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Abstract: While usually negligible in standard optical fibers, the group velocity dispersion of
acoustic waves may in some cases play a significant role in the dynamics of stimulated Brillouin
scattering (SBS) in propagation medias with more complex structures, such as microstructured
fibers. The usual 3-wave coherent model of SBS can be adapted to take a perturbative acoustic
dispersion into account, but the slowly varying envelopes approximation does not hold for stronger
values of the acoustic dispersion, which call for a more sophisticated inertial model of SBS. A
new regime of SBS mirror with a spatially inverted acoustic profile is predicted in this limit.
In presence of strong acoustic dispersion, this regime exhibits a higher conversion efficiency
than the usual mirror in the dispersionless case, as well as nonlinear self-stabilization of the
phase of the acoustic wave when the pump is strongly depleted. Formal calculations allow the
identification of regions of strong dynamic dispersion.

1. Introduction

Stimulated Brillouin scatttering (SBS) could once appear as a very well understood nonlinear
phenomenon in optical fibers and waveguides, with a robust coherent three-wave model [1, 2]
fully accounting for its extremely rich dynamics in 1D-media such as single-mode silica optical
fibers (SMF). Indeed, besides the common ’SBS mirror’ [3, 4], both self-stabilized ultracoherent
regimes [5–8], bifurcations [9] and bistability [10], soliton regimes [6, 11], SBS chaos [12,13]
and even SBS rogue waves [14, 15] in SMFs are well described by this 3-wave model.
Nevertheless, a kind of ’renaissance in Brillouin scattering research’ could recently be

heralded [16], with a remarkable extension of the realm of Brillouin lasers in numerous and
varied new kinds of waveguides, including microstructured fibers, silica [17] or chalcogenide [18],
but also multicore fibers [19], micro- and nano-fibers [20, 21], hollow core PCFs [22, 23] as well
as silicon [24] and silicon nitride [25,26] waveguides, optomechanical waveguides [27] and even
on-chip SBS laser devices [28].
In particular, the growing technological importance of photonic crystal fibers (PCF) yielded

special interest on the acoustical properties of small-core PCFs, which microstructuring substan-
tially changes the acoustic dispersion relation, and even the general acoustic properties [29–32]
compared to conventional single-mode fibers.

Recent advances in cavity optomechanics also allowed to design tight confinement structures
with acoustic dispersion values that deviate substantially from the usual linear dispersion relation
of bulk materials or traditional SMFs [33], or even nontrivial topological acoustic band structures
at interfaces [34]. A direct corollary is that some tightly confined acoustic modes may present a
finite cutoff frequency, yielding a flat, Raman-like acoustic dispersion relationl0 (:0) [19,25,29],
that is, a strong acoustic group velocity dispersion near cutoff.
The aim of this article is to explore the consequences of the acoustic dispersion on the 1D

dynamics of SBS. After showing that even perturbative values of this dispersion, still compatible
with an adaptation the usual 3-wave model (§3), can in some cases induce quite significant
effects, we will consider the consequences of a stronger acoustic dispersion. We show that,
relaxing the slowly varying envelopes (SVE) approximation, a new SBS mirror regime with an



inverted acoustic profile and a low threshold can be predicted through a more complete inertial
3-wave model of SBS, and we discuss its specific features (§4). Finally, we will identify potential
regions of strong dynamic acoustic dispersion (§5). An Appendix considers the quite complicated
acoustic dispersion relation in the inertial limit.

2. Dispersionless case

2.1. Standard coherent 3-wave model of SBS

The now standard 3-wave model for SBS optical fibers [1, 2, 35, 36] and, more recently, for
some optomechanical cavities [37] was originally derived from the coherent model of SBS
in laser-plasma interactions [38–41]. It is usually assumed that the slowly varying envelopes
approximation holds for both optical waves (pump and Brillouin, of respective frequencies l?
and l�), as well as for the acoustic wave, of frequency l0, as long as nanosecond or longer
pulsed regimes, or a fortiori stationary or quasi-stationary regimes, are considered. In the 1D
(or quasi-1D) approximation, the coupled evolution equations for the pump (�?), backscattered
Brillouin (��), and acoustic (�0) complex amplitudes read :

(mC + 2/= mG + W4) �? = − (�( ���0 (1)

(mC − 2/= mG + W4) �� =  (�( �?�
∗
0 (2)

(mC + 20 mG + W0) �0 =  (�( �?�
∗
� (3)

where the material density d is dimensioned to an equivalent electric field through d = 8f�0,
with f2 =

d0=
3Y0

2220 , W4 and W0 are the optical and acoustical losses coefficients, respectively, = is the
effective optical index (usually considered identical at both pump and Brillouin frequencies for
numerical simulations, but distinct values can easily be taken into account) and 20 the effective
phase velocity of the considered acoustic mode.
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l? is the SBS coupling coefficient, with ?12 the effective elasto-optic
coefficient of the material [1]. Additional terms in Eq. (3) can account for the initiation of SBS
from thermal noise [2], and in Eqs. (1 &2) for a perturbative optical Kerr effect [1].
Let us emphasize that, since SBS is a coherent 3-wave process, the energy transfers can

happen both ways (i.e. Stokes process : creation of a Brillouin photon and an acoustic phonon at
the expense of a pump photon; antiStokes : creation of a pump photon by recombination of a
Brillouin photon and an acoustic phonon), depending on the relative phases of the three waves.
More precisely, the gain is locally proportional to 2>BΦ, where Φ = i? − i� − i0, and i?,�,0
are respectively the phases of the pump, Brillouin and acoustic waves.
The acoustic propagation term in Eq. (3) is often neglected for simplicity, at the cost of

superimposing an arbitrary gain linewidth that otherwise can be directly derived from system
(1-3) in the stationary regime [42, 43].

The 1D approximation generally holds regardless of the polarization of the acoustic mode as
long as only one such mode at the time is considered [44], typically in SBS lasers or amplifiers.
Few-mode operation, either optical or acoustical, can still be taken into account in a quasi-1D
approach by introducing additional coupled equations, allowing for instance to describe the
coupling between longitudinal and radial or torso-radial acoustic modes in SMFs [45–47] or in
hollow-core PCFs [22]. Nevertheless, the situation becomes intrinsically 3D when a continuum
of bulk elastic waves must be considered [44].



2.2. Common SBS mirror

In the full (phases as well as amplitudes) stationary approximation, the 3-wave coherent model can
be reduced to a 2-wave (pump&Brillouin) ’intensity model’ by re-injecting �0 = �?�∗�/W0) into
Eqs. (1 & 2), whose long-known stationary solution [3,4] is known as a ’SBS mirror’ [35,36,42].
In this regime, the intensities of the three waves (�?,�,0 (G) = |�?,�,0 (G) |2) monotonously

decrease from their maximum value at the fiber end closest to the pump laser (left in Fig. 1).
When the optical losses can be neglected, the counterpropagating pump and Brillouin waves are
parallel (�? (G) − �� (G) = �BC), the slave acoustic wave �0 (G) ∝ �? (G)�� (G) following a similar
distribution (Fig. 1).

Fig. 1. Common (dispersionless, U = 0) SBS mirror: Spatial distribution of the
amplitudes of the three waves (numerical, the dimensionless abscissa is the reduced
fiber length G −→ G/Λ = = (�(

√
�0?G/2; � = 14.5; !/Λ = 30, ` = 4.24,

√
' =

0.091, C/CA = 25.46). Note that the intensities of all three waves monotonously decrease
from the laser input end (left).

Further neglecting the pump depletion would yield an exponential amplification of the Brillouin
wave : �� (G) = �!�4

6(�( �
0
? (!−G) where 6(�( =

= 2
(�(

2W0
is the SBS gain. � = 6(�( �

0
?! is also a

useful dimensionless gain parameter [1].
Nevertheless, the intensity model cannot describe the coherent properties of SBS, such as

the finite width of the gain profile centered around the resonant SBS frequency lA4B
�

defined
by the phase-matching conditions kp = kres

B + kres
a and l? = lA4B� + l

A4B
0 , where : ? = =l?/2,

:A4B
�

= = lA4B
�
/2 and :A4B0 = lA4B0 /20.

When the stationary phase approximation is relaxed to allow off-resonance interaction [42,43],
the coherent 3-wave model yields in the single-frequency seeded SBS amplifier configuration the
traditional lorentzian gain profile of width (FWHM) W0.
When the SBS amplification starts from the acoustic noise [2], the reflectivity �0

�
/�0? of the

mirror becomes significant for large enough gains (typically, � > 21 in standard SMFs [35]),
depending also on the fiber modal structure and strain distribution [48]. In a SBS laser, the
efficiency of the common SBS mirror is determined by the boundary conditions, the output
Brillouin intensity being usually higher than the input pump intensity. Typically, the common
SBS mirror shown in Fig. 1 presents a reflectivity of 75% for a gain � = 14.5.

3. SBS in presence of weak acoustic dispersion

3.1. 3-wave model with perturbative acoustic dispersion

While the issue of the acoustic group velocity dispersion in fibers is a well-known problem in
guided acoustics [49,50], including in the context of SBS in microstructured fibers where specific



losses may strongly affect the acoustic dispersion relation [31, 51], it has mostly been applied to
specific metrology applications [52].

In order to consider its influence on the SBS dynamics, a first approach is to adapt the coherent
3-wave model by integrating in the acoustic Eq. (3) an additional perturbative term 8V0 mCC , where
V0 = 20

32:0
3l0

2 � 1 is the acoustic group velocity dispersion coefficient, yielding:

(mC + 20mG + 8V0 mCC + W0) �0 =  (�( �?�
∗
� (4)

3.2. Stationary SBS mirror

In the full stationary approximation, mCC�0 = 0 and the SBS mirror solution [3, 4] is obviously
identical for both models with [Eqs. (1, 2 & 3)] and without [Eqs. (1, 2 & 4)] acoustic dispersion.
The SBS gain remains unchanged. Taking into account both first order optical and acoustical
dispersion yields a somewhat more complicated form of the gain profile of SBS amplifiers when
the intensities are constant but not the phases, with:

6(�( (Ω) =
W2
0

W2
0 + [(: ′0 + : ′4)Ω]2

6A4B(�( (5)

where 6A4B
(�(

is the usual SBS gain at resonance; Ω = l� − lA4B� = lA4B0 − l0; : ′02A4B0 =

1 − lA4B0 m20
ml0
|lA4B0 ; and : ′42 = = + lA4B�

m=
ml�
|lA4B
�

.
It is interesting to note that the maximum value of the gain, at resonance, is not modified,

but that this expression predicts an almost flat SBS gain whenever (: ′0 + : ′4) = 0, i.e. _� ≈
20
2c (

m=
ml�
− 2= m20

ml0
).

3.3. Dynamics of SBS solitons in presence of weak acoustic dispersion

Like single-mode fiber SBS lasers [6], PCF lasers with small enough feedback [9] exhibit pulsed
solitonic behaviours. Our reference will be the experiment by Woodward et al. [17], where a
SBS linear cavity is constituted by the small Fresnel reflexions at both ends of a 9m-long PCF
fiber with a 3`< core and an hexagonal structure of 0.7`< air holes spaced by 1.9`<, yielding
an effective area of 4.73`<2 at the pump wavelength _? = 532=<. For pump powers between
57 and 123<, , they observed stable solitonic outputs, either sub- or superluminal, with pulses
widths (FWHM) of 14.5 =B42 ± 1.5 =B42 [53]. This 10% fluctuation in soliton width could not
be simply interpreted in the frame of the dispersionless 3-wave model.

Although neither the acoustic dispersion of the PCF fiber used in this experiment, nor a fortiori
its dependence on the pump wavelength, has been determined, a possible interpretation of this
fluctuation would make it a consequence of a steep dispersion relation of the involved acoustic
mode.

Thus, we performed numerical simulations of the Woodward experiment through the 3-wave
model both without [Eqs. (1,2 & 3), V0 = 0] and with [Eqs. (1,2 & 4), V0 = 0.01] perturbative
acoustic dispersion. The normalized SBS gain was set at � = 10.5, corresponding to an injected
pump power �? of about 100<, , and the small (intensity) reinjection coefficient

√
' = 0.091,

ensuring a dynamics well into the solitonic region [10].
As expected, both simulations yielded stable solitonic outputs (Fig. 2), in sound qualitative

agreement with the experiment, but with quite different quantitative features. Indeed, all other
parameters being identical, the dispersionless model yielded almost luminal (EB86=0; = 1.005 2/=)
with a width (FWHM) around 5 =B42, or 0.125 linear roundtrip time [Fig. 2, left], while V0 = 0.01
yielded slightly faster (EB86=0; = 1.025 2/=), but significantly compressed pulses, with a width of
4.6 =B42 [Fig. 2, right], or a compression factor of 15 %. These value roughly corresponded to
the extreme experimental values for the largest and slowest, and most narrow and fastest observed
pulses, respectively.



A perturbative acoustic dispersion value thus appears sufficient to induce significant changes
in the dynamics of a SBS laser, allowing typically for the possibility of a 10 to 15% variations in
the SBS solitons temporal width, and a 2% velocity variation in such devices for V0 variations of
the order of 1% from run to run, depending for instance on the exact pump wavelength or even
on room temperature fluctuations.

Fig. 2. Output of a soliton laser (numerical, coherent 3-wave SVE model for a gain
� = 10.5,

√
' = 0.091). Left: Amplitude �� (0, C) of the Brillouin output without

dispersion (V0 = 0), the soliton travel at almost luminal velocity (E = 1.005 2/=);
right: idem, but taking into account a perturbative acoustic dispersion (V0 = 0.01), the
velocity slightly increases (E = 1.026 2/=) while the solitons are compressed by about
15%. (numerical. The parameters correspond to those of the experiment described
in [17].)

4. Inertial model of SBS in presence of strong acoustic dispersion

4.1. Inertial model

A key feature of the acoustic wave produced through the stimulated Brillouin process is its
long lifetime, typically in the 10 ns range, well above the duration of the optical pulses used
in telecommunications, yielding for instance long range interaction between the latter in fiber
telecommunications [54,55]. A soliton train is best described by a standard nonlinear Schrödinger
(NLS) equation whose solutions are injected as source input in Eq. (1) [56].

A similar procedure can be followed to take into account a strong acoustic group velocity
dispersion. When the slowly varying envelopes approximation is dropped, the acoustic dispersion
relation may become quite complicated (see Appendix), like in the strong field limit previously
explored in laser-plasma SBS interactions [57]. We may thus write V0 = V<0C0 + V8=4AC0 , where
V8=4AC0 is the inertial part of the acoustic dispersion, which can become dominant for rapidly
evolving acoustic fields.

We thus define the generalized acoustic dispersion parameter U = 20 3
2:0
3l2

0
(l0)  (�(

√
�0?/2l0.

Note than, even when the inertial part of the dispersion can be neglected, the reduced parameter
U may cease to be perturbative not only for very high values of the material acoustic GVD V<0C0 ,
but also, for a given V<0C0 , for high input pump intensities.

To obtain the so-called ’inertial’ model of SBS [57], we can now re-write Eq. (1) for non-slowly
varying acoustic envelopes, yielding:

[(1 + 28U)mC + 20mG + 8U (mCC − Y2mGG + W0] �0 =  (�( �?�
∗
� (6)

where the small parameter Y = 20/2 is of the order of 10−5.



Substituting again the full Eq. (6) to the perturbative Eq. (4), we obtain the 1D coherent
3-wave inertial model of SBS by coupling the three Eqs. (1, 2, & 6).

4.2. Dynamical regimes

Implementing numerically this inertial model with parameters corresponding to various exper-
imental devices, either in ring [6, 10] or in line [17] geometries, and various values of U, we
were not able to obtain asymptotically stable solitonic regimes. This result holds both for initial
conditions starting from an uniform noise, and when the acoustic dispersion (i.e. Eq. (6)) is
’switched on’ from an initial condition corresponding to a fully stable solitonic regime obtained
with the dispersionless model (Eqs (1,2 &3) with otherwise identical parameters.

Indeed, when a significant positive acoustic dispersion U > 0.1 was taken into account, all
simulated devices asymptotically evolved towards a quasi-cw SBS mirror regime, either after a
only few roundtrip times in the former case (noisy initial condition), or after very long transitories
in the latter (solitonic initial condition).

4.3. Novel SBS mirror regime with inverted acoustic profile

For long enough evolution times (typically, several hundred roundtrip times, starting from a
pulsed initial condition), all configurations yield stationary regimes for the intensities of the three
waves. The three phases may continue to evolve, as a fully stationary asymptotic regime was
never reached even for very long simulation times.
An unexpected feature of this new inertial SBS mirror is that the spatial distribution of the

acoustic wave is inverted. Indeed, while in the usual, dispersionless SBS mirror (§2.2), the
amplitude of the acoustic wave monotonously decreases from its maximum value at the fiber end
closest to the pump laser (Fig. 1), it now monotonously increases from the input end towards the
far end of the fiber (upper part of Fig. 3) in this new inertial mirror regime.
Another remarkable feature is that this new mirror regime is obtained even for very low SBS

gains of the order of � = 1 or below (� = 0.05 in Fig. 3), to be compared to the � = 14.5 used
in the common mirror of Fig. 1. This is a direct consequence of the build-up of a very strong
acoustic wave at the far end of the fiber: the SBS dynamics and the efficiency of the SBS mirror
is no longer determined either by the level of spontaneous acoustic noise [2] or by the reinjected
Brillouin intensity [9], but by the intensity of the acoustic wave.
As can be seen on the lower part of Fig. 3, while the spatial profile of the intensities have

reached a stable enough asymptotic regime by C = 341 roundtrip times, this is not entirely true
for the phases, which still continue to slowly evolve.
For higher values of the dispersion the inverted mirror presents an almost total reflection,

thus a reflectivity ∼ 1 as is shown in the upper part of Fig. 4 (U = 0.5, � = 0.35) and Fig. 5
(U = 0.55, � = 0.55). On the other hand, a more complex and rapid phase dynamics sets up at
the far end of the fiber, while the amplitude of the acoustic wave (and thus the acoustic pressure)
is already one order of magnitude higher at the far end of the fiber than in the previous case
(lower part of Figs. 4 & 5).

It is interesting to note that this fast phase dynamics, which can be interpreted in terms of
a significant spectral broadening of the two optical waves, remains localized near the far end
of the fiber, with a rather slow variation of the phases on the pump laser side, meaning a still
very coherent Brillouin output. The dynamical self-correction of this complex phase dynamics
upstream of the phase-turbulent zone is reminiscent of the dynamic self-stabilization process of
ultra-coherent SBS lasers [6].
For even higher values of the acoustic dispersion (U = 1), the same process are observed,

only faster (with the inverted mirror fully established in only about 400 roundtrip times, to be
compared to the 1000 of the previous case), and with a far more efficient accumulation process
of the acoustic wave, yielding potentially huge values of the acoustic intensity, to the point of



Fig. 3. SBS mirror with an inverted acoustic profile for a moderate acoustic dispersion
(U = 0.11) and a very low gain (� = 0.05): Spatial distribution of the amplitudes
and phases of the three waves (pump, Brillouin, acoustic) (numerical, dimensionless
abscissa G/Λ with !/Λ = 1.49, ` = 59.96,

√
' = 0.091). The very strong damping

avoids total mirror reflection. Note the increasing acoustic intensity at the far end of
the fiber (top right).

mechanically damaging the fiber [57].

4.4. Discussion

Conventional wisdom suggests that an usual SBS mirror is established when the gain is sufficient
for the three waves to reach together a sufficient intensity, which normally happens near the laser
input end of the device, where the pump intensity is maximal, having not been depleted yet, as
well as the Brillouin intensity, after a cumulative amplification process during its propagation
along the fiber, the much smaller acoustic intensity being mostly considered as a slave variable in
the stationary approximation. Eq. (3) then yields �0 =  (�(

W0
�?�

∗
�
if the acoustic propagation

term is neglected, thus i0 = i? − i� and Φ ∼ 0, that is, a permanent reconstruction of the
acoustic wave through a succession of Stokes (Φ < c) and antiStokes (c < Φ < 2c) SBS
sequences, and a reduced efficiency of the usual Brillouin mirror whenever the relative phases of
the three waves evolve rapidly, whether due to the low coherence of the pump or here, to the
propagation properties of the acoustic wave in presence of strong acoustic GVD.
A direct corollary is that the phase of the acoustic wave ’mirrors’ the fluctuations of the

pump wave to maintain not only Φ ∼ 0, but also a fairly constant phase i� = i? − i0 −Φ for
the Brillouin wave [6] accounting for the nonlinearly self-stabilized ultracoherent SBS laser
regimes [5, 6, 8].
Let us now consider the opposite situation, when the pump is the weakest of the three waves.

Conversely, this is most likely to happen at the far end of the device, where the pump wave is
mostly depleted, while a significant Brillouin amplitude has just been fed through the cavity



Fig. 4. SBS mirror with an inverted acoustic profile for an acoustic dispersion
U = 0.5 showing total reflection. (numerical, dimensionless abscissa G/Λ with
!/Λ = 3.86, � = 0.35, ` = 22.07,

√
' = 0.09). Asymptotic stage for the intensities.

feedback. It is no longer the acoustic wave, but the pump wave itself that will act as an ’absorber’
of the rapid phase evolution of the other two waves to maintain Φ ∼ 0 and an efficient SBS
process. Note that since, to the first order, mCi8 ∝ 1/�8 [42], the closer to the input end of the
fiber and the higher the pump amplitude, the less efficient this mechanism.
The above-mentioned phase self-stabilization process now operates to the benefit of the

acoustic wave, with the phase of the pump wave mirroring the fluctuations of the phase of the
Brillouin wave to maintain Φ ∼ 0, and a fairly constant phase i0 = i? − i� −Φ, yielding an
ultracoherent acoustic wave inside the fiber. Fig. 6 presents two levels of zooming on the phase
dynamics in the right-hand part of Fig. 5 (namely, near G = 4). Note, on the left-hand part
of Fig. 6, the small but significant acoustic phase gradient, which constitutes a signature of a
very coherent but slightly off-resonance acoustic wave, and on its right-hand part, at a stronger
magnification rate, the slight spatial shift between the strongly (anti-)correlated, yet distinct phase
patterns of the two optical waves. A direct corollary is the possibility of locally very narrow
acoustic spectra, potentially yielding linewidths in the Hz range or below. [5]
Another key difference between the two situations is that while, taking into account the very

low quality factor of the cavity, the average Brillouin intensity cannot significantly exceed the
input pump intensity �0? , the same limitation does not apply to the acoustic wave (or rather, would
only apply for values of �!0 of the order of 2

20
�0? ∼ 105�0?). For the acoustic wave, the finite

amplification length is the limiting factor.
Finally, we note that, somewhat counter-intuitively, a strong acoustic dispersion may increase

the efficiency of SBS amplifiers, since the inverted SBS mirror regime appears very effective,
with reflection rates close to 100% for relatively low gain values, such as � = 0.35.

Due to numerical stability problems of our 4-point Runge-Kutta algorithm, we were not able



Fig. 5. SBS mirror with an inverted acoustic profile for a strong acoustic dispersion
U = 1.0 showing total reflection and turbulent pump and Brillouin phases at the far
end of the fiber (right). Asymptotic stage (numerical, � = 0.55, !/Λ = 4.84, ` =
17.60,

√
' = 0.09, C/CA = 422.78).

to reliably implement this inertial model with perturbative values of the acoustic dispersion,
but only for values of U > 0.1. Thus, we couldn’t obtain in this frame the usual SBS mirror
regimes, as observed with the 3-wave model with perturbative acoustic dispersion, nor explore
numerically the transition towards the inverted SBS mirror regime for increasing values of the
pump power (thus of U).
However, formal calculations (see Appendix) allowed us to plot the temporal growth rate W

[not to be confused with the loss coefficients W4 and W0] of an acoustic perturbation as a function
of U. A key result is that any such perturbation is initially unstable (W > 0) for any positive value
of the acoustic dispersion, U > 0, and even for some negative values (Fig. 7). The inertial regime
may thus yield a full mirror behavior even for relatively small values of the acoustic dispersion.

5. Identification of regions of strong inertial dispersion

To identify the spectral regions of strong acoustic dispersion in which we may expect to observe
the new inverted SBS mirror regime, as well as, conversely, the regions of weak dispersion where
a bridge could be established between the two models, inertial and perturbative, we shall search
the maximum values of the temporal growth rate of the acoustic amplitude, W, that is, the extrema
of the function W(:, U).
To this end, and for the simplicity of the already bulky expressions, we will from now on

shift to reduced variables, defining the reduced acoustic amplitude �0 = �0/|�0
? |, the reduced

acoustical losses ` = W0/ (�( |�0
? |, and setting:



Fig. 6. Same as Fig. 5: Successive zooms on the spatial evolution of the phases. Note
the strong anticorrelation of the phases of the pump and Brillouin waves, yielding an
almost uniform phase of the acoustic wave (Φ = q? − q� − q0 ∼ �BC)

Fig. 7. Temporal acoustic growth rate W as a function of the acoustic dispersion U
for a set of values of the dissipation from ` = 20 to ` = 24.5, as obtained from the
dispersion equation. Note that W > 0 for any U > 0.

C/g = C (�( |�0
? | → C G/Λ0 = G= (�( |�0

? |/2 → G (7)

The linearized complex evolution equation for the acoustic amplitude now reads:

[mC + YmG + ` + 8U(mCC + 2`] (mC + mG)�0 = �0 (8)

Let us take:

mC −→ W + 8l mG −→ 8: (9)

in order to obtain the complex characteristic equation:

[W + 8l + 8Y: + ` + 8U(W2 + 28lW − l2 + 2`)] (W + 8l + 8:) = 1 (10)



giving rise to two real equations for the variables W, l, : and U:

W2−l2+ `W−l: −Yl: −UW2l+Ul3−UW2: −2U`l−2U`: −Y:2−2UlW2+YW: = 1 (11)

2lW + W: + Y:W + `l + `: + UW3 − 3Ul2W + 2U`W − 2UlW: = 0 (12)

The aim is to eliminate l from both equations to obtain an equation W = W(:, U) and calculate
"0G [W(:, U)] with respect to the parameter U. Ordering both equations in polynomial form
with respect to l, we get:

Ul3 − l2 − (: + Y: + 3UW2 + 2U`) l + `W − UW2: − 2U`: − Y:2 + YW: + W2 = 1 (13)

− (3UW) l2 + (2W + ` − 2UW:) l + W: + YW: + `: + UW3 + 2U`W) = 0 (14)

These cubic Eq. (13) and quadratic Eq. (14) equations in l can be solved, but the elimination
of l leads to a lenghty polynomial expression for W = W(:, U) (detailed in the Appendix: Eq.
(15)), which maximum with respect to U can only be found numerically. Formal calculations
using the Maple algorithm confirm that certain values of the acoustic (thus of the pump) frequency
maximize the acoustic dispersion up to values where it can be considered strong.
Working Eq.(15) with Maple also allowed us to look into the dependence of the reduced

dispersion U over the wavevector : . For a given value ` of the losses, we obtain a double implicit
mathematical solutions U(:) of Eq. (15), as shown in Figure 8. Of these two, only the lower one
presents a physical meaning. The apparent avoided crossing between the upper and the lower
solutions defines a critical value of the wavevector, :2A8C , below which the dispersion reaches
very high values (almost vertical section in Fig. 8, yielding :2A8C ∼ 2.8 for ` = 21).

Moreover, since l varies almost linearly with : (Fig.9), we can also deduce a critical acoustic
frequency l2A8C0 below which the dispersion may be strongly enhanced.

6. Conclusion

We have established that, for singular values of the pump wavelength associated to high values of
the acoustic group velocity dispersion, which may be observed in photonic crystal fibers, this
latter parameter can have a significant influence on the dynamics of SBS devices.
We have further established the possibility of a new SBS mirror regime with an inverted

spatial acoustic profile, which may offer a high reflectance (∼ 100%) even for rather small pump
intensities for some special frequencies at which the acoustic dispersion is strong enough, that
may appear with a high spectral selectivity in PCFs of, possibly, in specially designed Brillouin
microcavities.

We have also identified a new nonlinear self-stabilisation process of the phase of the acoustic
wave, which may occur in the inverted mirror regime when the pump intensity is severely depleted
and drops to very low values.

Further research will nevertheless be needed in order to validate the full 3-wave inertial model
of stimulated Brillouin scattering for weak or moderate values of the acoustic dispersion and/or
of the pump power and determine the respective validity domains of this inertial model and of
the pertubative acoustic dispersion model.
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Fig. 8. Implicit solutions U(:) of the dispersion relation (Eq. 15) for W = 0.35, Y = 10−5

and ` = 21. Note, on the upper left, the avoided crossing between the upper and lower
solutions, only the latter having a physical meaning, and the almost vertical slope below
:2A8C ∼ 2.8.

Fig. 9. Quasi-linear dispersion relation l(:) for W = 0.2573, U = 0.745, Y = 0 and a set
of values of the dissipation from ` = 4 to ` = 20, allowing to deduce l2A8C from :2A8C .

7. Appendix: Resolution of the complex dispersion relation in the inertial limit

Eqs. (13) and (14) contain six variables, namely l, k, Y = 20
2
, the reduced acoustic dispersion U

and losses `, and the growth rate W of the acoustic instability.
We are interested on the function W(U) and we thus keep the other variables as known

parameters. Eliminating l and calculating the lexicographical Gröbner basis expression [58], we



obtain the following 5-parameter polynomial :

� = 64 W9U4 − 3 W7U4:2 − 8 W5U4:4 + 192 W7`U4 + 96 W7YU3: + 18 W6YU3:2 − 68 W5`U4:2

− 34 W5YU3:3 + 8 W4YU3:4 − 16 W3`U4:4 − 8 W3YU3:5 + 144W5`2U4 + 64 W7U3:

+ 60 W6`U3: + 144W5`YU3: + 9 W5Y2U2:2 + 108 W4`YU3:2 − 124 W3`2U4:2

+ 54 W4Y2U2:3 + 4 W5U3:3 − 10 W4`U3:3 − 124 W3`YU3:3 − 31 W3Y2U2:4 + 32 W3`3U4

− 36 W5`YU2: + 116 W5`U3: + 128 W4`2U3: + 48 W3`2YU3: + 58 W5YU2:2

+ 64 W4`YU2:2 + 24 W3`Y2U2:2 + 4 W3Y3U:3 − 12 W4YU2:3 + 6 W3`YU2:3

+ 8 W3`U3:3 − 20 W2`2U3:3 + 4 W3YU2:4 − 10 W2`YU2:4 + 32 W7U2 + 16 W6`U2

− 12 W5`2U2 + 36 W4`YU2: − 18 W5U3: − 24 W3`2U3: + 16 W2`3U3: + 18 W4Y2U:2

+ 10 W5U2:2 + 12 W4`U2:2 + 6 W3`2U2:2 − 24 W3`YU2:2 + 16 W2`2YU2:2 − 6 W3Y2U:3

+ 4 W2`Y2U:3 − 8 W3U3:3 − 4 W3U2:4 − 4 W2`U2:4 + 48 W5`U2 + 32 W4`2U2 − 8 W3`3U2

+ 24 W5YU: + 16 W4`YU: − 4 W3`2YU: + 54 W4YU2: − 108 W3`U3: + 18 W4YU:2

+ 12 W3`YU:2 − 3 W2`2YU:2 − 12 W3`U2:2 − 12 W2`2U2:2 + 8 W`3U2:2 − 54 W3YU2:2

− 6 W3YU:3 − 6 W2`YU:3 + 4 W`2YU:3 + 36 W4`U2 + 4 W3`2U2 − 4 W`4U2 + 20 W5U:

+ 32 W4`U: + 7 W3`2U: − 5 W2`3U: + 4 W3`YU: − 4 W`3YU: + W3Y2:2 − W`2Y2:2

+ 12 W3U2:2 − 6 W2`U2:2 + 4 W3U:3 + 2 W2`U:3 − W`2U:3 + `30:3 − 36 W3`U2

+ 4 W4Y: − 3 W2`2Y: − W`3Y: − 4 W3`U: + 4 W`3U: − 18 W3YU: − 2 W3Y:2 + 2 W`2Y:2

+ 4 W5 + 4 W4` − 3 W3`2 − 4 W2`3 − W`4 − 27 W3U2 − 18 W3U: − 12 W2`U: + 3 W`2U:

+ W3:2 − W`2:2 − 4 W3 + 3 W`2 + `3

(15)

From there, formal calculations in Maple allowed us to determine the growth rate W as a
function of U for any given set of values of the other parameters (Fig. 7). These results appear
mostly insensitive to the order of magnitude of the small parameter Y, from 10−5 to about 0.1.
It also allowed to plot the acoustic dispersion 32:

3l2 as a function of l0 (Fig. 10) (Note
that this physical parameter may vary with l0 and �0? even as the reduced parameter U =

20
32:
3l2 (�(

√
�0?/2l0 remains constant.)

Figure 11 shows two sets of the same implicit mathematical solutions for different values of `.
Note that these are not monotonous, almost parallel curves, as might appear at first glance, but
two upper and two lower sets of solutions with avoided crossings, as emphasized by the zoom of
Fig. 7.
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