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We combine analytic developments and numerical tight-binding calculations to study the evolution of the
electron g-factors in homogeneous nanostructures of III-V and II-VI semiconductors. We demonstrate that the
g-factor can be always written as a sum of bulk and surface terms. The bulk term, the dominant one, just
depends on the energy gap of the nanostructure but is otherwise isotropic and independent of size, shape, and
dimensionality. At the same time, the magnetic moment density at the origin of the bulk term is anisotropic and
strongly dependents on the nanostructure shape. The physical origin of these seemingly contradictory findings
is explained by the relation between the spin-orbit-induced currents and the spatial derivatives of the electron
envelope wave function. The tight-binding calculations show that the g-factor versus energy gap for spherical
nanocrystals can be used as a reference curve. In quantum wells, nanoplatelets, nanorods, and nanowires, the
g-factor along the rotational symmetry axis can be predicted from the reference curve with a good accuracy. The
g-factors along nonsymmetric axes exhibit more important deviations due to surface contributions but the energy
gap remains the main quantity determining their evolution. The importance of surface-induced anisotropies of
the g-factors is discussed.

DOI: 10.1103/PhysRevB.95.235437

I. INTRODUCTION

In the last decades, researchers have managed to syn-
thesize nanostructures with a plethora of sizes, shapes, and
compounds [1–6]. In particular, colloidal approaches enabled
the synthesis of spherical nanocrystals, nanorods, nanowires,
and nanoplatelets [7–9]. Promising applications for these
nanocrystals have emerged such as solar cells, displays,
photodetectors, and molecular sensing [10–16].

Among different techniques used to characterize these
nanocrystals, those involving magnetic fields become increas-
ingly important. Optical experiments under strong magnetic
field enable the investigation of the excitonic fine structure
[17–23]. Electron spin resonance through the measurement of
g-factors is a remarkable tool to probe the electron (hole) states
in nanocrystals in which the number of electrons is controlled
by doping [24–27] or by the stoichoimetry [28]. Optically
detected magnetic resonance reveals information about the
spin multiplicity of band edge states and provides means to
identify surface/interface sites [29].

These studies are also important because semiconductor
nanostructures are good candidates for spintronic and quantum
computing devices [30–33]. The spin can be manipulated by
tuning the effective g-tensor using an applied electric field
[31,34–36]. In this context, knowing the g-factor values is of
crucial importance. However, the experimental measurement
of the electron g-factor is not straightforward as, in many
studies, only the exciton g-factor is obtained [17–23,37,38].

In the literature, theoretical works on electron g-factors
are mainly limited to specific systems like quantum wells
and spherical quantum dots [34,39–44]. The electron g-factor
in spherical CdSe quantum dots has been calculated and
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measured. It is found that it strongly varies with size
but there are discrepancies between the calculated values
[19,21,42,43,45]. More generally, a clear picture of the
behavior of the electron g-factor with nanocrystal size, shape,
and dimensionality is still missing. It is also needed to go
beyond the prototypical case of CdSe for nanocrystals. Our
main aim in this paper is to provide such a picture for
nanostructures of homogeneous composition belonging to the
wide class of compounds characterized by a direct gap at �.

A first indication of a possible rationalization of the
g-factors can be found in the theory of Kiselev et al. [40]
based on the envelope function approximation and on the Kane
k · p Hamiltonian [46,47], which accounts for the coupling of
the conduction band to the top valence bands. The remote
band contributions are included in a term �g treated as a
fitting parameter, which is expected to be small. Analytic
expressions are derived for the g-factor in spherical quantum
dots, nanowires, and quantum wells [44]. Interestingly, one can
deduce from this theory a nontrivial result if �g is neglected.
The g-factor in quantum dots, nanowires, and quantum wells
is given by the same expression (given below) when the
nanostructures have an homogeneous composition and their
surface essentially behaves as a hard wall for the electron
(infinite barrier limit), i.e., in conditions usually realized in
homogeneous colloidal nanocrystals.

A second indication of a rationalization of the g-factors
is given by the work of Yugova et al. [48] showing that the
out-of-plane g-factor in GaAs/AlxGa1−xAs quantum wells
has a universal dependence on the lowest band-to-band
optical transition energy, and this universality also embraces
AlxGa1−xAs alloys.

Quite surprisingly, the fact that g-factors for systems
of different dimensionalities could be given by the same
expression has not received particular attention. In addition, if
this fact is confirmed, its physical origin is far from trivial since
recent works demonstrate that the orbital magnetic moment at
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the origin of the deviation of g from g0 comes from electrical
currents induced by the spin-orbit coupling, and is strongly
dependent on the size and the shape of a nanostructure [49,50].
Therefore the situation is confusing. It is thus needed to
investigate the g-factors of nanocrystals with different shapes
and to understand the physical origin of the orbital magnetic
moment in a more general framework. It is also important
to use more elaborate methodologies for the calculations, in
particular, to include remote band contributions.

In this work, in a first step, we use an atomistic tight-binding
approach to calculate the electron g-factor of homogeneous
nanostructures, i.e., made from a single compound, namely,
CdSe, CdTe, GaAs, InP, InAs, or InSb. In each case, several
sizes and shapes are investigated. We show that the electron
g-factor is mainly determined by the energy gap of the
nanocrystals and happens to be almost shape-independent,
especially for its component along a rotational symmetry axis.
We discuss the importance of g-factor anisotropies and their
sensitivity to the surface. In a second step, we use analytic
developments to show that the g-factor can be decomposed
into bulk and surface components. We investigate the physical
reasons why the bulk term is independent of the size, shape,
and dimensionality of the nanostructure, except through its
energy gap. We explain why this isotropic and universal
behavior is compatible with a magnetic moment density
strongly dependent on the electron wave function [49,50].

The paper is organized as follows. The methodology of the
tight-binding calculations is described in Sec. II. The results
for bulk semiconductors and for spherical nanocrystals are pre-
sented in Secs. III and IV, respectively. The results for nanos-
tructures with other shapes are given in Sec. V in which we
investigate the universal behavior of the g-factors. The g-factor
anisotropies are quantified and analyzed in Sec. VI. In Sec. VII,
we propose an analytic expression for the g-factors. We use it
to explain the origin of the universal behavior of the g-factors.
The physical consequences of these findings are discussed.

II. METHODOLOGY

We have explored homogeneous nanostructures with differ-
ent dimensionalities, shapes and sizes. We have calculated the
g-factor in 3D (bulk), 2D (quantum wells), 1D (cylindrical and
square nanorods/nanowires), and 0D (spheres, cubes, circular,
and square nanoplatelets). By convention, the quantum wells
(nanoplatelets) are confined along the z direction. The axis of
the nanorods and nanowires is also taken along the z direction.

A. Tight-binding calculations

The atomistic tight-binding method is implemented as
follows. The nanocrystals have a zinc-blende structure for
which each atom is described by a double set of sp3d5s∗
atomic orbitals, including the spin degree of freedom. The
spin-orbit coupling is included as intra-atomic Hamiltonian
matrix elements in the p sector. The orbitals are assumed to
be orthogonal and only nearest-neighbor couplings are consid-
ered. The tight-binding parameters are derived in Ref. [51] for
CdSe, Ref. [52] for CdTe, Ref. [53] for GaAs, InP and InAs,
and Ref. [54] for InSb.

In this work, we only investigate nanostructures with
well passivated surfaces in such a way that the carriers
are strongly confined in the semiconductor core. However,
different passivations are conceivable since, experimentally,
the surfaces can be covered with different types of ligands or
capping layers (e.g., oxides). Therefore we have considered
two models of passivation. In the first one, each dangling
bond at the surface is saturated by a pseudo-hydrogen atom
described in the tight-binding model by a single s orbital which
is coupled to the s and p orbitals of the surface atoms. This
is described in the tight-binding model by the following pa-
rameters: EH = 0 eV for the on-site s orbital energy (the zero
of energy corresponding to the top of the bulk valence band),
and Vssσ = −3.5 eV and Vspσ = 4.5 eV for the hopping terms
(notations of Ref. [55]). These values are sufficient to push the
surface states out of the gap region, even in small nanocrystals.

In the second passivation model, we effectively remove
from the basis of orbitals the sp3 hybrid orbitals that form the
dangling bonds at the surface. This second approach is close to
the infinite barrier model commonly used to describe strongly
confined carriers, for instance, in the envelope function
approximation [56,57]. In contrast, the first model describes a
smoother confinement potential.

For the sake of conciseness, the results presented in this
paper are obtained using the first passivation model for GaAs,
InP, and InAs, and using the second model for CdSe, CdTe,
and InSb. The effects related to these different passivations
will be discussed in Sec. VI.

We have also calculated the electron g-factors of GaAs/
AlxGa1−xAs quantum wells (Sec. V D). The AlxGa1−xAs
alloy is described as a virtual crystal defined by tight-binding
parameters interpolated between GaAs and AlAs [53].

In Appendix A, we also present calculations of the g-factors
in InSb quantum wells covered by a thin CdTe shell. In absence
of lattice mismatch between InSb and CdTe, we have employed
the same tight-binding parameters as for the homogeneous
compounds in their respective regions. At the InSb/CdTe
interface, the hopping terms are taken as simple averages over
the two compounds. We assume a valence-band offset between
InSb and CdTe of 0.87 eV [58].

B. g-factor calculations

The g-factors are deduced from two different approaches.
The use of one rather than the other depends on the dimen-
sionality of the system and on the system (Hamiltonian matrix)
size. For small systems, both methods are feasible, we have
checked that they give the same results.

1. Peierls phase approach

In this case, a weak magnetic field is included using Peierls
substitution as derived in Ref. [59]. The g-factor is thus
obtained from the splitting of the lowest conduction level of the
nanocrystal. This approach was used to calculate the g-factor
in all 0D systems (spherical quantum dots, nanoplatelets and
nanorods). The calculations are feasible even for structures
containing a large number of atoms (up to 4 millions) because
they do not require the calculation of all the eigenstates of the
Hamiltonian. A partial diagonalization approach as described
in Ref. [60] is sufficient.
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TABLE I. Bulk electron g-factor (gbulk) at 0 K from experiments [Exp.] and tight-binding [TB] calculations. k · p parameters obtained in
TB compared to literature values [Lit.]: Eb

g is the energy gap, �SO is the spin-orbit energy, and Ep is the interband coupling matrix element in
the Kane model [47]. g̃0 and E0 are the parameters of Eq. (4) determined from the fit of the g-factors of spherical nanocrystals vs the energy
gap (reference curve).

Compound gbulk [TB] gbulk [Exp.] Eb
g (eV) �SO (eV) Ep (eV) [TB] Ep (eV) [Lit.] g̃0 E0 (eV)

CdSe 0.633 0.68 [66] 1.8174 0.3871 21.40 17.5 [67] 2.179 2.2247
CdTe −1.236 −1.66 [68] 1.6108 0.8221 19.57 21.07 [69] 2.684 3.1172
GaAs −0.065 −0.44 [70] 1.5190 0.3399 25.34 25.5−29.0 [71];25.61 [64] 2.673 2.4617
InP 1.224 1.20 [68] 1.4236 0.1077 20.45 20.93 [69];16.6–20.7 [71];18.74 [64] 2.195 1.3737
InAs −14.20 −14.70 [72] 0.4176 0.3801 21.11 21.5–22.2 [71];21.30 [64] 2.590 1.6610
InSb −62.68 −51.3 [73,74] 0.2253 0.8729 27.40 23.3 [71];24.34 [64] 0.685 1.7105

In 0D nanostructures, it is always possible to consider a
sufficiently small magnetic field B in such a way that the
Zeeman splitting is small compared to the distance in energy
between the lowest conduction level and the other discrete
levels. Therefore the g-factor can be also calculated using
first-order perturbation theory in which the magnetic part of the
Hamiltonian −μμμ · B = μB/h̄(g0s + l) · B is treated as a small
perturbation. Here, μB = eh̄/(2m0) is the Bohr magneton, −e,
m0 and g0 = 2.0023 are the free-electron charge, mass, and g-
factor, respectively. s and l are the spin and orbital momentum
operators, respectively. The g-factor along z is then given by

gz = g0 + 2〈�c↑|lz|�c↑〉/h̄, (1)

where �c↑ is the lowest conduction state of spin up calculated
in the absence of a magnetic field [61]. Similar equations hold
along x and y. In the absence of spin-orbit coupling, the wave
function �c↑ can be chosen purely real, the matrix elements
of the imaginary operator l are necessarily equal to zero [62].
Therefore any deviation of g from g0 is induced by the effect
of the spin-orbit coupling on the electron wave function.

2. k · p approach

For extended systems (1D-2D-3D), another approach is
often used to deduce the g-factor. This is in particular required
when it is not possible to find a gauge that preserves the original
periodicity of the Hamiltonian on the lattice [59]. The effective
electron g-factor along z can be written as [63,64]

gz = g0 − 2
i

m0

∑
n

〈�c↑|p̂x |�n〉〈�n|p̂y |�c↑〉
Ec − En

− 〈�c↑|p̂y |�n〉〈�n|p̂x |�c↑〉
Ec − En

, (2)

where n runs over all possible electronic states �n of energy
En, Ec is the energy of the state �c↑ of spin up along z. All
states are calculated at k = 0. The matrix elements of the mo-
mentum operator p̂ are deduced from those of the derivative of
the tight-binding Hamiltonian with respect to the wave vector,
as described in Ref. [59]. A full diagonalization of the
Hamiltonian matrix is required in order to take into account the
coupling with all electronic states �n. This limits the number
of atoms per unit cell that can be treated using this approach
to ≈1000. As expected, the main contributions to the sum
in Eq. (2) come from the top valence band states. However,
the contribution of the other states, especially conduction
band states, is not negligible (Ref. [65]). For convenience,

the numerical values of all data (approximately 370 energy
gaps and 620 g-factors) presented in this paper are provided
in Ref. [65].

III. BULK SEMICONDUCTORS

The electron g-factor (gbulk) deviates from g0 due to the
action of the spin-orbit coupling (discussed in detail below)
[40,63,70,75]. This gives various values of gbulk for the
different compounds (Table I), ranging from small deviations
from g0 such as in InP (gbulk = 1.224) to large ones, for
instance, in InSb (gbulk = −62.68).

The calculated values are in rather good agreement with the
data from the literature. To estimate the discrepancy between
TB values and experiments, |gbulk − g0| is the meaningful
quantity, which is actually calculated. The error between the
TB and experimental values of |gbulk − g0| is of 18% for InSb,
15% for GaAs, 12% for CdTe, 3% for InAs, 2% for CdSe,
and 1% for InP. It is important to point out that there are some
uncertainties in the literature, especially for InSb. Interestingly,
a g-factor of −58 ± 1 was experimentally reported for InSb
nanowires, which largely exceeds the bulk limit that is usually
reported in the literature (Table I) [76]. Our results confirm
that such large g-factors are possible since we find a larger
bulk value of −62.7.

In the case of GaAs, we have considered other tight-binding
parameters, for comparison. We obtain gbulk = −0.123 with
the parameters of Ref. [77], and gbulk = −0.125 with those of
Ref. [78]. We conclude that all GaAs tight-binding parameters
at our disposal (for a band structure at 0 K) give very
consistent results. Therefore the origin of the discrepancy
(15%) remains unclear even if some part is probably intrinsic to
the semiempirical TB method (e.g., incomplete atomic basis).
However, if we consider the mean error on |gbulk − g0| for all
compounds, we can conclude that the TB method provides a
good description of the electron g-factors in semiconductors,
even if it was not originally developed for that purpose.

For the sake of comparison with experiments, we can simply
assume that the error on the g-factors made in TB will be the
same in nanostructures as in bulk. This assumption will be
validated in Sec. V D in the case of GaAs and CdTe.

IV. SPHERICAL QUANTUM DOTS

Figure 1 shows the electron g-factors obtained for spherical
nanocrystals. They exhibit a clear dependence on the size of
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FIG. 1. Evolution of the electron g-factor in spherical semiconductor nanocrystals vs radius. (a) Results for CdSe nanocrystals (red �).
The tight-binding values are compared to those obtained by Eq. (3) (black •). The crosses represent the experimental data of Ref. [45]. The
inset shows a zoom in on the small radius region. (b) Results for InP (black �), CdSe (red �), GaAs (green •), and CdTe (blue �) nanocrystals.
(c) Results for InAs (red �) and InSb (blue •) nanocrystals. The inset shows a zoom in around 0. The dashed line represents the calculated bulk
value gbulk. The dotted line indicates a null g-factor. The numerical values of the data presented in these figures are provided in Ref. [65].

the nanocrystal for all compounds. We show for comparison
the values obtained for the bulk semiconductors.

The deviation of g from g0 can be explained by the
following arguments [56]. In bulk, the lowest conduction band
state has a pure s character at k = 0 but acquires components
on p atomic orbitals at k �= 0. For example, in the k·p
model of Kane, this mixing results from interband coupling
characterized by the quantity Ep [46,47]. In nanocrystals,
the localization of the wave function in real space leads to
a delocalization in k space that brings p character to the wave
function, which itself is influenced by the spin-orbit coupling.
This gives a nonzero term 〈�c↑|lz|�c↑〉 in Eq. (1).

The dependence on the size can be understood as fol-
lows. On the one hand, when the radius of the nanocrystal
tends to zero, the orbital angular momentum is quenched
(〈�c↑|lz|�c↑〉 ≈ 0) and the g-factor tends to a value close to
g0 [62,79]. On the other hand, when the size is increased, the
g-factor tends to gbulk. In the case of InSb, a huge variation
is obtained. Figure 1(c) shows that the g-factor does not
reach gbulk even for a diameter of 60 nm. Moreover, for
compounds with negative gbulk, there exists a radius for which
the Zeeman splitting vanishes [Figs. 1(b) and 1(c)]. A null
electron g-factor is interesting for coherent photon-to-spin
conversion in quantum bits [80,81]. We predict that it takes
place for a diameter of 7.0 nm for CdTe, 48.0 nm for GaAs,
6.0 nm for InAs and 4.0 nm for InSb. For CdSe, our g-factors
are in excellent agreement with the experimental data of
Ref. [45] [Fig. 1(a)]. They are also in good agreement with
the theoretical work of Rodina et al. [42] (not shown).

Figure 1(a) also presents a comparison between our calcu-
lated electron g-factors and the values given by the expression
derived by Kiselev et al. [40],

g = g0 − 2Ep�SO

3
(
Eb

g + E
)(

Eb
g + E + �SO

) (3)

where Eb
g is the bulk energy gap, E is the electron energy with

respect to the conduction band minimum (the confinement
energy), and �SO is the spin-orbit energy (splitting between
heavy-hole and split-off valence bands). In the bulk limit

(E = 0), Eq. (3) coincides with the Roth-Lax-Zwerdling
relation [63]. The values of interband coupling matrix element
Ep (Table I) calculated using the tight-binding approach are
consistent with the literature [64,67,69,71]. Figure 1 shows
that Eq. (3) in which we inject the tight-binding values for Eb

g ,
Ep, E (function of the size), and �SO gives the correct trend
for the evolution of the g-factor with the nanocrystal radius
but there are important discrepancies. This shows the limits of
the Kane model for the calculation of the g-factors.

V. UNIVERSALITY OF THE BEHAVIOR

Even though in the previous section the results were plotted
versus the radius of the nanocrystals, it is not the main
parameter that governs the evolution of the g-factor with size.
We will show in the rest of this work that the main parameter
is the energy gap, and that a universal behavior can be found
among electron g-factors for all nanostructures of different
shape and dimensionality. Figures 2 and 3 show the electron
g-factors of all studied systems compared to the 0D spherical
case (hereafter, the reference curve).

A. Universal expression for the reference curves

We have found that the reference curves for the different
compounds are very well described by a surprisingly simple
expression:

g(Eg) = g̃0 − (E0/Eg)2, (4)

where the parameters g̃0 and E0 are given in Table I. Figure 2
shows that the quality of the fit, realized on the g-factors
for spherical nanocrystals, is excellent. Small discrepancies
only appear for the smallest nanocrystals characterized by the
largest energy gap. Remarkably, Eq. (4) calculated for Eb

g , the
bulk value, gives a g-factor very close to gbulk, whereas it was
not considered in the fitted data.

The deviation of g̃0 from g0 shows that, even though the
energy gap reaches very high values, the electron in the lowest
conduction state does not behave as a free electron even if its
wave function has a vanishing component on the Bloch states
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FIG. 2. Evolution of the electron g-factors vs the energy gap in systems characterized by a rotational symmetry axis (z), quantum wells,
circular nanoplatelets and cylindrical nanorods (blue � for gz, red � for gx). The results are shown for CdSe (a), CdTe (b), GaAs (c), InP (d),
InAs (e), and InSb (f). The values for spherical nanocrystals are reported by black crosses and gbulk is reported by purple ◦. The numerical
values of the data presented in these figures are provided in Ref. [65]. Dotted curves: g-factor vs energy gap given by Eq. (4) and the parameters
of Table I.

of the valence band. In this limit of very strong confinement,
the electron wave function is mainly derived from high-energy
conduction states of the bulk which have an important weight
on p atomic orbitals and is therefore influenced by the spin-
orbit coupling.

In the following, we present the results for nanostructures
with different dimensionality, shape, and size. The obtained
g-factors are in many cases close to the reference curve. We
identify the situations where the g-factors are the closest, and
those where the deviations are larger. For this purpose, we
separate the structures in two categories, those with or without
a rotational symmetry axis.

B. Structures with rotational symmetry

Figure 2 shows the results for the structures characterized by
a rotationally symmetric shape (discarding the atomic lattice),
namely, quantum wells, circular platelets and cylindrical
nanorods. We plot the values along the rotational symmetry
axis with triangles, and those along the other directions with
squares. It is clear that the g-factors along the rotational
symmetry axis are in excellent agreement with the reference
curve. As a consequence, the deviations from the reference
curve of the g-factors along the other directions essentially
result from anisotropies (|gx − gz| �= 0). In many cases, the

relative anisotropy that we characterize by the ratio �g̃ =
|gx − gz|/|g0 − gbulk| is small enough so that anisotropies can
be neglected in first approximation. The amplitude of these
anisotropies will be discussed in Sec. VI.

The largest deviations of gz from the reference curve and
the largest anisotropies are obtained for InSb quantum wells
[Fig. 2(f) and Ref. [65]). Reasons will be discussed in Sec. VI.

It is important to point out that, among all semiconductor
nanostructures that can be presently synthesized, most of them
exhibit a rotational symmetry axis. This is the case in quantum
wells, and in the large majority of nanorods and nanowires. The
lateral sizes of the nanoplatelets are usually so large that these
nanostructures can be safely considered as quantum wells [8].
In that cases, our results show that the electron g-factors along
the symmetric axis can be predicted from the reference curve
in a straightforward manner. The reference curve also provides
a first estimate for the g-factors in the other directions.

C. Structures without rotational symmetry

Figure 3 presents the results for the structures without
rotational symmetry, namely, nanocubes, square nanoplatelets,
and nanorods with a square section. These results show that,
when the rotational symmetry is broken, the deviations from
the spherical case tend to become slightly more important but
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FIG. 3. Same as Fig. 2 for nanocubes, square nanoplatelets, and square nanorods (blue � for gz and red � for gx). The numerical values
of the data presented in these figures are provided in Ref. [65].

the variation versus the energy gap follows a similar trend.
The deviations from the reference curve vary from structure to
structure but happens in many cases to be quite small.

D. First experimental validations

In this section, we compare our predictions with available
experimental data for InAs, GaAs, CdTe, and InP.

1. InAs

Recently, the electron g-factors of InAs circular disks em-
bedded in InP were measured [50]. Even though InP cannot be
considered as an infinite barrier material for electrons in InAs
(band offset of 0.6 eV), it is nevertheless interesting to compare
the reported values to the reference curve determined for InAs
spherical nanocrystals [Fig. 4(a)]. An excellent agreement of
the out-of-plane g-factor is found (along the rotational axis of
the disk), and the anisotropy in those structures comes from the
deviation of the in-plane values. Therefore these experimental
results fully confirm our predictions of Sec. V.

Figure 4(a) also presents g-factors calculated for InAs
disks embedded in InP. In order to study the evolution of the
g-factors with the energy gap, we have considered several con-
figurations in which the thickness and the diameter of the InAs
disks are varied in a range compatible with experiments (details
in Ref. [65]). We have included the effects on the electronic
structure of strains induced by the lattice mismatch between
InP and InAs. Details are described in Ref. [88]. The calculated

g-factors are in very good agreement with experiments, for
both out-of-plane and in-plane values. The anisotropy of the
g-factors is correctly reproduced. The effects of strains on the
g-factors are found to be small but not negligible—at most
the correction on g is of order of 0.3 (see the same figure as
Fig. 4(a) but without strain effects in Ref. [65]).

2. GaAs

We have also performed calculations of the electron g-
factors in GaAs/Al0.3Ga0.7As quantum wells of varying well
thickness [Fig. 4(b)]. Since the conduction band offset between
GaAs and Al0.3Ga0.7As is small (0.24 eV), the range of
variation of the energy gaps, and therefore of the g-factors,
is rather limited. Once again, the values of gz are in excellent
agreement with the reference curve, especially at small energy,
when the electron wave function is the most localized in the
GaAs quantum well.

In order to compare with the experimental data, we shift
the calculated g-factors for the quantum wells to take into
account the discrepancy between calculated and experimental
values for gbulk (Sec. III). After correction, the agreement
between theory and experiments is good [Fig. 4(b)] (see also
the comparison with other experimental data in Ref. [65]).
This result suggests that, for future use, the reference curve
can be safely shifted by the same amount for comparison
with experiments. Our calculations thus support the universal
dependence of the out-of-plane g-factor on the lowest band-to-
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FIG. 4. Comparison between experimental and theoretical g-factors vs energy gap, for different systems. In (a)–(d), the blue crosses (+)
connected by a dashed line represent the reference curves. (a) Results for InAs. Experimental values [50] of the out-of-plane [gz] (black squares)
and in-plane [gx] (red disks) g-factors compared to our calculated data (purple triangles for gz, purple circles for gx), for InAs/InP disks. (b)
Results for GaAs. Theory: g-factors for GaAs/Al0.3Ga0.7As quantum wells (filled squares for gz, red disks for gx). Empty squares and red
circles: same data down-shifted of 0.375 to account for the bulk error. Experimental data [48] for GaAs and AlGaAs quantum wells (blue
triangles for gz, green diamonds for gx). (c) Results for CdTe. The black crosses (×) connected by a dashed line represent the reference curve
down-shifted of 0.4245 to account for the bulk error. Experimental data of Ref. [82] for CdTe/Cd1−xMgxTe quantum wells (blue triangles for
gz, red squares for gx). (d) Results for InP. Experimental results of Ref. [83] (star), Ref. [84] (circle), Ref. [85] (squares), Ref. [86] (�), and
Ref. [87] (�) for InP/GaInP quantum dots.

band optical transition energy in GaAs and AlGaAs quantum
wells found in Ref. [48].

3. CdTe

Figure 4(c) presents experimental g-factors measured in
CdTe/Cd1−xMgxTe quantum wells [82]. We are not able to
perform TB calculations for this system due to the lack of TB
parameters for the barrier material. However, it is interesting
to see that these experimental data are close to the reference
curve after correction of the bulk error in CdTe.

4. InP

In the case of InP [Fig. 4(d)], experimental data are available
for InP/Ga0.51In0.49P quantum dots. Some data at low energy
are clearly in agreement with our reference curve. However,
the important spread of the experimental values makes the
comparison difficult. For transition energies around 1.9 eV,

close to the band-gap energy of Ga0.51In0.49P, the penetration
of the electron wave function into the barrier is probably
important [89]. In addition, like for InAs/InP, the effects of
strains on the electronic states are substantial in this system.

5. Validity and limits of the comparisons

It is important to recall that our predictions on the uni-
versality of the g-factor evolution concern strongly confined
structures in which the surfaces behave as hard walls for the
electron. The g-factors (and their anisotropy) will vary in a
more complex way if the electron wave function overlaps
regions of different composition or dimensionality [40,42,44].
This is already visible in the case of InAs/InP disks [Fig. 4(a)].
The values of gz that we predict are slightly shifted from
the reference curve, which is not the case for InAs disks
with a high barrier at the surface. The same effect explains
the small deviations of gz from the reference curve for
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FIG. 5. Evolution of the relative amplitude of anisotropies �g̃ in
quantum wells vs their thickness. Results for CdSe (black �), CdTe
(green �), GaAs (blue �), InP (red •), InAs (cyan �), and InSb
(magenta �). (a) Results for quantum wells with surfaces terminated
by anions. (b) Same for surfaces terminated by cations. (c) Results
for CdSe quantum wells with one surface terminated by anions, the
other by cations (black �). The red line shows the average �g̃ of
CdSe quantum wells terminated by anions and cations.

GaAs/Al0.3Ga0.7As quantum wells at high energy [Fig. 4(b)].
However, as GaAs and AlGaAs share a common anion that
provides the dominant contribution to the spin-orbit coupling,
the penetration of the electron wave function into the barrier
has a small effect on the g-factors [48].

It is also important to point out that the in-plane component
(gx) has a much stronger dependence on the nature of the
barrier material than the out-of-plane component (gz). This
point will be discussed in the next sections and in Appendix A.

Other experimental studies would be extremely useful to
further support the universality of the reference curve. Studies
on colloidal nanocrystals would be ideal since their surface
capped with molecular ligands usually behaves as a high
potential barrier.

VI. ANISOTROPIES

Clear anisotropies of the g-factors are observed in systems
such as quantum wells. However, as already mentioned, the
out-of-plane g-factor (gz) is almost the same as in a sphere
with the same energy gap. Indeed, it is the in-plane g-factor
that mainly deviates from the reference curve. In this section,
we quantify the g-factor anisotropies. The quantum well is
taken as an example. Figure 5 shows the relative amplitude

(�g̃ = |gx − gz|/|g0 − gbulk|) of these anisotropies versus the
thickness of the quantum wells.

We have found that �g̃, through gx , is highly sensitive
to the surface passivation, especially in thin layers. This is
demonstrated by plotting separately �g̃ for quantum wells
with surfaces terminated by anions [Fig. 5(a)] and cations
[Fig. 5(b)]. For example, in CdSe and CdTe, when the surface
planes are composed of Se(Te) atoms, the anisotropy is large
[Fig. 5(a)]. On the contrary, the anisotropy almost vanishes for
Cd-like surfaces [Fig. 5(b)]. Interestingly, the effect of each
surface on �g̃ is additive. �g̃ for a quantum well terminated on
one side by anions and on the other side by cations is equal to
the half sum of �g̃ of anion-terminated and cation-terminated
quantum wells, as shown for CdSe in Fig. 5(c). This result
unambiguously demonstrates that �g̃ arises from surfaces.
Such a dependence of the g-factors on the composition of
the surface plane comes from surface components of the
spin-orbit coupling [40,42] (see discussion in Sec. VII E).
Experimentally, it was reported that the surface of CdSe and
CdTe nanoplatelets is always Cd-like [90], therefore we expect
small anisotropies.

It is interesting to see that the differences between anion-
or cation-terminated quantum wells are reduced for GaAs,
InP, InAs, i.e., when we have used the first surface passi-
vation model in which the dangling bonds are saturated by
pseudohydrogen atoms. As already discussed in Sec. II A, the
first model describes a confinement potential at the surface
smoother than in the second model used for InSb, CdSe, and
CdTe. We have checked that the sensitivity to the surface is
enhanced in GaAs, InP, and InAs when the second passivation
model is used. Therefore our calculations confirm that the
nature of the confinement potential has a visible influence on
the g-factors of nanostructures [40,42,43]. In quantum wells
(or nanoplatelets), this sensitivity is considerably stronger for
gx (in-plane) than for gz (out-of-plane).

Figure 5 also shows that, in any case, �g̃ tends to decrease
for larger thickness, when the electronic wave functions are
less sensitive to the surface and the magnetic-field-induced
effects of the spin-orbit coupling on the conduction states
tend to decrease. However, the overall behavior of �g̃

versus thickness in InAs and InSb is clearly different from
the others. In these compounds, the relative anisotropy first
increases with size, reaches a maximum and then decreases.
In the other semiconductors, the average relative anisotropy is
continuously decreasing with size. The different behavior in
InAs and InSb can be related to their small band gap in the bulk
that results in stronger s-p (via Ep) and spin-orbit couplings
in the conduction band.

Except for InSb quantum wells and thin CdSe (CdTe)
quantum wells, the relative deviation �g̃ is smaller than 0.15
(Fig. 5). This tells us that, in a first approximation, the reference
curve can be used for most structures and field directions
(for strongly confined nanostructures). It also indicates that,
although the anisotropies take their origin from the anisotropic
shape of the nanocrystal, their larger values in InAs and InSb
(|gx − gz| up to 18) mainly come from the large deviation
of gbulk from g0, and not from the differences between the
dimensions of the nanocrystal. This is clearly visible in Figs. 2
and 3 where all the obtained values are close to the reference
curve when they are plotted in the range [gbulk,g0].
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VII. INSIGHT INTO THE UNIVERSALITY OF THE
REFERENCE CURVE

We can conclude from the tight-binding calculations that
the evolution of the electron g-factor versus the energy gap
is to a large extent shape-independent. The universality of
the reference curve is particularly striking along the rotation
symmetry axis of the nanostructure when it exists.

It remains to understand the physical origin of these
results. From the literature, we can already notice that the
g-factors in quantum wells, nanowires, and quantum dots can
be given by a same function of the confinement energy of
the ground state electron when surfaces behave as infinite
barriers [Eq. (3)] [40,44]. However, this result was obtained
on the basis of the Kane model. In addition, the physical
reasons why the expression for the g-factor is the same in
the three systems is not clear. Our calculations show that
remote band effects (beyond Kane model) and deviations from
Eq. (3) are important but the reference curve works for many
different types of semiconductor nanostructures. Therefore
this universal behavior of the g-factors must be based on robust
physical arguments that we investigate in the remaining part
of this section.

A. General arguments

From the comparison between Eqs. (1) and (4), we deduce
from our calculations that the matrix element 〈�c↑|lz|�c↑〉
of the orbital momentum varies as 1/E2

g . In addition, for
a fixed energy gap, and for z along a rotational axis of
a 0D nanostructure, the universality of the reference curve
demonstrates that the matrix element does not depend on the
lateral extension of the wave function since the same g-factor is
found for spheres, cylindrical nanorods, and nanoplatelets. The
same conclusion holds in extended systems such as quantum
wells, nanowires and bulk, if we use for �c↑ any spin-up
eigenfunction of the Hamiltonian with rotational symmetry,
for example, the wave function corresponding to a quantized
cyclotron orbit. In line with this statement, the g-factor that
characterizes the Zeeman splitting in semiconductor quantum
wells is usually assumed to be the same for all Landau levels,
whatever the magnitude of the applied magnetic field. The
fact that Eq. (4), obtained by fitting the g-factors for spherical
nanocrystals, tends naturally to gbulk for Eg = Eb

g shows that
the physical origin of the electron orbital momentum is the
same from small nanostructures to the bulk. This is not a
trivial fact if we consider the strong effect of the quantum
confinement on the electron wave functions.

B. Spin-orbit-induced currents

We conclude from the previous discussion that the g-factor
for an electron is, to a large extent, independent of its
wave function �c↑(r) and is just determined by the energy
gap Eg . This must be true whatever the size, the shape
and the dimensionality (0D–3D) of the system (neglecting
anisotropies for the moment). In this context, it is interesting
to decompose the magnetic moment μμμ of the electron into its
contributions from each unit cell n of the material,

μμμ =
∑

n

μμμ(rn) =
∑

n

[μμμs(rn) + μμμl(rn)], (5)

FIG. 6. Normalized density of g0 − gz on each atom of a spherical
nanocrystal of CdSe (diameter = 9 nm) for a magnetic field along
z. The density is shown in the xOy (a) and xOz (b) planes passing
through the center of the sphere. These data can be seen as the intensity
of the local orbital component μμμl(r) of the magnetic moment (red
arrow) induced by the circulating current [depicted by the circular
arrow in (a)] generated by the spin-orbit coupling. The atoms are
represented by black dots. (c) and (d) are same as (a) and (b),
respectively, but calculated using the analytic envelope wave function
(Appendix B).

where μμμs(r) and μμμl(r) are the spin and orbital components of
the local moment, respectively, and rn is the vector pointing to
the unit cell n. The spin component μμμs(r), at the origin of g0

in the g-factor, is just proportional to |�c↑(r)|2 [49]. The wave
function being normalized, the total spin moment μμμs is equal
to −μBg0s/h̄, whatever �c↑.

It is thus tempting to apply the same reasoning for the
orbital component μμμl(r). However, as shown in Ref. [49],
μμμl(r) is not proportional to |�c↑(r)|2 because the orbital
moment comes from circulating orbital currents produced
by the spin-orbit coupling, resulting in a complex spatial
structure of μμμl(r). This is clearly visible in Figs. 6 and 7
where we plot the normalized orbital moment μμμl(r) calculated
in the tight-binding approximation for a spherical nanocrystal
and a circular nanoplatelet, respectively. In both cases, the
spatial structure of the local magnetic moment results from a
spin-orbit-induced current looping around the magnetic field
axis centered on the nanostructure. A very similar result was
obtained in Ref. [49] for a spherical quantum dot treated in
the envelope function approximation. The orientation of the
electron spin determines the direction of the current flow. The
shape and the extension of the current loop strongly depend
on the geometry of the nanostructure [50]. For example,
in the circular nanoplatelet in which we apply a in-plane
magnetic field [Fig. 7(b)], the current loop is constrained by
the small thickness of the platelet and therefore the loop has
a rectangular shape instead of a ring shape found for the
spherical nanocrystal (Fig. 6). In these conditions, it is not
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FIG. 7. Same as Fig. 6 but for a circular nanoplatelet (diameter =
10 nm, thickness = 5 nm). (a) Density of g0 − gz in the xOy plane
when the magnetic field is along z, the rotational symmetry axis of the
nanoplatelet. (b) Density of g0 − gx in the yOz plane for the magnetic
field along x. (c) and (d) are same as (a) and (b), respectively, but
calculated using the analytic envelope wave function (Appendix B).

trivial to understand why the total moment given by Eq. (5)
does not depend on the electron wave function.

C. Approximate analytic expression for the
orbital magnetic moment

In this section, we derive an expression for the orbital
magnetic moment and for the g-factors using analytical
developments based on a k · p theory. In the next section,
we generalize the obtained formulas and we validate them
against tight-binding calculations. We explain why the orbital
magnetic moment of the electron is strongly dependent on the
wave function at the local level but becomes to a large extent
invariant when integrated over the system.

We consider for the moment a finite system (0D). All
information concerning the g-factor and the spin-orbit-induced
current is included in the wave function �c↑(r) (Sec. II B 1).
For a nanostructure much bigger than a unit cell along its three
dimensions, we decompose its volume V into a surface region
of volume Vsurf , and the interior (of volume Vin = V − Vsurf)
that we define as the region in which �c↑(r) can be safely
written in the envelope function approximation as [46,56,57]

�c↑(r) ≈
∑

i

Fi(r)ui(r), (6)

where Fi(r) is a spatially slowly varying envelope function.
The sum in Eq. (6) runs over all Bloch states ui(r) of band i

calculated for the bulk at k = 0. For �c↑, the main term in-
volves the s-like Bloch state us↑ that describes the crystal state
of spin up at the bottom of the lowest conduction band. Smaller
contributions come from the p-like Bloch states of the top of
the valence band usually labeled ux↑, uy↑, uz↑, ux↓, uy↓, uz↓.

The orbital magnetic moment in the cell n is related to the
orbital current density j(r) = (eh̄/m0) Im{�∗

c↑(r)∇∇∇�c↑(r)} by

μμμl(rn) = 1

2

∫
cell n

r × j(r) dr. (7)

Using Eqs. (5)–(7), the orbital moment in Vin can be
decomposed in different terms coming either from the Bloch
velocity or the envelope velocity [49]. In addition, the orbital
current within a unit cell n can be split into an itinerant
contribution 〈j〉n and a localized contribution j(r) − 〈j〉n [91].
It was shown in Ref. [49], and confirmed by our calculations,
that the dominant contribution to the magnetic moment of
the electron comes from the itinerant current arising from the
Bloch velocity

μμμl(rn) ≈ −μBV0

∑
i �=j

Im{F ∗
i (rn)Fj (rn)(rn × 〈ui |∇∇∇|uj 〉)}

(8)
in which V0 is the unit cell volume, 〈ui |∇∇∇|uj 〉 is defined as
V −1

0

∫
V0

u∗
i (r)∇∇∇uj (r)dr, and we use the normalization condi-

tion
∫
V0

|ui(r)|2dr = V0. The terms with i = j are excluded
because 〈ui |∇∇∇|ui〉 = 0 [46].

In order to establish an expression for μμμl , the main
challenge is to derive the envelope wave functions using a
general approach that does not depend on the shape of the
nanostructure. For this purpose, we work in the framework of
the k · p theory [46,47,56]. A k · p model is defined by its basis
set of Bloch states ui . An effective Hamiltonian is written in
this basis as H = H0 + Hkp + HSO where HSO is the spin-orbit
coupling and Hkp = h̄k · p/m0. H0 is defined by parameters
which are renormalized to include the effects of remote bands
[46,47]. To describe conduction states like �c↑(r), it is in
principle sufficient to work with the single Bloch state us↑.
In that case, Fs(r) is just solution of the differential equation
[46,56,57](

− h̄2

2m∗
e

� + Vconf(r)

)
Fs(r) = EsFs(r), (9)

where m∗
e is the effective mass in the conduction band and

Vconf(r) is the confining potential.
If we remain at this level of approximation, the orbital

magnetic moment vanishes since the spin-orbit coupling only
becomes effective in presence of p states. The next step
is therefore to consider a k · p model, which includes the
p-like Bloch states from the valence band maximum [47,56].
However, since the weight of �c↑(r) on p orbitals is small, it
is sufficient to consider the coupling between s and p states
described in Hkp at the first order in perturbation. Working
in the reciprocal (Fourier) space, i.e., Fs(r) → Fs(k) and
Fj (r) → Fj (k), we obtain [46,56]

Fj (k) ≈ h̄

m0

k · 〈uj |p|us〉
E0

s − E0
j

Fs(k), (10)

where E0
j = 〈uj |H0 + HSO|uj 〉 calculated at k = 0. E0

s is E0
j

for j = s. This first-order treatment of Hkp at k ≈ 0 is justified
since the envelope functions are slowly variable in real space
[46,56].

The main contributions in Eq. (8) are those with Fi = Fs

(or Fj = Fs) and nonzero matrix elements of the gradient
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〈us |∇∇∇|uj 〉 (〈ui |∇∇∇|us〉). Equation (8) is thus given by a sum of
terms containing Fj (k) on which we must apply an inverse
Fourier transformation. Using kFs(k) → −i∇∇∇Fs(r), Eq. (8)
becomes

μμμl(rn) ≈ 2μBV0
h̄2

m0

∑
j

Im

[
F ∗

s (rn)
1

E0
s − E0

j

×∇∇∇Fs(rn) · 〈uj |∇∇∇|us↑〉(rn × 〈us↑|∇∇∇|uj 〉)
]
, (11)

where the factor 2 comes from the identical contributions of
the terms with interchanged i and j in Eq. (8).

At this stage, it is better to consider a basis of Bloch states
uj in which H0 + HSO is diagonal at k = 0 [56]. For the top of
the valence band, these Bloch states can be written as |J,M〉,
they form a quadruplet of energy E3/2 characterized by a total
angular momentum J = 3/2 of �8 symmetry and a doublet of
energy E1/2 with J = 1/2 of �7 symmetry. M is the projection
of the total angular momentum along the z axis. We use the
notations of Ref. [92] for the irreducible representations for
the Td × �6 double group. The energy separation between the
multiplets, due to the spin-orbit coupling, is �SO = E3/2 −
E1/2. The states |J,M〉 are expressed as linear combinations
of the Bloch functions ux↑, uy↑, uz↑, ux↓, uy↓, uz↓ [56]. The
nonzero matrix elements of the velocity operator are P =
−h̄〈us |∂/∂x|ux〉/m0 (same for y and z). After some algebra,
replacing the sum over n in Eq. (5) by an integral V −1

0

∫
V

dr,
we obtain using EP = 2m0P

2 and Eb
g = E0

s − E0
3/2:

μμμl ≈ μB

3

EP �SO

Eb
g

(
Eb

g + �SO
)
∣∣∣∣∣∣∣
∫
V

F ∗
s (r)z ∂

∂x
Fs(r)dr∫

V
F ∗

s (r)z ∂
∂y

Fs(r)dr

− ∫
V

F ∗
s (r)

(
x ∂

∂x
+ y ∂

∂y

)
Fs(r)dr.

(12)

This equation holds for the electron spin oriented along z

(spin up). The opposite is found for a spin down along z. For
a spin along x or y, we obtain formally similar equations by
permutation of the components, and of x, y, z. Interestingly,
we can synthesize all results into a simple formula,

μμμl ≈ −μB

3

EP �SO

Eb
g

(
Eb

g + �SO
) 〈Fs |r × (es × ∇∇∇)|Fs〉, (13)

where es is the orientation of the spin.
In the case of a spherical nanocrystal of radius R, the

envelope wave function solution of Eq. (9) is equal to

Fs(r) = 1

r
√

2πR
sin

(πr

R

)
(14)

in spherical coordinates, for an infinite potential well. The
x and y components of μμμl vanish and the integral in the z

component of Eq. (12) is equal to −1. If we add the spin
magnetic moment −μBg0/2, we get the total magnetic
moment that we write −μBgz/2. We deduce the g-factor

gz = g0 − 2

3

EP �SO

Eb
g

(
Eb

g + �SO
) , (15)

which corresponds exactly to the Roth-Lax-Zwerdling
relation [63].

In fact, this result is universal in the sense that it does not
depend on Fs . It is easy to check, by integration by parts of
a normalized function, that the integral in the z component of
Eq. (12) is always equal to −1, whatever the wave function
Fs . The integrals in x and y components always vanish for any
normalizable wave function. Therefore Eq. (15) remains valid
whatever the shape of the nanostructure.

D. General expressions for the magnetic
moment and the g-factors

The important conclusion of the previous section is that
the Roth-Lax-Zwerdling relation [Eq. (15)] can be established
for nanostructures with arbitrary shape. At the same time, the
derivation of this equation is based on approximations, on a
simple k · p model and a first-order perturbative treatment. As
a consequence, Eq. (15) does not give the correct values for
the g-factors. However, we have discovered that the universal
law given by Eq. (12) describes the results of our tight-binding
calculations very well, except that the prefactor in front of the
integrals must be modified in order to reproduce the g-factors
calculated numerically.

Therefore, in the following, we propose general expressions
for the magnetic moment and the g-factors of an electron in
an arbitrary III-V or II-VI semiconductor nanostructure. First,
we formulate them. Second, we discuss their main properties.
Third, we justify them using general physical arguments.
Fourth, we validate them against the tight-binding calculations.

1. Formulation of the main results

The main conclusions of our work are summarized here.
Based on the results discussed in the previous sections, we
propose the following expressions for the total magnetic
moment:

μμμ = −1

2
μBg0es + μμμsurf + 1

2
μB

[
g̃0 − g0 −

(
E0

Eg

)2
]

×〈Fs |r × (es × ∇∇∇)|Fs〉, (16)

and for the g-tensor

[g] = g0[I ] + [gsurf] −
[
g̃0 − g0 −

(
E0

Eg

)2
]
〈Fs |[�]|Fs〉

(17)

with

[�] =

⎡
⎢⎣

y ∂
∂y

+ z ∂
∂z

−y ∂
∂x

−z ∂
∂x

−x ∂
∂y

x ∂
∂x

+ z ∂
∂z

−z ∂
∂y

−x ∂
∂z

−y ∂
∂z

x ∂
∂x

+ y ∂
∂y

⎤
⎥⎦. (18)

[I ] is the identity tensor. The vector es in Eq. (16) indicates
the orientation of the electron spin. μμμsurf is an implicit function
of es . The electron envelope wave function Fs is solution of
Eq. (9). g̃0 and E0 are given in Table I.

In Eqs. (16) and (17), the first term is related to the spin
magnetic moment, the second and third ones to the spin-orbit
induced orbital magnetic moment. The second term, unspec-
ified in the present work, comes from magnetic moments
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specifically induced by the surface of the nanostructure. By
contrast, the third term can be designated as the bulk term.

Since all nondiagonal matrix elements of [�] vanish, the
g-tensor simplifies into

[g] =
[
g̃0 −

(
E0

Eg

)2
]

[I ] + [gsurf]. (19)

Consequently, in absence of surface term, the g-factor is
isotropic and follows a universal rule that just depends on
the energy gap of the system. This rule is valid from 0D
nanostructures to bulk.

2. Main features of the general expressions

From Eq. (16), we see that the local orbital magnetic
moment μμμl(r) inside the nanostructure, being proportional to
F ∗

s (r)[r × (es × ∇∇∇)]Fs(r), is strongly dependent on Fs and
therefore on the shape and the size of the nanostructure.
However, the matrix elements 〈Fs |x ∂

∂x
|Fs〉, 〈Fs |y ∂

∂y
|Fs〉, and

〈Fs |z ∂
∂z

|Fs〉 are all equal to −1/2, whatever the wave function
Fs . The diagonal matrix elements of � are all equal to −1.
All nondiagonal matrix elements of � vanish. Therefore
the g-factor is fully isotropic in absence of surface terms,
whatever the shape, the size, and the dimensionality of the
system [Eq. (19)]. In other words, anisotropies only come from
surface terms. This is once again consistent with our previous
conclusions, in particular of Sec. VI. For all these reasons, the
prefactors in front of the matrix elements in Eqs. (16) and (17)
have been defined in such way that, in absence of surface terms,
the expression of the diagonal g-factors in Eq. (19) coincides
with Eq. (4) derived from the tight-binding calculations.

3. Justification of the general expressions

Equations (12) and (13) have been established on the basis
of a k · p model. The form of the operators present in the
integrals of Eq. (12), i.e., in the bulk term, is the resultant of two
factors. First, the s-like conduction Bloch states are coupled to
the px-like valence Bloch states by a term proportional to kx

in the reciprocal space (via P ), leading to an envelope wave
function on px states proportional to ∂

∂x
Fs (idem for y and z).

Second, for a spin along z, the electron hops between px and
py atomic orbitals due to the spin-orbit coupling, the direction
of motion depending on the orientation of the spin. This leads
to a spin-orbit induced current j along y for px orbitals, along
x for py orbitals. It gives a magnetic moment (∝ r × j) along
z of the form F ∗

s (r)(x ∂
∂x

+ y ∂
∂y

)Fs(r) as found in Eq. (12).
Formally, it should be possible to calculate the g-factors

using an improved methodology by adding Bloch states
in the basis of the k · p model and by going to higher
order in perturbation [93,94]. For example, a better but still
approximate treatment could lead to the formula of Kiselev
et al. [40], Eq. (3). Beyond that, remote band effects could
be described in principle by projection techniques [46,95].
However, this requires heavy analytic developments. Our
tight-binding calculations have shown that all these effects
bring non-negligible corrections to the g-factors (Sec. IV). To
account for these effects, we have thus modified the prefactor
in front of the integrals in Eq. (12), which leads to Eq. (16).

However, the operators inside the integrals remain the same
for the following reasons.

If we add more Bloch states in the k · p model, the envelope
wave functions Fj for j �= s will still be given at the first order
by a term proportional to k · p. For symmetry reasons, the
matrix elements 〈us |∂/∂x|uj 〉 only couple the state us of �6

symmetry to the states uj of �7 and �8 symmetry that behave as
x (respectively, for y and z) [94]. Therefore the total envelope
wave function related to x orbitals will remain proportional
to ∂

∂x
Fs . In addition, the effect of the spin-orbit coupling in a

sector of Bloch states uj that behave as x, y, and z can still be
mapped on the basis of the |J,M〉 states. Therefore all rules
used to establish the integrals in Eq. (12) remains valid, only
the prefactor changes.

As discussed in Sec. VII C, the envelope function ap-
proximation is only justified in the interior volume of the
nanostructure (Vin). The modifications of the electron wave
function near the surface (in Vs) with respect to its expression
of Eq. (6) may be quite important. These effects modify
locally the spin-orbit induced current and the orbital magnetic
moment. In Eq. (16), this is simply described in μμμsurf . For the
same reasons, strictly speaking, the integrals in Eqs. (12), (16),
and (17) should be made over the volume Vin. However, it is
always possible to integrate over the full volume V and to put
the corrections in the surface term. This is the procedure that
we followed to derive Eqs. (16) and (17).

4. Validation of the general expressions

The universality of the reference curve is already a solid
argument to validate our expressions for the magnetic moment
and the g-factors since the universality is directly connected
to the invariance of the integrals in Eqs. (16) and (17) with
respect to the electron wave function.

We have also performed more quantitative comparisons
between analytic and tight-binding calculations. We have
computed the local orbital magnetic momentμμμl(r) for different
types of nanostructures from Eq. (16) using envelope wave
functions Fs(r). Two examples of results are presented in
Figs. 6 and 7, for a spherical nanocrystal and a circular
nanoplatelet, respectively. The corresponding analytic expres-
sions of the orbital magnetic moment density are given in
Appendix B. In both cases, the agreement between analytic
and tight-binding calculations is excellent. This demonstrates
that spin-orbit induced currents are correctly described by our
formula. This is remarkable since everything is deduced from
a simple envelope wave function. A deeper analysis of the data
presented in Figs. 6 and 7 shows that the discrepancy between
analytic and tight-binding results is below 5%, except for small
terms at the surface, which was expected.

E. Surface terms

The present study was focused on the universal behavior
of the g-factors, therefore on the bulk contribution. Further
work is clearly needed for a deeper investigation of the
surface term. This latter may have two different origins.
First, deviations from Eq. (8) are expected in the region
close to the surface (in Vsurf) where the envelope function
approximation progressively breaks down. In other words, the
full wave function �c↑(r) is composed of bulk components
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FIG. 8. Effect of the confining barrier height on the electron g-factor. (a) and (b) Results for InSb spherical nanocrystals with an infinite
barrier (black crosses) and with a finite one (InSb/CdTe core-shell nanocrystals, red ◦). The results are plotted vs the radius (a) and vs the energy
gap (b). (c) Relative anisotropy (�g̃) for InSb quantum wells with an infinite barrier (black �) and with a finite one (InSb/CdTe quantum wells,
red •) plotted vs the thickness of the quantum well. The numerical values of the data presented in these figures are provided in Ref. [65].

coming from remote bands and characterized by high k wave
vectors that are not properly described in the envelope function
approximation. Second, there are terms coming from chemical
bonds and spin-orbit coupling which are specific to the surface
atoms. Interestingly, our tight-binding calculations show that
the total surface contribution is small or vanishing for the
g-factor along a rotational axis of a nanostructure, in the
strong confinement regime (Sec. VI and Appendix A). In
that case, our tight-binding calculations show that the local
orbital magnetic moment is weak close to the surface [see, for
example, Figs. 6(a) and 6(b) for the spherical nanocrystal,
and Fig. 7(a) for the circular nanoplatelet along z]. On
the contrary, along axes characterized by a large g-factor
anisotropy, the weight of the local orbital magnetic moment (of
the spin-orbit induced circulating current) in the surface region
is comparatively much higher [see Fig. 7(b) for the circular
nanoplatelet along z]. However, more quantitative studies are
required to understand the behavior of the surface terms.

VIII. CONCLUSIONS

In summary, we have calculated using a tight-binding
approach the electron g-factors in strongly confined semicon-
ductor nanostructures with various dimensionalities, sizes, and
shapes, for several semiconductor compounds characterized
by a direct gap at �. Electron g-factors are provided and ana-
lyzed for hundreds of configurations. For a given compound,
a universal behavior is found versus the energy gap for all
nanostructures. The g-factor for spherical nanocrystals is taken
as a reference curve. For systems with a rotational symmetry
axis, the g-factor along that axis is in excellent agreement
with the reference curve. The g-factors along axes with broken
rotational symmetry present more important deviations from
the reference curve.

In order to explain this universal behavior, we have derived
general expressions for the calculation of the magnetic moment
and the g-tensor in nanostructures of arbitrary shape. We
demonstrate that the g-tensor can be written as a sum of bulk
and surface terms, the bulk term being the dominant one. What-
ever the shape and dimensionality of the nanostructure, the
bulk term is isotropic and is independent of the electron wave

function, it just depends on the energy gap. The anisotropies
are entirely due to the surface terms. Our expressions for the
spin-orbit-induced orbital magnetic moment allow to interpret
the results of the tight-binding calculations and to understand
the physical origin of the universal behavior of g-factors. They
also enable the prediction of the orbital magnetic moment
density just from the knowledge of the electron envelope wave
function.
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APPENDIX A: INFLUENCE OF A PASSIVATION
SHELL ON THE g-FACTORS

In this appendix, we present a brief comparison between
results obtained with infinite confining barriers and finite
ones. We take InSb spherical nanocrystals as an example.
For the infinite barrier case, we use the second passivation
model (Sec. II A). For the finite barrier case, we consider a
core-shell InSb/CdTe structure as described in Sec. II A (shell
thickness = 1 nm). For this heterostructure, the barrier is finite
but sufficiently large to remain in the strong confinement
regime. The obtained g-factors are shown in Figs. 8(a) and
8(b). The two systems give similar results, and the effects of
the finite barrier are quite small.

We also show in Fig. 8(c) the relative anisotropy (�g̃) for
InSb quantum wells, with finite or infinite barrier. Even if
there are non-negligible discrepancies between the two sets
of results, confirming the sensitivity of the anisotropies to the
confining potential, the trends are very similar.

APPENDIX B: ORBITAL MAGNETIC MOMENT DENSITY
IN A SPHERICAL NANOCRYSTAL AND IN

A CIRCULAR NANOPLATELET

1. Spherical nanocrystal

We consider a magnetic field along z. For reasons of
symmetry, we employ the cylindrical coordinates ρ (radial
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distance), φ (azimuth angle), and z (height). The electron
envelope wave function is given by Eq. (14) with r =√

ρ2 + z2. The operator x ∂
∂x

+ y ∂
∂y

becomes ρ ∂
∂ρ

. We deduce
from Eq. (16) the normalized density of orbital magnetic
momentum (per unit cell volume)

V0

2πR

ρ2

r2
sin

(πr

R

)[
1

r2
sin

(πr

R

)
− π

Rr
cos

(πr

R

)]
. (B1)

A 2D plot of this function is presented in Figs. 6(c)
and 6(d).

2. Circular nanoplatelet

We consider a circular nanoplatelet of thickness L and
radius R. The rotational symmetry axis is along z. The
envelope wave function, solution of Eq. (9), is given in
cylindrical coordinates by

Fs(r) = 1√
πJ1(α)R

√
2

L
J0

(αρ

R

)
sin

(πz

L

)
, (B2)

where J0 and J1 are Bessel functions of the first kind, and
α ≈ 2.4048 is the first zero of J0.

For a magnetic field along z, the normalized density of
orbital magnetic momentum is given by

2V0α

πLR3J 2
1 (α)

ρJ0

(αρ

R

)
J1

(αρ

R

)
sin2

(πz

L

)
. (B3)

For a magnetic field along x, the solution becomes

− V0

L2R2J 2
1 (α)

zJ0

(αρ

R

)
sin

(
2πz

L

)

+ 2V0α

πLR3J 2
1 (α)

y2

ρ
J0

(αρ

R

)
J1

(αρ

R

)
sin2

(πz

L

)
. (B4)

The 2D plots of these functions are presented in Figs. 7(c)
and 7(d).
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