ‖(iλn −A)Un‖H = O(λ−1
n ). (1.6)

• Theorem 1 and Theorem 2 are essentially equivalent. Indeed, the equivalence between the

resolvent estimate (1.5) and the decay rate (1.3) is covered by Theorem 2.4 of [BoT10]. It

is very likelly that (1.4) and (1.5) are also equivalent. However, we prove here only the fact

that (1.6) implies (1.4). We argue as follows: Let Un be a sequence of quasi-modes associated

with λn (λn → +∞) that saturates (1.5). Denote by Fn = (iλn −A)Un. We have

‖Un‖H = 1, ‖Fn‖H = O(λ−1
n ), ‖Un‖D(A) ∼ λn.

Define Un(t) = etAUn and we write

Un(t) = eiλntUn +Rn(t),

then

(∂t −A)Rn = −(iλn −A)eitλnUn = OH(λ
−1
n ), Rn(0) = 0.

Since

Rn(t) = −
∫ t

0

e(t−s)A(iλn −A)eisλnUnds,

we deduce that ‖Rn(t)‖H = O(λ−1
n t) for t > 0. Assume that κ(t) is the optimal decay rate of

the energy, then by E[Un(t)]
1
2 = ‖Un(t)‖H ≤ κ(t)

1
2‖Un‖D(A) we have

C1κ(t)
1
2λn ≥ 1− ‖Rn(t)‖H = 1− C2λ

−1
n t.
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For fixed t > 0, we choose n large enough such that C2λ
−1
n t = 1

2
, thus we obtain that

κ(t)
1
2 ≥ 1

2C1λn
=

1

C1C2t
.

This proves (1.4). As a consequence, we shall in the sequel reduce the analysis to the proof of

Theorem 2.

This article is organized as follows. We present the proof of (1.5) of Theorem 2 in Section

2, Section 3 and Section 4. The proof follows from a contradiction argument which reduces

the matter to study the associated high energy quasi-modes. In Section 2, we reduce the

equation of quasi-modes to a transmission problem, consisting of an elliptic system in Ω1 and a

hyperbolic system in Ω2, coupled at the interface Σ. Both systems are semi-classical but with

different scales h, ~ = h1/2. Next in Section 3, we study the elliptic system and obtain the

information of the quasi-modes restricted to the interface by transmission conditions. Then in

Section 4, we prove the propagation theorem for the hyperbolic problem in Ω2 which will lead

to a contradiction. We need to analyze two semi-classical scales corresponding to the elliptic

and hyperbolic region, connected by the transmission condition on the interface. Finally in

Section 5, we construct a sequence of quasi-modes saturating the inequality (1.5) in a simple

geometry. In particular this proves the optimality of the resolvent estimate. We collect various

toolboxes in the final section of the appendix.

Throughout this article, we adopt the standard notations in semi-classical analysis (see for

example [Zw12]). We will use the standard quantization for classical and semi-classical pseudo-

differential operators Op,Oph,Op~. We will also adopt the usual asymptotic notations, such

as O(hα), O(~α) and o(hα), o(~α), as h→ 0. Moreover, for a Banach space X and h-dependent

families of functions fh, gh, we mean fh = OX(h
α), gh = oX(h

α), if

‖fh‖X = O(hα), ‖gh‖X = o(hα),

as h→ 0.

Acknowledgment. The first author is supported by Institut Universitaire de France and

ANR grant ISDEEC, ANR-16-CE40-0013. The second author is supported by the postdoc

programe: “Initiative d’Excellence Paris Seine” of CY Cergy-Paris Université and ANR grant

ODA (ANR-18-CE40- 0020-01).

2. Reduction to a transmission problem

It was proved by the first author in [Bu19] that

‖(A− iλ)−1‖L(H) ≤ Cec|λ|

under more general conditions for the damping. Therefore, the proof of the first part of Theorem

2 (i.e. (1.5)) is reduced to the high energy regime |λ| → +∞. For this, we argue by contradic-

tion. Assume that (1.5) is not true, then there exist h-dependent functions U =
(
u
v

)
, F =

(
f
g

)
,
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such that

‖Uj‖H1×L2 = O(1), ‖Fj‖H1×L2 = o(h) (2.1)

(A− ih−1)U = F. (2.2)

Let ν be the unit normal vector pointing to the undamped region Ω. Denote by a1(x) =

a(x)1Ω1
Let U =

(
u
v

)
and F =

(
f
g

)
. Then for U ∈ D(A) and F ∈ H, the equation

(A− iλ)U = F

is equivalent to (h = λ−1) the following system for uj = u1Ωj
, fj = f1Ωj

, and gj = g1Ωj
,

j = 1, 2:




u1 = ih(f1 − v1), in Ω1

h∆u1 + h∇x · (a1(x)∇v1)− iv1 = hg1, in Ω1

u2 = ih(f2 − v2), in Ω2

h∆u2 − iv2 = hg2, in Ω2

(2.3)

with boundary condition on the interface

u1|Σ = u2|Σ, ∂νu2|Σ = (∂νu1 + a1∂νv1)|Σ, (2.4)

Indeed, the equations inside Ω1,Ω2 can be verified directly. The first boundary condition is just

the fact that the function u equal to uj in Ωj must have no jump at the interface to enssure

taht ity belongs to H1(Ω). To check the second boundary condition, we take an arbitrary test

function ϕ ∈ C∞
c (Ω) and multiply the equation h∆u− iv+hdiva∇v = 0 by ϕ. We obtain that

0 =− h

∫

Ω

∇u · ∇ϕ− h

∫

Ω

a∇v · ∇ϕ− i

∫

Ω

vϕ

=−
2∑

j=1

∫

Ωj

(
h∇uj · ∇ϕ− ivjϕ

)
− h

∫

Ω1

a1(x)∇v1 · ∇ϕ

=
2∑

j=1

∫

Ωj

(
h∆ujϕ− ivjϕ

)
+

∫

Ω1

h∇x · (a1(x)∇v1) · ϕ+ h

∫

Σ

(∂νu2 − ∂νu1 − a1∂νv1)|Σ · ϕ.

Using the differential equations in Ω1,Ω2, the last term on the right side is equal to

h

∫

Σ

(∂νu2 − ∂νu1 − a1∂νv1)|Σ · ϕ|Σ,

hence it must vanish for all ϕ. This verifies (2.4).

First we prove an a priori estimate for these functions:

Lemma 2.1 (A priori estimate). Denote by Uj =
(
uj

vj

)
, Fj =

(
fj
gj

)
, for j = 1, 2. Assume that

‖Uj‖H1×L2 = O(1) and ‖Fj‖H1×L2 = o(h), then we have

‖∇v1‖L2 = o(h
1
2 ), ‖v1‖L2 = o(h)
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and

‖∇u1‖L2 = o(h
3
2 ), ‖u1‖L2 = o(h2).

Consequently, by the trace theorem, we have

‖u1‖H 1
2 (Σ)

= o(h
3
2 ), ‖v‖

H
1
2 (Σ)

= o(h
1
2 ).

Proof. First we observe that, from the relation between u and v, we deduce that ∇v ∈ L2(Ω)

and

‖∇vj‖L2(Ωj) = O(h−1), j = 1, 2. (2.5)

Moreover, by the trace theorem, v1|Σ = v2|Σ as functions in H
1
2 (Σ). From the system (2.3), we

have

(∇u1,∇v1)L2(Ω1)

= ih(∇f1,∇v1)L2(Ω1) − ih‖∇v1‖2L2(Ω1)
− (∇u1,∇v1)L2(Ω1)

− ‖a1/21 ∇v1‖2L2(Ω1)
+ (∂νu1 + a1∂νv1, v1)L2(Σ) (2.6)

= ih−1‖v1‖2L2(Ω1)
+ (g1, v1)L2(Ω1) − (∇u2,∇v2)L2(Ω2) (2.7)

= ih(∇f2,∇v2)L2(Ω2) − ih‖∇v2‖2L2(Ω2)
− (∇u2,∇v2)L2(Ω2) − (∂νu2, v2)L2(Σ) (2.8)

= ih−1‖v2‖2L2(Ω2)
+ (g2, v2)L2(Ω2). (2.9)

Taking the real part of (2.6)+(2.7)-(2.8)+(2.9), we deduce that ‖∇v1‖2L2(Ω1)
= o(h), thanks to

the boundary condition (2.4) and v1|Σ = v2|Σ. Therefore, from the first equation of (2.3), we

have ‖∇u1‖2L2(Ω1)
= o(h3). Then, using this fact and the second equation of (2.3), we deduce

that

iv1 = h∆u1 + h∇ · (a1∇v1)− hg1 = OH−1(Ω1)(h
3
2 ).

By interpolation, we have v1 = oL2(Ω1)(h), and from u1 = ih(f1 − v1), u1 = oL2(Ω1)(h
2). This

completes the proof of Lemma 2.1. �

3. Estimates of the elliptic system

3.1. Standard theory. We briefly recall the semiclassical elliptic boundary value problem near

the interface Σ. In what follows, we will sketch the parametrix construction for (3.1), following

[BL03]. Near a point x0 ∈ Σ, we use the coordinate system (y, x′) where Ω1 = {(y, x′) : y > 0}
near x0.

L~w = κ = oL2(~2), w|Ω1 = oH1(~), w|Σ = o
H

1
2
(~) (3.1)

where in the local coordinate chart,

L~ := ~
2D2

y − R(y, x′, ~Dx′) +

d−1∑

j=1

~Mj(y, x
′)~∂x′

j
+ ~H(y, x′)~∂y.
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Here R(y, x′, ~Dx′) is a second order semiclassical differential operator in x′ with the principal

symbol r(y, x′, ξ′). The principal symbol of L~ is

l(y, x′, η, ξ′) = η2 − r(y, x′, ξ′),

and we denote by

m(y, x′, η, ξ′) =

d−1∑

j=1

Mj(y, x
′)ξ′j +H(y, x′)η.

The set of elliptic points in T ∗∂Ω is given by

E := {(y = 0, x′, ξ′) : r(0, x′, ξ′) < 0}
By homogeneity, near a point ρ0 ∈ E

− r(y, x′, ξ′) ≥ c(ρ0)|ξ′|2. (3.2)

Denote by w := w1y≥0 the extension by zero of w, and the same for κ, etc. Then w satisfies

the equation

L~w = −~(~∂yw)|y=0 ⊗ δy=0 + ~
2w|y=0 ⊗ δ′y=0 + ~

2H(0, x′)w|y=0 ⊗ δy=0 + κ. (3.3)

Let ϕ(y, x′) be a cut-off to the local chart. Let ψ ∈ C∞(Rd−1), be a Fourier multiplier in S0
ξ′

such that on the support of ϕ(y, x′)ψ(ξ′), (3.2) holds and ϕ(y, x′)ψ(ξ′) = 1 near ρ0. We define

e0(y, x′, η, ξ′) :=
ϕ(y, x′)ψ(ξ′)

l(y, x′, η, ξ′)
(3.4)

and ej, j ≥ 1 inductively by

e1 · l =−
∑

|α|=1

1

i
∂αξ′,ηe

0 · ∂αx′,yl − e0 ·m,

ej · l = −
∑

|α|+k=n,k 6=n

1

i|α|
∂αξ′,ηe

k · ∂αx′,yl −
∑

|α|+k=n−1

1

i|α|
∂αξ′,ηe

k · ∂αx′,ym.

For any N ∈ N, we define

eN =
N∑

j=0

~
jej, EN = Op~(eN ),

and then

ENL~ = ϕ(y, x′)ψ(ξ′)Id +RN ,

where

RN = O(~N+1) : L2
x′,y → L2

x′,y, RN = O(~N+1−2M ) : Hs
x′,y → Hs+2M

x′,y ,

and

EN = O(1) : L2
x′,y → L2

x′,y, EN = O(~−2) : Hs
x′,y → Hs+2

x′,y ,
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thanks to Lemma 6.2. Applying EN to the equation (3.3), we obtain that

ϕ(y, x′)ψ(~Dx′)w =− ~
2EN((∂yw)|y=0 ⊗ δy=0) + ~

2EN (w|y=0 ⊗ δ′y=0) + ~
2EN (Hw|y=0 ⊗ δy=0)

+ENκ− RNw.

Note that eN(y, x
′, η, ξ′) is meromorphic in η with poles η± = ±i

√
−r(y, x′, ξ′). Denote by

G(x′) = ∂yw(0, x
′) +H(0, x′)w(0, x′), we calculate for y > 0, x′ ∈ Rd−1 that

~
2EN ((∂yw +Hw)|y=0 ⊗ δy=0)(y, x

′)

=
~2

(2π~)d

∫
G(x̃′)e

i(x′−x̃′)·ξ′

~ dx̃′dξ′
∫
eN(y, x

′, η, ξ′)e
iyη
~ dη

=
i~

(2π~)d−1

∫
e

iyη+
~ nN(y, x

′, ξ′)e
i(x′−˜x′)·ξ′

~ G(x̃′)dx̃′dξ′,

where nN(y, x
′, ξ′) = Res(eN(y, x

′, η, ξ′); η = η+). Similarly, for y > 0, x′ ∈ Rd−1,

~
2EN(w|y=0 ⊗ δ′y=0)(y, x

′) =
i~

(2π~)d

∫
w(0, x̃′)e

i(x′−x̃′)·ξ′

~ dx̃′dξ′
∫
ηe

iyη
~ eN (y, x

′, η, ξ′)dη

=− 1

(2π~)d−1

∫
e

iyη+
~ dN(y, x

′, ξ′)e
i(x′−x̃′)·ξ′

~ w(0, x̃′)dx̃′dξ′,

where dN = η+nN . Therefore,

ϕ(y, x′)ψ(~Dx′)w

= iOp~(e
iyη+/~nN(y, ·))

(
− (~∂yw)|y=0 + ~(Hw)|y=0

)
−Op~(e

iyη+/~dN(y, ·))(w|y=0)

+ ENκ−RNw, (3.5)

where the two operators in the expression above are tangential. Note that by Lemma 6.2

RNw, ENκ = oL2
x′,y

(~2) = oH2
x′,y

(1),

hence from the interpolation and the trace theorem, we have

(RNw)|y=0 = o
H

1/2

x′
(~), (ENκ)|y=0 = o

H
1/2

x′
(~).

Taking the trace y = 0 for (3.5), we obtain that

Op~(ϕ(0, x
′)ψ(ξ′)+dN(0))(w|y=0) = −Op~(inN (0))((~∂yw)|y=0+~(Hw)|y=0)+ oH1/2

x′
(~). (3.6)

Note that the principal symbols of nN(0), dN(0) are

σ(inN (0)) =
ϕ(0, x′)ψ(ξ′)

2
√
−r(0, x′, ξ′)

, σ(dN(0)) =
ϕ(0, x′)ψ(ξ′)

2
.

In summary, there exists (near ρ0) a ~-P.d.O N~, elliptic and of order 1 classic and of order 0

semi-classic, in the sense that

N~ = O(~) : Hs
x′ → Hs−1

x′ ,

such that

(~∂yw)|y=0 = N~(w|y=0 +OH1/2(~)).
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3.2. Control of the semi-classical wave-front set of the trace. For the further need, we

should also control the wave front set of the precise elliptic equation (with ~ = h
1
2 )

~
2∆w − i

a1
w + ~

∇a1
a1

· ~∇w = κ,

where the h-semiclassical wave front set of the Neumann data WFh(∂νw|Σ). Here we need to

pay attention to two different semi-classical scales.

Proposition 3.1. Assume that w satisfies the ~-semiclassical elliptic equation (with ~ = h
1
2 )

~
2∆w − i

a1
w + ~

∇a1
a1

· ~∇w = κ

with Neumann trace ∂νw|Σ and WFh(∂νw|Σ) is contained in a compact subset of T ∗Σ \ {0}.
Assume moreover that w = OH1(h

1
2 ) and κ = OL2(h), then we have

WFh(w|Σ) ⊂ WFh(∂νw|Σ) ∪ π
(
WFh(κ)

)
,

where π : T ∗Ω1 → T ∗Σ is the projection defined for points near T ∗Σ, and

π
(
WFh(κ)

)
=

{
ρ0 ∈ T ∗Σ : ∃ρ ∈ T ∗Ω1, near T ∗Σ, such that ρ ∈ WFh(κ) and π(ρ) = ρ0

}
.

Proof. Let (x0, ξ0) /∈ WFh(∂νw|Σ) ∪ π
(
WFh(κ)

)
. Locally near x0 ∈ Σ, we can choose local

coordinate system as in the previous subsection. Here the cutoff ψ(ξ′) can be chosen as 1, since

the operator ~2∆ − i is always elliptic. Consider the tangential h-P.d.O Ah which is elliptic

near (x0, ξ0) and its principal symbol is supported away from WFh(∂νw|Σ) ∪ π
(
WFh(κ)

)
. We

need to show that (Ahw)|y=0 = OL2(Σ)(h
∞).

From (3.5) we have

ϕ(y, x′)w =iOp~

(
e

iyη+
~ nN (y)

)(
− (~∂yw)|y=0 + ~(Hw)|y=0

)
−Op~

(
e

iyη+
~ dN(y)

)
(w|y=0)

+ENκ+OH1(h
N
2 ),

where we gain ~N for RNw. By taking the trace y = 0 and using the fact that dN(0) =
1
2
ϕ(0, x′),

we obtain that

(Ahϕ(y, x
′)w)|y=0 +

(
AhOph(dN(0))w

)
|y=0 − i~(AhOp~(nN )(Hw)|y=0

=− iAhOp~(nN (0))(~∂yw)|y=0 + (AhENκ)|y=0 +O
H

1
2
y=0

(hN/2).

We claim that it suffices to show that

AhOp~(nN(0))(~∂yw)|y=0 = OL2
y=0

(h∞) and (AhENκ)|y=0 = OL2
y=0

(h∞). (3.7)

Indeed, once this is done, we obtain that, at least (Ahw)|y=0 = OL2(~)1. Now we can replace Ah

by another tangential operator Ãh with principal symbol ã such that ã is supported in a slightly

1The operator Ah is of the form χAhχ for some cutoff χ such that χ ≡ 1 on supp(ϕ).
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larger region containing supp(a) and ã = 1 on supp(a). We still have (Ãhw)|y=0 = OL2(~). Now

we write

~AhOp~(nN )Hw = ~AhOp~(nN)HÃhw + ~AhOp~(nN)H(1− Ãh)w.

From Lemma 3.2, the trace of the second term on the right side is OL2(h∞). Therefore, the

trace of the first term on the right side is OL2(~2), hence (Ahw)|y=0 = OL2(~2). Then we can

continuously apply this argument to conclude.

It remains to prove (3.7). For this, we just need to interchange the operator Ah with EN and

Op~(nN (0)). Here additional attentions are needed, since Op~(nN(0)), EN are ~-P.d.O. This

can be verified from the following lemma:

Lemma 3.2. Assume that a, b, q ∈ S0(Rn
x × Rn

ξ ), compactly supported in the x variable such

that

dist
(
supp(a), supp(b)

)
≥ c0 > 0.

Then for any s ∈ R, N ∈ N, N ≥ 2n, we have

a(x, hDx)q(x, h
1
2Dx)b(x, hDx) = OL2→L2(hN).

Proof. Denote by

A(x, y, ξ, η) = a(x, h(ξ + η))q(x+ y, h
1
2 ξ).

Then from Lemma 6.3,

a(x, hDx)q(x, h
1
2Dx) =

∑

|β|≤N

Op
( h|β|
i|β|β!

(∂βξ a)(x, hξ)(∂
β
xq)(x, h

1
2 ξ)

)

+OL(L2)(h
N+1−n),

since for any β ∈ N2n,

sup
|α|=N+1

sup
(x,ξ)

∫∫

R2n

|∂βx,ξ∂αz ∂αζ (a(x, h(ξ + ζ))q(x+ z, h
1
2 ξ))|dzdζ = O(hN+1−n).

Using the fact that h|β|

i|β |β!∂
β
ξ a · ∂βx q · b = 0, thanks to the support property, we have, using again

Lemma 6.3,

a(x, hDx)q(x, h
1
2Dx)b(x, hDx) = OL(L2)(h

N )

for any N large enough. This completes the proof. �

Therefore the proof of Proposition 3.1 is now complete. �
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3.3. Estimate of the traces. Let u1, v1 be solutions of the first two equations of (2.3). Con-

sider w = u1 + a1v1, then under the assumption of Lemma 2.1,

w = oH1(h
1
2 ), w = oL2(h), w|Σ = o

H
1
2
(h

1
2 ).

Note that w satisfies the elliptic equation (with ~ = h
1
2 )

~
2∆w + ~

∇a1
a1

· ~∇w − i

a1
w = ~

2g1 − ~
2∆a1 · v1 + ~

2 |∇a1|2
a1

v1 −
~∇a1
a1

· ~∇u1 +
i

a1
u1 (3.8)

In particular,

~
2∆w − i

a1
w + ~

∇a1
a1

· ~∇w = oL2(~2).

In this case, N~ defined in the last subsection is the usual ~-semiclassical Dirichlet-Neumann

operator:

N~(w|Σ + oH1/2(~2)) := (~∂νw)|Σ.
We can apply the standard theory (to h−1w)with the particular choice ψ(ξ′) ≡ 1 in (3.4) and

obtain the following:

Proposition 3.3. Let χ ∈ C∞
c (R). Then under the hypothesis of Lemma 2.1 and in the local

chart near Σ, we have ϕχ(hDx′)ϕ(∂yw)|y=0 = oL2
x′
(1), where h = ~2. Consequently,

u2|Σ = oH1/2(h
3
2 ), ϕχ(hDx′)ϕh∂yu2|y=0 = oL2(Σ)(h).

Proof. Assume that ϕ, ϕ1 are supported in a local chart and satisfy ϕ1|supp(ϕ) = 1. In apri-

ori, we have ϕ∂y(ϕ1w)|y=0 = ϕ~−1N~((ϕ1w)|y=0) = o
H

−1/2

x′
(~). Thus by Lemma 6.2 we have

ϕ~−1χ(~2Dx′)ϕN~((ϕ1w)|y=0) = oL2
x′
(1).

�

4. Propagation estimate

In this section, we will deal with the propagation estimate for u2 in H1, satisfying

(h2∆+ 1)u2 = ihf2 + h2g2 = oH1(h2) + oL2(h3), in Ω2,

‖u2‖H1(Ω2) = O(1), ‖u2|Σ‖H1/2(Σ) = o(h3/2),

‖h∂νu2|Σ‖H−1/2(Σ) = o(h3/2), ‖ϕψ(hDx′)ϕh∂νu2|Σ‖L2(Σ) = o(h).

(4.1)

Set w2 = h−1u2. From (4.1),

−‖∇u2‖2L2(Ω2)
+ ‖h−1u2‖2L2(Ω2)

=
〈
(∂νu2)|Σ · u2|Σ

〉H1/2(Σ)

H−1/2(Σ)
+ o(1) = o(1).

Hence we could equivalently deal with the propagation estimate for w2 in L2, satisfying

(h2∆+ 1)w2 = if2 + hg2 = oH1(h) + oL2(h2), in Ω2,

‖w2‖H1(Ω2) = O(h−1), ‖w2‖L2(Ω2) = O(1), ‖w2|Σ‖H1/2(Σ) = o(h1/2),

‖h∂νw2|Σ‖H−1/2(Σ) = o(h1/2), ‖ϕψ(hDx′)ϕh∂νw2|Σ‖L2(Σ) = o(1).

(4.2)
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The goal of this section is to prove the invariance of the semiclassical measure µ associated

with (a subsequence of) w2 and finally prove that µ = 0 from the boundary conditions in (4.2)

on the interface Σ. This will end the contradiction argument.

4.1. Propagation away from Σ. The defect measure in the interior of Ω2 for u2 is defined

via the following quadratic form:

φ(Qh, w2) = (Qhw2, w2)L2(Ω2) :=

∫

Ω2

Qhw2 · w2dx.

Proposition 4.1 (Interior propagation). Let Qh = χ̃Qhχ̃ be a h-pseudodifferential operator of

order 0, where χ̃ ∈ C∞
c (Ω2), then we have

1

ih

(
[h2∆+ 1, Qh]w2, w2

)
L2 = o(1).

Proof. By developing the commutator and using the equation (4.1), we have

( 1

ih
[h2∆+ 1, Qh]w2, w2

)
=

1

ih

(
(h2∆+ 1)Qhw2, w2

)
− 1

ih

(
Qh(if2 + hg2), w2

)

=
1

ih

(
Qhw2, if2 + hg2

)
+

1

ih

(
Qh(if2 + hg2), w2

)

=o(1),

where we used the integration by part without boundary terms, since the kernel of Qh is

supported away from the boundary Σ = ∂Ω2. This completes the proof of Proposition 4.1. �

4.2. Geometry near the interface. Near Σ = ∂Ω2, we adopt the local coordinate system

x = (y, x′) in U := (−ǫ0, ǫ0)y×Xx′ for the tubular neighborhood of Σ, similar as in the previous

section but with the new convention Ω2 ∩ U = (0, ǫ0)y × Xx′ . In this coordinate system, the

Euclidean metric dx2 is identified as the matrix

g =

(
1 0

0 g(y, x′)

)
, or g−1 :=

(
1 0

0 g−1(y, x′)

)
.

Near Σ, the defect measure µ for w2 is defined via the quadratic form for tangential operators:

φ(Qh, w2) :=

∫

U

Qhw2 · w2

√
|g|dydx′,

where |g| := det(g). The principal symbol of the operator Ph,0 = −(h2∆+ 1) is

p(y, x′, η, ξ′) = η2 + |ξ′|2g − 1 := η2 + 〈ξ′, g−1ξ′〉Rd−1 − 1.

By Char(P ) we denote the characteristic variety of p:

Char(P ) := {(x, ξ) ∈ T ∗
R

d|Ω : p(x, ξ) = 0}.
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Denote by bTΩ2 the vector bundle whose sections are the vector fields X(p) on Ω2 with X(p) ∈
Tp∂Ω2 if p ∈ ∂Ω2. Moreover, denote by bT ∗Ω2 the Melrose’s compressed cotangent bundle

which is the dual bundle of bTΩ2. Let

j : T ∗Ω2 →b T ∗Ω2

be the canonical map. In our geodesic coordinate system near ∂Ω2,
bTΩ2 is generated by the

vector fields ∂
∂x′

1
, · · ·, ∂

∂x′
d−1
, y ∂

∂y
and thus j is defined by

j(y, x′; η, ξ′) = (y, x′; v = yη, ξ′).

Let Z := j(Char(P )). By writing in another way

p = η2 − r(y, x′, ξ′), r(y, x′, ξ′) = 1− |ξ′|2g,

we have the standard decomposition

T ∗∂Ω2 = E ∪ H ∪ G,

according to the value of r0 := r|y=0 where

E = {r0 < 0},H = {r0 > 0},G = {r0 = 0}.

The sets E ,H,G are called elliptic, hyperbolic and glancing, with respectively. We define also

the set

Hδ := {δ < r0 < 1− δ}
with 0 < δ < 1

2
for the non-tangential and non incident points. Note that here the elliptic

points E is different from those defined in Section 3.

To classify different situations as a ray approaching the boundary, we need more accurate

decomposition of the glancing set G. Let r1 = ∂yr|y=0 and define

Gk+3 = {(x′, ξ′) : r0(x′, ξ′) = 0, Hj
r0
(r1) = 0, ∀j ≤ k;Hk+1

r0
(r1) 6= 0}, k ≥ 0}

G2,± := {(x′, ξ′) : r0(x′, ξ′) = 0,±r1(x′, ξ′) > 0},G2 := G2,+ ∪ G2,−.

Next we recall the definition of the generalized bicharacteristic:

Definition 4.2. A generalized bicharacteristic of Ω2 is a piecewise continuous map from R to
bT ∗Ω2 such that at any discontinuity point s0, the left and right limits γ(s0∓) exist and are

the two points above the same hyperbolic point on the boundary (this property translates the

specular reflection of geometric optics) and except at these isolated points the curve is C1 and

satisfies

• dγ
ds
(s) = Hp(γ(s)) if γ(s) ∈ T ∗Ω2 or γ(s) ∈ G2,+

• dγ
ds
(s) = Hp(γ(s))− H2

py

H2
yp
Hy if γ(s) ∈ G \ G2,+ where y is the boundary defining function.
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Remark 4.3. The first property in the definition above is the fact that the curve is a geodesic

in the interior or passing though a non diffractive point. The second one is that passing through

a non diffractive gliding point it is curved to be forced to remain in the interior of T ∗∂Ω2 for a

while. When the domain is smooth and does not have infinite order of contact with its tangents,

then (see [MS]) through each point passes a unique generalized bicharacteristic. In general only

existence is known.

Remark 4.4. In the statement of the geometric control condition 1.1, the generalized rays are

the projection of the generalized bicharacteristics of Ω onto Ω.

4.3. Elliptic regularity.

Lemma 4.5. Denote by λ(y, x′, ξ′) =
√

|ξ′|2g − 1. Let ψ ∈ C∞(Rd−1), ϕ1, ϕ2 ∈ C∞
c (Rd), such

that on the support of ψ(ξ′)ϕ1(y, x
′) and ψ(ξ′)ϕ2(y, x

′), |ξ′|g > 1 + δ for some δ > 0. Then we

have

Oph

(
1y≥0ϕ2e

−yλ
h ψ(ξ′)

)
ϕ1 = O(1) : H− 1

2 (Rd−1
x′ ) → L2(Rd

+)

Proof. Denote by Ty := Oph

(
1y≥0ϕ2e

−yλ
h ψ(ξ′)

)
. By definition, we have for f0 ∈ H

−1/2
x′ and

y > 0 that

(Tyf0)(x
′) :=

1

(2πh)d−1

∫∫
e−

yλ(y,x′,ξ′)
h ψ(ξ′)ϕ2(y, x

′)e
i(x′−z′)·ξ′

h f0(z
′)dz′dξ′.

Denote by F0 := 〈D′
x〉−1/2f0, then this term can be written as

Op
(
e−

yλ(y,x′,hξ′)
h ψ(hξ′)〈ξ′〉 1

2ϕ2(y, x
′)
)
F0.

For fixed y > 0, from the Calderón-Vaillancourt theorem and the support property of ψ, we

have, for any M > 0 that

∥∥Op
(
e−

yλ(y,x′,hξ′)
h ψ(hξ′)〈ξ′〉 1

2ϕ2(y, x
′)
)
F0

∥∥
L2
x′
≤ CMh

− 1
2 e−

cy
h

(
1 +

yM

hM
)
‖F0‖L2

x′
.

and the constants CM , c are independent of y. Squaring the inequality above and integrating in

y yields the bound O(1)‖F0‖2L2
x′
= O(1)‖f0‖2

H
−1

2
x′

. This completes the proof of Lemma 4.5. �

Proposition 4.6.

µ1E = 0.

Proof. Applying (3.5) to κ = oH1(h) + oL2(h2) and ~ = h, we obtain that

ϕ(y, x′)ψ(hDx′)w2 =−Oph

(
e

iyη+
h inN(y, ·)

)
(h∂yw2|y=0)−Oph

(
e

iyη+
h dN(y, ·)

)
(w2|y=0)

+Oph

(
e

iyη+
h inN (y, ·)

)
(hH(0, x′)w2|y=0) + oL2

y,x′
(h2).

(4.3)
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Applying Lemma 4.5, we have Oph

(
e

iyη+
h inN (y, ·)

)
(h∂yw2|y=0) = oL2

y,x′
(h

1
2 ). By the same way,

the other terms on the right side of (4.3) are at most oL2
y,x′

(h
1
2 ). Hence ϕ(y, x′)ψ(hDx′)w2 =

oL2
y,x′

(h
1
2 ), and this completes the proof of Proposition 4.6. �

4.4. Propagation formula near the interface. Consider the operator

Bh = B0,h +B1,hh∂y

where Bj,h = χ̃1Oph(bj)χ̃1, j = 0, 1 are two tangential operators and χ̃1 has compact support

near a point z0 ∈ Σ. The symbols bj are compactly supported in (x′, ξ′) variables. Note that

in the local coordinate system,

Ph,0 = −h2∆− 1 = − 1√
|g|
h∂y

√
|g|h∂y − Rh,

where Rh is a self-adjoint tangential differential operator of order 2 classic and of order 0

semiclassic.

Lemma 4.7 (Boundary propagation). Let (w̃h) be a h-dependent family of functions satisfying

w̃h = OL2(Ω2) = O(1) and w̃h = OH1(Ω2)(h
−1). Assume moreover that w̃h satisfies the equation

Ph,0w̃h = oH1(Ω2)(h) + oL2(Ω2)(h
2)

and the boundary condition: w̃h|Σ = o
H

1
2
(h

1
2 ) and h∂νw̃h = O

H− 1
2
(h

1
2 ). Then we have

1

ih

(
[Ph,0, Bh]w̃h, w̃h

)
L2(Ω2)

= i
(
B1,h|y=0(h∂yw̃h)|y=0, (h∂yw̃h)|y=0

)
L2(Σ)

+ o(1). (4.4)

Proof. First we remark that the right hand side of (4.4) makes sense, since B1,h|y=0 is a classical

smoothing operator (but of semi-classical order 0). We denote by w̃ = w̃h for simplicity.

Without loss of generality, we may assume that B0,h = 0, since the treatment for the term
1
ih

(
[Ph,0, B0,h]w̃, w̃

)
L2 is the same as in the proof of Proposition 4.1, which contributes only o(1)

terms. By expanding the commutator, we have

1

ih

(
[P0,h, Bh]w̃, w̃

)
L2

=
1

ih

(
P0,hB1,hh∂yw̃, w̃

)
− 1

ih

(
B1,hh∂yP0,hw̃, w̃

)
L2

=
1

ih

(
B1,hh∂yw̃, P0,hw̃

)
L2 −

1

ih

(
B1,hh∂yP0,hw̃, w̃

)
L2

+i
(
B1,h|y=0(h∂yw̃)|y=0, (h∂yw̃)|y=0

)
L2(Σ)

− i
(
(h∂yB1,hh∂yw̃)|y=0, w̃|y=0

)
L2(Σ)

Observe that B1,hh∂yw̃ = OL2(Ω2)(1), P0,hw̃ = oH1(Ω2)(h) + oL2(Ω2)(h
2), and B1,hh∂yP0,hw̃ =

oL2(Ω2)(h) + oH−1(Ω2
(h2), thus

1

ih

(
B1,hh∂yw2, P0,hw̃

)
L2 −

1

ih

(
B1,hh∂yP0,hw̃, w̃

)
L2 = o(1)
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as h → 0. Write h∂yB1,hh∂yw̃ = h(∂yB1,h)h∂yw̃ + B1,hh
2∂2yw̃ and using the equation satisfied

by w̃, we obtain that

h∂yB1,hh∂yw̃ = Ahh∂yw̃ − B1,hRhw̃ − B1,hPh,0w̃,

where Ah is a tangential operator of order 0 semi-classic. Thanks to Lemma 6.2, B1,h =

OL2→H1(h−1), thus B1,hPh,0w̃ = oH1(Ω2)(h) and by the trace theorem (B1,hPh,0w̃)|Σ = o
H

1
2 (Σ)

(h).

Next since Rhw̃|Σ = o
H

1
2 (Σ)

(h
1
2 ) + o

H− 3
2 (Σ)

(h
5
2 ), we have B1,hRhw̃|Σ = o

H
1
2 (Σ)

(h
1
2 ). We then

deduce that (h∂yB1,hh∂yw̃)|y=0 = O
H− 1

2 (Σ)
(h

1
2 ), which implies that

(
(h∂yB1,hh∂yw̃)|y=0, w̃|y=0

)
L2(Σ)

= o(1).

This completes the proof of Lemma 4.7. �

To derive the propagation formula for the semiclassical measure, we consider a family of

functions (w̃h) satisfying the equation

Ph,0w̃h = oH1(Ω2)(h) + oL2(Ω2)(h
2)

with a weaker boundary conditions, compared with (4.2).

‖w̃h‖L2(Ω2) = O(1), ‖h∇w̃h‖L2(Ω) = O(1), ‖w̃h|Σ‖H 1
2 (Σ)

= o(h
1
2 ), ‖(h∂νw̃h)|Σ‖H−1

2 (Σ)
= O(h

1
2 ).

Denote by µ is the semiclassical measure associated with (w̃h).

Proposition 4.8.

(1) µ1H = 0; (4.5)

(2) lim sup
h→0

∣∣(Oph(b0)h∂yw̃h, w̃h

)
L2

∣∣ ≤ sup
ρ∈supp(b0)

|r(ρ)| 12 |b0(ρ)|, (4.6)

for any tangential symbol b0(y, x
′, ξ′) of order 0.

Proof. (1) follows from the transversality of the rays reaching H, and the proof is the same as

in [BL03] (see also the proof of Proposition 2.14 in [BS20] by taking Mh = 0 there). The proof

of (2) is also similar as in [BS20], with an additional attention when doing the integration by

part. Indeed, by Cauchy-Schwartz,
∣∣(Oph(b0)h∂yw̃h, w̃h

)
L2

∣∣ ≤
∣∣(Oph(b0)h∂yw̃h,Oph(b0)h∂yw̃h

)∣∣ 12‖w̃h‖L2.

Doing the integration by part,
(
Oph(b0)h∂yw̃h,Oph(b0)h∂yw̃h

)
L2 = O(h)−

(
Oph(b0)h

2∂2y w̃h,Oph(b0)w̃h

)
L2 ,

where O(h) comes from the commutators and the boundary term, since by the assumption

on w̃h,
(
Oph(b0)(h∂yw̃h)|y=0, hOph(b0)(w̃h|y=0)

)
L2
x′

= o(h2). For the rest argument, we just

replace −h2∂2yw̃h by −Rhw̃h plus errors in OL2(h). From the symbolic calculus, the contribution

supρ |r|
1
2 |b0(ρ)| comes from the principal term

∣∣(Oph(b0)Rhw̃h,Oph(b0)w̃h

)
L2

∣∣ 12 , after taking

limsup in h. This completes the proof of Proposition 4.8. �
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Lemma 4.9. Let B0,h, B1,h are tangential semiclassical operators of order 0, with principal

symbols b0, b1 with respectively, supported near a point ρ0 of T ∗Σ. Then

((
B0,h +B1,h

h

i
∂y
)
w̃h, w̃h

)
= 〈µ, b0 + b1η〉+ o(1), (4.7)

as h→ 0.

Proof. First we remark that the expression 〈µ, b0 + b1η〉 is well-defined, since µ belongs to

the dual of C0(Z) and µ(H) = 0, and in particular, by elliptic regularity, µ1|η|>1 = 0. The

convergence of the quadratic form (B0,hw̃h, w̃h) to 〈µ, b0〉 is just the definition of the semiclassical

measure µ. If ρ0 ∈ E , the contributions of both sides of (4.7) is o(1), thanks to the elliptic

regularity (see the proof of Proposition 4.6). Next we assume that ρ0 ∈ H ∪ G. Take ϕ ∈
C∞

c (−1, 1), ϕ is equal to 1 in a neighborhood of (−1/2, 1/2). For ǫ > 0, we write

B1,h,ǫ :=
(
1− ϕ

(y
ǫ

))
B1,h, Bǫ

1,h := B1,h − B1,h,ǫ.

Taking h→ 0 first we obtain that

(
B1,h,ǫ

h

i
∂yw̃h, w̃h

)
L2(Ω2)

→ 〈µ,
(
1− ϕ

(y
ǫ

))
b1η〉.

If ρ0 ∈ H, then taking ǫ→ 0, we obtain that

lim
ǫ→0

〈µ,
(
1− ϕ

(y
ǫ

))
b1η〉 = 〈µ, 1y>0b1η〉 = 〈µ, b1η〉,

since µ1H∪E = 0. It remains to estimate the contribution of
(
Bǫ

1,h
h
i
∂yw̃h, w̃h

)
. For fixed ǫ > 0,

we have∣∣∣ lim sup
h→0

((
Bǫ

1,hh∂yw̃h, w̃h

))
L2(Ω2)

∣∣∣ ≤ lim sup
h→0

(
‖ϕ(y/ǫ)B∗

1,hw̃h‖L2(Ω2)‖h∂yw̃h‖L2(Ω2)

)
.

Since on supp(µ1y>0), |η| ≤ 1, together with the fact that ρ0 ∈ H∩E , we deduce that the right
side converges to 0 as ǫ→ 0.

Now suppose that ρ0 ∈ G. For any ǫ > 0, δ > 0, we decompose B1,h = Bǫ
1,h + Bǫ,δ

1,h + Bǫ
1,h,δ,

with

B1,h,ǫ =
(
1− ϕ

(y
ǫ

))
B1,h,

Bǫ,δ
1,h = Oph

(
ϕ
(y
ǫ

)
ϕ
(r
δ

))
B1,h,

Bǫ
1,h,δ = Oph

(
ϕ
(y
ǫ

)(
1− ϕ

(r
δ

)))
B1,h.

By the same argument, we have

lim
ǫ→0

lim
h→0

(
B1,h,ǫhDyw̃h, w̃h

)
L2(Ω2)

= 〈µ, b1η1y>0〉 = 〈µ, b1η1ρ/∈H〉,

since µ1H∪E = 0. Next, from (2) of Proposition 4.8, we have

lim sup
ǫ→0

lim sup
h→0

(
Bǫ,δ

1,hhDyw̃h, w̃h

)
L2(Ω2)

≤ Cδ,
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which converges to 0 if we let δ → 0. Finally, by Cauchy-Schwartz,
∣∣(Bǫ

1,h,δhDyw̃h, w̃h

)
L2(Ω2)

∣∣ ≤ ‖hDyw̃h‖L2(Ω2)

∥∥∥B∗
1,hOph

(
ϕ
(y
ǫ

)(
1− ϕ

(r
δ

)))∗
w̃h

∥∥∥
L2
.

Taking the triple limit, we have

lim sup
δ→0

lim sup
ǫ→0

lim sup
h→0

∣∣(Bǫ
1,h,δhDyw̃h, w̃h

)
L2(Ω2)

∣∣ ≤ 〈µ, |b1|21y=01r 6=0〉 = 0,

since µ1E∪H = 0. This completes the proof of Lemma 4.9. �

As in [BL03], we define the function

θ(y, x′; η, ξ′) =
η

|ξ′| if y > 0; θ(y, x′, η, ξ′) = i

√
−r0(x′, ξ′)

|ξ′| on E .

Since µ1H = 0, θ is µ almost everywhere defined as a function on Z. Formally,

σ
( i
h
[Ph,0, Bh]

)
= {η2 − r, b0 + b1η} = a0 + a1η + a2η

2,

where

a0 = b1∂yr − {r, b0}′, a1 = 2∂yb0 − {r, b1}′, a2 = 2∂yb1, (4.8)

and {·, ·}′ is the Poisson bracket for (x′, ξ′) variables. By expanding the commutator, we find

i

h
[Ph,0, Bh] = A0 + A1hDy + A2h

2D2
y + hOph(S

0
∂ + S0

∂η), (4.9)

where A0, A1, A2 are tangential operators with symbols a0, a1, a2, with respectively, and S0
∂

stands for the tangential symbol class of order 0. We now have all the ingredients to present

the propagation formula for the defect measure in the spirit of [BL03]:

Proposition 4.10. Assume that Bh = Bh,0+Bh,1hDy, where Bh,0, Bh,1 are tangential operators

of order 0 with symbols b0, b1, with respectively. Assume that b = b0 + b1η. Define the formal

Poisson bracket

{p, b} = (a0 + a2r) + a1θ|ξ′|1ρ/∈H,

where a0, a1, a2 are given by (4.8). Then any defect measures µ, ν0 of (w̃h), (h∂νw̃h)|Σ satisfy

the relation

〈µ, {p, b}〉 = −〈ν0, b1〉.
Moreover, if b ∈ C0(Z), we have

〈µ, {p, b}〉 = 0. (4.10)

Proof. See [BL03]. �

Moreover, we have

Proposition 4.11. µ
(
G2,+

)
= 0.
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As showed in [BL03], we obtain that the measure µ is invariant by the flow of Melrose-

Sjöstrand. More precisely, we have

Theorem 3 ([BL03]). Assume that µ is a semi-classical measure on bT ∗Ω associated with the

sequence (w̃h) satisfying (4.10) and Proposition 4.11. Then µ is invariant under the Melrose-

Sjöstrand flow φs.

Remark 4.12. This is a consequence of Theorem 1 in [BL03] which asserts the equivalence

between the measure invariance and the propagation formulaHp(µ) = 0 together with µ(G2,+) =

0. Though Theorem 1 in [BL03] is stated and proved in the context of micro-local defect

measure, it also holds true in the context of the semiclassical measure from the word-by-word

translation.

4.5. The last step to the proof of the resolvent estimate in Theorem 2. In this subsec-

tion, we take w̃h = w2. To finish the contradiction argument in the proof of (1.5), it suffices to

show that µ = 0. Let µ be the corresponding semiclassical measure and ν0 be the semiclassical

measure of h∂νu2|Σ. Since h∂νu2|Σ = o
H− 1

2 (Σ
(h

1
2 ), we have that 〈ν0, b1〉 = 0 for any compactly

supported symbol b1(x
′, ξ′). Thanks to (H), along the Melrose-Sjöstrand flow of bT ∗Ω2 issued

from points in bT ∗Ω2, there must be some points reaching H(Σ) ∪ G2,−(Σ). By the property of

the Melrose-Sjöstrand flow on bT ∗Ω2, to show that µ = 0, we need to verify that

µ
(
G2,−(Σ)

)
= 0

and µ = 0 near a neighborhood of ρ0 ∈ H(Σ).

Proposition 4.13. µ
(
G2,−(Σ)

)
= 0.

Proof. The proof is exactly the same as the proof of Proposition 4.11. We will make use of the

formula

〈µ, {p, b}〉 = 〈ν0, b1〉
by choosing b = b1,ǫη with

b1,ǫ(y, x
′, ξ′) = ψ

( y
ǫ
1
2

)
ψ
(r(y, x′, ξ′)

ǫ

)
κ(y, x′, ξ′),

where ψ ∈ C∞
c (R) equals to 1 near the origin and κ(y, x′, ξ′) ≥ 0 near a point ρ0 ∈ G2,−. Note

that {p, bǫ} = (a0 + a2r) + a1η1ρ/∈H, and a0, a1, a2 are given by the relation (4.8). In particular

for our choice, by direct calculation we have

a0 = b1,ǫ∂yr, a1 = −{r, κ}′ψ
( y
ǫ
1
2

)
ψ
(r
ǫ

)
,

and

a2 = 2∂yb1,ǫ = 2ǫ−
1
2ψ′( y

ǫ
1
2

)
ψ
(r
ǫ

)
κ+ 2

∂yr

ǫ
ψ
( y
ǫ
1
2

)
ψ′(r

ǫ

)
κ+ 2ψ

( y
ǫ
1
2

)
ψ
(r
ǫ

)
∂yκ.
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Observe that a2 is uniformly bounded in ǫ and for any fixed (y, x′, ξ′), ra2 → 0 as ǫ→ 0. Thus

from the dominating convergence, we have

lim
ǫ→0

〈µ, {p, bǫ}〉 = 〈µ, κ|y=0∂yr1r=0〉.

Since ∂yr < 0 on G2,−, while −〈ν0, bǫ〉 = 0, we deduce that µ1G2,− = 0. This completes the

proof of Proposition 4.13. �

Proposition 4.14. Let ρ0 ∈ H(Σ). Let b(y, x′, ξ′) be a tangential symbol, supported near ρ0.

Then

‖Oph(b)w2‖L2(Ω2) + ‖h∂yOph(b)w2‖L2(Ω2) = o(1),

as h→ 0.

Proof. Since the Melrose-Sjöstrand flow is transverse to H, by localizing the symbol b, it suffices

to prove the same estimate by replacing b to q±, where q± is the solutions of

∂yq
± ∓H√

r(y,x′,ξ′)q
± = 0, q±|y=0 = q0,

and q0 is supported in a sufficiently small neighborhood of ρ0. Near ρ0, it follows from [BL03]

that we can factorize Ph,0 as
(
hDy − Λ+

h (y, x
′, hDx′)

)(
hDy +Λ−

h (y, x
′, hDx′)

)
+OH∞(h∞), and

also
(
hDy−Λ̃+

h (y, x
′, hDx′)

)(
hDy+Λ̃−

h (y, x
′, hDx′)

)
+OH∞(h∞), where Λ±

h and Λ̃±
h have principal

symbols ±
√
r(y, x′, ξ′). Denote by Q±

h = Oph(q
±) and set

w+
2 := ϕ(y)Q+

h (hDy − Λ−
h )w2, w−

2 := ϕ(y)Q−
h (hDy − Λ̃+

h )w2,

where the cutoff ϕ(y) is supported on 0 ≤ y ≤ ǫ0 ≪ 1 and is equal to 1 for 0 ≤ y ≤ ǫ0/2. From

the equation of w2, we have

(hDy − Λ+
h )w

+
2 =ϕ(y)[hDy − Λ+

h , Q
+
h ](hDy − Λ−

h )w2 − ihϕ′(y)Q+
h (hDy − Λ−

h )w2 + oL2
y,x′

(h)

=− ihϕ′(y)Q+
h (hDy − Λ−

h )w2 + oL2
y,x′

(h),

since the principal symbol of 1
ih
[hDy − Λ+

h , Q
+
h ] is zero, thanks to the choice of symbols q±.

Multiplying by w+
2 to both sides and integrating, we have for y ≤ ǫ0/2 (thus ϕ′(y) = 0) that

h‖w+
2 (y, ·)‖2L2

x′
≤ h‖w+

2 (0, ·)‖2L2
x′
+ o(h). (4.11)

Since Oph(q0)(h∂yw2)|y=0 = oL2
x′
(1), we deduce by definition that w+

2 (0) = oL2
x′
(1). This

together with (4.11) yields w+
2 (y) = oL2

x′
(1), uniformly for all 0 ≤ y ≤ ǫ0/2. Thus w

+
2 = oL2

y,x′
(1).

Similar argument for w−
2 yields w−

2 = oL2
y,x′

(1). Note that hDy−Λ−
h is elliptic on the support of

q+, we deduce that Q+
hw2 = oL2

y,x′
(1). This means that µ is zero near the support of q+, hence

the proof of Proposition 4.14 is complete. �
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Consequently, we have shown that the measure µ is invariant along the bicharacteristic flow

on Ω2, it vanishes near every hyperbolic point of Σ, and µ(G2,−) = 0. Thus µ is supported on

bicharacteristics which encounter Σ only at points of

G2< = ∪k≥3Gk.

These bicharacteristics are consequently near Σ integral curves of Hp (because in Definition 4.2,

the two vector fields Hp and Hp−H2
p(y

H2
yp
Hy coincide on G2<). However, according to the geometric

condition assumption, all such bicharacteristics must leave Ω2. As a consequence, µ is supported

on the emptyset, and hence µ = 0. This gives a contradiction. The proof of (1.5) in Theorem 2

is now complete.

5. Optimality of the resolvent estimate

In this section we prove the second part of Theorem 2. For simplicity, we consider the model

case Ω2 = D := {x ∈ R2 : |x| < 1} and a(x) = 1Ω1 and Σ = S1. To prove the second part in

Theorem 2 we need to construct functions u1, v1, u2, v2, such that

‖(uj, vj)‖H1×L2(Ωj) ∼ 1, ‖(fj , gj)‖H1×L2(Ωj) = O(h), j = 1, 2





u1 = ih(f1 − v1), in Ω1

h∆u1 + h∆v1 − iv1 = hg1, in Ω1

u2 = ih(f2 − v2), in Ω2

h∆u2 − iv2 = hg2, in Ω2

together with the boundary condition on the interface

u1|Σ = u2|Σ, ∂νu2|Σ = (∂νu1 + ∂νv1)|Σ,
The key point in the construction is that in Ω1, we construct quasi-modes concentrated at the

scale |Dx| ∼ ~−1 = h−
1
2 while in Ω2, the quasi-modes are concentrated at the scale |Dx′| ∼

|Dy| ∼ |Dx| ∼ h−1 near the interface Σ, where x′ is the tangential variable near Σ and y is the

normal variable. Now we describe the construction.

• Step 1: Construction at the zero order: We first choose u
(0)
2 , such that

h2∆u
(0)
2 + u

(0)
2 = 0, u

(0)
2 |Σ = 0; ‖∇u(0)2 ‖L2(Ω2) ∼ h−1‖u(0)2 ‖L2(Ω2) ∼ 1.

Moreover, we require that u
(0)
2 such that they are hyperbolically localized, in the sense that

‖∂νu(0)2 |Σ‖Hs(Σ) ∼ h−s, WFh(∂νu
(0)
2 |Σ) ⊂ Hδ(Σ) := {(x′, ξ′) : δ < r0(x

′, ξ′) < 1− δ} (5.1)

for some 0 < δ < 1
2
. The existence of such sequence of eigenfunctions is not difficult to prove

in the case of a disc or an ellipse, we postpone this fact in Lemma 6.5 of the Appendix. This

will actually be the only point where in Theorem 1 we use the particular choice Ω2 = D.
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Next we define

v
(0)
2 = ih−1u

(0)
2 , f

(0)
2 = g

(0)
2 = 0.

From (5.1), we have

∂νu
(0)
2 |Σ =





OL2(Σ)(1)

O
H− 1

2 (Σ)
(h

1
2 )

O
H

1
2 (Σ)

(h−
1
2 ).

(5.2)

We remark that here we use the fact that the dimension d ≥ 2.

Next we solve the elliptic equation with the mixed Dirichlet-Neumann data (with ~ = h
1
2 ):

(~2∆− i)w(0) = 0, ∂νw
(0)|Σ = ∂νu

(0)
2 |Σ, w(0)|∂Ω1\Σ = 0.

From Proposition 6.1, there exists a unique solution w(0) of this system, which satisfies

w(0) =





OH2(Ω1)(~
−1)

OH1(Ω1)(~)

OL2(Ω1)(~
2),

(5.3)

and hence by interpolation

w(0) = O
H

3
2 (Ω1)

(1)

and by trace theorems

w(0) |Σ=
{
O

H
1
2 (Σ)

(~)

OH1(Σ)(1)
(5.4)

Moreover, from the information of WFh(∂νu
(0)
2 |Σ) and Proposition 3.1, we have

WFh(w
(0)|Σ) ⊂ WFh(∂νw

0|Σ) ⊂ Hδ(Σ).

Hence

‖w(0) |Σ ‖H1(Σ) ∼ h−
1
2‖w(0) |Σ ‖

H
1
2 (Σ)

= O(1)

Next we define u
(0)
1 , v

(0)
1 such that

v
(0)
1 = ih−1u

(0)
1 , w(0) = u

(0)
1 + v

(0)
1 = (1 + ih−1)u

(0)
1 ; f

(0)
1 = 0, g

(0)
1 = ih−1u

(0)
1 = v

(0)
1 .

This implies

u
(0)
1 =

{
OH1(Ω1)(h

3
2 )

OL2(Ω1)(h
2),

(5.5)

and consequently g
(0)
1 = OL2(Ω1)(h).
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In summary, as the first step, we have constructed quasi-modes (u
(0)
1 , v

(0)
1 ; u

(0)
2 , v

(0)
2 ) and

(f
(0)
1 = 0, g

(0)
1 ; f

(0)
2 = 0, g

(0)
2 = 0) such that





h∆(u
(0)
1 + v

(0)
1 )− iv

(0)
1 = hg

(0)
1 , g1 = OL2(Ω1)(h)

u
(0)
1 = −ihv(0)1

h∆u
(0)
2 − iv

(0)
2 = 0

u
(0)
2 = −ihv(0)2

∂νu
(0)
2 |Σ =

(
∂νu

(0)
1 + ∂νv

(0)
1

)
|Σ,(

u
(0)
2 − u

(0)
1

)
|Σ = O

H
1
2 (Σ)

(h
3
2 ),

(
v
(0)
2 − v

(0)
1

)
|Σ = O

H
1
2 (Σ)

(h
1
2 ),

(5.6)

and to conclude the proof of Theorem 2, it remains to eliminate the error term in the last

boundary condition in (5.6). An important point is that both u
(0)
2 and u

(0)
1 (and hence also

uv(0)2 and v
(0)
1 ) have their wave front included in Hδ(Σ).

• Step 2: Construction at the first order: We now introduce correction terms to eliminate

the error term in the last boundary condition of (5.6). We are looking for a correction term

e
(1)
2 ,

u
(1)
2 = u

(0)
2 + e

(1)
2 , v

(1)
2 = ih−1u

(1)
2 = v

(0)
2 + ih−1e

(1)
2 ,

while keeping all other terms identical

u
(1)
1 = u

(0)
1 , v

(1)
1 = v

(0)
1 ,

First, using the geometric optics construction (see Appendix), we construct ẽ
(1)
2 , solving near

Σ, solving for N large enough to be fixed later

(h2∆+ 1)ẽ
(1)
2 = OL2(hN)

near Σ, and the boundary conditions

ẽ
(1)
2 |Σ = (u

(0)
1 − u

(0)
2 )|Σ +OL2(Σ)(h

N ), ∂ν ẽ
(1)
2 |Σ= OL2(Σ)(h

N). (5.7)

with h-semiclassical wave front sets of all the functions are localized near Hδ(Σ).

(h2∆+ 1)ẽ
(1)
2 = OL2(Ω2)(h

N), ẽ
(1)
2 = (u

(0)
1 − u

(0)
2 )|Σ +OHN (Σ)(h

N), h∂ν ẽ
(1)
2 |Σ = OHN (Σ)(h

N)

(5.8)

locally near x0 ∈ Σ. We then take a cutoff χ, such that χ ≡ 1 on Σ, and with support sufficiently

close to Σ so that ẽ is defined on the support of χ (i.e. χ vanishes along the bicharacteristics,

before the formation of the caustics). Let e
(1)
2 := χẽ

(1)
2 . Hence

(h2∆+ 1)e
(1)
2 = [h2∆, χ]ẽ

(1)
2 +OL2(Ω2)(h

4) = OL2(Ω2)(h
3),

e
(1)
2 |Σ = ẽ

(1)
2 |Σ, h∂νe

(1)
2 |Σ = h∂ν ẽ

(1)
2 |Σ.

(5.9)
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Again, all the functions and the errors are microlocalized near (x0, ξ0) ∈ Hδ(Σ). More-

over, from the boundary conditions (5.7) which determine the values of the symbols b± in the

geometric optics construction, we have

‖e(1)2 ‖H1(Ω2) = O(h), ‖e(1)2 ‖L2(Ω2) = O(h2), ∂νe
(1)
2 |Σ = OL2(Σ)(h

N−1).

The geometric optics constructions in the appendix are local, but using a partition of unity of

Σ, we choose a finite cutoff functions (χj)
M
j=1 to replace χ and modify the function e

(1)
2 by

e
(1)
2 :=

M∑

j=1

χj ẽ
(1)
2,j ,

where ẽ
(1)
2,j is the corresponding geometric optics near supp(χj).

Next we define g
(1)
2 = h−2 · (h2∆+ 1)e

(1)
2 . We now have





h∆(u
(1)
1 + v

(1)
1 )− iv

(1)
1 = hg

(1)
1 , g1 = OL2(Ω1)(h)

u
(1)
1 + ihv

(1)
1 = 0

h∆u
(1)
2 − iv

(1)
2 = hg

(1)
2 , g

(1)
2 = OL2(Ω1)(h)

u
(1)
2 = −ihv(1)2

∂νu
(1)
2 |Σ =

(
∂νu

(1)
1 + ∂νv

(1)
1

)
|Σ +OHN (Σ)(h

N)(
u
(1)
2 − u

(1)
1

)
|Σ = OHN (Σ)(h

N),
(
v
(1)
2 − v

(1)
1

)
|Σ = OHN (Σ)(h

N−1),

(5.10)

It now remains to eliminate completely the errors in the last boundary condition in (5.10). For

this we just use the trace operators. Recall that if s > 3
2
, the map

Γ : u ∈ Hs(Ω1) 7→ (u |Σ, ∂νu |Σ) ∈ Hs−1/2(Σ)×Hs−3/2(Σ)

is continuous surjective and admits a bounded right inverse. As a consequence, if N is large

enough, there exists e
(2)
2 ∈ HN− 3

2 (supported near Σ) such that

‖e(2)2 ‖
HN− 3

2 (Ω2)
= O(hN), e

(2)
2 |Σ= (u

(1)
1 − u

(1)
2 ) |Σ, ∂νe

(2)
2 |Σ =

(
∂νu

(1)
1 − ∂νv

(1)
1

)
|Σ −∂νu(1)2 |Σ

Choosing now

u
(2)
2 = u

(1)
2 + e

(2)
2 , v

(2)
2 = v

(1)
2 + ih−1e

(2)
2 , g

(2)
2 = g

(1)
2 + h−1(h2∆+ 1)e

(2)
2

and keeping the other terms identical

u
(2)
1 = u

(0)
1 , v

(2)
1 = v

(0)
1 , g

(2)
1 = g

(1)
1 ,
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we get (if N is large enough)




h∆(u
(2)
1 + v

(2)
1 )− iv

(2)
1 = hg

(2)
1 , g1 = OL2(Ω1)(h)

u
(2)
1 + ihv

(2)
1 = 0

h∆u
(2)
2 − iv

(2)
2 = hg

(2)
2 , g

(2)
2 = OL2(Ω1)(h)

u
(2)
2 = −ihv(2)2

∂νu
(2)
2 |Σ =

(
∂νu

(2)
1 + ∂νv

(2)
1

)
|Σ(

u
(2)
2 − u

(2)
1

)
|Σ = 0,

(
v
(2)
2 − v

(2)
1

)
|Σ = 0

(5.11)

This ends the proof of the construction of quasi-modes in Theorem 2. �

6. Appendix: Technical ingredients

6.1. Elliptic problem with mixed Dirichlet Neumann data. Let U ⊂ Rd be a bounded

domain with smooth boundary. For F ∈ C∞(U), we denote by

γ0(F ) = F |∂U , γ1(F ) = (∂νF )|∂U
the Dirichlet and Neumann trace, with respectively. From the trace theorem, we know that

γ0 : Hs(U) → Hs− 1
2 (U)

is bounded and surjective. Let

H1
0(Ω1) = {v ∈ H1(Ω); v |∂Ω1\Σ= 0},

We prove the following existence result of the mixed Dirichlet-Neumann boundary value

problem:

Proposition 6.1. For any F ∈ H− 1
2 (Σ), the boundary value problem (note that ∂Ω1 = Σ∪ ∂Ω

and Σ, ∂Ω are separated)

(~2∆− i)w = 0, (6.1)

∂νw |Σ= F, w |∂Ω1\Σ= 0 (6.2)

admits a unique solution w ∈ H1
0(Ω1) satisfying

(
~‖∇xw‖L2(Ω1) + ‖w‖L2(Ω1)

)
≤ C~‖F‖

H−1
2 (Σ)

.

Furthermore, if F ∈ H
1
2 (Σ), then w ∈ H2(Ω1) and

‖∇2
xw‖L2(Ω1) ≤ C

(
‖F‖

H
1
2 (Σ)

+ ~
−1‖F‖

H−1
2 (Ω1)

)
.
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Proof. We just sketch the proof which is a variation around very classical ideas. Multiply-

ing (6.1) by ϕ vanishing on ∂Ω1 \ Σ and integrating by parts using Greens formula, we get

0 =

∫

Ω1

(~2∆− i)wϕ(x)dx =

∫

Ω1

−~
2∇xw∇xϕ− iwϕ(x)dx+

∫

Σ

~
2∂νwϕ(x)dσ

As a consequence, if the function w satisifes (6.1) (6.2) if an only if

∀v ∈ H1
0(Ω1), Q(w, v) :=

∫

Ω1

~
2∇xw∇xv + iwv(x)dx = TF (v) :=

∫

Σ

~
2Fv(x)dσ. (6.3)

From the trace theorem, the map

v ∈ H1
0(Ω1) 7→ v |Σ∈ H

1
2 (Σ)

is continuous and hence for any F ∈ H− 1
2 (Σ), the map

v 7→ TF (v) ∈ C

is a continuous antilinear form on H1
0(Ω1).

The existence of a unique solution to (6.3) (and consequently the solution to (6.1), (6.2))

now follows from Lax-Milgram Theorem. Applying (6.3) to v = w, we get

‖h∇xw‖2L2(Ω1)
+ ‖w‖2L2(Ω1)

≤ 2|TF (w)| ≤ C~2‖F‖
H−1

2 (Σ)
‖w‖H1(Ω1),

which implies

‖w‖H1(Ω1) ≤ C‖F‖
H− 1

2 (Σ)
,

and using again (6.3) with v = w,

‖w‖2L2(Ω1)
≤ ~

2‖∇xw‖L2(Ω1) + ~
2|TF (w)| ≤ C~2‖F‖2

H−1
2 (Σ)

.

This proves the first part in Proposition 6.1. The proof of the second part is standard elliptic

regularity results. Indeed, we have

∆w = i~−2w, ∂νw |Σ= F ∈ H
1
2 (Σ), w |∂Ω1\Σ= 0,

and we deduce by standard elliptic regularity results,

‖w‖H2(Ω1) ≤ C
(
~
−2‖w‖L2(Ω1) + ‖F‖

H
1
2 (Σ)

)
≤ C

(
~
−1‖F‖

H−1
2 (Σ)

+ ‖F‖
H

1
2 (Σ)

)

This completes the proof of Proposition 6.1. �
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6.2. Estimates for some operators.

Lemma 6.2. If b(x, ξ) ∈ S−m (m ≥ 0) is compactly supported in x ∈ Rn, then for any s ∈ R,

Oph(b) = O(h−θ) : Hs(Rn) → Hs+θ(Rn), ∀θ ∈ [0, m].

Proof. First we show that Oph(b) is bounded from Hs to Hs. It is equivalent to show that the

operator Th := 〈Dx〉sOph(b)〈Dx〉−s is bounded (independent of h) from L2 to L2. By definition,

we have

(̂Thf)(ξ) =
1

(2π)d

∫

Rn

〈ξ〉sb̂(ξ − η, hη)〈η〉−sf̂(η)dη,

where b̂(ζ, η) = (Fx→ζa)(ζ, η) is a well-defined function. Thus T̂hf can be viewed as an operator

acting on f̂ ∈ L2(Rd
ξ) with Schwartz kernel

Kh(ξ, η) :=
1

(2π)d
〈ξ〉s〈η〉−sb̂(ξ − η, hη).

By Schur’s test, to check the boundedness of this operator, it suffices to check that

sup
ξ,h

∫

Rn

|Kh(ξ, η)|dη <∞, sup
η,h

∫

Rn

|Kh(ξ, η)|dξ <∞.

Since Kh(ξ, η) is rapidly decaying in 〈ξ − η〉, these conditions can be simply verified by the

elementary convolution inequalities:∫

Rn

1

〈η〉s〈ξ − η〉M dη ≤ CM〈ξ〉−s, ∀M > d, s ≥ 0, (6.4)

and ∫

Rn

〈η〉σ
〈ξ − η〉M dη ≤ CM,σ〈ξ〉σ, ∀M > d+ σ, σ ≥ 0. (6.5)

By interpolation, to finish the proof, it suffices to estimate the operator bound of Oph(b) from

Hs to Hs+m. Similarly, we need to check that the kernel

Gh(ξ, η) = hm〈ξ〉s+mb̂(ξ − η, hη)〈η〉−s

satisfies the conditions for Schur’s test. First note that for any α ∈ Nn,

(i(ξ − η))αb̂(ξ − η, η) =
1

(2π)d

∫

Rn

(∂αx b)(x, η)e
−ix·(ξ−η)dx,

thus b̂(ξ − η, hη) = O
(
〈ξ − η〉−M〈hη〉−m

)
for any M ∈ N. Note that

〈hm〉−m ∼ (1 + h|η|)−m ≤ h−m〈η〉−m.

This implies that

|Gh(ξ, η)| ≤ CM〈ξ〉s+m〈η〉−(s+m)〈ξ − η〉−M .

Now the boundeness of the integration
∫
Gh(ξ, η)dη or

∫
Gh(ξ, η)dξ follows from the same

convolution inequalities (6.4) and (6.5). This completes the proof of Lemma 6.2. �
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Lemma 6.3. Let a ∈ S0(R2n), b ∈ S0(R2n) be two symbols with compact support in the x

variable. Then for any N ∈ N, N ≥ 2n,
∥∥∥Op(a)Op(b)−

∑

|α|≤N

1

i|α|α!
Op

(
∂αξ a∂

α
x b
)∥∥∥

L(Hs→Hs)

≤CN

∑

|β|≤K(n)

sup
|α|=N+1

sup
(x,ξ)∈R2n

∫∫

R2n

∣∣∂βx,ξ∂αz ∂αζ A(x, z, ξ, ζ)
∣∣dzdζ,

where

A(x, x, ξ, ζ) = a(x, ξ + ζ)b(x+ z, ξ).

Proof. The symbol of the operator

Op(a)Op(b)−
∑

|α|≤N

1

i|α|α!
Op

(
∂αξ a∂

α
x b
)

is given by

rN(x, ξ) :=
1

N !

∫∫

R2n

∫ 1

0

(1− t)N
∑

|α1|+|α2|=N+1

(∂α1
y ∂α2

η A)(x, tz, ξ, tζ)zα1ζα2e−iz·ζdzdζdt,

with

A(x, z, ξ, ζ) = a(x, ξ + ζ)b(x+ z, ξ).

Using the identity

zα1ζα2e−iz·ζ = iN+1∂α2
z ∂α1

ζ (e−iz·ζ)

and doing the integration by part, we have

rN(x, ξ) =
∑

|α|=N+1

iN+1

N !

∫ 1

0

(1− t)N tN+1dt

∫∫

R2n

(∂αz ∂
α
ζ A)(x, tz, ξ, tζ)e

−iz·ζdzdζ

=
∑

|α|=N+1

iN+1

N !

∫ 1

0

(1− t)N tN+1−2ndt

∫∫

R2n

(∂αz ∂
α
ζ A)(x, z, ξ, ζ)e

−it−2z·ζdzdζ

Hence the integral converges absolutely. Viewing rN(x, ξ) as a symbol of order 0, we obtain

the desired bound, thanks to the Caldrón-Vaillancourt theorem. �

6.3. Special sequence of eigenfunctions of a disc. First we recall that

Jm(z) =
(z
2

)m
∞∑

k=0

(−1)k
(
z
2

)2k

k!(m+ k)!

are the Bessel functions satisfying the Bessel differential equation:

z2J ′′
m(z) + zJ ′

m(z) + (z2 −m2)Jm(z) = 0.
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By definition, one has

Jm+1(z) + Jm−1(z) =
2m

z
Jm(z), Jm−1(z)− Jm+1(z) = 2J ′

m(z). (6.6)

Denote by λm,n the n-th zero of Jm(z). It is well known that

λm,1 < λm,2 < · · · < λm,n < · · ·
and the functions

ϕm,n(r, θ) = Jm(λm,nr)e
imθ

form an orthogonal sequence of eigenfunctions of ∆D, associated with eigenvalues {λ2m,n : m ∈
Z, n ∈ N}. We will chose a special sequence

Jαn(λαn,nr)e
iαnθ

for some α ∈ N, to be fixed later. Let us recall some facts about the zeros of Bessel functions:

Proposition 6.4 ([E84]). There exists a continuous function ι : [−1,∞), such that

λαn,n < nι(α), and lim
n→∞

λαn,n
n

= ι(α).

Moreover, there exists 0 < β1 < β2, such that for all α ≥ 1,

1 + β1α
− 2

3 <
ι(α)

α
≤ 1 + β2α

− 2
3 .

Thanks to this proposition, we have:

Lemma 6.5. Fix α ∈ N, large enough and let

wn :=
ϕαn,n

λαn,n‖ϕαn,n‖L2(D)

.

Then we have

‖(∂νwn)|∂D‖L2(∂D) = O(1), WFh(∂νwh|Σ) ⊂ Hδ(∂D) := {δ < r0 < 1− δ}
where h = (hn)n∈N, hn = λ−1

αn,n ∼ (ι(α)n)−1 and the semiclassical wave-front set is taken for the

sequence (wn)n∈N, with a little abuse of the notation.

Proof. To simplify the notation, we write m = αn and ι := ι(α). From Proposition 6.4, we have

1 + β1α
− 2

3 − o(1) <
ι

α
− o(1) =

λm,n

m
<

ι

α
≤ 1 + β2α

− 2
3 , as n→ ∞.

Note that at r = 1, ∂ν = ∂r and |∇w|2 = |∂rw|2+ 1
r2
|∂θw|2. The hyperbolicity at the boundary

is essentially due to the fact that

∂θwn = imwn

and
|m|
λm,n

=
α

ι
+ o(1) ≤ 1− δ(α) (6.7)
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for n ≫ 1. Let 0 < ǫ0 < δ(α), χ ∈ C∞(R) such that χ(s) ≡ 0 if |s| > 1 − ǫ0. From (6.7)

we have wn = χ(hn∂θ)wn. Since ∂
2
θ is just the Laplace operator on L2(∂D), we have, near

∂D, WFh(wn) is contained in r > ǫ0 > 0, thus wn is microlocalized near H(Σ). The estimate

‖∂rwn|r=1‖L2(∂D) = O(1) then follows from the hyperbolicity and the fact that ‖∇wn‖H1(D) = 1.

This completes the proof of Lemma 6.5. �

Concentration of the eigenfunctions ϕαn,n as n→ ∞

6.4. Geometric optics construction. In this part we recall the geometric optics construction

for the hyperbolic boundary value problem. In the tubular neighborhood of the interface Σ, we

use the geodesic normal coordinate x = (y, x′), such

∆ =
1

κ
∂y(κ∂y) +

1

κ
∂i(g

ij
0 κ∂j),

where κ =
√

det(g0) and ∂j = ∂x′
j
. The semiclassical operator

Ph = h2∆g0 + 1 = h2∂2y + h2gij0 ∂i∂j + 1 +
h

κ
(∂yκ)h∂y +

h

κ
∂i(g

ij
0 κ)h∂j .

Let f±
0 ∈ L2(Rd−1

x′ ) such that WFh(f
±
0 ) lies in a neighborhood of (y = 0, x′0; η = 0, ξ′0), such

that

r0(0, x
′
0, ξ

′
0) ≥ c0 > 0.

Denote by θ±(ξ) = Fh(χf
±
0 )(ξ), where χ ∈ C∞

c (Rd−1
x′ ), supported near x′0.

Consider the semi-classical Fourier integral operators U±, represented by

U±(χf±
0 )(y, x

′) =
1

(2πh)d−1

∫

Rd−1

e
i
h
ϕ±(y,x′,ξ′)b±(y, x′, ξ′)θ±(ξ′)dξ′.

We have

Ph(U
±(χf±

0 )) =
1

(2πh)d−1

∫

Rd−1

(h2∆g + 1)(e
iϕ±

h b±)θ±(ξ′)dξ′.

Observing that

(h2∆g0 + 1)(e
iϕ±

h b±) =(1− |∇g0ϕ
±|2)b±e iϕ±

h + ih(2∇g0ϕ
± · ∇g0b

± +∆g0ϕ
±b±)e

iϕ±

h

+h2(∆g0b
±)e

iϕ±

h .
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Near WFh(f0) and for small y, we can solve the eikonal equation

1− |∇g0ϕ
±|2 = 0, ϕ±|y=0(x

′, ξ′) = x′ · ξ′. (6.8)

Note that |∇g0ϕ
±|2 = |∂yϕ±|2 + gjk0 ∂jϕ

±∂kϕ
±. Near (x′0, ξ

′
0) ∈ H(Σ), for each fixed ξ′, we find

a Lagrangian submanifold of T ∗Σ, locally of the form

L0,ξ′ := {(x′, ξ = ∂x′ϕ0(x, ξ
′)) : ϕ0(x

′, ξ′) = x′ · ξ′}.

At each point (x′, ξ = ξ′) ∈ L0,ξ′, there are two distinct roots η± of the equation

η2 + gjk0 ξ
′
jξ

′
k = 1,

and each root determines a flow Φ±
y of the bicharacteristics p = η2 − r(y, x′, ξ′) on {p = 0}.

Then we can define the Lagrangian L±
y,ξ′ := exp(Φ±

y )(L0,ξ′) locally, which is again a Lagrangian

of T ∗Σ (viewing y as a parameter) and can be written locally as L±
y,ξ′ = {(x′, ∂x′ϕ±)}. Then

ϕ± is the desired solutions of (6.8) with the property

∂yϕ
+ + ∂yϕ

− = 0, at y = 0.

Next we set

b±(y, x′, ξ′) =
N∑

j=0

hjb±j (y, x
′, ξ′),

with coefficients bj solving the transport equations

2∂yϕ
±∂yb

±
0 + gjk0 ∂jϕ

±∂kb
±
0 + (∆g0ϕ

±)b±0 = 0,

2i∂yϕ
±∂yb

±
j + igjk0 ∂jϕ

±∂kb
±
j + i(∆g0ϕ

±)b±j +∆g0b
±
j−1 = 0, 1 ≤ j ≤ N.

(6.9)

Then

Ph(χf
±
0 ) =

hN+2

(2πh)d−1

∫

Rd−1

e
iϕ±

h ∆g0b
±
N (y, x

′, ξ′)θ±(ξ′)dξ′ = OL2(hN+2).

To determine the datum b±j |y=0, we need the boundary conditions. Note that the approximate

quasi-mode is given by

uh =
∑

±
U±(χf±

0 )

and we want to determine f±
0 .

Denote by B±
h = Oph(b

±) and B0,±
h = Oph(b

±|y=0), then the Dirichlet trace is given by

B0,+
h (χf+

0 ) +B0,−
h (χf−

0 ),

and the Neumann trace is given by
∑

±
±Oph(

√
r0b

±|y=0)(χf
±
0 ) + h

∑

±
Oph(∂yb

±|y=0)|y=0(χf
±
0 ).
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Now we choose b+0 |y=0 = b−0 |y=0 = χ(x′)ψ(ξ′) localized near (x′0, ξ
′
0) and b±j |y=0 = 0 for all

1 ≤ j ≤ N . Then the symbol (matrix-valued)

Θ = Θ0 + h

(
0 0

∂yb
+
0 ∂yb

−
0

)
|y=0

with

Θ0 :=

(
b+0 b−0√
r0b

+
0 −√

r0b
−
0

)
|y=0

is invertible. For such an elliptic system, we can construct a symbol (matrix-valued) Υ, such

that

Oph(Θ)Oph(Υ) = Id +OHs→Hs+m(hN+1−m).

In particular, for a given Dirichlet trace σDir and Neumann trace σNeu with wave front sets

located near (x′0, ξ
′
0), we find

(
χf+

0

χf−
0

)
= χOph(Υ)χ

(
σDir

σNeu

)
.

Then microlocally near (x′0, ξ
′
0) ∈ H(Σ), uh satisfies

(h2∆g0 + 1)uh = OL2(hN), u|h=0 = σDir +O
H

1
2
(hN ), h∂yuh|y=0 = σNeu +O

H− 1
2
(hN),

and microlocally near (x′0, ξ
′
0), uh = OL2(1),WFh(uh) lies in a small neighborhood of (x′0, ξ

′
0).

Finally, due to the microlocalisation in the hyperbolic region, we can exchange in the error

terms powers of h against derivatives, leading to

(h2∆g0 +1)uh = OHk(hN−k), u|h=0 = σDir +OH
1
2+k(h

N−k), h∂yuh|y=0 = σNeu+OH− 1
2+k(h

N−k).
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