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e —_— v Micro-thermoelectric generators (UTEGs) are energy harvesting
(4TEG, 28) /’/ solutions to supply electrical power for autonomous microsystems and other
miniature applications. We study here original all-Silicon uTEGs with a planar
configuration in which the heat to harvest flows in-plane of a TE thin film. Such
planar modules are based on a polySi/Au thermopile periodically distributed
onto dielectric membranes; a heat-collector permits to concentrate the energy
to harvest onto half the junctions of the thermopile. This planar topology
allows the implementation of thermocouples with a high aspect ratio
compared to classical vertical TEGs. Heat concentrator is able to collect any

Harvested powerfor different scavenging technologies form of lost heat (even evaporation enthalpy a priori, or radiation..)
andcarespondingelectcpowerconumptionfor e devces

esign & process

1st Initial design : semi-3D micro thermoelectric generator, planar structure,
CMOS compatible process of microfabrication. Surface foot -print ~ 1/3 cm?, build up with 2 parts:

— Bottom part: N, membranes periodically etched in a Si(100) substrate & made of a dielectric bilayer (1,4um sio,/si,N,). A poly-Silicon
(pSi, er=0,3-0,9 um thick, first thermoelement) stripe is deposited on this bilayer & is periodically covered with gold (Au, 2" thermoelement).
This defines a zig-zag shaped thermopile, series of pSi/Au thermocouples (TC) . Ny, tested : 1, 2, 5, 10

Oggran = Oy — Ogp) / (1+ pre/erg xu/Pau)
* The pSi width (L =50, 70 or 200 um) is larger than the Au plated parts (10 um) > this modulated-width thermopile has a reduced
internal electrical resistance R,; = electrical & thermal simulations show a gain in output power generated for larger stripes.

* The TC number, N, is a function of Ny, and L : N=x.Ny, (x =144, 112, 46 for L=50, 70,200 ). For fixed L, R,y is the same.

* The whole is covered with a 15um thick Polylmide layer (robustness & electrical isolation): 15um is a compromise (for 2m-puG up to 32%
higher AT for 30um PI but the benefice fastly diminish with N,, for 10pTEG it is even worse; see evolution in figure section 4.C/...)

— Second part : heat concentrator HC (surf~0,3cm?) also fabricated starting from Si(100). It has as much pillars (N,,) as there are
membranes (200um thick, 5.1 mm long & width optimised versus N,,). Pillars canalyze the heat flow to harvest (@, that arrives on its surface)
into half of the thermopile junctions. A periodical AT is created at each TC.

The HC has also 4 bosses at its corners (mechanical stability, avoid membranes breaking) that short-cut one part of ®:
Drogat = Pittars T Prosses + Peonection + Peavities

Example of planar uTEG: with Ny, = 5 membranes
(noted Sm-uG) with a modulated-width type thermopile
Concentrator

The generated Seebeck voltage at thermopile ends is : Vs = N. arg/a, - ATrc

Supports
T botom pr thermopte

o menbanes e
rovon,

Pillar
N-type Poly-

Fiow charto 1 e
oruTEG it roces |

Contact pads

Cross section XX

1)

N _ 3. C_ha_racterisat}(;n

Renewed design to improve the performance: a few routes to be validated by forthcoming experiments

ical UTEG experimental behaviour : at RT, the heat to harvest is varied from low to very high (@ : 0>sw)

Open circuit voltage is measured -> it gives Seebeck voltage generated Vs.gxp and the difference of temperature AT is deduced using ATyc = Vs/(N. Organ)
Here is given : characterization of uTEG integrating optimum n or p type polySi as the TE layer.

Layer Power Factor isgiven:  PF = olp

The Efficiency Factor is experimental: F = Py /AT
(but F s ‘weak’parameter to evaluate performance ....)
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15> 114 nW/KYcm? Fop : 3> 119 nW/Kfem? o 19 260 WK em? .
Fen K Al Vi and deduced AT are too low: whats the value of = 72
Vyup a0 AT are consistent with .~ 31 W/K/m Vi e and AT consistent with %~ 31 W/k/m 3 7 higher than expected (modified microstructure or so..)

see hereafter revrse deduction by modelling(section 4.0/)

> maximum output power on adapted load : Pyx
Best output power for polySi with best PR

g (exception: codoped pSi = need explanation)
4 on
5
H ason
s
The UTEG module thermal resistance: g T
in a conservative evaluation, it is given - 2
by the slope of the AT(®) experimental 2 3
curve: i~ ATy /@ 3 K
Experimental findings § £
2m-uG : ey ~ 70-113 KW 0 3
(module for situation needing high thermal adapt’) 0 1 2 3 4 5 6 T 8 By
5m-uG : rry ~ 30-71 KW input power (W) g
(best module in terms of Pygy) .
10m-G : rry ~ 1127 KW Best output power generated for 1W heat to harvest 2

(for fixed ® has lower AT so module is less damaged with time)
2m-pG : Pyax ~ 28 - 62 pW/cm? R

(expected 46 - 66)
i 5m-UG : Pyax ~ 45 - 165 pW/cm?

N2ate/aubTs, ; (expected 124 — 192

a PP —— Wbie xpocted 124 - 192)
ax expected value is given by: 4Rinr < 10M-UG : Pyax~ 16 - 86 pW/cm?

Large values are consistent with our geometry using very long TC.

. - . . (expected 67— 135) @ 1 2z 3 a4 s s
The experimental thermopile internal electrical resistance : i ingit bestf power W)
Ryyr often contains a non negligible contribution from UTEGs with codoped pSi : not taken into account
contact resistance (between thermoelements)
> For a fixed amount of heat to harvest, 5- HTEGs are i to perform the best
= However, in any case, these values are low because of large internal i i Ry of the iles pSi/Au.

«4.A/ 3D thermal modelling using COMSOL Multiphysics® *4.D/ Modelling the impact of TE thermal conductivity

Thermal heat flux @

& optimisation of generated output power

b/ Considering different TE layers with different thermal conductivities A

1 1 ' 1 ' H a/ Considering a metal TE layer with good PF and which impacts Preliminary test validate higher AT
1 1 2 less Ry (reduced value and no parasitic contact resistance) To be continued with also better PF
LN 1 H > Constantan/Au thermopile Constantan/Metal TC are being
! 2 A=a tested (2019 - 2020) i X
% AT,s to be generated as a function of input heat to harvest Detrimental codoping ?
TE Most of our classical cases >To be confirmed
< . ~$ I mantrns i Socmn A=20
Geometry of half ynTEG (here 5 membranes, o ; - 110 - [Constantan
y M ( ) ;FECV\S)W?:,QMW/K%M N TR e A=31,4 o — lAwr :;nnemhlcd
A heat flux of 1W is applied on the e=600nm 2 100 Poly-Silicon A Tnput heat
£ unconventional 'on the concentrator
concentrator surface and the S oy si 21 Rt ter
temperature of the backside of the S o 0E il N A= 140 yer
Si substrate is kept at 293 K (RT). % .
(F| e EAEY, - si single crystal
An equivalent layer is considered to < L

Account for multi-layer membranes... -
Lpotysi + Lau
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*4.B/ Geometrical structure optimisation (®=1wW)
AT 5 versus pillar width, w, for UTEG with 2 to 10 membranes

Ny, X ATy versusw - indicative of Py
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The difference of temperature at each TC in the thermopile ~ T"® 4 and 5 membranes UTEG configurations would generate the
BT E3e Qi (et el highest output power (within this modelling and its assumptions)

Their HC should be tailored with optimum pillar width ~ 225 pm.

The difference of temperature being higher for

highest thermal resistance ry,, compared to 5m-puTEG
the bosses of the heat-concentrator - to be taken into account in future design
Reducing @y, by lowering bosses thermal conductivity: done via
local fabrication of Porous Silicone by anodization then oxidization
(annealing at high temperature).
Ag;= 140 W/m/K  VERSUS A porous.sioxidized ~ 1 W/m/K

A C! Redu g the heat lost in MTEGs with 4 membranes, these latter will have the t

The difference of temperature AT can be up to 28%
higher (in 2m-uTEGs) with 150um thick porous-Si bosses

J— Foross - it should be possible to increase Py, by up to 64%
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Example of evaluation of o
Temperaturaldistribution a -
in a half 2m-uTEG when i >
(top) bosses are normal & X !
(bottom) when bosses = » e a2 < 10m-46
are made of porous-Si - LIS

Evaluating the influence of two thicknesses : i/ of porous bosses_and ii/ of polyimide protection layer
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AmTEG

difference of temperature AT, (k)
o
=

Sm-yTEG
SPunx = Ve?/ 4. Ry :
PF and A impact are directly visible 0 o4 60 80 100 120 140 160

TE thermal conductivity A (W/K/m)

SmeuTEGS
Calculated and
best experiment

- Case Constatan/Au: 600/250nm
- Cases for TE layers with PF 8 or 21:
—Experimental points : p and n type polySi
as for p-pSi layer e=280nm, an extrapolation for 600nm is calculated
—Nanostructured TE layer taken with 4. = 4 W/K/m

With a nanostructured TE

Any new polySi would be interesting if it combines low A
(<10W/K/m) and large PF (>151W/K¥cm) in order the WTEGs to
perform equivalently o better than the theoretical Cn/Au case ...

outpt power density P, (WW/cm)

layer (A =4 & PF=21) _ 3
the max output power
would be >0,5mW/cm? L)

for ®=1W heat input ST T

-
5 - Conclusions
All-Silicon planar uTEG with a modular thermal resistance (11-113 K/W) are fabricated by CMOS il i i inga ile built up .
with micro/nano-structured polySi as TE material. The number of on which is iodit laying the ile can be varied and the heat to harvest is
collected through a pillar-based Si-concentrator. The weak point of our WTEGs is their high internal electrical resistance: Py are moderate: up to 62uW/cm?,
164puW/cm?, and 86 uW/cm?, for respectively 2, 5 or 10 membranes UTEGs (1W heat injected).

To better clarify further improvements to be carried out, while keeping the high ry, values, COMSOL 3D thermal simulation was done for different new
situations:
W Better dimensioning: - the optimum membrane number is 4 (not 5): same Py and higher rry
- use larger stripe (L=200um versus currently 70um) should be considered (20% increase in Pyyu)

B Elimination of parasitic heat losses:

VPolyimide layer : confirmation of an optimal thickness (around 15um)

va modified heat-collector/concentrator with corner bosses made of porous Silicon allows to generate up to 64% more power,

but this requires to be validated by experiments (soon)

W Higher Power Factor (PF) effect: considering a thermopile integrating a Constantan layer can double Py (~300 pW/cm? for 1W injected).
Compared to modules with non optimum polysi (ie. with PF < 10 uw/K¥em or so) this represent a reliable way to enhance Py, by a factor of up to 3.
However this is only valid for a TE stripe width of L=50 um (for larger L it decreases)

Dthis is being evaluated (together with 4-membranes configuration and porous bosses in the heat-concentrator)

High PF but bad microstructure of the TE layer : it results in poorer module performance (“cold case” explained : codoped polySi layer may have A> 60W/K/m...

Considering nanostructured TE layer with a thermal conductivity A reduced by a factor of 10 compared to polysi (ie even better than Cn) should result in a higher AT
(24,6% for Sm-UTEG), 50 in @ Pyya 65% higher (assuming same PF as our best p-type polysi)
> in such a case 550-660 pw/cm? should be obtained for a Sm-uTEG harvesting 1W input heat.
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