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Abstract

The on-line diagnosis can be defined as a sequence of operations designed to detect,
to isolate an anomaly and to mitigate its impact before it affects the inspected system.
In the context of the project ALPES 2 (local accidents – protection and monitoring,
in English) of the GIS 3SGS (group of scientific interest – surveillance, dependability,
security of large systems, in English), the statistical methods for the early detection of
a Total Instantaneous Blockage (TIB) occurred in a single subassembly of a sodium-
cooled fast reactor have being studied. This work is carriedout within the framework
of model-based detection methods. The goal of this paper is to study the feasibility
of a sequential approach to detect an abnormal local temperature rise of neighboring
subassemblies due to a TIB while respecting the probabilityof missed detection, the
probability of false alarm and the required time-to-alert.The adaptive statistical estima-
tion/detection method is based on the measurements taken from ThermoCouples (TCs)
located above the subassemblies. The aim is therefore to provide a complementary tool
to improve the early detection of a TIB in the context of nuclear safety.
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2L. Fillatre is now with the Université Côte d’Azur, CNRS, I3S Laboratory - UMR 7271 - CS 40121 -

06903 Sophia Antipolis Cedex, France.

Preprint submitted to Journal of LATEX Templates June 17, 2020

© 2020 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0029549320302272
Manuscript_a8b824b1745d807af55b5eb8fcbff1eb

https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S0029549320302272


Nomenclature

Symbol Description
Yt vector of observations, outlet temperatures (◦C) at discrete timet, Yt ∈ R

n

n number of thermocouples in a group
∆T sampling period in seconds (s)
pt core thermal power at discrete timet (megawatt)
X̃ vector of regression coefficients,̃Xt ∈ R

ℓ

ℓ number of regressors
p order of the autoregressive model with exogenous inputs
(ui, vi) sensor (thermocouple) position,i = 1, . . . , n

Ai thei-th matrix of autoregressive coefficients,i = 1, . . . , p

H̃t regression marix of sizen× ℓ at discrete timet
{ξt}t≥1

sequence of outlet temperature one-step prediction errors(◦C), ξt ∈ R
n

σi thei-th standard deviation of the componentξt,i (◦C)
{εt}t≥p+1

sequence of model residuals (◦C), εt ∈ R
n

σ̂i thei-th empirical standard deviation of the componentεt,i (◦C)
t0 TIB arrival time (“change-point”) measured in discrete time
N required time-to-alert measured in discrete time
mα reference period measured in discrete time
TFMA discrete time of TIB detection (stopping time of the FMA test)
Pmd(T ) the worst-case probability of missed detection
Pfa(T ;mα) the worst-case probability of false alarm during the reference periodmα

Abbreviations
ACF AutoCorrelation Function
ARL Average Run Length
ARX AutoRegressive model with eXogenous inputs
CDF Cumulative Distribution Function
FMA Finite Moving Average
LLR Log-Likelihood Ratio
LS Least Squares
MW MegaWatt
PDF Probability Density Function
RLS Recursive Least Squares
SFR Sodium Fast Reactor
TC ThermoCouple
TIB Total Instantaneous Blockage
TRL Technological Readiness Level

1. Introduction and motivation

Online monitoring of critical industrial systems, such as nuclear reactors, plays an
important role in improving their safety and productivity.Furthermore, early fault de-5

tection and isolation are vital to maintaining reliable process operation and avoiding
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expensive maintenance. For instance, the Fukushima accident of 2011 in Japan re-
vealed the highest need for developing accurate and efficient monitoring systems for
nuclear plants. Accordingly, this paper focuses on designing an innovative statistical
monitoring technique for enhancing nuclear reactor safety.10

The central core of Sodium Fast Reactor (SFR) contains the fuel subassemblies
bundled in a rectangular or hexagonal array. The fuel elements, called fuel pins (or fuel
rods), are formed of a stack of fissile fuel pellets placed in thin cylindrical steel tubes
and closed by welding of end plugs at both the ends. The fuel rods are then grouped
into subassemblies (see Figure 1). The subassemblies ensure the channelization of the15

coolant flow that cools the fuel pins. The heat produced by thenuclear reaction is
evacuated by the liquid coolant circulating between the fuel pins and in the clearance
between the subassemblies. In the case of SFR, the liquid coolant used is sodium in
the liquid state. It flows in a closed circuit from the bottom of the subassembly upward
through pumps. One or more heat exchangers are provided at the outlet of the assembly20

for extracting heat from the coolant. Since the fuel pins areclosely packed in the central
core of SFR, the space between them is kept to a minimum value by using spiral spacer
wires placed across the fuel pin in the axial direction [1, 2].

Blocks B4C

37 C.A.S. pins

217 fuel pins

Diaphragm

Fuel pin

Fuel pellets

C.A.S. pin UO2 pellets

UO2 pellets Sodium

Fig. 1. Fuel assembly of the French SFR “Phénix”.

In the safety approach for the core of the 4-th generation French SFR, the TIB is a
hypothetic accident scenario belonging to a prevention situation category (probability25

inferior to 10−6 per year). This scenario is very unlikely as it assumes a complete
and simultaneous blockage of all the subassembly inlet ports when the reactor is at
full power. However, the study of a single subassembly inletport blockage is justified
because it is considered as a limiting accident [3, 4]. As it follows from [4], the TIB
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formation in a subassembly contained a fuel pin could be initiated by various possible30

ways such as loading of blocked subassemblies, passing of foreign particles such as
weld spatter present in primary circuit through core via coolant, clogging by broken
spacer wire, etc.

This paper is devoted to the sequential (on-line) statistical detection of a TIB oc-
curred in a single subassembly by detecting an abnormal temperature rise with the TCs35

at the top of the fuel subassemblies that monitor the neighboring subassemblies. This
temperature rise is a consequence of the heating of adjacentsubassemblies by conduc-
tion through the hexcans. Because the inlet port blockage, the temperature measured
above the subassembly with a TIB is not representative for the TIB detection. The
early detection of an abnormal temperature rise provoked bya TIB has been previ-40

ously considered in [5, 6, 7]. The recursive filtering based on the statistical estimation
theory is used to reduce the outlet temperatures uncertainties in [5]. Next, the filtered
TCs signals are used to detect a local temperature rise due toa TIB. The TIB detection
algorithms based on the artificial neural network-based strategies are used in [6, 7].
Nevertheless, some problems hold unsolved, especially, the calculation of the proba-45

bilities of missed detection and false alarm. These probabilities are crucially important
to estimate the Technological Readiness Level (TRL) for theearly TIB detection based
on the core outlet temperatures.

The proposed TIB detection algorithm is composed of two parts. The first part is
an adaptive estimation of the stochastic-dynamic model of subassembly outlet temper-50

atures. This model is used to generate the residuals sensitive with respect to (w.r.t.)
the abnormal temperature rise due to a TIB and, simultaneously, insensitive w.r.t. nor-
mal operating temperature variations. The second part is the statistical sequential test,
which uses the residuals generated by the stochastic-dynamic model of subassembly
outlet temperatures to detect the temperature rise due to a TIB.55

The original contributions of this paper are as follows :

• The detection of an abnormal temperature rise due to a TIB is reduced to the
problem of reliable detection of transient changes in the temperature signals by
using a parametric model of the subassembly outlet temperature.

• The Finite Moving Average (FMA) test for a reliable detection of a TIB is com-60

bined with the recursive adaptive Least Squares (LS) estimator. This LS estima-
tor is used to reduce a negative impact of the outlet temperatures uncertainties
on the FMA test.

• In contrast to the previous publications, the asymptotic upper bounds for the
probabilities of missed detection and false alarm are proposed in the current pa-65

per. These upper bounds permit to predict the statistical properties of the pro-
posed solution.

• The performance of the proposed FMA test has been evaluated with records of
normal operating outlet temperatures collected on the French SFR “Phénix” by
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the CEA. The abnormal temperature rise in the neighboring subassemblies has70

been simulated.

This paper is organized as follows. Section 2 states the problem of a TIB detection.
The temperature records from the TCs above the subassemblies used for this study are
presented in Section 3. These records provided to us by the CEA, Cadarache. Next,
an explanatory parametric model describing the subassembly outlet temperature is de-75

veloped in Section 4. This parametric model is non-stationary. An adaptive parame-
ter estimation algorithm is proposed in Section 5. The reliable detection of transient
changes, the nuisance parameter rejection and the design ofthe FMA test combined
with an adaptive estimator are discussed in Section 6. The statistical properties of the
detector and its evaluation with real data are also discussed in Section 6. Finally, some80

conclusions are drawn in section 7.

2. The TIB of a subassembly

The subassembly plays an essentially hydraulic role. It guarantees the channeliza-
tion of the sodium flow, which cools the fuel pins. Following aTIB, the subassembly
is cooled only by the “inter-assembly” sodium flow and the sodium contained in the85

subassembly very quickly reaches the vaporization temperature. After evaporation of
the sodium, the steel tubes of the fuel pins melt and partially solidify in the bottom
of the assembly remained cold. The fuel pellets then reach the melting temperature
and form a molten bath placed above the steel of the tubes. Lateral cooling by inter-
assembly sodium flow results in the formation of a solid fuel crust along the hexagonal90

steel casing that temporarily prevents its melting [8]. Therest of the incident depends
essentially on the existence of a plug in the upper part of theassembly. At the time
of melting the fuel pellets, it is highly likely that the fission gases thus released cause
molten material to the top of the assembly. As a result of their re-solidification a plug,
possibly porous, could be formed.95

Several methods of a TIB early detection for the4-th generation French SFR are
considered in [3]. As it follows from [3], the highest TRL canbe attributed to the
method of early detection based on the core outlet temperatures collected from the TCs
above the individual subassemblies. The outlet temperature is a permanently moni-
tored parameter for obvious safety reasons. The temperature measurements at the top100

of the fuel subassemblies allow the operator to permanentlyhave a map of the radial
distribution of temperature output core. In the French concepts (“Phénix” and “Su-
perphénix”), the core outlet sodium temperature is monitored by TC located inside a
thimble (thermowell) above each subassembly [3]. The TIB ofa subassembly causes
a rise in temperature of the heat transfer fluid of neighboring subassemblies while the105

temperature measured above the subassembly with a TIB is notrepresentative for its
detection because the inlet port blockage.
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The principle of the early TIB detection based on the core outlet temperatures is
to detect an abnormal temperature rise with the TCs that monitor the neighboring sub-
assemblies. This temperature rise is a consequence of the heating of adjacent sub-110

assemblies by conduction through the hexcans. It has been estimated that this heating
resulted in an increase of the neighboring outlet temperatures of a few tenths of◦C/s
per second for10 s (until the hexcans rupture).

Up to our knowledge, the very first recursive filtering methodto reduce the outlet
temperatures uncertainties based on the statistical estimation theory has been proposed115

and tested with real data in [5]. The filtered signals used to detect a local temperature
rise by using a rather rudimentary algorithm. The current paper can be seen as a further
development of the method proposed in [5] by using the modernadaptive statistical
estimation and detection algorithms based on the temperature measurements from the
TCs located above the subassemblies. This involves studying the sensitivity of TCs120

for the detection of a local temperature rise of at least two neighboring subassemblies
while respecting the probability of non-detection, the probability of false alarm and
the maximum detection delay. The early detection of the TIB makes it possible to
prevent the propagation of this fusion to the entire active core, i.e. adjacent assemblies,
which could result in the destruction of the reactor envelope, or even the containment125

of reactor.

3. Real data used in this study

The temperature measurements used in this study come from the French SFR
“Phénix ”(today at final shutdown). They were collected in2009 during the end-of-life
tests of the plant. These data were provided by the center of the CEA in Cadarache. The130

core outlet temperatures have been collected from the TCs, placed into the control plug
for real-time observation of sodium outlet temperatures from individual subassemblies.
The data acquisition system has been equipped with a8-bit analog-to-digital converter.
The spatial distribution of TCs in the core is illustrated inFigure 2(a).

For this study, we have used the dataset containing the temperature measurements135

from 121 TCs located above the centers of the subassemblies shown in Figure 2(a).
The TCs provide the temperature measurement every three seconds, i.e. the sampling
period is∆T = 3 s. This dataset is composed of two samples covering two periods.
The first sample covers a 7-day period from 15/02/2009 to 21/02/2009. The second
sample covers a second 7-day period from 01/03/2009 to 07/03/2009. The sample140

sizes are201587 and173882 observations, respectively. Moreover, two samples of
the core thermal power synchronized with the two above-mentioned periods have been
also used.

The instantaneous temperature field measured at the positions (ui, vi), i =

1, . . . , 121, is represented in Figure 2(b). First of all, it is worth noting that the spatial145

distribution of the temperature is not symmetrical. We can also notice that the temper-
ature is more important in the center than on the edges. The average temperature in the
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Fig. 2. a) The assembly of121 fuel rods. b) The instantaneous temperature field measured in◦C. Blue
crosses indicate the positions(ui, vi) of TC. Black numbers indicate the temperatures in◦C corresponding
to the level curves.

center is approximately equal to560 ◦C and460 ◦C in the periphery. The temperatures
do not vary in a homogeneous way over the whole core. Since thebehavior of the tem-
perature depends on the position of the TC, it seems appropriate to take into account150

the positions of the TCs to describe the evolution of the temperature.
In the following, we will try to build a model that describes the variations of tem-

perature signals in the absence of local temperature increase associated with a TIB.

4. Nominal model of the subassembly outlet temperature

This section is devoted to a stochastic-dynamic model of subassembly outlet tem-155

peratures measured by a small group of neighboring TCs undernormal operating con-
ditions (without a TIB). The goal of this model is to define a projection of the observed
data on a specially designed subspace, free from the normal operating variations of
the outlet temperatures vectorY ∈ R

n measured each∆T seconds at the positions
(ui, vi), i = 1, . . . , n.160

From the preliminary data analysis, it has been establishedthat an adequate de-
scription of the local temperature field can be done by the AutoRegressive Moving
– Average model with eXogenous inputs, i.e. ARMAX(p, q) model, wherep is the
order of the AR part andq is the order of the MA part. In the sequel, our attention
is restricted to a subclass of ARMAX(p, q) model, i.e. to the AutoRegressive model165

with eXogenous inputs ARX(p) model. There are two reasons for this :
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• Despite the fact that the ARMAX(p, q) model is more flexible than the ARX(p)
model, the parameter estimation in the case of ARMAX(p, q) model leads to a
nonlinear minimization problem with the upper bound for thenumber of local
minima comparable to the sample size. Adaptive parameter estimation in the170

case of ARMAX(p, q) model is even a more difficult problem because the ef-
fective sample size is constant. Hence, the probability to reach a wrong minimum
is positive. In contrast to the ARMAX(p, q) model, the parameter estimation in
the case of ARX(p) model is reduced to a quadratic minimization problem (with
a single minimum). It can be easily solved by using a conventional recursive LS175

algorithm.

• The approximation of the MA polynomial
(
1−

∑q
i=1 B

iβi

)
of orderq by an

AR polynomial
(
1−

∑p̃

i=1 B
iαi

)
of suitably high order̃p is frequently used

1−

q∑

i=1

Biβi ≃
1

1−
∑p̃

i=1 B
iαi

, p̃ ≫ q (1)

whereBi is the operator of the delay (backshift operator) :BiYt = Yt−i. Hence,
the ARX (p), p = p̃ + p1, model can be used as an approximation of the AR-
MAX (p1, q) model.

O u

v

ui

vi

Neighboring subassemblies

TIB

Fig. 3. Representation of two groups with9 TCs : a potentially accidental subassembly (TIB) with its
neighboring subassemblies.

Let us consider that a group of TCs, i.e. a potentially accidental subassembly (TIB)
with its neighbors, is composed ofn sensors installed at the positions(ui, vi), i =

1, . . . , n. This situation is represented in Figure 3. We consider thatthe scalar tem-
perature fieldY measured each∆T seconds at the positions(ui, vi), i = 1, . . . , n, is
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locally modeled by the following dynamic-stochastic ARX(p) equation [9, 10, 11]

Ỹt =

(
In −

p∑

i=1

BiAi

)
Yt = H̃tX̃ + ξt, t = 1, 2, . . . , T (2)

whereYt = (yt,1, . . . , yt,n)
T ∈ R

n is the vector of observations (temperatures) of180

n TCs at the discrete time instantt, In is the identity(n × n) matrix H̃tX is a ex-
ogenous inputs term, which is used to model the behavior of the instantaneous scalar
field of temperatures,̃X ∈ R

ℓ is the vector of the unknown inputs (regressors),
(1 −

∑p

i=1 B
iAi) is the AR polynomial of orderp, Ai = diag{αi,1, . . . , αi,n} is a

diagonal(n×n) matrix of AR coefficients,αi,j is the AR coefficient,{ξt}t≥1 ∈ R
n is185

a sequence of i.i.d. random vectors from a zero-mean Gaussian distributionN (0,Σ),
Σ = diag{σ2

1 , . . . , σ
2
n}.

Let us discuss the main elements of the ARX(p) model given by (2). The role
of the linear explanatory term with exogenous inputs is to model the instantaneous
behavior of the temperature field

Ỹt = H̃tX̃ + ξt, t = 1, 2, . . . , T (3)

whereỸt =
(
In −

∑p

i=1 B
iAi

)
Yt is the filtered vector of temperatures. To describe

the temperature field, a polynomial inu andv has been chosen. Hence, the filtered
temperaturẽyt,i measured by the TCi located in the position (ui, vi) at timet is given
by

ỹt,i = h̃t,iX̃ + ξt,i =
2∑

k=0

2∑

m=0

um
i vki am,k + ptb+ ξt,i, i = 1, . . . , n (4)

wherept is the core thermal power at timet measured in megawatt (MW) and the row
vectorh̃t,i of matrixH̃t is given by

h̃t,i = (u2
i v

2
i , uiv

2
i , v

2
i , u

2
i vi, uivi, vi, u

2
i , ui, 1, pt), i = 1, . . . , n

The vectorX̃ ∈ R
ℓ, whereℓ = 10, represents the unknown nuisance parameters

composed of the polynomial coefficients and the coefficient of the core thermal power.
The first9 coefficients of the vector

X̃ = (a2,2, a1,2, a0,2, a2,1, a1,1, a0,1, a2,0, a1,0, a0,0, b)
T

reflet the geometric factors (spatial correlation between neighboring TCs) and the co-
efficientb reflet the impact of the core thermal power. The matrixH̃t of size(n× 10)

is composed ofn rowsh̃t,i, i = 1, . . . , n.190

Discussion.At first glance, it may seem strange that the last two columns coexist in the
matrixH̃t. But it is worth noting that the roles of the last two columns in the matrixH̃t

are different. The ninth column defining the common factor ofthe polynomial approx-
imation for the temperature field in the core. It is responsible, together with the first8
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columns, for the best possible instantaneous fitting of thispolynomial approximation195

to the temperature field. The tenth column is responsible forthe linear relationship
between the outlet temperatures and the core thermal power,which can rapidly variate
between the minimum and maximum values as it happens in the case of the second 7-
day period from 01/03/2009 to 07/03/2009. The coefficientsa0,0 andb of the vectorX̃
have quite different dynamics (see Figures 8(a) and 9(a)). This coexistence improves200

the quality of the ARX(p) model given by (2), especially for the second 7-day period
from 01/03/2009 to 07/03/2009.

Therefore, the right-hand side of the ARX(p) model given by (2) represents a
combination of the regressive part defined by the termH̃tX and the AR part defined
by the term

∑p

i=1 AiYt−i. Equations (2) and (4) can be re-written in the vector form
as follows

Yt = H̃tX̃ +

p∑

i=1

AiYt−i + ξt, t = 1, 2, . . . , T (5)

and in the scalar form

yt,i =

2∑

k=0

2∑

m=0

um
i vki am,k+ptb+

p∑

j=1

αj,iyt−j,i+ξt,i, i = 1, . . . , n, , t = 1, 2, . . . , T

(6)
The traditional method of the ARX model estimation is to re-write the above equations
(5) and (6) in the form of regression model (see [10])

Yt︷ ︸︸ ︷


yt,1
...

yt,i
...

yt,n




=

Ht︷ ︸︸ ︷


yt−1,1 . . . yt−p,1 0 . . . 0

H̃t 0 . . . 0
. . .

...
...

...
...

. . . 0 . . . 0

0 . . . 0 yt−1,n . . . yt−p,n




X︷ ︸︸ ︷


X̃

α1,1

...
αp,1

...
α1,n

...
αp,n




+

ξt︷ ︸︸ ︷


ξt,1
...

ξt,n




(7)

wheret = 1, 2, . . . , T andX is a vector of unknown parameters of sizeq = ℓ + np.
It consists of two sub-vectors. The sub-vectorX̃ of size ℓ represents the regres-
sion (exogenous) parameters and the sub-vector(α1,1 . . . , αp,1 . . . α1,n . . . , αp,n)

T of
sizenp represents the AR parameters. Therefore, after elapsed time T , the total re-
gression model is defined by the following equation with the vectorsY1,T ∈ R

nT

(resp. ξ1,T ∈ R
nT ) formed from the vectorsY1, . . . , YT (resp. ξ1, . . . ξT ) stacked

together and the matrixH1,T of size (nT × ℓ + np) formed from the matrices
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Ht = Ht(H̃t, Yt−1, . . . , Yt−p), t = 1, . . . , T , stacked together

Y1,T =




Y1

...
YT


 =




H1

...
HT


X +




ξ1
...
ξT


 = H1,TX + ξ1,T (8)

5. Adaptive estimation of the outlet temperature model

This section is devoted to the identification of the subassembly outlet temperature
model given by (7) – (8) under normal operating conditions (without a TIB). In the case
of time-invariant systems, the statistical properties of the LS estimation for the ARX (p)
model have been studied in [9, 10, 11]. It has been shown that the ARX (p) model is
reduced to a conventional regression model. Hence, it possesses all optimal properties
of a linear regression (at least asymptotically, whenT → ∞). It is assumed that the
covariance matrix of the random noiseξ1,T ∈ R

nT is scalar, i.e.σ2
1 = · · · = σ2

n and
cov(ξ1,T ) = σ2InT . There are two reasons for this :i) all the outlet temperatures are
measured by the same K-type TCs and these temperatures belong to the same interval,
i.e. all the TCs have approximately the same Standard Deviation (SD)σi of instrumen-
tal errors;ii) the heteroscedasticity has no negative impact on the detection algorithm
(see details in Section 6.2). Hence, the LS estimation and its residual vector are given
by using the batch ofT data

X̂ =
(
HT

1,TH1,T

)−1
HT

1,TY1,T , Ψ1,T = PH1,T
Y1,T = Y1,T −H1,T X̂ (9)

whereΨ1,T = (εT1 . . . εTT )
T is the vector formed from residualsε1, . . . , εT stacked

together andPH1,T
= InT −H1,T (H

T
1,TH1,T )

−1HT
1,T is a projection matrix. Putting

together equations (7) – (9), we get the covariance matrix ofthe residualεt :

Σε = cov (εt) = (In −B) Σ, B = E
[
HT (H

T
1,TH1,T )

−1HT
T

]
(10)

The outlet temperature model estimation should be causal because it will be used
for the sequential detection of a TIB. A preliminary analysis of the real data revealed
that the behavior of the temperature vector{Yt}t≥1 of n TCs at geometric positions
(ui, vi), i = 1, . . . , n is non-stationary. Therefore, for this reason, the regression model
(7) – (8) must be not only sequentially estimated but also permanently adapted in real-
time. To avoid the computational burden, it is preferable touse the Recursive LS (RLS)
algorithm to estimate/adapt the ARX(p) model given by (7) – (8). The RLS algorithm
minimizes the following quadratic function of the observations (for details see [12])

JT (X,A1, . . . , Ap) =
T∑

t=1

λT−t

∥∥∥∥∥Yt − H̃tX −

p∑

i=1

AiYt−i

∥∥∥∥∥

2

2

(11)
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where0 < λ ≤ 1 is the forgetting factor. For the time-variant (non-stationary) sys-
tem, it is necessary to have a prior model of system dynamics to design an optimal
estimation algorithm. In the case of the subassembly outlettemperature, sucha priori
information is absent. For this reason, the tracking properties of the RLS is defined
by a single tuning parameterλ, (for details see [12]). Usually, the forgetting factor is
λ ∈ [0.99, 0.9999]. The RLS algorithm is defined as follows [12, 13]





Kt =
1

λ
PtH

T
t

(
In +

1

λ
HtPt−1H

T
t

)−1

Pt =
1

λ
(Pt −KtHtPt−1)

X̂t = X̂t−1 +Kt

(
Yt −HtX̂t−1

)

εt = Yt −HtX̂t

, t = 1, 2, . . . , T (12)

where the initial estimation̂X0 is assumed to be Gaussian̂X0 ∼ N (X0, P0). If there
is noa priori information available, it can be assumed thatX̂0 = 0 andP0 = γIq with205

γ large.
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Fig. 4. a) The temperatures of9 TCs (see (13)) and the reactor thermal power for the first sample covering
a 7-day period from 15/02/2009 to 21/02/2009.b) The same parameters for the second sample covering a
7-day period from 01/03/2009 to 07/03/2009.

Let us consider a group of9 subassemblies with the following TC numbers (see
Figure 2(a))

23−20, 23−21, 23−22, 24−19, 24−20, 24−21, 25−18, 25−19, 25−20 (13)

The outlet temperatures of9 TCs (see (13)) and the reactor thermal power for two
samples covering 7-day periods from 15/02/2009 to 21/02/2009 and from 01/03/2009
to 07/03/2009 are shown in Figure 4 (a) and (b). From preliminary analysis, it has been
concluded that an adequate description of the outlet temperatures of a group of9 TCs210
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can be done by using the order of AR-partp = 20. The forgetting factorλ has been
chosen from the interval[0.999, 0.9999].
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Fig. 5. a) The histogram of the ARX (20) model residuals corresponding to the TC24−21 and its Gaussian
approximation.b)The same parameters corresponding to the TC25 − 19.

The role of the ARX (20) model in the TIB detection algorithm is the generation
of the residuals{εt}t≥p+1. First of all, let us simplify the covariance matrixΣε of
residuals given by (10). Letδ = max1≤i,j≤n |bi,j |, wherebi,j is the entry in thei-th215

row andj-th column of the matrixB. As it follows from [12, 13], the efficient sample
sizeT of the LS estimator using a batch ofT data is given as a function of the forgetting
factorλ : T = (1 + λ)/(1 − λ). For the forgetting factorλ taken from the interval
[0.999, 0.9999], the efficient sample sizeT belongs to the interval[2 · 103, 2 · 104].
For such interval ofT , typical values ofδ obtained by using two 7-day periods of the220

sodium outlet temperatures belong to the interval[10−2, 10−3]. Hence, it is assumed
thatΣε ≃ Σ = diag{σ2

1 , . . . , σ
2
n} in the sequel.

In order to check the main statistical assumptions about theresiduals{εt}t≥p+1 of
the ARX (20) model [9, 10, 12, 13], i.e. their Gaussianity and the absence of serial and
cross correlations, the following statistics have been calculated for the group of9 TCs225

(see (13)) :

• The histogram of the ARX (20) model residuals{εt}t≥p+1.

• The empirical AutoCorrelation Function (ACF) of the residuals{εt}t≥p+1.

• The empirical correlation matrix of the residuals{εt}t≥p+1.

The typical histograms of residuals (corresponding to TCs24 − 21 and25 − 19) are
shown in Figure 5(a) and (b). The red line shows the superimposed fitted Gaussian
Probability Density Function (PDF) calculated by using theempirical mean and SD.
The residuals of TC24−21 are better fitted to a Gaussian PDF than the residuals of TC

13
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Fig. 6. A one hour registration of the temperatures of 9 TCs (see (13)).

25− 19. This fact is explained by a relatively low resolution of8-bit analog-to-digital
converters. This situation is illustrated by Figure 6. As itfollows from Figure 6, the
quantization step size of some TCs is too rough w.r.t the SD ofsignals. The empirical
ACFs of residuals are shown in Figure 7(a) and (b). As it follows from Figure 7, the
empirical ACFs of residuals{εt}t≥p+1 look like delta-functions. Hence, the hypoth-
esis about the absence of serial correlations seems to be likely. Finally, the empirical
correlation matrixcorr(εt) of the residuals{εt}t≥p+1 and its determinant are

corr(εt)=




1.00 0.09 0.04 0.10 0.07 0.05 0.03 0.06 0.07

0.09 1.00 0.07 0.06 0.13 0.10 0.04 0.07 0.06

0.04 0.07 1.00 0.06 0.07 0.03 0.03 0.02 0.06

0.10 0.06 0.06 1.00 0.07 0.05 0.04 0.07 0.10

0.07 0.13 0.07 0.07 1.00 0.07 0.04 0.09 0.07

0.05 0.10 0.03 0.05 0.07 1.00 0.04 0.05 0.05

0.03 0.04 0.03 0.04 0.04 0.04 1.00 0.01 0.05

0.06 0.07 0.02 0.07 0.09 0.05 0.01 1.00 0.07

0.07 0.06 0.06 0.10 0.07 0.05 0.05 0.07 1.00




(14)

230

The non-diagonal coefficients of the matrixcorr(εt) are close to zero and
det [corr(εt)] = 0.88 is close to one. From these two facts, the hypothesis about the
absence of cross-correlations between the components{ξt,i}t≥p+1 and{ξt,j}t≥p+1,
where1 ≤ i 6= j ≤ 9, of the random noise{ξt}t≥1 also seems to be likely.

Let us switch to the results of the ARX (20) model estimation. The RLS estimations235

(with λ = 0.9995) of the X (exogenous) and AR part coefficients as functions of
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Fig. 7.a) The ACFs of residuals{εt}t≥p+1
for the group of9 TCs (see (13)) for the first sample (15/02/2009

to 21/02/2009).b) The ACFs of residuals for the second sample (01/03/2009 to 07/03/2009).

elapsed time in hours are shown in Figures 8 – 9. For the AR partof the model, only
the first five coefficientsα1,i, . . . , α5,i, i = 1, . . . , n, calculated for TC23 − 20, are
shown in Figures 8 – 9. Other AR coefficients,α6,i, . . . , α20,i, i = 1, . . . , n, are less
significant. It is clear that the variations of the RLS estimations are more important240

for the second sample, due to some changes in the core thermalpower of the SFR, as
compared to those from the first sample. It can be concluded from Figures 8 – 9 that
the outlet temperatures represent strongly non-stationary signals even for a stationary
operating mode of the SFR.

The crucially important parameter for the design of a TIB detection algorithm is245

the SD of the random noise{ξt}t≥1. This parameter defines the Signal-to-Noise Ratio
(SNR) in the sequel. Obviously, the true SD is unknown. For this reason, the unknown
SD will be replaced with its empirical estimation. The empirical SD of the residuals
{εt}t≥p+1 for the group of9 TCs (see (13)) are collected in Table 1. It follows from

Sample TC 23− 20 23− 21 23− 22 24− 19 24− 20 24− 21 25− 18 25− 19 25− 20

First σ̂i 0.17 0.20 0.25 0.16 0.21 0.35 0.22 0.25 0.16
Second σ̂i 0.18 0.21 0.24 0.17 0.21 0.35 0.22 0.25 0.16

Table 1. The estimated SDs of the ARX (20) model residuals.

Table 1 that the residuals’ SDs vary between0.16 and0.35. The amplitude of their250

variations is moderate. Hence it can be concluded that the initial hypothesis about a
scalar covariance matrixcov(ξ1,t) = σ2Int of the random noiseξ1,t is rather realistic.
It is worth noting that the residuals’ SDs from Table 1 correspond approximately to the
random error SD obtained for the K-type TCs after a special calibration procedure for
the same temperature range [14, Ch. 12], [15, Ch. 5], [16].255
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Fig. 8. a) The X-part coefficients (components of the vectorX̃ numbered from1 to 10), calculated for the
first sample (15/02/2009 to 21/02/2009).b) The first5 AR-coefficientsα1,1, . . . , α5,1, calculated for TC
23− 20 and for the first sample (15/02/2009 to 21/02/2009).

6. Statistical detection of a single subassembly TIB

The aim of this section is to study the feasibility of early statistical detection of a
single subassembly TIB. We will propose a sequential test detecting a local increase in
the sodium outlet temperatures from individual subassemblies neighboring a potential
TIB and calculate the probability of missed detection and the probability of false alarm260

provided that the delay for detection is upper bounded by a given constant for this
test. The final goal is therefore to provide a complementary tool to improve the early
detection of a single subassembly incident (TIB) in the context of nuclear safety.

6.1. Sequential reliable detection of abrupt changes

Let us briefly introduce the sequential detection of abrupt changes in the properties
of stochastic processes [17, 18, 19, 20]. We begin with Lorden’s minimax criterion of
optimality [21], which involves the minimization of the (worst-case) mean detection
delay provided that a prescribed level of false alarms is respected3. Let us consider the
non-Bayesian framework, where the “change-point”t0 is unknown but non-random.
This non-Bayesian framework is realistic for many safety-critical systems. In opposi-
tion the Bayesian framework, it is assumed that there is noa priori information on the
distribution oft0. Let {yt}t≥1 be a sequence of independent random variables and let
t0 be the index of the first post-change observation

yt ∼

{
F0 if n < t0
F1 if n ≥ t0

(15)

3The Bayesian approach to this problem and its optimal solution have been proposed by Shiryaev [22, 23].
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Fig. 9. a) The X-part coefficients (components of the vectorX̃ numbered from1 to 10), calculated for the
second sample (01/03/2009 to 07/03/2009).b) The first5 AR-coefficientsα1,1, . . . , α5,1, calculated for
TC 23− 20 and for the second sample (01/03/2009 to 07/03/2009).

where F0 is the pre-change Cumulative Distribution Function (CDF) and F1

is the post-change CDF. LetPt0 be the joint distribution of the observations
y1, y2, · · · , yt0 , yt0+1, · · · when t0 < ∞. Let P0 denote the same whent0 = ∞,
i.e. there is no change and all the observationsy1, y2, · · · are i.i.d. with CDFF0. Let
Et0 (resp.E0) andPt0 (resp.P0) be the expectation and probability w.r.t. the distribu-
tion Pt0 (resp.P0). Lorden [21] proposed an optimality criterion, which involves the
minimization of the worst-case mean detection delay

inf
T∈Cη

{
E(T )

def
= sup

t0≥1
esssupEt0

[
(T − t0 + 1)

+ |y1, . . . , yt0−1

]}
(16)

where(x)+ = max(0, x), T ∈ {1, 2, . . .} is a stopping time w.r.t. the sequence of
random variables{yt}t≥1, i.e. an integer random variable such that, for everyt ≥ 1,
the event{T = t} depends only on the variablesy1, y2, ..., yt, among all stopping
timesT belonging to the class

Cη = {T : E0(T ) ≥ η} (17)

whereη > 0 is a prescribed value of the Average Run Length (ARL) to a false alarm.265

The traditional criterion, like (16) – (17), involves the minimization of the (worst-
case) mean detection delay provided that the ARL to a false alarm is lower bounded by
a given constant. It is based on the idea initially proposed by Wald [24] and motivated
by the economic criteria in quality control when the price ofeach new observation is
constant. Using criterion (16) – (17), we accept that some run lengths will be very270

long, some other – very short, but, in themean, the detection delay will be acceptable.
In safety-critical applications (like a TIB detection), ifthe delay for detection is greater
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than the required time-to-alertN , the price of each new observation is infinitely more
important than the price of observation if the delay for detection is less than or equal
to N . For this reason, we propose to use another criterion of reliable detection, which275

involves the minimization of the worst-case probability ofmissed detection provided
that the worst-case probability of false alarm per a given reference periodmα is upper
bounded.

The reliable detection of (transient) changes is motivatedby two possible scenarios.
The first scenario corresponds to the situation when the observed phenomena is of280

short and maybe unknown (and random) durationΓ. It is a so-called transient change
detection problem. Sometimes even the “latent” detection (i.e. the detection after the
end of transient change) is acceptable [25, 26, 27, 28, 29]. The second scenario arises
when the observed anomaly (a TIB, for example) leads to serious degradation of the
system performance/safety when the anomaly is detected with the delay greater than285

the required time-to-alertN . It is a so-called reliable detection of (transient) changes.
In the framework of this second scenario, the durationΓ is assumed to be sufficient,
i.e. N ≤ Γ. A change detected with the delay greater thanN , i.e. T − t0 + 1 > N , is
assumed to be missed [30, 31, 32, 33]. On the other hand, if thetrue durationΓ of the
transient change is smaller, than the required time-to-alertN , such a transient change is290

considered as less dangerous because its impact on the system is limited or negligible.
Let us formalize the reliable change detection problem. We consider the sequence

of random variables{yt}t≥1. Let t0 be the index of the first post-change observa-
tion (unknown and non-random) and the post-change period isof sufficient durationΓ
such thatN ≤ Γ. Let us define the generative model of the transient change for the
prescribed durationN

yt ∼

{
F0 if 1 ≤ t < t0
Fθt−t0+1

if t0 ≤ t ≤ t0 +N − 1
(18)

whereF0 is the pre-change CDF andFθ1 , . . . , FθN are the known post-change dis-
tributions during the periodN . It is worth noting that the transient change profile is
defined only forN observations after change because all what happens after the time
t0 +N − 1 is considered as a missed detection.295

As previously, it is assumed thatPt0 is the joint distribution of the observations
y1, · · · , yt0 , yt0+1, · · · when t0 < ∞. Because the considered subclass of stopping
times is based on the variable-threshold truncated Sequential Probability Ratio Tests
(SPRT), the existence of a short “pre-heating” periodN is assumed. This short period
is necessary to accumulate the firstN observationsy1, y2, ..., yN in order to avoid
the situation when the truncated SPRT performs by using an insufficient number of
observations. The quality of a statistical decision cannotbe guaranteed if the number
of observations is less than the required time-to-alertN , which is also equal to the
minimum duration of the post-change periodΓ, i.e. N ≤ Γ. Finally, the optimality
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criterion utilized in this report is given by [31, 32, 33]

inf
T∈Cα

{
Pmd(T )

def
= sup

t0≥N

Pt0(T − t0 + 1 > N | T ≥ t0)

}
(19)

wherePmd(T ) is the worst-case probability of missed detection, among all stopping
timesT ∈ Cα satisfying

Cα=

{
T : Pfa(T ;mα)

def
= sup

ℓ≥N

P0(ℓ≤T <ℓ+mα) ≤ α

}
(20)

wherePfa(T ;mα) is the worst-case probability of false alarm during the reference
periodmα measured in discrete time.

The design of the transient change detector is discussed in [31, 32, 33]. Let us
briefly define this FMA test, which has been obtained as a result of optimisation in
a subclass of truncated SPRT. The stopping timeTFMA of the FMA test is given as
follows

TFMA = inf
{
t ≥ N : Λt

t−N+1 ≥ h
}
, Λt

t−N+1 =

t∑

i=t−N+1

log
fθN−t+i

(yi)

f0(yi)
(21)

whereΛt
t−N+1 denotes the Log-Likelihood Ratio (LLR) calculated for the moving

windowyt−N+1, . . . , yt, f0 denotes the pre-change probability density function (PDF),
fθN−t+i

denotes the post-change PDF andh is the threshold. In the context of a TIB300

detection,f0 is the zero-mean Gaussian PDF of the ARX(p) pre-change residuals and
fθN−t+i

is the Gaussian PDF of the ARX(p) post-change residuals.
To get upper bounds for the probabilitiesPmd(TFMA) andPfa(TFMA ;mα) defined

in criterion (19) – (20), it is necessary to respect some technical conditions and define
several probabilities and their bounds. Further details and results can be found in [32,
33]. The worst-case probability of missed detectionPmd(TFMA) is upper bounded as
follows [33]

Pmd(TFMA) ≤G(h)
def
= Pt0

(
ΛN+t0−1
t0

< h
)
, t0 ≥ N (22)

wherePt0

(
ΛN+t0−1
t0

< h
)

corresponds to the probability of missed detection of the

Neyman-Pearson LLR test calculated for the time window[t0, t0 + N − 1] and the
thresholdh. It is assumed that the CDF of the LLRΛt

t−N+1

x 7→ F (x)
def
= P0

(
Λt
t−N+1 ≤ x

)
(23)

is a continuous function on]−∞;∞[ under the measureP0.
The smallest valueα1 of the upper boundG(h) provided that the upper bound for

the worst-case probability of false alarm is equal to a pre-assigned valueα0, is given
by [33]

α1 = G
[
F−1

(
(1 − α0)

1
mα

)]
(24)
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Finally, the optimal threshold is given by [33]

h = F−1
(
(1 − α0)

1
mα

)
(25)

6.2. Rejection of nuisance parameters and adaptive detection

A key issue in fault detection is to state the significance of the observed deviations305

(e.g., a local temperature rise due to a TIB) w.r.t. random noises and nuisance parame-
ters. Handling the presence of nuisance parameters is indeed an important issue in this
framework. Distinguishing two subsets of components of theparameter vector, the pa-
rameters of interest and the nuisance parameters, is necessary because some parameters
of no interest for monitoring. The nuisance parameters, if not of no physical meaning,310

may appear in the model for its flexibility or specification, or for data interpretation
reasons [34].

Let us consider a group ofn TCs with a potentially accidental subassembly (TIB).
We will propose a sequential test detecting a local increasein the sodium outlet tem-
peratures of two subassemblies neighboring a potential TIB. First of all, let us define
the generative model of a local increase in the sodium outlettemperatures by using
equation (5) of the ARX (p) model

Zt =

{
Yt if 1 ≤ t < t0
Yt + θt−t0+1 if t0 ≤ t ≤ t0 +N − 1

, Yt = H̃tX̃ +

p∑

i=1

AiYt−i + ξt

(26)
whereZt is the vector of sodium outlet temperatures measured by a group of TCs,
t0 is the TIB arrival time,θ1, . . . , θN are the vectors of additive outlet temperature
profiles due to a TIB,θi ∈ R

n. Obviously, the period of a local temperature rise due315

to a TIB is not limited byN but, as it follows from the criterion (19) – (20), all what
happens aftert0 + N − 1 has no impact on the criterion of reliable change detection.
For this reason, we limit the discussion to the vectorsθ1, . . . , θN in the sequel. The
vectorsθ1, . . . , θN are parameters of interest (informative parameters) of thetransient

change model. The vectorX =
(
X̃T , α1,1 . . . αp,1 . . . α1,n . . . αp,n

)T
is a nuisance320

parameter of this model.
An efficient method to manage the nuisance parameters and theparameter of inter-

est is an invariant hypothesis testing approach (if the original problem is invariant) or
an adaptive testing method (such as the generalized likelihood ratio test) [35, 36, 37].
Key features of these statistical methods are their abilityto handle noises and uncer-
tainties, i.e. to reject nuisance parameters, in order to decide between two hypotheses
H0 (no local temperature rise due to a TIB) andH1 (there exists a local temperature
rise due to a TIB). Let us go back to equation (8) and re-write it taking into account the
generative model (26) with the stacked vectorsZ1,t, Y1,t, ξ1,t ∈ R

nt and the stacked
matrixH1,t of size(nt× ℓ+ np)

Z1,t = Y1,t + θ1,t = H1,tX + θ1,t + ξ1,t (27)
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where the stacked vectorθt1 is defined as follows

θ1,t =

{
(0 . . . 0)T if 1 ≤ t < t0(
0 . . . 0 θT1 . . . θTt−t0+1

)T
if t0 ≤ t ≤ t0 +N − 1

(28)

where0 is the zero row vector of appropriate size, and apply the method of invariant
tests developed in [36, 37] to this regression model (27).

The idea of the invariant hypotheses testing approach is based on the existence of
the natural invariance of the detection problem w.r.t. a certain group of transformation325

[39, Ch. 6]. In contrast to the Bayesian approach, the invariant hypotheses testing
theory is based on the nuisanceX rejection and, therefore, it does not use anya pri-
ori information on the distribution ofX . It is worth noting that the drawback of the
Bayesian approach in the case of a TIB detection is the following : this approach ex-
ploits somea priori information on the distribution ofX but this information may be330

unreliable. Hence, the Bayesian approach is irrelevant to the case of nuisance parame-
ters governed by an unknown environment.

The impact of nuisance parameters, expressed by the termH1,tX in equation (27),
defines a subspace in the observation spaceZ = R

nt, i.e. the column spaceR(H1,t)

of the matrixH1,t [36, 37]. Because the unknown nuisance parameterX is non-
random, the only solution is to eliminate any impact ofX on the decision function.
Consequently, this solution leads to a projection ofZ1,t on the orthogonal complement
R(H1,t)

⊥ of the column spaceR(H1,t). The spaceR(H1,t)
⊥ is also well-known un-

der the name “parity space” in the analytical redundancy literature [38]. It is shown in
[39, Ch. 6], that the optimal invariant tests are based on themaximal invariants (princi-
ple of invariance). In the case of (27) the maximal invariantis given by the projection
of Z1,t onto the left null space of the matrixH1,t (for details see [36, 37]) :

Ψ1,t = PH1,t
Z1,t = Z1,t −H1,tX̂, X̂ = (H1,t

TH1,t)
−1HT

1,tZ1,t (29)

wherePH1,t
is a projection matrix defined in (9). Hence, starting from the change-

point t0, the observationsZt and the matricesHt, andH1,t are “contaminated” by the
vectorsθ1, . . . , θN of additive outlet temperature profiles due to a TIB.335

As we have mentioned above, to design an adaptive detector oftransient changes,
we use the residual{εt}t≥p calculated recursively by the RLS (12). Let us re-write the
generative model of transient change (26) for this residual

εt ∼

{
N (0,Σε) if 1 ≤ t < t0
N (Mt−t0+1,Σε) if t0 ≤ t ≤ t0 +N − 1

(30)

whereΣε ≃ Σ = diag{σ2
1 , . . . , σ

2
n} is the covariance matrix of residuals and

Mt−t0+1 = E (εt≥t0) is the transient profile (expectation) of residuals due to a TIB.
Finally, let us add the following comment concerning the impact of the het-

eroscedasticity on the detection algorithm. As it follows from [37, Lemma 1], in the
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case of an arbitrary covariance matrixΣ of the random noiseξt in the regression model340

(5) – (8), the LLR of the maximal invariant statistics can be calculated in two steps.
The first step is a projection ofZ1,t onto the “parity space” by using the orthogonal
complementR(H1,t)

⊥ of the column spaceR(H1,t) assuming that the covariance ma-
trix Σ is scalar. The second step consists in calculating the LLR ofan invariant test by
using the covariance matrix of the residuals obtained afterthe first step. The empirical345

estimations of the diagonal elementsσ2
i of this covariance matrix is given in Table 1.

This means that the assumption about a scalar covariance matrix of the random noise
ξ in the definitions of the LS and RLS algorithms (9) – (12) has nonegative impact on
the invariant statistics.

As it follows from Sections 4 and 5, the ARX (p) model defined by equations (5)350

– (8) requires a permanent adjustment to the real data due to the fact that the SFR is
a time-variant (non-stationary) system. Hence, the significance of observed deviations
should be established by using an adaptive estimation algorithm described in Section 5.
The idea to associate a change detection algorithm to an adaptive estimation algorithm
(e. g., an adaptive RLS estimator) has been considered in [40, 41, 13]. The goal of an355

adaptive detector of transient changes is to detect the additive outlet temperature pro-
files θ1, . . . , θN due to a TIB while considering the nuisance parameters asunknown.
To solve this problem, it is proposed to use the residuals{εt}t≥p calculated by an
adaptive RLS estimator given by (12).
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Fig. 10. The profiles of the residuals corresponding to a local increase in the sodium outlet temperatures of
two subassemblies24−21 and25−19 neighboring a potential TIB at the subassembly24−20 or 25−20.
The rate of temperature rising is0.5◦C/s. The temperature sampling period is 3 s.

Let us consider the following scenario of TIB, described in [3]. It is assumed360

that a local increase in the sodium outlet temperatures is observed by the TCs of two
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subassemblies neighboring a potential TIB beginning from the change-pointt0. The
sodium outlet temperature increases as a linear function oftime. The TCs are protected
by thermowells. The transfer function from the thermowell exterior temperature to the
TC measurement junction is given by the first order system having a time constant of365

1 s [42, Ch. 14]. Typical temperature rising profiles in the residuals corresponding to a
local increase in the sodium outlet temperatures with the rate of temperature rising of
0.5◦C/s are shown in Figure 10.

Let us re-write the LLR (21) of the FMA test for the sequence ofresidualsεt
calculated by the RLS algorithm (12)

TFMA = inf
{
t ≥ N : Λt

t−N+1 ≥ h
}

Λt
t−N+1 =

t∑

i=t−N+1

∑

j∈J

[
1

σ2
j

εi,jmi−t+N,j −
m2

i−t+N,j

2σ2
j

]
(31)

whereJ is a subset of TCs neighboring a potential TIB,mt−t0+1,j > 0 is a residual
profile for t ≥ t0 andj ∈ J . As it follows from [33] :

Pmd(TFMA) ≤ Φ

(
h− 1

2dJ√
dJ

)
, Pfa(TFMA ;mα) ≤ 1−

[
Φ

(
h+ 1

2dJ√
dJ

)]mα

(32)

wheredJ =
∑

j∈J

‖Mj‖22
σ2
j

is the total SNR and‖Mj‖
2
2 =

N∑

t=1

m2
t,j.

6.3. Statistical properties of the sequential adaptive detector370

The statistical properties of the adaptive detector definedin (31) have been exam-
ined by using :

• Asymptotic upper bounds for the probabilities of missed detectionPmd(TFMA)

and false alarmPfa(TFMA ;mα) given by (32).

• The sodium outlet temperatures samples covering two periods from15/02/2009375

to 21/02/2009 and from01/03/2009 to 07/03/2009 together with two samples
of the core thermal power synchronized with these temperature samples.

The non-zero componentsθt,j ∈ J of the vectorθt of additive outlet temperature
rising profiles are defined as follows :

θt−t0+1,j = κ∆T (t− t0 + 1) for t ≥ t0 andj ∈ J

Other parameters of the TIB detection scenario are the following

∆T = 3 s, N = 3, 4, mα = 3600/∆T, σi ∈ [0.16, 0.35], λ = 0.9995

The asymptotic upper bounds for the probability of missed detection Pmd(TFMA)

are calculated as functions of the upper bounds for the probability of false alarm
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Fig. 11. The probability of missed detectionPmd(TFMA) as a function of the probability of false alarm per
hourPfa(TFMA ;mα) for different values of the temperature rising rateκ ∈ {0.200, ...,0.335}◦C/s for two
subassemblies24 − 21 and25 − 19 neighboring a potential TIB at the subassembly24 − 20 or 25 − 20.
The required time-to-alert is9 s (N = 3).

Pfa(TFMA ;mα) by using equation (32). Representative curves of this function param-380

eterized by the rate of temperature risingκ◦C/s are shown in Figure 11 and 12. The
results corresponding to the time-to-alert of9 s (orN = 3) are shown in Figure 11
and the results corresponding to the time-to-alert of12 s (orN = 4) are shown in
Figure 12. It is worth noting that the probability of false alarmPfa(TFMA ;mα) is mea-
sured per hour withmα = 3600/∆T . For example,Pfa(TFMA ;mα) of 10−5 per hour385

corresponds to the level of “one false alarm per≃ 11 years” in mean.
The second test realized to evaluate the proposed adaptive detector defined in (31)

has been done by using the sodium outlet temperature samplesof 9 TCs (see (13))
covering two7-day periods together with the corresponding samples of thecore ther-
mal power. The decision functionΛt

t−N+1 defined in (31) for these two samples is390

presented in Figure 13(a) and (b). It is assumed that the simulated TIB onset time is
120 h for both samples. The TIB location is the subassembly24− 20 or 25− 20. The
outlet temperature rise in the measurements of the TC24− 21 and TC25− 19 with a
rising rate ofκ ∈ 0.5◦C/s. The transient change profiles are shown in Figure 10. The
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Fig. 12. The probability of missed detectionPmd(TFMA) as a function of the probability of false alarm per
hourPfa(TFMA ;mα) for different values of the temperature rising rateκ ∈ {0.130, ...,0.275}◦C/s for two
subassemblies24 − 21 and25 − 19 neighboring a potential TIB at the subassembly24 − 20 or 25 − 20.
The required time-to-alert is12 s (N = 4).

detection delay is6 s for both samples; no false alarms have been reported.395

7. Conclusion

This paper addresses the adaptive detection of an abnormal temperature rise due to
a TIB in a single subassembly in the core of a SFR. This problemhas been reduced to
the reliable detection of transient changes in the residuals of a subassembly outlet tem-
perature parametric model. The proposed adaptive recursive algorithm is composed of400

two parts :i) an adaptive RLS algorithm, which estimates the ARX (p) model of outlet
temperatures measured by a local group of TCs installed at the top of the fuel sub-
assemblies and computes the residuals of this model;ii) the FMA test for the reliable
transient change detection, which uses these residuals to calculate the LLR in a moving
window and to compare the LLR to a predefined threshold. The statistical properties405

of this algorithm have been studied by using the asymptotic upper bounds for the prob-
abilities of missed detection and false alarm and by using the real data provided by the
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Fig. 13. a) The decision functionΛt
t−N+1

calculated for the first 7-day period from15/02/2009 to
21/02/2009. b) The decision functionΛt

t−N+1
calculated for the second7-day period from01/03/2009

to 07/03/2009. The simulated TIB onset time is120 h for both periods. The detection delay is6 s for both
periods.

center of the CEA in Cadarache.
The following conclusions and perspectives can be drawn :

• The proposed detection algorithm is recursive, numerically stable and efficient.410

• If the required time-to-alert is equal to9 s, the required probability of missed
detection is upper bounded by10−6 and the required probability of false alarm is
upper bounded by10−6 per hour, then the minimal detectable temperature rising
rate in two subassemblies neighboring a potential TIB is equal toκ ≃ 0.27◦C/s.
If the required time-to-alert is12 s, then the minimal detectable temperature415

rising rate is equal toκ ≃ 0.2◦C/s.

• The sampling period of temperature records used in this study is ∆T = 3 s. A
reduction of the sampling period∆T to 1 s or0.5 s can improve the statistical
properties of the detection algorithm.

• Several temperature anomalies have been reported during the second7-day pe-420

riod from01/03/2009 to 07/03/2009. These anomalies are not very disturbing
for the proposed TIB detection algorithm but it can be interesting to examine this
phenomena carefully in the case of a future study.

• Several hundred (thousand) local groups of TCs have to be monitored simulta-
neously to cover a fuel assembly. It is interesting to compute the probability of425

false alarm for such a stream of parallel data in the case of a future study.
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