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Introduction

Experimental observations show that the viscosity is constant for some fluids as water or honey, which are called Newtonian fluids. These fluids can be described in a very accurate way by the Navier-Stokes equations. However, many others fluids behave differently, the viscosity of these fluids is no more constant, such as pastes or polymer solutions. These fluids can not be described by the Navier-Stokes equations and they are called non-Newtonian or complex fluids. The simplest idea to describe non-Newtonian fluids is to plot the viscosity measurements versus the imposed shear rate and then, to fit the obtained curve with a simple template viscosity function, adjusting some few parameters. This is the main idea of generalized Newtonian fluids models (also called quasi-Newtonian fluids models), which could be viewed as a first step inside the world of non-Newtonian fluids models (see Saramito [START_REF] Saramito | Complex fluids: Modeling and Algorithms[END_REF]Chapter 2] for more details).

In this article we consider the incompressible viscous flow of the generalized Newtonian fluid through a thin porous media, which consists in a domain of small height ε and perforated by periodically distributed solid cylinders with diameter of size ε. The viscosity of the fluid follows the Carreau law. This law is commonly used for fluid studied in Chemical Industry and Rheology, for instance in injection moulding of melted polymers, flow of oils, muds, etc.

The incompressible generalized Newtonian fluids are characterized by the viscosity depending on the principal invariants of the symmetric stretching tensor D [u]. If u is the velocity, p the pressure and Du the gradient velocity tensor, D[u] = (Du + D t u)/2 denotes the symmetric stretching tensor and σ the stress tensor given by σ = -pI + 2η r D [u]. The viscosity η r is constant for a Newtonian fluid but dependent on the shear rate, i.e. η r = η r (D[u]), for viscous non-Newtonian fluids. The deviatoric stress tensor τ , i.e. the part of the total stress tensor that is zero at equilibrium, is then a nonlinear function of the shear rate D[u], i.e. τ = η r (D[u])D[u] (see Barnes et al. [17], Bird et al. [START_REF] Bird | [END_REF] and Mikelić [START_REF] Mikelić | An introduction to the homogenization modeling of non-Newtonian and electrokinetic flows in porous media[END_REF] for more details).

The most widely used laws in engineering practice are the power law or Ostwald-de Waele model (Ostwald, 1925;de Waele, 1923) and the Carreau law (Carreau, 1972). It is observed that the power law correctly describes the behavior of polymers at high shear rates. It offers the advantage of allowing analytical calculations in simple geometries. However, it has the disadvantage of not describing a Newtonian plateau and even predicts an infinite viscosity as the shear rate goes to zero and r ∈ (1, 2) (see Agassant et al. [START_REF] Agassant | Polymer Processing, Principles and Modelling[END_REF], p. 49), whereas for real fluids it tends to some constant value η 0 called the zero-shear-rate viscosity. Thus, as a generalization we consider the Carreau law, which is an alternative generalized Newtonian model that enables the description of the plateaus in viscosity that are expected when the shear rate is very small or very large. The empiricism for the viscosity η r used in the Carreau law is defined by

η r (D[u]) = (η 0 -η ∞ )(1 + λ|D[u]| 2 ) r 2 -1 + η ∞ , 1 < r < 2, η 0 > η ∞ > 0, λ > 0, (1) 
where η ∞ is the high-shear-rate limit of the viscosity, the parameter λ is a time constant and r -1 is a dimensionless constant describing the slope in the power law region. The matrix norm | • | is defined by |ξ| 2 = T r(ξξ t ) with ξ ∈ R 3 . We recall that in this case the viscosity is decreasing with the shear rate and the fluid is said shear thinning or pseudoplastic (see Saramito [START_REF] Saramito | Complex fluids: Modeling and Algorithms[END_REF]Chapter 2]).

Homogenization applied to porous media is a mathematical method that allows to upscale the fundamental equations from continuum physics, being valid at the microscopic level. The homogenization theory of heterogeneous media studies the effects of the micro-structure (i.e. of the pore structure) upon solutions of PDEs of the continuum mechanics, so allow to derive rigorously equations describing filtration of a generalized Newtonian fluid (see Mikelić [START_REF] Mikelić | An introduction to the homogenization modeling of non-Newtonian and electrokinetic flows in porous media[END_REF] for more details).

To find the homogenized law describing the generalized Newtonian fluid flow through a porous media Ω ε ⊂ R 3 , which is a domain with fixed height and periodically perforated by obstacles of size ε, Bourgeat and Mikelić in [START_REF] Bourgeat | Homogenization of a polymer flow through a porous medium[END_REF] (see also Bourgeat et al. [21], Götz and Parhusip [START_REF] Götz | On an asymptotic expansion for Carreau fluids in porous media[END_REF]) used the homogenization technique called the two-scale convergence. The domain without perforations is the bounded smooth domain Ω ⊂ R 3 which is made of two parts, the fluid part Ω ε and the solid part Ω \ Ω ε . Moreover, assuming that the Reynolds number is proportional to ε -γ and the flow is sufficiently slow to neglect inertial effects, then the following stationary Stokes system with a non-linear viscosity following the Carreau law (1), with 1 < r < 2, was considered

         -ε γ div (η r (D[u ε ])D[u ε ]) + ∇p ε = f in Ω ε , div u ε = 0 in Ω ε , u ε = 0 on ∂Ω ε . (2) 
When ε tends to zero, two types of averaged momentum equations were rigorously derived depending on the value of γ (i.e. the Reynolds number) connecting the velocity and the pressure gradient:

-If γ = 1, the homogenized law is the classical 3D Darcy's law for Newtonian fluids

V (x) = K µ (f (x) -∇ x p(x)) in Ω, div x V (x) = 0 in Ω, V (x) • n = 0 on ∂Ω,
where p is the limit pressure and the permeability tensor K ∈ R 3×3 is obtained by solving 3D Stokes local problems posed in a reference cell which contains the information of the geometry of the obstacles. The viscosity µ is equal to η 0 if γ < 1 and equal to η ∞ if γ > 1.

-If γ = 1, the mean global filtration velocity as a function of the pressure gradient is given by

V (x) = U (f (x) -∇ x p(x)) in Ω, div x V (x) = 0 in Ω, V (x) • n = 0 on ∂Ω,
where U : R 3 → R 3 is a permeability function, not necessary linear, and is defined through the solutions of 3D local Stokes problems with non-linear viscosity following the Carreau law and posed in a reference cell.

On the other hand, in [START_REF] Boughanim | Derivation of the two-dimensional Carreau law for a quasi-newtonian fluid flow through a thin slab[END_REF] Boughanim and Tapiéro considered the polymer flow through a thin slab Ω ε = ω × (0, ε) ⊂ R 3 , where ε is the small thickness of the slab. Starting from the Stokes system (2), with external body force of the form f = (f , 0) such that f = (f 1 , f 2 ), by using dimension reduction and homogenization techniques, they studied the limit when the thickness tends to zero. According to the value of γ, they proved the following:

-If γ = 1, the homogenization law is the classical linear 2D Reynolds law for Newtonian fluids

     V (x ) = 1 6µ (f (x ) -∇ x p(x )) , V 3 (x ) = 0 in ω, div x V (x ) = 0 in ω, V (x ) • n = 0 on ∂ω, where V = (V 1 , V 2 ), x = (x 1 , x 2 ).
As previously, the viscosity µ is equal to η 0 if γ < 1 and equal to η ∞ if γ > 1.

-If γ = 1, the homogenization law corresponds to a non-linear 2D Reynolds law of Carreau type

       V (x ) = 2((f (x ) -∇ x p(x )) 1 2 -1 2 ( 1 2 + ξ)ξ ψ(2|f (x ) -∇ x p(x )||ξ|) dξ, V 3 (x ) = 0 in ω, div x V (x ) = 0 in ω, V (x ) • n = 0 on ∂ω,
where the function

ψ = ψ(τ ), τ ∈ R + , is the inverse of the equation τ = ψ 2 λ ψ-η∞ η0-η∞ 2 r-2 -1.
In this paper, we consider a thin porous media Ω ε = ω ε × (0, ε) ⊂ R 3 of small height ε which is perforated by periodically distributed solid cylinders of diameter of size ε. Here, the bottom of the domain without perforations ω ⊂ R 2 is made of two parts, the fluid part ω ε and the solid part ω \ ω ε . This model of thin porous media has been recently introduced by Fabricius et al. [START_REF] Fabricius | Darcy's law for flow in a periodic thin porous medium confined between two parallel plates[END_REF], where the flow of an incompressible viscous fluid described by the stationary Navier-Stokes equations has been studied by the multiscale expansion method, which is a formal tool to analyse homogenization problems. These results have been rigorously proved in [START_REF] Anguiano | The transition between the Navier-Stokes equations to the Darcy equation in a thin porous medium[END_REF] using an adaptation, introduced in [START_REF] Anguiano | Homogenization of an incompressible non-Newtonian flow through a thin porous medium[END_REF], of the periodic unfolding method from Cioranescu et al. [START_REF] Cioranescu | The periodic unfolding method in homogenization[END_REF][START_REF] Cioranescu | The periodic unfolding method: theory and applications to partial differential problems[END_REF]. This adaptation consists of a combination of the unfolding method with a rescaling in the height variable, in order to work with a domain of fixed height and to pass to the limit. In particular, the generalized Newtonian fluids obeying the power law in the thin porous media Ω ε have been studied rigorously in Anguiano and Suárez-Grau [START_REF] Anguiano | Homogenization of an incompressible non-Newtonian flow through a thin porous medium[END_REF] where we have obtained a 2D Darcy's law when the domain thickness tends to zero (see also [START_REF] Anguiano | Lower-dimensional nonlinear Brinkman's law for non-Newtonian flows in a thin porous medium[END_REF] for the extension to the case of a thin porous media with an array of cylinders with small diameter). Also, the Bingham plastic behavior in the thin porous media Ω ε has been studied in [START_REF] Anguiano | On the flow of a viscoplastic fluid in a thin periodic domain[END_REF][START_REF] Anguiano | Homogenization of Bingham flow in thin porous media[END_REF]. For other studies concerning thin porous media, we refer to Anguiano [START_REF] Anguiano | Darcy's laws for non-stationary viscous fluid flow in a thin porous medium[END_REF][START_REF] Anguiano | On the non-stationary non-Newtonian flow through a thin porous medium[END_REF][START_REF] Anguiano | Derivation of a quasi-stationary coupled Darcy-Reynolds equation for incompressible viscous fluid flow through a thin porous medium with a fissure[END_REF][START_REF] Anguiano | Homogenization of a non-stationary non-Newtonian flow in a porous medium containing a thin fissure[END_REF][START_REF] Anguiano | Reaction-Diffusion Equation on Thin Porous Media[END_REF], Anguiano and Suárez-Grau [START_REF] Anguiano | Derivation of a coupled Darcy-Reynolds equation for a fluid flow in a thin porous medium including a fissure Z[END_REF][START_REF] Anguiano | Analysis of the effects of a fissure for a non-Newtonian fluid flow in a porous medium[END_REF][START_REF] Anguiano | Newtonian fluid flow in a thin porous medium with non-homogeneous slip boundary conditions Networks and[END_REF], Jouybari and T. S. Lundström [START_REF] Jouybari | Investigation of Post-Darcy Flow in Thin Porous Media[END_REF], Prat and Agaësse [START_REF] Prat | Thin Porous Media, in Handbook of Porous Media[END_REF], Suárez-Grau [START_REF] Suárez-Grau | Mathematical modeling of micropolar fluid flows through a thin porous medium[END_REF], Yeghiazarian et al. [START_REF] Yeghiazarian | Thin Porous Media[END_REF] and Zhengan and Hongxing [START_REF] Zhengan | Homogenization of a stationary Navier-Stokes flow in porous medium with thin film[END_REF]. However, as far as we know, in the previous literature there is no study for the homogenization of three-dimensional incompressible stationary Stokes system with a non-linear viscosity following the Carreau law in a thin porous media, as we consider in this article.

Therefore, taking into account the previous results, we consider the Stokes system (2) in the thin porous media Ω ε assuming γ = 1. This choice is the most challenging one and answers to the question addressed in the paper, namely it preserves the nonlinear character of the flow in the limit. After the homogenization process, we obtain the following lower-dimensional homogenization law

   V (x ) = U (f (x ) -∇ x p(x )) , V 3 (x ) = 0 in ω, div x V (x ) = 0 in ω, V (x ) • n = 0 on ∂ω,
where the permeability function U : R 2 → R 2 is defined through the solutions of 3D local Stokes problems with non-linear viscosity following the Carreau law and posed in a reference cell, see Theorem 2.1.

In order to illustrate the influence of the non-linear character of the Carreau law on the behaviour of the twodimensional limit system, we conclude the paper with a numerical study of a flow of a generalized Newtonian fluid, driven by a constant pressure gradient, in a thin porous medium confined between two parallel plates. Using different geometries for the inclusion T , we show that, depending on the choice of parameters λ and r in the viscosity law [START_REF] Allaire | One-phase Newtonian flow[END_REF], the amplitude of the mean filtration velocity associated to a given pressure gradient can be dramatically increased in comparison with the Newtonian case r = 2.

The structure of the paper is as follows. In Section 2 we introduce the domain, make the statement of the problem and give the main result (Theorem 2.1). The proof of the main result is provided in Section 3. Section 4 is dedicated to the numerical simulations of the homogenized model, in the case of Carreau fluid driven by a constant pressure gradient. We finish the paper with a list of references.

2 Setting of the problem and main result Geometrical setting. The periodic porous medium is defined by a domain ω and an associated microstructure, or periodic cell Y = (-1/2, 1/2) 2 , which is made of two complementary parts: the fluid part Y f , and the solid part T (Y f T = Y and Y f T = ∅). More precisely, we assume that ω is a smooth, bounded, connected set in R 2 , and that T is an open connected subset of Y with a smooth boundary ∂T , such that T is strictly included in Y .

The microscale of a porous medium is a small positive number ε. The domain ω is covered by a regular mesh of square of size ε: 1 and2).

for k ∈ Z 2 , each cell Y k ,ε = εk + εY is divided in a fluid part Y f k ,ε and a solid part T k ,ε , i.e. is similar to the unit cell Y rescaled to size ε. We define Y = Y × (0, 1) ⊂ R 3 , which is divided in a fluid part Y f = Y f × (0, 1) and a solid part T = T × (0, 1), and consequently Y k ,ε = Y k ,ε × (0, 1) ⊂ R 3 , which is also divided in a fluid part Y f k ,ε and a solid part T k ,ε (see Figures
We denote by τ (T k ,ε ) the set of all translated images of T k ,ε . The set τ (T k ,ε ) represents the obstacles in The fluid part of the bottom ω ε ⊂ R 2 of a porous medium is defined by

R 2 . 1 1 Y f T Y 0 f 1 1 T 0
" T 0 k 0 ," ⇥ (0, ") Y 0 f k0 ," ⇥ (0, ") " " Y 0 f k0 ," T 0 k 0 ,"
ω ε = ω\ k ∈Kε T k ,ε , where K ε = {k ∈ Z 2 : Y k ,ε ∩ ω = ∅}.
The whole fluid part Ω ε ⊂ R 3 in the thin porous medium is defined by (see Figure 3) We assume that the obstacles τ (T k ,ε ) do not intersect the boundary ∂ω and we denote by S ε the set of the solid cylinders contained in Ω ε , i.e. S ε = k ∈Kε T k ,ε × (0, ε). We define

Ω ε = {(x 1 , x 2 , x 3 ) ∈ ω ε × R : 0 < x 3 < ε}. (3) 
Ω ε = ω ε × (0, 1), Ω = ω × (0, 1), Q ε = ω × (0, ε). (4) 
We observe that Ω ε = Ω\ k ∈Kε Tk ,ε , and we define T ε = k ∈Kε T k ,ε as the set of the solid cylinders contained in Ω ε .

To finish, we introduce some notation that will be useful along the paper. The points x ∈ R 3 will be decomposed as

x = (x , x 3 ) with x = (x 1 , x 2 ) ∈ R 2 , x 3 ∈ R. We also use the notation x to denote a generic vector of R 2 . Let C ∞ # (Y ) be the space of infinitely differentiable functions in R 3 that are Y -periodic. By L 2 # (Y ) (resp. H 1 # (Y )) we denote its completion in the norm L 2 (Y ) (resp. H 1 (Y )) and by L 2 0,# (Y ) the space of functions in L 2 # (Y ) with zero mean value.
Statement of the problem. Let us consider the following stationary Stokes system with the non-linear viscosity following the Carreau law [START_REF] Allaire | One-phase Newtonian flow[END_REF] in Ω ε , with a Dirichlet boundary condition on the exterior boundary ∂Q ε and the cylinders ∂S ε ,

         -εdiv (η r (D[u ε ])D[u ε ]) + ∇p ε = f in Ω ε , div u ε = 0 in Ω ε , u ε = 0 on ∂Q ε ∪ ∂S ε , (5) 
where the second member f is of the form

f (x) = (f (x ), 0) with f ∈ L ∞ (ω) 2 . ( 6 
)
We remark that the assumptions of neglecting the vertical component of the exterior force and the independence of the vertical variable are usual when dealing with fluids in through thin domains (see [START_REF] Boughanim | Derivation of the two-dimensional Carreau law for a quasi-newtonian fluid flow through a thin slab[END_REF] for more details).

The classical theory from Lions [START_REF] Lions | Quelques méthodes de résolution des problèmes aux limites non linéaires[END_REF] gives the existence of a unique solution

(u ε , p ε ) ∈ H 1 0 (Ω ε ) 3 × L 2 0 (Ω ε ), where L 2
0 is the space of functions of L 2 with zero mean value. Our goal is to study the asymptotic behavior of u ε and p ε when ε tends to zero. For this purpose, we use the dilatation in the variable x 3 as follows

y 3 = x 3 ε , (7) 
in order to have the functions defined in the open set with fixed height Ω ε . Namely, we define ũε and pε by ũε (x , y 3 ) = u ε (x , εy 3 ), pε (x , y 3 ) = p ε (x , εy 3 ), a.e. (x , y 3 ) ∈ Ω ε .

Let us introduce some notation which will be useful in the following. For a vectorial function v = (v , v 3 ) and a scalar function w, we will denote

D x [v] = 1 2 (D x v + D t x v) and ∂ y3 [v] = 1 2 (∂ y3 v + ∂ t y3 v)
, where we denote

∂ y3 = (0, 0, ∂ ∂y3 ) t .
Moreover, associated to the change of variables [START_REF] Anguiano | Reaction-Diffusion Equation on Thin Porous Media[END_REF], we introduce the operators: D ε , D ε , div ε and ∇ ε , by

D ε [v] = 1 2 D ε v + D t ε v , (D ε v) i,j = ∂ xj v i for i = 1, 2, 3, j = 1, 2, (D ε v) i,3 = ε -1 ∂ y3 v i for i = 1, 2, 3, div ε v = div x v + ε -1 ∂ y3 v 3 , ∇ ε w = (∇ x w, ε -1 ∂ y3 w) t .
Using the transformation [START_REF] Anguiano | Reaction-Diffusion Equation on Thin Porous Media[END_REF], system (5) can be rewritten as

         -εdiv ε (η r (D ε [ũ ε ])D ε [ũ ε ]) + ∇ ε pε = f in Ω ε , div ε ũε = 0 in Ω ε , ũε = 0 on ∂Ω ∪ ∂T ε . (8)
Our goal then is to describe the asymptotic behavior of this new sequence (ũ ε , pε ). The sequences of solutions

(ũ ε , pε ) ∈ H 1 0 ( Ω ε ) 3 × L 2 0 ( Ω ε )
is not defined in a fixed domain independent of ε but rather in a varying set Ω ε . In order to pass the limit if ε tends to zero, convergences in fixed Sobolev spaces (defined in Ω) are used which requires first that (ũ ε , pε ) be extended to the whole domain Ω. Then, an extension (ũ ε , Pε ) ∈ H 1 0 (Ω) 3 × L 2 0 (Ω) is defined on Ω and coincides with (ũ ε , pε ) on Ω ε (we will use the same notation, ũε , for the velocity in Ω ε and its continuation in Ω).

Our main result referred to the asymptotic behavior of the solution of ( 8) is given by the following theorem.

Theorem 2.1 (Main Theorem

). There exist ũ ∈ H 1 0 (0, 1; L 2 (ω) 3 ) with ũ3 = 0 and P ∈ L 2 0 (ω), such that the extension (ũ ε , Pε ) of the solution of (8) satisfies the following convergences

ε -1 ũε ũ weakly in H 1 (0, 1; L 2 (ω) 3 ), Pε → P strongly in L 2 (Ω). Moreover, defining V (x ) = 1 0 ũ(x , y 3 ) dy 3 , it holds that (V, P ) ∈ L 2 (ω) 3 ×(L 2 0 (ω)∩H 1 (ω)) is the unique solution of the lower-dimensional homogenization law      V (x ) = U f (x ) -∇ x P (x ) , V 3 (x ) = 0 in ω, div x V (x ) = 0 in ω, V (x ) • n = 0 on ∂ω, (9) 
where the permeability function U : R 2 → R 2 is defined by

U(ξ ) = Y f w ξ (y) dy, ∀ ξ ∈ R 2 , (10) 
with w ξ , for every ξ ∈ R 2 , the unique solution of the local Stokes system with the non-linear viscosity following the Carreau law (1),

               -div y (η r (D y [w ξ ]) D y [w ξ ]) + ∇ y π ξ = ξ in Y f , div y w ξ = 0 in Y f , w ξ = 0 on ∂T, (w ξ , π ξ ) ∈ H 1 # (Y f ) 3 × L 2 0,# (Y f ). ( 11 
)
Remark 2.2. According to [21, Lemma 2], the permeability function U is coercive and strictly monotone.

Proof of the main result

In this section we provide the proof of the main result (Theorem 2.1). To to this, first we establish some a priori estimates of the solution of ( 8) and we define the extension of the solution. Second, we introduce the version of the unfolding method depending on ε. Next, a compactness result, which is the main key when we will pass to the limit later, is addressed and finally, the proof of the Theorem 2.1 is given.

A priori estimates.

In this subsection, we establish sharp a priori estimates of the dilated solution in Ω ε . To do this, we first need the Poincaré and Korn inequalities in Ω ε , which can be found in [START_REF] Anguiano | Homogenization of an incompressible non-Newtonian flow through a thin porous medium[END_REF].

Lemma 3.1 (Remark 4.3-(i) in [START_REF] Anguiano | Homogenization of an incompressible non-Newtonian flow through a thin porous medium[END_REF]). There exists a positive constant C, independent of ε, such that

ṽ L 2 ( Ωε) 3 ≤ Cε D ε ṽ L 2 ( Ωε) 3×3 , ∀ ṽ ∈ H 1 0 ( Ω ε ) 3 (Poincaré's inequality), (12) 
D ε ṽ L 2 ( Ωε) 3×3 ≤ C D ε [ṽ] L 2 ( Ωε) 3×3 , ∀ ṽ ∈ H 1 0 ( Ω ε ) 3 (Korn's inequality). (13) 
We give a priori estimates for velocity ũε in Ω ε .

Lemma 3.2. There exists a positive constant C, independent of ε, such that

ũε L 2 ( Ωε) 3 ≤ Cε, D ε ũε L 2 ( Ωε) 3×3 ≤ C, D ε [ũ ε ] L 2 ( Ωε) 3×3 ≤ C . ( 14 
)
Proof. Multiplying ( 8) by ũε and integrating over Ω ε , we get

ε(η 0 -η ∞ ) Ωε 1 + λ|D ε [ũ ε ]| 2 r 2 -1 |D ε [ũ ε ]| 2 dx dy 3 + εη ∞ Ωε |D ε [ũ ε ]| 2 dx dy 3 = Ωε f • ũ ε dx dy 3 .
Taking into account that η 0 > η ∞ , and λ > 0, we have

ε(η 0 -η ∞ ) Ωε 1 + λ|D ε [ũ ε ]| 2 r 2 -1 |D ε [ũ ε ]| 2 dx dy 3 ≥ 0,
and then, from Cauchy-Schwarz's inequality and the assumption on f given in (6), we get

εη ∞ D ε [ũ ε ] 2 L 2 ( Ωε) 3×3 ≤ C ũε L 2 ( Ωε) 3 .
Applying Poincaré's inequality [START_REF] Anguiano | Analysis of the effects of a fissure for a non-Newtonian fluid flow in a porous medium[END_REF] and Korn's inequality [START_REF] Anguiano | The transition between the Navier-Stokes equations to the Darcy equation in a thin porous medium[END_REF] in the right-hand side, we have

D ε [ũ ε ] 2 L 2 ( Ωε) 3×3 ≤ C |D ε [ũ ε ] L 2 ( Ωε) 3×3 ,
which gives (14) 3 . Finally, applying again ( 12) and ( 13), we obtain (14) 1 and (14) 2 .

Remark 3.3. We extend the velocity ũε by zero in Ω \ Ω ε (this is compatible with the homogeneous boundary condition on ∂Ω ∪ ∂T ε ), and denote the extension by same symbol. Obviously, estimates given in Lemma 3.2 remain valid and the extension ũε is divergence free too.

In order to extend the pressure pε to the whole domain Ω and obtain a priori estimates, we recall a result in which is concerned with the extension of the pressure p ε to the whole domain Q ε . Thus, we first use a restriction operator

R ε from H 1 0 (Q ε ) 3 into H 1 0 (Ω ε ) 3 , which is introduced in [10] as R ε 2
, next we extend the gradient of the pressure by duality in H -1 (Q ε ) 3 and finall, by means of the dilatation, we extend pε to Ω. Lemma 3.4 (Lemma 4.5-(i) in [START_REF] Anguiano | Homogenization of an incompressible non-Newtonian flow through a thin porous medium[END_REF]). There exists a (restriction) operator R ε acting from

H 1 0 (Q ε ) 3 into H 1 0 (Ω ε ) 3 such that 1. R ε v = v, if v ∈ H 1 0 (Ω ε ) 3 (elements of H 1 0 (Ω ε ) are extended by 0 to Q ε ). 2. divR ε v = 0 in Ω ε , if div v = 0 on Q ε .
3. For every v ∈ H 1 0 (Q ε ) 3 , there exists a positive constant C, independent of v and ε, such that

R ε v L 2 (Ωε) 3 + ε DR ε v L 2 (Ωε) 3×3 ≤ C v L 2 (Qε) 3 + ε Dv L 2 (Qε) 3×3 . ( 15 
)
Using the restriction operator R ε given in Lemma 3.4, we introduce F ε in H -1 (Q ε ) 3 in the following way

F ε , v H -1 (Qε) 3 ,H 1 0 (Qε) 3 = ∇p ε , R ε v H -1 (Ωε) 3 ,H 1 0 (Ωε) 3 , for any v ∈ H 1 0 (Q ε ) 3 , (16) 
and calculate the right hand side of ( 16) by using the variational formulation of problem [START_REF] Anguiano | Derivation of a quasi-stationary coupled Darcy-Reynolds equation for incompressible viscous fluid flow through a thin porous medium with a fissure[END_REF], which gives

F ε , v H -1 (Qε) 3 ,H 1 0 (Qε) 3 = -ε(η 0 -η ∞ ) Ωε (1 + λ|D[u ε ]| 2 ) r 2 -1 D[u ε ] : DR ε v dx -εη ∞ Ωε D[u ε ] : DR ε v dx + Ωε f • (R ε v) dx . (17) 
Using Lemma 3.2 for fixed ε, we see that it is a bounded functional on H 1 0 (Q ε ) (see the proof of Lemma 3.5 below), and in fact

F ε ∈ H -1 (Q ε ) 3 . Moreover, div v = 0 implies F ε , v = 0 ,
and the DeRham theorem gives the existence of P ε in L 2 0 (Q ε ) with F ε = ∇P ε . Next, we get for every ṽ ∈ H 1 0 (Ω) 3 where ṽ(x , y 3 ) = v(x , εy 3 ), using the change of variables [START_REF] Anguiano | Reaction-Diffusion Equation on Thin Porous Media[END_REF], that

∇ ε Pε , ṽ H -1 (Ω) 3 ,H 1 0 (Ω) 3 = - Ω Pε div ε ṽ dx dy 3 = -ε -1 Qε P ε div v dx = ε -1 ∇P ε , v H -1 (Qε) 3 ,H 1 0 (Qε) 3 .
Using the identification (17) of F ε , we have

∇ ε Pε , ṽ H -1 (Ω) 3 ,H 1 0 (Ω) 3 = ε -1 -ε(η 0 -η ∞ ) Ωε (1 + λ|D[u ε ]| 2 ) r 2 -1 D[u ε ] : DR ε v dx -εη ∞ Ωε D[u ε ] : DR ε v dx + Ωε f • (R ε v) dx ,
and applying the change of variables [START_REF] Anguiano | Reaction-Diffusion Equation on Thin Porous Media[END_REF], we obtain

∇ ε Pε , ṽ H -1 (Ω) 3 ,H 1 0 (Ω) 3 = -ε(η 0 -η ∞ ) Ωε (1 + λ|D ε [ũ ε ]| 2 ) r 2 -1 D ε [ũ ε ] : D ε Rε ṽ dx dy 3 -εη ∞ Ωε D ε [ũ ε ] : D ε Rε ṽ dx + Ωε f (x ) • ( Rε ṽ) dx dy 3 , (18) 
where Rε ṽ = R ε v for any ṽ ∈ H 1 0 (Ω) 3 . Finally, we estimate the right-hand side of [START_REF] Bird | [END_REF] and give the estimate of the extended pressure Pε . Lemma 3.5. There exists a positive constant C independent of ε, such that

Pε L 2 (Ω) ≤ C , ∇ ε Pε H -1 (Ω) 3 ≤ C. ( 19 
)
Proof. Applying the dilatation in [START_REF] Anguiano | Lower-dimensional nonlinear Brinkman's law for non-Newtonian flows in a thin porous medium[END_REF], we have that Rε ṽ satisfies the following estimate

Rε ṽ L 2 ( Ωε) 3 + ε D ε Rε ṽ L 2 ( Ωε) 3×3 ≤ C ṽ L 2 (Ω) 3 + ε D ε ṽ L 2 (Ω) 3×3 , (20) 
and since ε 1, we have

Rε ṽ L 2 ( Ωε) 3 ≤ C ṽ H 1 0 (Ω) 3 , D ε Rε ṽ L 2 ( Ωε) 3×3 ≤ C ε ṽ H 1 0 (Ω) 3 . (21) 
Taking into account that 1 < r < 2, we have the continuous embedding L 2 ( Ω ε ) ⊂ L 2r-2 ( Ω ε ). Then, from Cauchy-Schwarz's inequality, we can deduce

Ωε (1 + λ|D ε [ũ ε ]| 2 ) r 2 -1 D ε [ũ ε ] : D ε Rε ṽ dx dy 3 ≤ C D ε [ũ ε ] L 2 ( Ωε) 3×3 D ε Rε ṽ L 2 ( Ωε) 3×3 + C D ε [ũ ε ] r-1 L 2r-2 ( Ωε) 3×3 D ε Rε ṽ L 2 ( Ωε) 3×3 ≤ C D ε [ũ ε ] L 2 ( Ωε) 3×3 D ε Rε ṽ L 2 ( Ωε) 3×3 + C D ε [ũ ε ] r-1 L 2 ( Ωε) 3×3 D ε Rε ṽ L 2 ( Ωε) 3×3 ,
and using the last estimate in ( 14) and the last estimate of the dilated restricted operator given in [START_REF] Bourgeat | Filtration law for polymer flow through porous media[END_REF], we obtain

ε(η 0 -η ∞ ) Ωε (1 + λ|D ε [ũ ε ]| 2 ) r 2 -1 D ε [ũ ε ] : D ε Rε ṽ dx dy 3 ≤ C ṽ H 1 0 (Ω) 3 . (22) 
Moreover, from Cauchy-Schwarz's inequality, the last estimate in ( 14), the assumption of f given in ( 6) and estimates of the dilated restricted operator given in [START_REF] Bourgeat | Filtration law for polymer flow through porous media[END_REF], we obtain

εη ∞ Ωε D ε [ũ ε ] : D ε Rε ṽ dx ≤ Cε D ε [ũ ε ] L 2 ( Ωε) 3×3 D ε Rε ṽ L 2 ( Ωε) 3×3 ≤ C ṽ H 1 0 (Ω) 3 , ( 23 
) Ωε f • ( Rε ṽ) dx dy 3 ≤ C Rε ṽ L 2 ( Ωε) 3 ≤ C ṽ H 1 0 (Ω) 3 . (24) 
Then, taking into account ( 22)-( 24) in ( 18), we get 3 . This implies the second estimate in [START_REF] Boughanim | Derivation of the two-dimensional Carreau law for a quasi-newtonian fluid flow through a thin slab[END_REF] and then, using the Necas inequality, there exists a representative Pε ∈ L 2 0 (Ω) such that Pε

∇ ε Pε , ṽ H -1 (Ω) 3 ,H 1 0 (Ω) 3 ≤ C ṽ H 1 0 (Ω)
L 2 (Ω) ≤ C ∇ Pε H -1 (Ω) 3 ≤ C ∇ ε Pε H -1 (Ω) 3 ,
which implies the first estimate in [START_REF] Boughanim | Derivation of the two-dimensional Carreau law for a quasi-newtonian fluid flow through a thin slab[END_REF].

Adaptation of the unfolding method.

The change of variables [START_REF] Anguiano | Reaction-Diffusion Equation on Thin Porous Media[END_REF] does not provide the information we need about the behavior of ũε in the microstructure associated to Ω ε . To solve this difficulty, we use an adaptation introduced in [START_REF] Anguiano | Homogenization of an incompressible non-Newtonian flow through a thin porous medium[END_REF] of the unfolding method from [START_REF] Cioranescu | The periodic unfolding method in homogenization[END_REF].

Let us recall that this adaptation of the unfolding method divides the domain Ω ε in cubes of lateral length ε and vertical length 1. Thus, given (ũ ε ,

Pε ) ∈ H 1 0 (Ω) 3 × L 2 0 (Ω), we define (û ε , Pε ) by ûε (x , y) = ũε εκ x ε + εy , y 3 , Pε (x , y) = Pε εκ x ε + εy , y 3 , a.e. (x , y) ∈ ω × Y, (25) 
assuming ũε and Pε are extended by zero outside ω, where the function κ : R 2 → Z 2 is defined by

κ(x ) = k ⇐⇒ x ∈ Y k ,1 , ∀ k ∈ Z 2 .
Remark 3.6. We make the following comments:

-The function κ is well defined up to a set of zero measure in R 2 (the set ∪ k ∈Z 2 ∂Y k ,1 ). Moreover, for every ε > 0, we have

κ x ε = k ⇐⇒ x ∈ Y k ,ε .
-For k ∈ K ε , the restrictions of (û ε , Pε ) to Y k ,ε × Y does not depend on x , whereas as a function of y it is obtained from (ũ ε , Pε ) by using the change of variables y = x -εk ε , which transforms Y k ,ε into Y .

Following the proof of [10, Lemma 4.9], we have the following estimates relating (û ε , Pε ) and (ũ ε , Pε ).

Lemma 3.7. The sequence (û ε , Pε ) defined by ( 25) satisfies the following estimates

ûε L 2 (ω×Y ) 3 ≤ ũε L 2 (Ω) 3 , D y ûε L 2 (ω×Y ) 3×2 ≤ ε D x ũε L 2 (Ω) 3×2 , ∂ y3 ûε L 2 (ω×Y ) 3 ≤ ∂ y3 ũε L 2 (Ω) 3 , D y [û ε ] L 2 (ω×Y ) 3×2 ≤ ε D x [ũ ε ] L 2 (Ω) 3×2 , ∂ y3 [û ε ] L 2 (ω×Y ) 3 ≤ ∂ y3 [ũ ε ] L 2 (Ω) 3 , Pε L 2 (ω×Y ) ≤ Pε L 2 (Ω) . (26) 
Now, from estimates of the extended velocity [START_REF] Anguiano | Newtonian fluid flow in a thin porous medium with non-homogeneous slip boundary conditions Networks and[END_REF] and pressure [START_REF] Boughanim | Derivation of the two-dimensional Carreau law for a quasi-newtonian fluid flow through a thin slab[END_REF] together with Lemma 3.7, we have the following estimates for (û ε , Pε ). Lemma 3.8. There exists a constant C > 0 independent of ε, such that (û ε , Pε ) defined by [START_REF] Fabricius | Darcy's law for flow in a periodic thin porous medium confined between two parallel plates[END_REF] satisfies

ûε L 2 (ω×Y ) 3 ≤ Cε, D y ûε L 2 (ω×Y ) 3×3 ≤ Cε, D y [û ε ] L 2 (ω×Y ) 3×3 ≤ Cε, ( 27 
) Pε L 2 (ω×Y ) ≤ C. ( 28 
)

Compactness results.

We analyze the asymptotic behavior of sequences of the extension of (ũ ε , Pε ) and (û ε , Pε ), when ε tends to zero.

Lemma 3.9. There exist ũ ∈ H 1 0 (0, 1; L 2 (ω) 3 ) where ũ3 = 0, û ∈ L 2 (ω; H 1 # (Y ) 3 ), with û = 0 on ω × T such that Y û(x , y) dy = 1 0 ũ(x , y 3 ) dy 3 with Y û3 (x , y) dy = 0, such that ε -1 ũε (ũ , 0) weakly in H 1 (0, 1; L 2 (ω) 3 ), ( 29)

ε -1 ûε û weakly in L 2 (ω; H 1 (Y ) 3 ). ( 30 
)
Moreover, ũ and û satisfy the following divergence conditions

div x 1 0 ũ (x , y 3 ) dy 3 = 0 in ω, 1 0 ũ (x , y 3 ) dy 3 • n = 0 in ∂ω, (31) 
div y û(x , y) = 0 in ω × Y f , div x Y f û (x , y) dy = 0 in ω, Y f û (x , y) dy • n = 0 on ∂ω. ( 32 
)
Proof. Arguing as in [10, Lemma 5.2.-(i)], we obtain convergence [START_REF] Jouybari | Investigation of Post-Darcy Flow in Thin Porous Media[END_REF] and divergence condition [START_REF] Mikelić | Non-Newtonian Flow[END_REF]. Moreover, proceeding similarly as in [10, Lemma 5.4.-(i)] we deduce convergence [START_REF] Lions | Quelques méthodes de résolution des problèmes aux limites non linéaires[END_REF] and divergence conditions [START_REF] Mikelić | An introduction to the homogenization modeling of non-Newtonian and electrokinetic flows in porous media[END_REF].

Lemma 3.10. For a subsequence of ε still denoted by ε, there exists P ∈ L 2 0 (ω) such that Pε → P strongly in L 2 (Ω), ( 33)

Pε → P strongly in L 2 (ω × Y ). ( 34 
)
Proof. The first estimate in [START_REF] Boughanim | Derivation of the two-dimensional Carreau law for a quasi-newtonian fluid flow through a thin slab[END_REF] implies, up to a subsequence, the existence of P ∈ L 2 0 (Ω) such that Pε P weakly in L 2 (Ω). [START_REF] Suárez-Grau | Mathematical modeling of micropolar fluid flows through a thin porous medium[END_REF] Also, from the second estimate in [START_REF] Boughanim | Derivation of the two-dimensional Carreau law for a quasi-newtonian fluid flow through a thin slab[END_REF], by noting that ∂ y3 Pε /ε also converges weakly in H -1 (Ω), we obtain ∂ y3 P = 0 and so P is independent of y 3 . Moreover, if we argue as in [START_REF] Bourgeat | Homogenization of a polymer flow through a porous medium[END_REF]Lemma 4.4], we have that the convergence [START_REF] Suárez-Grau | Mathematical modeling of micropolar fluid flows through a thin porous medium[END_REF] of the pressure Pε is in fact strong. Since Pε has null mean value in Ω, then P has null mean value in ω, which concludes the proof of [START_REF] Prat | Thin Porous Media, in Handbook of Porous Media[END_REF]. Finally, the strong convergence of Pε given in [START_REF] Saramito | Complex fluids: Modeling and Algorithms[END_REF] follows from [24, Proposition 1.9-(ii)] and the strong convergence of Pε given in [START_REF] Prat | Thin Porous Media, in Handbook of Porous Media[END_REF].

Proof of Theorem 2.1.

The proof will be divided in two steps. In the first step, we obtain the homogenized behavior given by a coupled system, with a Carreau like macroviscosity, and in the second step we decouple it to obtain the macroscopic law.

Step 1. From Lemmas 3.9 and 3.10, we prove that the sequence (û ε , Pε ) converges to (û, P ) ∈ L 2 (ω;

H 1 # (Y f ) 3 ) × (L 2 0 (ω) ∩ H 1 (ω))
, which are the unique solutions of the following two-pressures generalized Newtonian Stokes problem with the non-linear viscosity following the Carreau law (1),

                                       -div y (η r (D y [û]) D y [û]) + ∇ y π = f -∇ x P in ω × Y f , div y û = 0 in ω × Y f , div x Y f û dy = 0 in ω, Y f û dy • n = 0 on ∂ω, û = 0 in ω × T, π ∈ L 2 (ω; L 2 0,# (Y f )). ( 36 
)
Divergence conditions (36) 2,3,4 and condition (36) 5 follow from Lemma 3.9. To prove that (û, P ) satisfies the momentum equation given in [START_REF] Yeghiazarian | Thin Porous Media[END_REF], we choose a test function v(x , y) ∈ D(ω;

C ∞ # (Y ) 3 ) with v(x , y) = 0 in ω × T (thus, v(x , x /ε, y 3 ) belongs to H 1 0 ( Ω ε ) 3
). Multiplying (8) by v(x , x /ε, y 3 ), integrating by parts, and taking into account the extension of ũε and Pε , we have

ε(η 0 -η ∞ ) Ω (1 + λ|D ε [ũ ε ]| 2 ) r 2 -1 D ε [ũ ε ] : D x [v] + ε -1 D y [v] dx dy 3 +εη ∞ Ω D ε [ũ ε ] : D x [v] + ε -1 D y [v] dx dy 3 - Ω Pε div x v + ε -1 div y v dx dy 3 = Ω f • v dx dy + O ε ,
where O ε is a generic real sequence which tends to zero with ε and can change from line to line.

By the change of variables given in Remark 3.6, we obtain

(η 0 -η ∞ ) ω×Y (1 + λ|ε -1 D y [û ε ]| 2 ) r 2 -1 ε -1 D y [û ε ] : D y [v] dx dy +η ∞ ω×Y ε -1 D y [û ε ] : D y [v] dx dy - ω×Y Pε div x v dx dy -ε -1 ω×Y Pε div y v dx dy = ω×Y f • v dx dy + O ε . (37)
Now, let us define the functional J r by

J r (v) = η 0 -η ∞ rλ ω×Y (1 + λ|D y [v]| 2 ) r 2 dx dy + η ∞ 2 ω×Y |D y [v]| 2 dx dy.
Observe that J r is convex and Gateaux differentiable on L 2 (ω; H 1 # (Y ) 3 ) (see [16, Proposition 2.1 and Section 3] for more details) and A r = J r is given by

(A r (w), v) = (η 0 -η ∞ ) ω×Y (1 + λ|D y [w]| 2 ) r 2 -1 D y [w] : D y [v]dx dy + η ∞ ω×Y D y [w] : D y [v]dx dy.
Applying [START_REF] Lions | Quelques méthodes de résolution des problèmes aux limites non linéaires[END_REF]Proposition 1.1.,p.158], in particular, we have that A r is monotone, i.e.

(A r (w) -A r (v), w -v) ≥ 0, ∀w, v ∈ L 2 (ω; H 1 # (Y ) 3 ). ( 38 
)
On the other hand, for all ϕ ∈ D(ω; C ∞ # (Y ) 3 ) satisfying the divergence conditions div x Y ϕ dy = 0 in ω and div y ϕ = 0 in ω × Y , we choose v ε defined by

v ε = ϕ -ε -1 ûε ,
as a test function in [START_REF] Zhengan | Homogenization of a stationary Navier-Stokes flow in porous medium with thin film[END_REF]. Taking into account that div ε ũε = 0, we get that ε -1 div y ûε = 0, and then we obtain

(A r (ε -1 ûε ), v ε ) - ω×Y Pε div x v ε dx dy = ω×Y f • v ε dx dy + O ε , which is equivalent to (A r (ϕ) -A r (ε -1 ûε ), v ε ) -(A r (ϕ), v ε ) + ω×Y Pε div x v ε dx dy = - ω×Y f • v ε dx dy + O ε .
Due to (38), we can deduce

(A r (ϕ), v ε ) - ω×Y Pε div x v ε dx dy ≥ ω×Y f • v ε dx dy + O ε , i.e. (η 0 -η ∞ ) ω×Y (1 + λ|D y [ϕ]| 2 ) r 2 -1 D y [ϕ] : D y [v ε ]dx dy + η ∞ ω×Y D y [ϕ] : D y [v ε ]dx dy - ω×Y Pε div x v ε dx dy ≥ ω×Y f • v ε dx dy + O ε . (39) 
Now, we pass to the limit in every terms.

From convergence (30), passing to the limit when ε tends to zero, we have that the first and second terms converge to

(η 0 -η ∞ ) ω×Y (1 + λ|D y [ϕ]| 2 ) r 2 -1 D y [ϕ] : D y [ϕ -û] dx dy + η ∞ ω×Y D y [ϕ] : D y [ϕ -û] dx dy.
From convergences [START_REF] Lions | Quelques méthodes de résolution des problèmes aux limites non linéaires[END_REF] and [START_REF] Saramito | Complex fluids: Modeling and Algorithms[END_REF], the third term converges to ω×Y P div x (ϕû ) dx dy.

Since P does not depend on y, by using the divergences conditions div x Y ϕ dy = 0 and (32) 2 , we have

ω×Y P div x (ϕ -û ) dx dy = ω P div x Y (ϕ -û )dy dx = 0.
Thus, we deduce that the variational inequality (39) converges to the following one

(η 0 -η ∞ ) ω×Y (1 + λ|D y [ϕ]| 2 ) r 2 -1 D y [ϕ] : D y [ϕ -û] dx dy +η ∞ ω×Y D y [ϕ] : D y [ϕ -û] dx dy ≥ ω×Y f • (ϕ -û ) dx dy,
which by Minty's lemma, see [30, Chapter 3, Lemma 1.2], is equivalent to

-div y (η r ( D y [û] )D y [û]) = f in ω × Y.
By density

(η 0 -η ∞ ) ω×Y (1 + λ|D y [û]| 2 ) r 2 -1 D y [û] : D y [v] dx dy +η ∞ ω×Y D y [û] : D y [v] dx dy = ω×Y f • v dx dy, (40) 
holds for every v in the Hilbert space V defined by

V =                v(x , y) ∈ L 2 (ω; H 1 # (Y ) 3 ) such that div x Y f v(x , y) dy = 0 in ω, Y f v(x , y) dy • n = 0 on ∂ω div y v(x , y) = 0 in ω × Y f , v(x , y) = 0 in ω × T                . Reasoning as in [1, Lemma 1.5], the orthogonal of V, a subset of L 2 (ω; H -1 # (Y ) 3 ), is made of gradients of the form ∇ x π(x ) + ∇ y π(x , y), with π(x ) ∈ H 1 (ω)/R and π(x , y) ∈ L 2 (ω; L 2 # (Y f )/R
). Thus, integrating by parts, the variational formulation (40) is equivalent to the two-pressures generalized Newtonian Stokes problem [START_REF] Yeghiazarian | Thin Porous Media[END_REF]. It remains to prove that π coincides with pressure P . This can be easily done passing to the limit similarly as above by considering the test function ϕ, which is divergence-free only in y, and by identifying limits. It holds then that P ∈ L 2 0 (ω) ∩ H 1 (ω). From [20, Theorem 2], problem (36) admits a unique solution (û, π, P ) ∈ L 2 (ω;

H 1 # (Y f ) 3 ) × L 2 (ω; L 2 0,# (Y f )) × (L 2 0 (ω) ∩ H 1 (ω)
) and then, the entire sequence (û ε , Pε ) converges to (û, P ).

Step 2. In this step we give an approximation of the model [START_REF] Yeghiazarian | Thin Porous Media[END_REF], where the macroscopic scale is totally decoupled from the microscopic one. To do this, we seek a global filtration velocity of the form given in [START_REF] Anguiano | Homogenization of an incompressible non-Newtonian flow through a thin porous medium[END_REF], i.e.

V (x ) = U(f (x ) -∇ x P (x )) in ω, (41) 
where U : R 2 → R 3 is a permeability function, not necessary linear, and V (x ) = 1 0 ũ(x , y 3 ) dy 3 = Y û(x , y) dy with div x V = 0 in ω and V • n = 0 on ∂ω.

Using the idea from [START_REF] Bourgeat | Filtration law for polymer flow through porous media[END_REF] to decouple the homogenized problems of Carreau type, for every ξ ∈ R 2 we consider the function U : R 2 → R 3 given by

U(ξ ) = Y f w ξ (y) dy,
where w ξ denotes the unique solution of the local Stokes problem given by [START_REF] Anguiano | Derivation of a coupled Darcy-Reynolds equation for a fluid flow in a thin porous medium including a fissure Z[END_REF], see [START_REF] Bourgeat | Homogenization of a polymer flow through a porous medium[END_REF]Theorem 2]. Thus, (û, π) takes the form

û(x , y) = w f (x )-∇ x P (x ) (y), π(x , y) = π f (x )-∇ x P (x ) (y) in ω × Y,
and then, from the relation V (x ) = Y û(x , y) dy with Y û3 (x , y) dy = 0 given in Lemma 3.9, we deduce the filtration velocity (41), where V 3 = 0. Moreover, from second and third conditions given in [START_REF] Mikelić | An introduction to the homogenization modeling of non-Newtonian and electrokinetic flows in porous media[END_REF] together with (41), we deduce div x V = 0 in ω, V • n = 0 on ∂ω.

Since V 3 = 0, to simplify the notation, we redefine the definition of U by the expression given in [START_REF] Anguiano | Homogenization of an incompressible non-Newtonian flow through a thin porous medium[END_REF] and then, we get U : R 2 → R 2 , which concludes the proof of [START_REF] Anguiano | Homogenization of Bingham flow in thin porous media[END_REF]. Finally, from [21, Theorem 1], the macroscopic problem (9) has a unique solution (V, P ) ∈ L 2 (ω) 3 × (L 2 0 (ω) ∩ H 1 (ω)) and Theorem 2.1 is proved.

The objective of this section is to investigate numerically the behaviour of a flow of a Carreau fluid between two parallel plates, separated by a thin porous medium of width ε, as described in Section 2.

The viscosity (1) used in the Carreau law depends on four rheological parameters: η 0 , η ∞ , r and λ. Let us first specify our choice of parameters. In many applications (see for instance [START_REF] Bird | [END_REF]), η ∞ is very small compared with η 0 . For this reason, we arbitrarily fix η 0 = 1 and η ∞ = 10 -3 in the following numerical tests. As regards r and λ, we take r ∈ {1.3, 1.5, 1.7, 2} and λ ∈ {1, 10, 100}. The value r = 2 corresponds to the Newtonian case of a fluid of constant viscosity η 0 = 1, that we consider as a reference case. Reducing the value of r and multiplying the value of λ by a factor 10 from one simulation to the other will give access to a large panel of nonlinear behaviours for the simulated fluid.

In order to avoid boundary effects on the lateral parts of the boundary of the domain Ω ε , we assume that ω is a square ω = (-L, L) 2 and impose periodic boundary conditions on ∂Q ε = ∂ω × (0, ε) in system [START_REF] Anguiano | Derivation of a quasi-stationary coupled Darcy-Reynolds equation for incompressible viscous fluid flow through a thin porous medium with a fissure[END_REF]. Hence, we consider the system

                 -εdiv (η r (D[u ε ])D[u ε ]) + ∇p ε = f in Ω ε , div u ε = 0 in Ω ε , u ε = 0 on ∂S ε , u ε (x 1 , -L) = u ε (x 1 , L), x 1 ∈ (-L, L), u ε (-L, x 2 ) = u ε (L, x 2 ), x 2 ∈ (-L, L), (42) 
In this case, Lemma 3.9 needs to be slightly modified to take into account the periodicity on ∂ω. More precisely, conditions [START_REF] Mikelić | Non-Newtonian Flow[END_REF] and [START_REF] Mikelić | An introduction to the homogenization modeling of non-Newtonian and electrokinetic flows in porous media[END_REF] 

The free divergence boundary conditions express the fact that for any function ϕ in H 1 (ω), satisfying periodic boundary conditions on ∂ω, Indeed, multiplying the condition div ε ũε = 0 by such function ϕ, and integrating by parts over ω × (0, 1), one obtains

- ω 1 0 ũ ε (x , y 3 )dy 3 • ∇ x ϕ(x )dx + ∂ω 1 0 ũ ε (x , y 3 )dy 3 • n(x )ϕ(x ) dH 1 (x ) = 0
where H 1 stands for the Hausdorff measure of dimension 1. By periodicity of the normal vector n, assuming that both ũ ε and ϕ are periodic with respect to x , we see that the boundary term in the previous relation vanishes.

Passing to the limit by [START_REF] Jouybari | Investigation of Post-Darcy Flow in Thin Porous Media[END_REF], we deduce the first equality in (45). The second equality is proved analogously.

In the case of periodic lateral boundary conditions, the limit system ( 9) is replaced accordingly by

     V (x ) = U f (x ) -∇ x P (x ) , V 3 (x ) = 0 in ω, div x V (x ) = 0 in ω, (46) 
where the permeability function U and the corresponding cell problem are respectively given by ( 10) and [START_REF] Anguiano | Derivation of a coupled Darcy-Reynolds equation for a fluid flow in a thin porous medium including a fissure Z[END_REF].

Throughout this numerical section, we assume that the flow is driven by a constant pressure gradient in the horizontal direction, which amounts to considering a constant external force f = (f , 0) with f ∈ R 2 . Such assumption is realistic in applications like enhanced oil recovery, where the flow, frequently described by the Carreau law in the engineering literature, is mainly driven by the pressure difference between the injection point and the well [START_REF] Bird | [END_REF]Chapter 4]. Since f is constant, one gets that P ≡ 0 and V is also constant, given by V = Y f w f (y) dy where w f is the solution to system [START_REF] Anguiano | Derivation of a coupled Darcy-Reynolds equation for a fluid flow in a thin porous medium including a fissure Z[END_REF] with ξ = f . In order to compute the solution to system [START_REF] Anguiano | Derivation of a coupled Darcy-Reynolds equation for a fluid flow in a thin porous medium including a fissure Z[END_REF], we rely on a mixed formulation of the problem and solve it by a finite element method, using FreeFem++ software [START_REF] Hecht | New Development in FreeFem++[END_REF]. Since the system (11) is nonlinear (for 1 < r < 2), we solve the corresponding mixed formulation by a fixed point algorithm (see for instance [START_REF] Saramito | Complex fluids: Modeling and Algorithms[END_REF]Section 2.8]). We consider the Taylor-Hood approximation for the velocity-pressure pair, i.e. P 2 elements for the velocity field and P 1 elements for the pressure. It is well known that this choice is compatible with the Babuška-Brezzi condition [START_REF] Brezzi | Mixed and Hybrid Finite Element Methods[END_REF][START_REF] Girault | Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms[END_REF].

The three-dimensional mesh of the cell Y f is obtained by constrained Delaunay tetrahedralization. The results that we present in the next subsections are obtained using approximately 8000 tetrahedra in the mesh of Y f . We propose to explore numerically the influence of the amplitude of the constant pressure gradient f , and of its orientation, on the mean filtration velocity V . In our simulations, we will use different shapes for the inclusion T , that are presented in the next paragraph.

Geometry of the inclusion T

In the numerical simulations of system [START_REF] Anguiano | Derivation of a coupled Darcy-Reynolds equation for a fluid flow in a thin porous medium including a fissure Z[END_REF], we have chosen to consider two types of shapes for the horizontal projection T of the solid inclusion T = T × (0, 1): ellipses and rectangles.

• Ellipses are built using two possible values for each semi-axis: 0.1 and 0.3. This leads to 4 different geometries: two disks of respective radius 0.1 and 0.3, and the ellipse of semi-major axis 0.3 and semiminor axis 0.1, parallel to the x or the y axis (see Fig. 4). These shapes will be numbered E 1 , E 2 , E 3 and E 4 in the rest of this section.

• Similarly, we construct 4 rectangular shapes by selecting the length of opposite sides in {0.15, 0.35} (see Fig. 5). These shapes are numbered R 1 , R 2 , R 3 and R 4 .

These shapes are commonly used in the literature on flows in porous media, and offer a variety of geometric features, such as size, regularity and isotropy, that favor comparisons.

Influence of the amplitude of the imposed pressure gradient f

In order to test the impact of the variations of |f |, we have computed the mean filtration velocity V associated to a pressure gradient f directed by e 1 , in the form f = (f 1 , 0) with f 1 ∈ (0, 1). In that case, V is also directed by e 1 , and reads V = (V 1 , 0). The results that we have obtained are plotted in Fig. 6 (in the case of elliptic inclusions E 1 to E 4 ) and in Fig. 7 (in the case of rectangular inclusions R 1 to R 4 ).

We can observe that the amplitude of the mean filtration velocity, which is simply equal to |V | = V 1 in this setting, increases as r is diminished and λ is augmented. For λ = 1, V 1 remains very close to the reference value (Newtonian case r = 2). On the opposite, increasing λ up to λ = 100 affects strongly the behaviour of the fluid as a function of r. For instance, fixing λ = 100 and f 1 = 1, and taking r = 1.3 drastically increases the velocity V 1 with respect to the computed value for r = 2.

Comparing E 1 to E 4 and R 1 to R 4 , we observe that, as expected, the filtration velocity is smaller for large volume inclusions than for small volume ones. Our results also confirm the intuition that aligning the obstacle in the sense of the flow (as E 2 and R 2 ), or perpendicularly to it (as E 3 and R 3 ), affects the filtration velocity: V 1 is much smaller for E 3 (resp. R 3 ) than for E 2 (resp. R 2 ). Let us notice that this effect is much more pronounced for rectangles that for ellipses, which is probably linked with the difference of regularity of the boundaries of the corresponding shapes.

Dependency on the orientation of the pressure gradient

We complete our previous results on the amplitude of f by testing the influence of its orientation, on both the orientation and amplitude of V . To this aim, we consider a family of pressure gradients f = (cos θ, sin θ) and the anisotropic shapes of inclusions E 2 and R 2 . By symmetry, we can restrict the angular parameter θ to θ ∈ [0, π/2]. The results that we obtain are represented in Fig. 8 (for ellipse E 2 ) and in Fig. 9 (for rectangle R 2 ).

As observed in the previous paragraph, for λ = 1, the value of r value does not seem to have a strong impact on the behaviour of the model. For both shapes E 2 and R 2 , the value and orientation of V remain essentially the same as in the reference Newtonian case r = 2. On the other hand, for λ = 100, the influence of r becomes clear. For example, in case of inclusion R 2 , the maximal amplitude of the velocity (achieved for θ = 0) is close to 0.2 with r = 1.3, while it was merely equal to 0.03 for r = 2. A comparable change of order of magnitude can be observed for E 2 .

As regards the orientation of the vector V , we may observe a slight difference of orientation in case λ = 100, between the reference case r = 2 and the other cases r ∈ {1.3, 1.5, 1.7}, concerning mainly the values of angle θ close to π/2. However, from a global perspective, it appears that modifiying λ and r does not have a definite influence on the response of the system to a rotation of f . 

Figure 1 :

 1 Figure 1: View of the 3D reference cells Y (left) and the 2D reference cell Y (right).
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Figure 2 :

 2 Figure 2: View of the 3D reference cells Y k ,ε (left) and the 2D reference cell Y k ,ε (right).

Figure 3 :

 3 Figure 3: View of the thin porous media Ω ε (left) and domain without perforations Q ε (right).

are replaced by div x 1 0

 1 ũ (x , y 3 )dy 3 = 0 in ω, (43) div y û(x , y) = 0 in ω × Y f , div x Y fû (x , y) dy = 0 in ω.

ω 1 0

 1 ũ (x , y 3 ) dy 3 ϕ(x ) dx = 0 andω Y f û (x , y) dy ϕ(x ) dx = 0.(45)
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 5102831029 Figure8: Representation of V when f is a unit vector of the form (f 1 , f 2 ) = (cos θ, sin θ) with θ ∈ [0, π/2], in the case of an elliptic inclusion E 2 . Each vector V is represented by a vector of length 0.2, localized at point (f 1 , f 2 ) and colored according to |V |. The left column corresponds to λ = 1 and the right one to λ = 100. Each line from top to bottom corresponds respectively to r = 1.3, r = 1.5, r = 1.7 and r = 2.
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