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Abstract

The on-line diagnosis can be defined as a sequence of operaisigned to detect,
to isolate an anomaly and to mitigate its impact before e&t# the inspected system.
In the context of the project ALPES 2 (local accidents — prtid& and monitoring,
in English) of the GIS 3SGS (group of scientific interest ~veillance, dependability,
security of large systems, in English), the statisticalhnds for the early detection of
a Total Instantaneous Blockage (TIB) occurred in a singkassembly of a sodium-
cooled fast reactor have being studied. This work is cawigdvithin the framework
of model-based detection methods. The goal of this paper ssudy the feasibility
of a sequential approach to detect an abnormal local teryserase of neighboring
subassemblies due to a TIB while respecting the probaluifitpissed detection, the
probability of false alarm and the required time-to-al@tie adaptive statistical estima-
tion/detection method is based on the measurements takeninermoCouples (TCs)
located above the subassemblies. The aim is thereforevaera complementary tool
to improve the early detection of a TIB in the context of naclsafety.

Keywords: Nuclear safety, Sodium fast reactor, Subassembly totedritsneous
blockage, Core outlet sodium temperature, Model-basé¢idtatal detection,
Transient changes.
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Nomenclature

Symbol Description

Y; vector of observations, outlet temperatur&S)(at discrete time, Y; € R™
n number of thermocouples in a group

AT sampling period in seconds (s)

Dt core thermal power at discrete timémegawatt)

X vector of regression coefficientg',t eR’

14 number of regressors

P order of the autoregressive model with exogenous inputs

(ui,vs) sensor (thermocouple) position=1,...,n

A; thei-th matrix of autoregressive coefficienis= 1,...,p

H, regression marix of size x ¢ at discrete time

{&}isy sequence of outlet temperature one-step prediction gft@)s &, € R™
oi thei-th standard deviation of the componént (°C)

{et}i>p11 sequence of model residuafL), e; € R™

o thei-th empirical standard deviation of the component (°C)

to TIB arrival time (“change-point”) measured in discrete¢im

N required time-to-alert measured in discrete time

Mo reference period measured in discrete time

Teva discrete time of TIB detection (stopping time of the FMA }est

Prma(T) the worst-case probability of missed detection
Pia(T;ma) the worst-case probability of false alarm during the refeesperiodn.,
Abbreviations

ACF AutoCorrelation Function

ARL Average Run Length

ARX AutoRegressive model with eXogenous inputs
CDF Cumulative Distribution Function
FMA Finite Moving Average

LLR Log-Likelihood Ratio

LS Least Squares

MW MegaWatt

PDF Probability Density Function
RLS Recursive Least Squares

SFR Sodium Fast Reactor

TC ThermoCouple

TIB Total Instantaneous Blockage
TRL Technological Readiness Level

1. Introduction and motivation

Online monitoring of critical industrial systems, such aglear reactors, plays an
s important role in improving their safety and productiviBurthermore, early fault de-
tection and isolation are vital to maintaining reliable ggss operation and avoiding
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expensive maintenance. For instance, the Fukushima atad@011 in Japan re-
vealed the highest need for developing accurate and effimenitoring systems for
nuclear plants. Accordingly, this paper focuses on desgyan innovative statistical
monitoring technique for enhancing nuclear reactor safety

The central core of Sodium Fast Reactor (SFR) contains thlesfitbassemblies
bundled in a rectangular or hexagonal array. The fuel el¢ésnealled fuel pins (or fuel
rods), are formed of a stack of fissile fuel pellets placedin tylindrical steel tubes
and closed by welding of end plugs at both the ends. The ful ave then grouped
into subassemblies (see Figure 1). The subassemblieseahsurhannelization of the
coolant flow that cools the fuel pins. The heat produced byntigear reaction is
evacuated by the liquid coolant circulating between thé pires and in the clearance
between the subassemblies. In the case of SFR, the liquldrtagsed is sodium in
the liquid state. It flows in a closed circuit from the bottofriitee subassembly upward
through pumps. One or more heat exchangers are provideel atittet of the assembly
for extracting heat from the coolant. Since the fuel pinséoeely packed in the central
core of SFR, the space between them is kept to a minimum valusibg spiral spacer
wires placed across the fuel pin in the axial direction [1, 2]

217 fuel pins

Diaphragm
B Fuel pin p

X
CAS.pin—" Iy uo2 pellets/\

UO02 pellets — o)

x\:_»\h

Fig. 1. Fuel assembly of the French SFR “Phénix”.

In the safety approach for the core of the 4-th generationdfr&FR, the TIB is a
hypothetic accident scenario belonging to a preventiarasiin category (probability
inferior to 10~ per year). This scenario is very unlikely as it assumes a tetmp
and simultaneous blockage of all the subassembly inlespuinien the reactor is at
full power. However, the study of a single subassembly iptat blockage is justified
because it is considered as a limiting accident [3, 4]. Aslibivs from [4], the TIB
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formation in a subassembly contained a fuel pin could béieitl by various possible
ways such as loading of blocked subassemblies, passinge&ffoparticles such as
weld spatter present in primary circuit through core vialang clogging by broken
spacer wire, etc.

This paper is devoted to the sequential (on-line) statistietection of a TIB oc-
curred in a single subassembly by detecting an abnormakteanpe rise with the TCs
at the top of the fuel subassemblies that monitor the neigh@psubassemblies. This
temperature rise is a consequence of the heating of adjsgkassemblies by conduc-
tion through the hexcans. Because the inlet port blockégetemperature measured
above the subassembly with a TIB is not representative (T8 detection. The
early detection of an abnormal temperature rise provoked ByB has been previ-
ously considered in [5, 6, 7]. The recursive filtering basedh® statistical estimation
theory is used to reduce the outlet temperatures unceesint[5]. Next, the filtered
TCs signals are used to detect a local temperature rise @Gu€l®. The TIB detection
algorithms based on the artificial neural network-baseatesies are used in [6, 7].
Nevertheless, some problems hold unsolved, especiadlycdlculation of the proba-
bilities of missed detection and false alarm. These prditiaiare crucially important
to estimate the Technological Readiness Level (TRL) foetudy TIB detection based
on the core outlet temperatures.

The proposed TIB detection algorithm is composed of twosparhe first part is
an adaptive estimation of the stochastic-dynamic modellbdssembly outlet temper-
atures. This model is used to generate the residuals sengiiih respect to (w.r.t.)
the abnormal temperature rise due to a TIB and, simultamgonsensitive w.r.t. nor-
mal operating temperature variations. The second pareisttistical sequential test,
which uses the residuals generated by the stochastic-dgmaadel of subassembly
outlet temperatures to detect the temperature rise duelB.a T

The original contributions of this paper are as follows :

e The detection of an abnormal temperature rise due to a TIBdaaed to the
problem of reliable detection of transient changes in thepterature signals by
using a parametric model of the subassembly outlet temperat

e The Finite Moving Average (FMA) test for a reliable deteatiaf a TIB is com-
bined with the recursive adaptive Least Squares (LS) egtimahis LS estima-
tor is used to reduce a negative impact of the outlet tempegncertainties
on the FMA test.

e In contrast to the previous publications, the asymptotipeupounds for the
probabilities of missed detection and false alarm are ppegdan the current pa-
per. These upper bounds permit to predict the statisticgbgaties of the pro-
posed solution.

e The performance of the proposed FMA test has been evaluatiedegords of
normal operating outlet temperatures collected on thedrr&FR “Phénix” by
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the CEA. The abnormal temperature rise in the neighboribgssemblies has
been simulated.

This paper is organized as follows. Section 2 states thelgmobf a TIB detection.

The temperature records from the TCs above the subasssmbéd for this study are
presented in Section 3. These records provided to us by tide Cidarache. Next,
an explanatory parametric model describing the subasyamnliet temperature is de-
veloped in Section 4. This parametric model is non-statipn&n adaptive parame-
ter estimation algorithm is proposed in Section 5. The bédialetection of transient
changes, the nuisance parameter rejection and the destge &MA test combined

with an adaptive estimator are discussed in Section 6. Eistital properties of the
detector and its evaluation with real data are also discliss8ection 6. Finally, some
conclusions are drawn in section 7.

2. TheTIB of a subassembly

The subassembly plays an essentially hydraulic role. Itantaes the channeliza-
tion of the sodium flow, which cools the fuel pins. Following B, the subassembly
is cooled only by the “inter-assembly” sodium flow and theisotdcontained in the
subassembly very quickly reaches the vaporization tenyeraAfter evaporation of
the sodium, the steel tubes of the fuel pins melt and partsalidify in the bottom
of the assembly remained cold. The fuel pellets then reaghriblting temperature
and form a molten bath placed above the steel of the tubegrdlatooling by inter-
assembly sodium flow results in the formation of a solid fuaktalong the hexagonal
steel casing that temporarily prevents its melting [8]. Té& of the incident depends
essentially on the existence of a plug in the upper part obsembly. At the time
of melting the fuel pellets, it is highly likely that the fisgi gases thus released cause
molten material to the top of the assembly. As a result of tleesolidification a plug,
possibly porous, could be formed.

Several methods of a TIB early detection for théh generation French SFR are
considered in [3]. As it follows from [3], the highest TRL cée attributed to the
method of early detection based on the core outlet tempesatollected from the TCs
above the individual subassemblies. The outlet temperasua permanently moni-
tored parameter for obvious safety reasons. The temperateasurements at the top
of the fuel subassemblies allow the operator to permandiathg a map of the radial
distribution of temperature output core. In the French ept (“Phénix” and “Su-
perphénix”), the core outlet sodium temperature is moaddy TC located inside a
thimble (thermowell) above each subassembly [3]. The TIR stibassembly causes
a rise in temperature of the heat transfer fluid of neighlzgpsitbassemblies while the
temperature measured above the subassembly with a TIB i®pi@sentative for its
detection because the inlet port blockage.
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The principle of the early TIB detection based on the cordebt#¢mperatures is
to detect an abnormal temperature rise with the TCs thatteathie neighboring sub-
assemblies. This temperature rise is a consequence of #timdef adjacent sub-
assemblies by conduction through the hexcans. It has b&emaésd that this heating
resulted in an increase of the neighboring outlet tempegatof a few tenths ofC/s
per second fot0 s (until the hexcans rupture).

Up to our knowledge, the very first recursive filtering methodeduce the outlet
temperatures uncertainties based on the statistical &stimtheory has been proposed
and tested with real data in [5]. The filtered signals useckteat a local temperature
rise by using a rather rudimentary algorithm. The currepgpaan be seen as a further
development of the method proposed in [5] by using the moddaptive statistical
estimation and detection algorithms based on the temperataasurements from the
TCs located above the subassemblies. This involves stgdkim sensitivity of TCs
for the detection of a local temperature rise of at least teigimboring subassemblies
while respecting the probability of non-detection, thehability of false alarm and
the maximum detection delay. The early detection of the Ti&kes it possible to
prevent the propagation of this fusion to the entire actveci.e. adjacent assemblies,
which could result in the destruction of the reactor envelay even the containment
of reactor.

3. Real dataused in this study

The temperature measurements used in this study come frerfrrdinch SFR
“Phénix "(today at final shutdown). They were collecte@®9 during the end-of-life
tests of the plant. These data were provided by the centee@EA in Cadarache. The
core outlet temperatures have been collected from the Ta&seginto the control plug
for real-time observation of sodium outlet temperaturestfindividual subassemblies.
The data acquisition system has been equipped withiaanalog-to-digital converter.
The spatial distribution of TCs in the core is illustratedrigure 2(a).

For this study, we have used the dataset containing the tartupe measurements
from 121 TCs located above the centers of the subassemblies showgureR2(a).
The TCs provide the temperature measurement every thread®d.e. the sampling
period iSAT = 3 s. This dataset is composed of two samples covering two gerio
The first sample covers a 7-day period from 15/02/2009 toZ2(D9. The second
sample covers a second 7-day period from 01/03/2009 to (PU09. The sample
sizes are201587 and 173882 observations, respectively. Moreover, two samples of
the core thermal power synchronized with the two above-ioeet! periods have been
also used.

The instantaneous temperature field measured at the pwsitio,v;), ¢ =
1,...,121, is represented in Figure 2(b). First of all, it is worth magtithat the spatial
distribution of the temperature is not symmetrical. We dap aotice that the temper-
ature is more important in the center than on the edges. Térage temperature in the
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Fig. 2. @) The assembly oi21 fuel rods. b) The instantaneous temperature field measuretCin Blue
crosses indicate the positio(s;, v;) of TC. Black numbers indicate the temperatures Ghcorresponding
to the level curves.

center is approximately equal 560 °C and460 °C in the periphery. The temperatures
do not vary in a homogeneous way over the whole core. Sindeghavior of the tem-
perature depends on the position of the TC, it seems appitefdn take into account
the positions of the TCs to describe the evolution of the tenafjpre.

In the following, we will try to build a model that describdsetvariations of tem-
perature signals in the absence of local temperature iser@ssociated with a TIB.

4. Nominal model of the subassembly outlet temperature

This section is devoted to a stochastic-dynamic model odssdkmbly outlet tem-
peratures measured by a small group of neighboring TCs urwderal operating con-
ditions (without a TIB). The goal of this model is to define ajection of the observed
data on a specially designed subspace, free from the nonpeshiing variations of
the outlet temperatures vectdr € R™ measured eacA7" seconds at the positions
(ui,vi), 1= 1,...,n.

From the preliminary data analysis, it has been establish&idan adequate de-
scription of the local temperature field can be done by theoRegressive Moving
— Average model with eXogenous inputs, i.e. ARMAX ¢) model, wherep is the
order of the AR part and is the order of the MA part. In the sequel, our attention
is restricted to a subclass of ARMA, ¢) model, i.e. to the AutoRegressive model
with eXogenous inputs ARXp) model. There are two reasons for this :
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e Despite the fact that the ARMAXp, ¢) model is more flexible than the ARpp)
model, the parameter estimation in the case of ARM@&Jg) model leads to a
nonlinear minimization problem with the upper bound for thenber of local
minima comparable to the sample size. Adaptive paramet@natton in the
case of ARMAX (p, q) model is even a more difficult problem because the ef-
fective sample size is constant. Hence, the probabilitgéaih a wrong minimum
is positive. In contrast to the ARMAXp, ¢) model, the parameter estimation in
the case of ARXp) model is reduced to a quadratic minimization problem (with
a single minimum). It can be easily solved by using a coneexatirecursive LS
algorithm.

e The approximation of the MA polynomigll — -7 , B';) of orderq by an
AR polynomial (1 — 5’:1 B"'ai) of suitably high ordep is frequently used

q
i 1 ~
1723&*175—32-0%’17»‘1 )

i=1 i=1

whereB! is the operator of the delay (backshift operataB/Y; = Y;_;. Hence,
the ARX (p), p = p + p1, model can be used as an approximation of the AR-
MAX (p1,q) model.

TIB

V5
<_>7A(Neighboring subassemb

O U U

Fig. 3. Representation of two groups withTCs : a potentially accidental subassembly (TIB) with its
neighboring subassemblies.

Let us consider that a group of TCs, i.e. a potentially acuimlesubassembly (TIB)
with its neighbors, is composed of sensors installed at the positios;, v;), i =
1,...,n. This situation is represented in Figure 3. We consider ttiatscalar tem-
perature fieldt” measured each T seconds at the positionis;, v;), i = 1,...,n,Is
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locally modeled by the following dynamic-stochastic ARX equation [9, 10, 11]

p
m(uZBiAZ-)YthXm, t=12....T (2)
=1
whereY; = (y1.1,...,y:n)7 € R" is the vector of observations (temperatures) of

n TCs at the discrete time instaht/, is the identity(n x n) matrix H; X is a ex-
ogenous inputs term, which is used to model the behavioreoirtstantaneous scalar
field of temperatures}? € R’ is the vector of the unknown inputs (regressors),
(1 -7, B'A;) is the AR polynomial of ordep, A; = diag{a;1,..., i} is a
diagonal(n x n) matrix of AR coefficientse; ; is the AR coefficient{¢;},., € R™is
a sequence of i.i.d. random vectors from a zero-mean Gamdﬁuibutioﬁ/\/(o, ¥),
¥ = diag{o?,...,0%}.

Let us discuss the main elements of the ARX model given by (2). The role
of the linear explanatory term with exogenous inputs is taleildhe instantaneous
behavior of the temperature field

ﬁ:ﬁti+§tv t=1,2,...,T (3)

whereY, = (I. — Y°F_, B'A;) Yy s the filtered vector of temperatures. To describe
the temperature field, a polynomial inandv has been chosen. Hence, the filtered
temperaturg, ; measured by the T€located in the position, v;) at timet is given

by

2 2
Gri=heiX + &= Y wlvFamk+pb+&, i=1,...,n (4
k=0 m=0
wherep; is the core thermal power at timeneasured in megawatt (MW) and the row
vectorh; ; of matrix H; is given by

2 2 2

T 2,2 2 ;
ht,i = (uivi; UiV; 5 Uiy UiV, UiUg, Viy Uiy Ug, 17 pt)a 1= 1)"'7”

The vectorX € R, where/ = 10, represents the unknown nuisance parameters
composed of the polynomial coefficients and the coefficiéth®core thermal power.
The first9 coefficients of the vector

T
X = ((12,2, ai,2, @o,2, @21, 1,1, Go,1, 42,0, aA1,0, 40,0, b)

reflet the geometric factors (spatial correlation betwe@'ghborirlg TCs) and the co-
efficientd reflet the impact of the core thermal power. The maffixof size(n x 10)
is composed ofi rowshy ;, i =1,...,n.

Discussion. At first glance, it may seem strange that the last two coluroegist in the
matrix H;. But it is worth noting that the roles of the last two colummstie matrixH,
are different. The ninth column defining the common factahefpolynomial approx-
imation for the temperature field in the core. It is respolesitogether with the firs
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columns, for the best possible instantaneous fitting ofgbignomial approximation

to the temperature field. The tenth column is responsibléiferlinear relationship
between the outlet temperatures and the core thermal paivieth can rapidly variate
between the minimum and maximum values as it happens in #eafahe second 7-
day period from 01/03/2009 to 07/03/2009. The coefficiepigandb of the vectorX
have quite different dynamics (see Figures 8(a) and 9(&))s doexistence improves
the quality of the ARX(p) model given by (2), especially for the second 7-day period
from 01/03/2009 to 07/03/2009.

Therefore, the right-hand side of the AR)) model given by (2) represents a
combination of the regressive part defined by the téfnX and the AR part defined
by the term>~"_, A;Y;_,. Equations (2) and (4) can be re-written in the vector form
as follows

p
Vi=HX+Y AYii+& t=12...T (5)
=1
and in the scalar form

2 2 p
Yt,i = Z Z uiﬁ”vfa,,z7k+ptb+z aj,iyt—j,i+§t,ia i=1,...,n,, t=12,..., T
k=0 m=0 j=1
(6)

The traditional method of the ARX model estimation is to reétathe above equations
(5) and (6) in the form of regression model (see [10])

X
—_—
B Ht 1,1 f
t
- Yi-1,1 Ytp 0 0 o
. ~ ‘£i,1
H, 0 0 @p,1 .
Yt,i == . + :
: 0 0 Eim
0 0 Yt—1,n Yt—p,n ®lL,n
Yt,n
Ap.n
(7)

wheret = 1,2,...,T and X is a vector of unknown parameters of size= ¢ + np.

It consists of two sub-vectors. The sub-vecforof size ¢ represents the regres-
sion (exogenous) parameters and the sub-veéetor ..., ap 1 ... Q1 ..., ap )7 Of
sizenp represents the AR parameters. Therefore, after elapsedrijrthe total re-
gression model is defined by the following equation with tleetersY; » € R"T
(resp. &1, € R™T) formed from the vectords, ..., Yy (resp. &, ...&r) stacked
together and the matri¥?; r of size (T x ¢ + np) formed from the matrices

10



Hy = Hy(Hy,Yy_1,...,Y:_,), t = 1,...,T, stacked together

Y1 Hl 51
Yir= : = f X+ : =HirX+& (8)
Yr Hp ér

5. Adaptive estimation of the outlet temperature model

This section is devoted to the identification of the subasdgiutlet temperature
model given by (7) — (8) under normal operating conditionsgt{@ut a TIB). In the case
of time-invariant systems, the statistical propertie$efltS estimation for the ARXx
model have been studied in [9, 10, 11]. It has been shownlieaARX (p) model is
reduced to a conventional regression model. Hence, it pessall optimal properties
of a linear regression (at least asymptotically, whér> co). It is assumed that the
covariance matrix of the random noisgr € R"" is scalar, i.eof = --- = o, and
cov(é1,1) = o?I,,r. There are two reasons for thig):all the outlet temperatures are
measured by the same K-type TCs and these temperatureg belibre same interval,
i.e. all the TCs have approximately the same Standard DeriéBD)o; of instrumen-
tal errors;ii) the heteroscedasticity has no negative impact on the dwmtesdgorithm
(see details in Section 6.2). Hence, the LS estimation anegidual vector are given
by using the batch df’ data

~ 1 ~
X = (HETHLT) HlT,TYLT, Uyr =Py Yir=Y1r—-Hi7X (9)

whereU; r = (eT...eT)T is the vector formed from residuals, . .., s stacked
together and’y, . = L1 — HLT(HETHLT)*leT is a projection matrix. Putting
together equations (7) — (9), we get the covariance matrikefesiduak; :

S.=cov(e))=(In—B)S, B=E[Hp(H{ Hir) "Hi] (10)

The outlet temperature model estimation should be causaluse it will be used
for the sequential detection of a TIB. A preliminary anadysf the real data revealed
that the behavior of the temperature vectdt},.., of n TCs at geometric positions
(ui,v;),i=1,...,nisnon-stationary. Therefore, for this reason, the regwasnodel
(7) — (8) must be not only sequentially estimated but alsojaeently adapted in real-
time. To avoid the computational burden, it is preferablede the Recursive LS (RLS)
algorithm to estimate/adapt the AR)) model given by (7) — (8). The RLS algorithm
minimizes the following quadratic function of the obserwas (for details see [12])

T 2
Jr(X, Ay, Ay) = Z)\T_t (11)
t=1 2

P
Yo~ HiX =) A
i=1

11



where0 < A\ < 1 is the forgetting factor. For the time-variant (non-statioy) sys-
tem, it is necessary to have a prior model of system dynaroicesign an optimal
estimation algorithm. In the case of the subassembly otateperature, such priori
information is absent. For this reason, the tracking prisgeof the RLS is defined
by a single tuning parameter (for details see [12]). Usually, the forgetting factor is
A € [0.99,0.9999]. The RLS algorithm is defined as follows [12, 13]

1 1 -1
K, = XPthT <In+XHtPt1HtT)
1
P = X(Pt_KthPt—l) L t=1,2,....T (12)
X, = X a+K, (YZ - Ht)?t—l)
€t = Yt*Ht-}?t

where the initial estimatioﬂ?o is assumed to be Gaussiéﬁa ~ N(Xo, Py). If there
205 IS noa priori information available, it can be assumed thgt= 0 and P, = 1, with
~ large.
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Fig. 4. @) The temperatures &f TCs (see (13)) and the reactor thermal power for the first aogvering
a 7-day period from 15/02/2009 to 21/02/2009). The same parameters for the second sample covering a
7-day period from 01/03/2009 to 07/03/2009.

Let us consider a group &f subassemblies with the following TC numbers (see
Figure 2(a))

2320, 23—21, 2322, 24—19, 24—20, 24—21, 25—18, 25—19, 25—20 (13)

The outlet temperatures &f TCs (see (13)) and the reactor thermal power for two

samples covering 7-day periods from 15/02/2009 to 21/@92hd from 01/03/2009

to 07/03/2009 are shown in Figure 4 (a) and (b). From prelamjimnalysis, it has been
210 concluded that an adequate description of the outlet tesyes of a group df TCs
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can be done by using the order of AR-part= 20. The forgetting facton has been
chosen from the interva).999, 0.9999].
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Fig. 5. a) The histogram of the ARX20) model residuals corresponding to the Z€— 21 and its Gaussian
approximationb) The same parameters corresponding to th3 G- 19.

The role of the ARX 20) model in the TIB detection algorithm is the generation
of the residuals{st}tzpﬂ. First of all, let us simplify the covariance matrix. of
residuals given by (10). Let = maxi<; j<n |bi j|, Whereb; ; is the entry in the-th
row and;-th column of the matrix3. As it follows from [12, 13], the efficient sample
sizeT of the LS estimator using a batch’Bfdata is given as a function of the forgetting
factorA: T = (1 4+ A\)/(1 — \). For the forgetting factoA taken from the interval
[0.999,0.9999], the efficient sample siz& belongs to the interval - 103, 2 - 10%].
For such interval of’", typical values ob obtained by using two 7-day periods of the
sodium outlet temperatures belong to the intefval-2, 10~3]. Hence, it is assumed
thaty. ~ ¥ = diag{o?,...,02} in the sequel.

In order to check the main statistical assumptions aboutsiduals{e, },. ., of
the ARX (20) model [9, 10, 12, 13], i.e. their Gaussianity and the abs@fiserial and
cross correlations, the following statistics have beeoutated for the group df TCs
(see (13)):

e The histogram of the ARX20) model residualge; }, . ;.
e The empirical AutoCorrelation Function (ACF) of the resiife; }, ;.
e The empirical correlation matrix of the residudls },- ., ;.

The typical histograms of residuals (corresponding to ZCs- 21 and25 — 19) are
shown in Figure 5(a) and (b). The red line shows the supersegditted Gaussian
Probability Density Function (PDF) calculated by using &mepirical mean and SD.
The residuals of TQ4 — 21 are better fitted to a Gaussian PDF than the residuals of TC

13
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Fig. 6. A one hour registration of the temperatures of 9 T€s (43)).

25 — 19. This fact is explained by a relatively low resolution®bit analog-to-digital
converters. This situation is illustrated by Figure 6. Afoitows from Figure 6, the
guantization step size of some TCs is too rough w.r.t the S8igufals. The empirical
ACFs of residuals are shown in Figure 7(a) and (b). As it fefidrom Figure 7, the
empirical ACFs of residualgs, },-.,, , look like delta-functions. Hence, the hypoth-
esis about the absence of serial correlations seems todg likinally, the empirical
correlation matrixorr(e;) of the residualge, },. ,,, and its determinant are

1.00 0.09 0.04 0.10 0.07 0.05 0.03 0.06 0.07
0.09 1.00 0.07 0.06 0.13 0.10 0.04 0.07 0.06
0.04 0.07 1.00 0.06 0.07 0.03 0.03 0.02 0.06
0.10 0.06 0.06 1.00 0.07 0.05 0.04 0.07 0.10
corr(e;)=1| 0.07 0.13 0.07 0.07 1.00 0.07 0.04 0.09 0.07 (14)
0.05 0.10 0.03 0.05 0.07 1.00 0.04 0.05 0.05
0.03 0.04 0.03 0.04 0.04 0.04 1.00 0.01 0.05
0.06 0.07 0.02 0.07 0.09 0.05 0.01 1.00 0.07
0.07 0.06 0.06 0.10 0.07 0.05 0.05 0.07 1.00

The non-diagonal coefficients of the matrixrr(e;) are close to zero and
det [corr(e¢)] = 0.88 is close to one. From these two facts, the hypothesis abeut th
absence of cross-correlations between the compodents$,.,, ., and{¢
wherel < i # j <9, of the random nois¢€¢; },-., also seems to be likely.

Let us switch to the results of the ARX({) model estimation. The RLS estimations
(with A = 0.9995) of the X (exogenous) and AR part coefficients as functions of

7j}t2p+1’

14
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Fig. 7.a) The ACFs of residual§s ¢ }t>pJr1 for the group oD TCs (see (13)) for the first sample (15/02/2009
to 21/02/2009)b) The ACFs of residuals for the second sample (01/03/2009/@8(2009).

elapsed time in hours are shown in Figures 8 — 9. For the ARghdhte model, only
the first five coefficientsy, ;,..., a5, 4 = 1,...,n, calculated for TQ23 — 20, are
shown in Figures 8 — 9. Other AR coefficients; ;, ..., 20,4, ¢ = 1,...,n, are less
significant. It is clear that the variations of the RLS estioras are more important
for the second sample, due to some changes in the core thepowel of the SFR, as
compared to those from the first sample. It can be concluaed figures 8 — 9 that
the outlet temperatures represent strongly non-statjosignals even for a stationary
operating mode of the SFR.

The crucially important parameter for the design of a TIBed&bn algorithm is
the SD of the random noisg; },..,. This parameter defines the Signal-to-Noise Ratio
(SNR) in the sequel. Obviously, the true SD is unknown. Fisrbason, the unknown
SD will be replaced with its empirical estimation. The engal SD of the residuals
{et};>p 41 for the group ofd TCs (see (13)) are collected in Table 1. It follows from

Sample| TC 23 — 20|23 — 21|23 — 22|24 — 19|24 — 20 24 — 21 25 — 18 25 — 19|25 — 20
First | & 0.17 | 0.20 | 0.25 | 0.16 | 0.21 035 0.22 0.25 | 0.16
Second| 5; 0.18 | 021 | 024 | 0.17 | 021 035 0.22 0.25 | 0.16

Table 1. The estimated SDs of the ARX0] model residuals.

Table 1 that the residuals’ SDs vary betwdené and0.35. The amplitude of their
variations is moderate. Hence it can be concluded that fkialihypothesis about a
scalar covariance matrbov(&; ;) = o21,,; of the random noisg, ; is rather realistic.
Itis worth noting that the residuals’ SDs from Table 1 copesd approximately to the
random error SD obtained for the K-type TCs after a specidredion procedure for
the same temperature range [14, Ch. 12], [15, Ch. 5], [16].
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Fig. 8. a) The X-part coefficients (components of the vec®dmumbered froni to 10), calculated for the
first sample (15/02/2009 to 21/02/2009) The first5 AR-coefficientsay 1, . .., as,1, calculated for TC
23 — 20 and for the first sample (15/02/2009 to 21/02/2009).

6. Statistical detection of a single subassembly TIB

The aim of this section is to study the feasibility of earlgtistical detection of a
single subassembly TIB. We will propose a sequential tesiotiag a local increase in
the sodium outlet temperatures from individual subassiasbleighboring a potential
TIB and calculate the probability of missed detection areddiobability of false alarm
provided that the delay for detection is upper bounded byargtonstant for this
test. The final goal is therefore to provide a complementaoytb improve the early
detection of a single subassembly incident (TIB) in the ernof nuclear safety.

6.1. Sequential reliable detection of abrupt changes

Let us briefly introduce the sequential detection of abrtipingies in the properties
of stochastic processes [17, 18, 19, 20]. We begin with Ligsd@inimax criterion of
optimality [21], which involves the minimization of the (w&-case) mean detection
delay provided that a prescribed level of false alarms isaeted. Let us consider the
non-Bayesian framework, where the “change-potgtis unknown but non-random.
This non-Bayesian framework is realistic for many safattiaal systems. In opposi-
tion the Bayesian framework, it is assumed that there ia paori information on the
distribution oft. Let {y;}:>1 be a sequence of independent random variables and let
to be the index of the first post-change observation

Fy if n <ty

3The Bayesian approach to this problem and its optimal swittave been proposed by Shiryaev [22, 23].
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where Fy is the pre-change Cumulative Distribution Function (CDR)d af}

is the post-change CDF. LeP;, be the joint distribution of the observations
Y1, Y2, s Ytos Yto+1, - - - Whenty < oco. Let Py denote the same whepy = oo,
i.e. there is no change and all the observatigng., - - - are i.i.d. with CDFFy. Let
E,, (resp.Ey) andP;, (resp.lPy) be the expectation and probability w.r.t. the distribu-
tion Py, (resp.Py). Lorden [21] proposed an optimality criterion, which imves the
minimization of the worst-case mean detection delay

inf {E(T) L sup esssup Ey, [(T —to+ 1) |y,... 7yt0—1} } (16)
TeC, to>1

where(z)* = max(0,z), T € {1,2,...} is a stopping time w.r.t. the sequence of
random variablegy; },>1, i.e. an integer random variable such that, for every 1,
the event{T' = t} depends only on the variables, v, ..., y:, among all stopping
timesT belonging to the class

C = {T : Bo(T) = ) (17)

wheren > 0 is a prescribed value of the Average Run Length (ARL) to efalsrm.
The traditional criterion, like (16) — (17), involves themmization of the (worst-
case) mean detection delay provided that the ARL to a fatsenss lower bounded by
a given constant. It is based on the idea initially proposed/ald [24] and motivated
by the economic criteria in quality control when the priceesath new observation is
constant. Using criterion (16) — (17), we accept that sonmeleagths will be very
long, some other — very short, but, in tirean the detection delay will be acceptable.
In safety-critical applications (like a TIB detection)tlife delay for detection is greater
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than the required time-to-aleN, the price of each new observation is infinitely more
important than the price of observation if the delay for détm is less than or equal
to N. For this reason, we propose to use another criterion afbrkelidetection, which
involves the minimization of the worst-case probabilitymissed detection provided
that the worst-case probability of false alarm per a givéaresce periodn,, is upper
bounded.

The reliable detection of (transient) changes is motivhtevo possible scenarios.
The first scenario corresponds to the situation when thereddegphenomena is of
short and maybe unknown (and random) durafiorit is a so-called transient change
detection problem. Sometimes even the “latent” detectien the detection after the
end of transient change) is acceptable [25, 26, 27, 28, 283.sEcond scenario arises
when the observed anomaly (a TIB, for example) leads to seriegradation of the
system performance/safety when the anomaly is detectédtiétdelay greater than
the required time-to-aleV. It is a so-called reliable detection of (transient) change
In the framework of this second scenario, the duratiois assumed to be sufficient,
i.e. N <T'. Achange detected with the delay greater tharn.e.T —t; +1 > N, is
assumed to be missed [30, 31, 32, 33]. On the other hand, fdbeluratior” of the
transient change is smaller, than the required time-td-Alesuch a transient change is
considered as less dangerous because its impact on thmsgsimited or negligible.

Let us formalize the reliable change detection problem. Wesider the sequence
of random variablegy;}:>1. Lett, be the index of the first post-change observa-
tion (unknown and non-random) and the post-change periotisisfficient duratiord®
such thatv < T'. Let us define the generative model of the transient changiéo
prescribed duratiotv

Fo if 1<t<tg
- i g < 18
" { L — if tg<t<to+N-1 (18)
where Fy is the pre-change CDF ank, , ..., Fy, are the known post-change dis-

tributions during the periodv. It is worth noting that the transient change profile is
defined only forN observations after change because all what happens adténté
to + N — 1is considered as a missed detection.

As previously, it is assumed th#&, is the joint distribution of the observations
Y1, 5 Ytos Yto+1, - - - Whenty < oco. Because the considered subclass of stopping
times is based on the variable-threshold truncated Seigli@nbbability Ratio Tests
(SPRT), the existence of a short “pre-heating” pedds assumed. This short period
is necessary to accumulate the firétobservationgy, y», ..., yx in order to avoid
the situation when the truncated SPRT performs by using suiffinient number of
observations. The quality of a statistical decision cam@oguaranteed if the number
of observations is less than the required time-to-alértwhich is also equal to the
minimum duration of the post-change peribdi.e. N < I'. Finally, the optimality

18



300

criterion utilized in this report is given by [31, 32, 33]

inf {@md(T) © sup P (T —to+1>N|T > to)} (19)
TeC, to>N

wherePnq(T) is the worst-case probability of missed detection, amohgtapping
timesT e C,, satisfying

Cy= {T : Pra(T ma)d:dsup Po(<T <l+m,) < a} (20)
(>N

where Py (T;m,,) is the worst-case probability of false alarm during the nefiee

periodm, measured in discrete time.

The design of the transient change detector is discussegilin3p, 33]. Let us
briefly define this FMA test, which has been obtained as a treswdptimisation in
a subclass of truncated SPRT. The stopping tifaga of the FMA test is given as
follows

t

Tewa = inf{t> N: Al yo > h), Al = 3 log2rs)

21
i=t—N-+1 foly:) &

whereA}_, _, denotes the Log-Likelihood Ratio (LLR) calculated for thevimg
windowy: N1, - .., Yz, fo denotes the pre-change probability density function (RDF)
fox_..; denotes the post-change PDF ani$ the threshold. In the context of a TIB
detection,fy is the zero-mean Gaussian PDF of the ARXgre-change residuals and
fox_... is the Gaussian PDF of the ARX(post-change residuals.

To get upper bounds for the probabilitiBsq(Trma) andPea(Teva; me) defined
in criterion (19) — (20), it is necessary to respect somert®eth conditions and define
several probabilities and their bounds. Further detaitsrasults can be found in [32,
33]. The worst-case probability of missed detectiyuy(Trma) is upper bounded as
follows [33]

defp, (Afg”“to‘l < h) o> N (22)

Prmd(Teva) <G(h)
wherelP,;, (A,{X““*I < h) corresponds to the probability of missed detection of the
Neyman-Pearson LLR test calculated for the time windawt, + N — 1] and the
thresholdh. Itis assumed that the CDF of the LLR _, , ;

z— F(z) =P Aty < 2) (23)

is a continuous function ohp— oo; co[ under the measurg,.

The smallest valua; of the upper bound:(h) provided that the upper bound for
the worst-case probability of false alarm is equal to a @®emed valugy, is given
by [33]

=G [F*l ((1 —ao)ﬁ)} (24)
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Finally, the optimal threshold is given by [33]

h—F-! ((1 - ao)ﬁ) (25)

6.2. Rejection of nuisance parameters and adaptive detecti

A key issue in fault detection is to state the significancéefdbserved deviations
(e.g., alocal temperature rise due to a TIB) w.r.t. randoise®and nuisance parame-
ters. Handling the presence of nuisance parameters isdradeenportant issue in this
framework. Distinguishing two subsets of components ofidwe@meter vector, the pa-
rameters of interest and the nuisance parameters, is aegbstause some parameters
of no interest for monitoring. The nuisance parametersytifaf no physical meaning,
may appear in the model for its flexibility or specificatiom,for data interpretation
reasons [34].

Let us consider a group of TCs with a potentially accidental subassembly (TIB).
We will propose a sequential test detecting a local incréafiee sodium outlet tem-
peratures of two subassemblies neighboring a potential FirBt of all, let us define
the generative model of a local increase in the sodium oteghlaperatures by using
equation (5) of the ARXz) model

Y: if 1 <t<ty ~ = P

t:{ Vit Opusr 0 to<t<to+N—1° Y;:ZHtX-l-i_ZlAth—ri-ft

) (26)
where Z, is the vector of sodium outlet temperatures measured by apgod TCs,
to is the TIB arrival time,f4,...,0y are the vectors of additive outlet temperature
profiles due to a TIB§; € R™. Obviously, the period of a local temperature rise due
to a TIB is not limited byN but, as it follows from the criterion (19) — (20), all what
happens aftety, + N — 1 has no impact on the criterion of reliable change detection.
For this reason, we limit the discussion to the vectyrs . ., 0y in the sequel. The

vectorsfy, . .., 0y are parameters of interest (informative parameters) ofrdresient
T

change model. The vectdf = ()?T,am Q1 e Q- .oz,w) is a nuisance
parameter of this model.

An efficient method to manage the nuisance parameters amétbmeter of inter-
est is an invariant hypothesis testing approach (if theimaigoroblem is invariant) or
an adaptive testing method (such as the generalized ldadinatio test) [35, 36, 37].
Key features of these statistical methods are their alidithandle noises and uncer-
tainties, i.e. to reject nuisance parameters, in order ¢@deetween two hypotheses
H, (no local temperature rise due to a TIB) aHd (there exists a local temperature
rise due to a TIB). Let us go back to equation (8) and re-wriigking into account the
generative model (26) with the stacked vectdis, Y1 +, &1+ € R™ and the stacked
matrix H ; of size(nt x £+ np)

Zipg=Y14+ 01 =Hi X+ 011+ & (27)
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where the stacked vectéf is defined as follows

T (28)

(0...00" if 1<t<to
el,t: T T
(0...007...0, 1) if to<t<to+N-1

where( is the zero row vector of appropriate size, and apply the otedf invariant
tests developed in [36, 37] to this regression model (27).

The idea of the invariant hypotheses testing approach isdbas the existence of
the natural invariance of the detection problem w.r.t. @aagegroup of transformation
[39, Ch. 6]. In contrast to the Bayesian approach, the iavarypotheses testing
theory is based on the nuisan&erejection and, therefore, it does not use aryri-
ori information on the distribution oX. It is worth noting that the drawback of the
Bayesian approach in the case of a TIB detection is the fatigw this approach ex-
ploits somea priori information on the distribution oX but this information may be
unreliable. Hence, the Bayesian approach is irrelevamtd@ase of nuisance parame-
ters governed by an unknown environment.

The impact of nuisance parameters, expressed by theAgrX in equation (27),
defines a subspace in the observation spgace R™, i.e. the column spacB(H; ;)
of the matrix H, ; [36, 37]. Because the unknown nuisance param#&tds non-
random, the only solution is to eliminate any impact’6fon the decision function.
Consequently, this solution leads to a projectiotZof on the orthogonal complement
R(H; ;)* of the column spac&(H; ;). The space?(H; ;)" is also well-known un-
der the name “parity space” in the analytical redundaneydiure [38]. It is shown in
[39, Ch. 6], that the optimal invariant tests are based omtéximal invariants (princi-
ple of invariance). In the case of (27) the maximal invariargiven by the projection
of Z; ; onto the left null space of the matrit; , (for details see [36, 37]) :

Vit = Py ,Z14=211— Hi X, X = (Hi,"Hiy) 'HY  Z14 (29)

where Py, , is a projection matrix defined in (9). Hence, starting frora thange-
pointty, the observationg; and the matrice#l;, andH, ; are “contaminated” by the
vectorsdy, ..., O of additive outlet temperature profiles due to a TIB.

As we have mentioned above, to design an adaptive detect@rsient changes,
we use the residuébt}tzp calculated recursively by the RLS (12). Let us re-write the
generative model of transient change (26) for this residual

c N(O, 25) if 1 § t < t() (30)
¢ N(Mt7t0+1, 25) if to<t<tp+N—-1
whereX. ~ ¥ = diag{o?,...,02} is the covariance matrix of residuals and

M;_1,+1 = E (e1>4,) is the transient profile (expectation) of residuals due tdBa T
Finally, let us add the following comment concerning the auipof the het-
eroscedasticity on the detection algorithm. As it followsnh [37, Lemma 1], in the
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case of an arbitrary covariance mat¥bof the random noisg; in the regression model
(5) — (8), the LLR of the maximal invariant statistics can laécalated in two steps.
The first step is a projection df; , onto the “parity space” by using the orthogonal
complemenfR(H; ;)* of the column spac&(H; ;) assuming that the covariance ma-
trix X is scalar. The second step consists in calculating the LL&hafhvariant test by
using the covariance matrix of the residuals obtained #feefirst step. The empirical
estimations of the diagonal elements of this covariance matrix is given in Table 1.
This means that the assumption about a scalar covarianci mfthe random noise
£ in the definitions of the LS and RLS algorithms (9) — (12) hasmegative impact on
the invariant statistics.

As it follows from Sections 4 and 5, the ARX)Y model defined by equations (5)
— (8) requires a permanent adjustment to the real data dieetfatt that the SFR is
a time-variant (non-stationary) system. Hence, the sicaniite of observed deviations
should be established by using an adaptive estimationitigodescribed in Section 5.
The idea to associate a change detection algorithm to artieelaptimation algorithm
(e. g., an adaptive RLS estimator) has been considered j4A3]. The goal of an
adaptive detector of transient changes is to detect theiezldutlet temperature pro-
filesfy,...,0y due to a TIB while considering the nuisance parametersiataown
To solve this problem, it is proposed to use the residl@a,!$t2p calculated by an
adaptive RLS estimator given by (12).

5F — M6 =]E(Ef,,5), t>1t9gTC24—21 |
/1\\ Mg, :]E(Etyg), tZtoTCQS*lg
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Fig. 10. The profiles of the residuals corresponding to a limcaease in the sodium outlet temperatures of
two subassembliezt — 21 and25 — 19 neighboring a potential TIB at the subassenibly- 20 or 25 — 20.
The rate of temperature rising(s5°C/s. The temperature sampling period is 3 s.

Let us consider the following scenario of TIB, described 3. [It is assumed
that a local increase in the sodium outlet temperaturesserobd by the TCs of two
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subassemblies neighboring a potential TIB beginning frobendhange-pointy. The
sodium outlet temperature increases as a linear functibmef The TCs are protected
by thermowells. The transfer function from the thermowgtkeior temperature to the
TC measurement junction is given by the first order systenmniges time constant of
1s[42, Ch. 14]. Typical temperature rising profiles in thadeals corresponding to a
local increase in the sodium outlet temperatures with tteeghtemperature rising of
0.5°C/s are shown in Figure 10.

Let us re-write the LLR (21) of the FMA test for the sequencerediduals:,
calculated by the RLS algorithm (12)

TFMA = inf {t > N : AifNJrl Z h}
t 2
1 My 4N ,j
Moy = > >, [p&,jmitw,j STy (31)
i=t—N+1jeg L J J

whereJ is a subset of TCs neighboring a potential TiB,_;,+1; > 0 is a residual
profile fort > ¢y andj € J. As it follows from [33] :

_ h—1d;\ — h+tas\]1"°
Pmd(Trma) < @ (72j> s Pra(Temas ma) <1 — [‘I) <M>] (32)

Vi Vs

N

M;l3 .
whered; =) w is the total SNR an¢l ;|3 = > m7 ;.
o ’
Jjes J t=1

6.3. Statistical properties of the sequential adaptivedetr

The statistical properties of the adaptive detector defing¢d1) have been exam-
ined by using :

e Asymptotic upper bounds for the probabilities of missededtdn Pmg(Trva)
and false alarn®s,(Trwa; ma) given by (32).

e The sodium outlet temperatures samples covering two peffoch15/02 /2009
to 21,/02/2009 and from01,/03/2009 to 07/03/2009 together with two samples
of the core thermal power synchronized with these temperammples.

The non-zero componenis; € J of the vectord, of additive outlet temperature
rising profiles are defined as follows :

Or—to41,; = RAT(t —to + 1) fort > tp andj € J
Other parameters of the TIB detection scenario are thevioiip
AT =3s, N = 3,4, mq = 3600/AT, o; € [0.16,0.35], A = 0.9995
The asymptotic upper bounds for the probability of missetec®n Pmg(Trva)

are calculated as functions of the upper bounds for the pibityaof false alarm
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Fig. 11. The probability of missed detecti®q(Tkma) as a function of the probability of false alarm per
hourPs,(Trwa; Mo ) for different values of the temperature rising rate {0.200, ...,0.335}°C/s for two
subassemblie24 — 21 and25 — 19 neighboring a potential TIB at the subassentbly— 20 or 25 — 20.
The required time-to-alert s (N = 3).

Pra(Trwa; me) by using equation (32). Representative curves of this fangtaram-
eterized by the rate of temperature risigC/s are shown in Figure 11 and 12. The
results corresponding to the time-to-alertdo$ (or N = 3) are shown in Figure 11
and the results corresponding to the time-to-alertdf (or N = 4) are shown in
Figure 12. It is worth noting that the probability of fals@ah Pe(Tkma; M. ) iS mea-
sured per hour withn,, = 3600/ AT. For examplePu(Tkuma; ma) of 10~° per hour
corresponds to the level of “one false alarm pet1 years” in mean.

The second test realized to evaluate the proposed adaptieetdr defined in (31)
has been done by using the sodium outlet temperature sawipe3Cs (see (13))
covering two7-day periods together with the corresponding samples ofadhe ther-
mal power. The decision functioh;_,_, defined in (31) for these two samples is
presented in Figure 13(a) and (b). It is assumed that thelaigtuTIB onset time is
120 h for both samples. The TIB location is the subasserilbly- 20 or 25 — 20. The
outlet temperature rise in the measurements of theZ € 21 and TC25 — 19 with a
rising rate ofx € 0.5°C/s. The transient change profiles are shown in Figure 10. The
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Fig. 12. The probability of missed detecti®q(Tkma) as a function of the probability of false alarm per
hourPs,(Trewa; M. ) for different values of the temperature rising rate {0.130, ...,0.275}°C/s for two
subassemblie24 — 21 and25 — 19 neighboring a potential TIB at the subassentbly— 20 or 25 — 20.
The required time-to-alert i52 s (N = 4).

detection delay i$ s for both samples; no false alarms have been reported.

7. Conclusion

This paper addresses the adaptive detection of an abn@mpétature rise due to
a TIB in a single subassembly in the core of a SFR. This prollastbeen reduced to
the reliable detection of transient changes in the residofed subassembly outlet tem-
perature parametric model. The proposed adaptive reewaiorithm is composed of
two parts :i) an adaptive RLS algorithm, which estimates the ARXrtodel of outlet
temperatures measured by a local group of TCs installedeatot of the fuel sub-
assemblies and computes the residuals of this mayiélie FMA test for the reliable
transient change detection, which uses these residuaddciaate the LLR in a moving
window and to compare the LLR to a predefined threshold. Téwisstal properties
of this algorithm have been studied by using the asympt@ieubounds for the prob-
abilities of missed detection and false alarm and by usiaegéhl data provided by the
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Fig. 13. a) The decision function/\LNH calculated for the first 7-day period froi/02,/2009 to
21/02/2009. b) The decision functiom\LNH calculated for the secoridday period fronm01,/03,/2009
to 07/03/2009. The simulated TIB onset time 20 h for both periods. The detection delay6is for both

period

S.

center of the CEA in Cadarache.
The following conclusions and perspectives can be drawn :

The proposed detection algorithm is recursive, numesicatible and efficient.

If the required time-to-alert is equal s, the required probability of missed
detection is upper bounded b9—° and the required probability of false alarm is
upper bounded by0—% per hour, then the minimal detectable temperature rising
rate in two subassemblies neighboring a potential TIB itk ~ 0.27°C/s.

If the required time-to-alert ig2 s, then the minimal detectable temperature
rising rate is equal ta ~ 0.2°C/s.

The sampling period of temperature records used in thig/stud7T = 3 s. A
reduction of the sampling periafi7" to 1 s or0.5 s can improve the statistical
properties of the detection algorithm.

Several temperature anomalies have been reported dugrggtiond’-day pe-
riod from01,/03,/2009 to 07/03/2009. These anomalies are not very disturbing
for the proposed TIB detection algorithm but it can be ind&rg to examine this
phenomena carefully in the case of a future study.

Several hundred (thousand) local groups of TCs have to bétoned simulta-
neously to cover a fuel assembly. It is interesting to cormplué probability of
false alarm for such a stream of parallel data in the case wtad study.
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