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Brillouin mirror with inverted acoustic profile in presence of strong acoustic dispersion

While usually negligible in standard optical fibers, the group velocity dispersion of acoustic waves may in some cases play a significant role in the dynamics of stimulated Brillouin scattering (SBS) in propagation medias with more complex structures, such as microstructured fibers. The usual 3-wave coherent model of SBS can be adapted to take a perturbative acoustic dispersion into account, but the slowly varying envelopes approximation does not hold for stronger values of the acoustic dispersion, which call for a more sophisticated inertial model of SBS. A new regime of SBS mirror with a spatially inverted acoustic profile is predicted in this limit. In presence of strong acoustic dispersion, this regime exhibits a higher conversion efficiency than the usual mirror in the dispersionless case, as well as nonlinear self-stabilization of the phase of the acoustic wave when the pump is strongly depleted. Formal calculations allow the identification of regions of strong dynamic dispersion.

Introduction

Stimulated Brillouin scatttering (SBS) could once appear as a very well understood nonlinear phenomenon in optical fibers and waveguides, with a robust coherent three-wave model [START_REF] Botineau | Stabilization of a stimulated brillouin fiber ring laser by strong pump modulation[END_REF][START_REF] Boyd | Noise initiation of stimulated brillouin scattering[END_REF] fully accounting for its extremely rich dynamics in 1D-media such as single-mode silica optical fibers (SMF). Indeed, besides the common 'SBS mirror' [START_REF] Tang | Saturation and spectral caracteristics of the stokes emission in the stimulated brillouin process[END_REF][START_REF] Enns | Saturation and depletion in stimulated light scattering[END_REF], both self-stabilized ultracoherent regimes [START_REF] Smith | Narrow-linewidth stimulated brillouin fiber laser and applications[END_REF][START_REF] Picholle | Observation of dissipative superluminous solitons in a brillouin fiber ring laser[END_REF][START_REF] Diamandi | Ultra-narrowband integrated brillouin laser[END_REF][START_REF] Gundavarapu | Sub-hertz fundamental linewidth photonic integrated brillouin laser[END_REF], bifurcations [START_REF] Montes | Bifurcation in a cw-pumped brillouin fiber ring laser: coherent sbs soliton morphogenesis[END_REF] and bistability [START_REF] Montes | Self-pulsing and bistability in cw-pumped brillouin fiber ring laser[END_REF], soliton regimes [START_REF] Picholle | Observation of dissipative superluminous solitons in a brillouin fiber ring laser[END_REF][START_REF] Kaup | The first-order perturbed stimulated brillouin scattering equations[END_REF], SBS chaos [START_REF] Gaeta | Stochastic dynamics of stimulated brillouin scattering in an optical fiber[END_REF][START_REF] Harrison | Evidence of chaotic stimulated brillouin scattering in optical fibers[END_REF] and even SBS rogue waves [START_REF] Chen | Optical rogue waves in parametric three-wave mixing and coherent stimulated scattering[END_REF][START_REF] Boukhaoui | Influence of higher-order stimulated brillouin scattering on the occurrence of extreme events in self-pulsing fiber lasers[END_REF] in SMFs are well described by this 3-wave model.

Nevertheless, a kind of 'renaissance in Brillouin scattering research' could recently be heralded [START_REF] Eggleton | Brillouin integrated photonics[END_REF], with a remarkable extension of the realm of Brillouin lasers in numerous and varied new kinds of waveguides, including microstructured fibers, silica [START_REF] Woodward | Stimulated brillouin scattering of visible light in small-core photonic crystal fibers[END_REF] or chalcogenide [START_REF] Tow | Linewidth-narrowing and intensity noise reduction of the second order stokes component of a low threshold brillouin laser made of 10 22 68 chalcogenide fiber[END_REF], but also multicore fibers [START_REF] Diamandi | Optomechanical interactions in multi-more optical fibers and their applications[END_REF], micro-and nano-fibers [START_REF] Beugnot | Brillouin light scattering from surface acoustic waves in a subwavelength diameter optical fiber[END_REF][START_REF] Godet | Brillouin spectroscopy of optical microfibers and nanofibers[END_REF], hollow core PCFs [START_REF] Zhong | Depolarized guided acoustic wave brillouin scattering in hollow-core photonic crystal fibers[END_REF][START_REF] Yang | Giant brillouin amplification in gas using hollow-core waveguides[END_REF] as well as silicon [START_REF] Otterstrom | A silicon brillouin laser[END_REF] and silicon nitride [START_REF] Dehghannasiri | Raman-like stimulated brillouin scattering in phononic-crystalassisted silicon-nitride waveguides[END_REF][START_REF] Gyger | Observation of stimulated brillouin scattering in silicon nitride integrated waveguides[END_REF] waveguides, optomechanical waveguides [START_REF] Zhang | Subwavelength engineering for brillouin gain optimization in silicon optomechanical waveguides[END_REF] and even on-chip SBS laser devices [START_REF] Morrison | Compact brillouin devices through hybrid integration on silicon[END_REF].

In particular, the growing technological importance of photonic crystal fibers (PCF) yielded special interest on the acoustical properties of small-core PCFs, which microstructuring substantially changes the acoustic dispersion relation, and even the general acoustic properties [START_REF] Dainese | Raman-like light scattering from acoustic phonons in photonic crystal fiber[END_REF][START_REF] Dainese | Stimulated brillouin scattering from multi-ghz guided acoustic phonons in nanostructured photonic crystal fibres guided acoustics[END_REF][START_REF] Moiseyenko | Material loss influence on the complex band structure and group velocity in phononic crystals[END_REF][START_REF] Beugnot | Electrostriction and guidance of acoustic phonons in optical fibers[END_REF] compared to conventional single-mode fibers.

Recent advances in cavity optomechanics also allowed to design tight confinement structures with acoustic dispersion values that deviate substantially from the usual linear dispersion relation of bulk materials or traditional SMFs [START_REF] Wiederhecker | Brillouin optomechanics in nanophotonic structures[END_REF], or even nontrivial topological acoustic band structures at interfaces [START_REF] Arregui | Coherent generation and detection of acoustic phonons in topological nanocavities[END_REF]. A direct corollary is that some tightly confined acoustic modes may present a finite cutoff frequency, yielding a flat, Raman-like acoustic dispersion relation ( ) [START_REF] Diamandi | Optomechanical interactions in multi-more optical fibers and their applications[END_REF][START_REF] Dehghannasiri | Raman-like stimulated brillouin scattering in phononic-crystalassisted silicon-nitride waveguides[END_REF][START_REF] Dainese | Raman-like light scattering from acoustic phonons in photonic crystal fiber[END_REF], that is, a strong acoustic group velocity dispersion near cutoff.

The aim of this article is to explore the consequences of the acoustic dispersion on the 1D dynamics of SBS. After showing that even perturbative values of this dispersion, still compatible with an adaptation the usual 3-wave model ( §3), can in some cases induce quite significant effects, we will consider the consequences of a stronger acoustic dispersion. We show that, relaxing the slowly varying envelopes (SVE) approximation, a new SBS mirror regime with an inverted acoustic profile and a low threshold can be predicted through a more complete inertial 3-wave model of SBS, and we discuss its specific features ( §4). Finally, we will identify potential regions of strong dynamic acoustic dispersion ( §5). An Appendix considers the quite complicated acoustic dispersion relation in the inertial limit.

Dispersionless case

Standard coherent 3-wave model of SBS

The now standard 3-wave model for SBS optical fibers [START_REF] Botineau | Stabilization of a stimulated brillouin fiber ring laser by strong pump modulation[END_REF][START_REF] Boyd | Noise initiation of stimulated brillouin scattering[END_REF][START_REF]Nonlinear Fiber Optics[END_REF][START_REF] Boyd | Nonlinear Optics[END_REF] and, more recently, for some optomechanical cavities [START_REF] Laer | Unifying brillouin scattering and cavity optomechanics[END_REF] was originally derived from the coherent model of SBS in laser-plasma interactions [START_REF] Montes | Efficient way to prevent reflection from stimulated brillouin backscattering[END_REF][START_REF] Montes | Reflection limitation by driven stimulated brillouin rescattering and finite bandwidth spectral interaction[END_REF][START_REF] Coste | Asymptotic evolution of stimulated brillouin scattering: Implications for optical fibers[END_REF][START_REF] Montes | Optical turbulence in multiple stimulated brillouin backscattering[END_REF]. It is usually assumed that the slowly varying envelopes approximation holds for both optical waves (pump and Brillouin, of respective frequencies and ), as well as for the acoustic wave, of frequency , as long as nanosecond or longer pulsed regimes, or a fortiori stationary or quasi-stationary regimes, are considered. In the 1D (or quasi-1D) approximation, the coupled evolution equations for the pump ( ), backscattered Brillouin ( ), and acoustic ( ) complex amplitudes read :

( + / + ) = - (1) 
( -/ + ) = * (2) 
( + + ) = * (3) 
where the material density is dimensioned to an equivalent electric field through = , with 2 = 0 3 0 2 , and are the optical and acoustical losses coefficients, respectively, is the effective optical index (usually considered identical at both pump and Brillouin frequencies for numerical simulations, but distinct values can easily be taken into account) and the effective phase velocity of the considered acoustic mode. is the SBS coupling coefficient, with 12 the effective elasto-optic coefficient of the material [START_REF] Botineau | Stabilization of a stimulated brillouin fiber ring laser by strong pump modulation[END_REF]. Additional terms in Eq. ( 3) can account for the initiation of SBS from thermal noise [START_REF] Boyd | Noise initiation of stimulated brillouin scattering[END_REF], and in Eqs. (1 &2) for a perturbative optical Kerr effect [START_REF] Botineau | Stabilization of a stimulated brillouin fiber ring laser by strong pump modulation[END_REF]. Let us emphasize that, since SBS is a coherent 3-wave process, the energy transfers can happen both ways (i.e. Stokes process : creation of a Brillouin photon and an acoustic phonon at the expense of a pump photon; antiStokes : creation of a pump photon by recombination of a Brillouin photon and an acoustic phonon), depending on the relative phases of the three waves. More precisely, the gain is locally proportional to Φ, where Φ = --, and , , are respectively the phases of the pump, Brillouin and acoustic waves.

The acoustic propagation term in Eq. ( 3) is often neglected for simplicity, at the cost of superimposing an arbitrary gain linewidth that otherwise can be directly derived from system (1-3) in the stationary regime [START_REF] Botineau | A coherent approach to stationary stimulated brillouin fiber amplifiers[END_REF][START_REF] Wolff | Stimulated brillouin scattering in integrated photonic waveguides: Forces, scattering mechanisms, and coupled-mode analysis[END_REF].

The 1D approximation generally holds regardless of the polarization of the acoustic mode as long as only one such mode at the time is considered [START_REF] Laude | Spontaneous brillouin scattering spectrum and coherent brillouin gain in optical fibers[END_REF], typically in SBS lasers or amplifiers. Few-mode operation, either optical or acoustical, can still be taken into account in a quasi-1D approach by introducing additional coupled equations, allowing for instance to describe the coupling between longitudinal and radial or torso-radial acoustic modes in SMFs [START_REF] Picholle | Guided-acoustic-wave resonances in the dynamics of a brillouin fiber ring laser[END_REF][START_REF] Bongrand | Coherent model of cladding brillouin scattering in single-mode optical fibers[END_REF][START_REF] Bongrand | Coupled longitudinal and transverse stimulated brillouin scattering in single-mode optical fibers[END_REF] or in hollow-core PCFs [START_REF] Zhong | Depolarized guided acoustic wave brillouin scattering in hollow-core photonic crystal fibers[END_REF]. Nevertheless, the situation becomes intrinsically 3D when a continuum of bulk elastic waves must be considered [START_REF] Laude | Spontaneous brillouin scattering spectrum and coherent brillouin gain in optical fibers[END_REF].

Common SBS mirror

In the full (phases as well as amplitudes) stationary approximation, the 3-wave coherent model can be reduced to a 2-wave (pump & Brillouin) 'intensity model' by re-injecting = * / ) into Eqs. (1 & 2), whose long-known stationary solution [START_REF] Tang | Saturation and spectral caracteristics of the stokes emission in the stimulated brillouin process[END_REF][START_REF] Enns | Saturation and depletion in stimulated light scattering[END_REF] is known as a 'SBS mirror' [START_REF]Nonlinear Fiber Optics[END_REF][START_REF] Boyd | Nonlinear Optics[END_REF][START_REF] Botineau | A coherent approach to stationary stimulated brillouin fiber amplifiers[END_REF].

In this regime, the intensities of the three waves ( , , ( ) = | , , ( )| 2 ) monotonously decrease from their maximum value at the fiber end closest to the pump laser (left in Fig. 1). When the optical losses can be neglected, the counterpropagating pump and Brillouin waves are parallel ( ( ) -( ) =

), the slave acoustic wave ( ) ∝ ( ) ( ) following a similar distribution (Fig. 1). is the SBS gain. = 0 is also a useful dimensionless gain parameter [START_REF] Botineau | Stabilization of a stimulated brillouin fiber ring laser by strong pump modulation[END_REF].

Nevertheless, the intensity model cannot describe the coherent properties of SBS, such as the finite width of the gain profile centered around the resonant SBS frequency defined by the phase-matching conditions k p = k res B + k res a and = + , where = / , = / and = / . When the stationary phase approximation is relaxed to allow off-resonance interaction [START_REF] Botineau | A coherent approach to stationary stimulated brillouin fiber amplifiers[END_REF][START_REF] Wolff | Stimulated brillouin scattering in integrated photonic waveguides: Forces, scattering mechanisms, and coupled-mode analysis[END_REF], the coherent 3-wave model yields in the single-frequency seeded SBS amplifier configuration the traditional lorentzian gain profile of width (FWHM) .

When the SBS amplification starts from the acoustic noise [START_REF] Boyd | Noise initiation of stimulated brillouin scattering[END_REF], the reflectivity 0 / 0 of the mirror becomes significant for large enough gains (typically, > 21 in standard SMFs [START_REF]Nonlinear Fiber Optics[END_REF]), depending also on the fiber modal structure and strain distribution [START_REF] Engelbrecht | Analysis of sbs gain shaping and threshold increase by arbitrary strain distributions[END_REF]. In a SBS laser, the efficiency of the common SBS mirror is determined by the boundary conditions, the output Brillouin intensity being usually higher than the input pump intensity. Typically, the common SBS mirror shown in Fig. 1 presents a reflectivity of 75% for a gain = 14.5.

SBS in presence of weak acoustic dispersion

3-wave model with perturbative acoustic dispersion

While the issue of the acoustic group velocity dispersion in fibers is a well-known problem in guided acoustics [START_REF] Maldovan | Sound and heat revolutions in phononics[END_REF][START_REF] Nikitov | Elastic wave propagation in a microstructured acoustic fiber[END_REF], including in the context of SBS in microstructured fibers where specific losses may strongly affect the acoustic dispersion relation [START_REF] Moiseyenko | Material loss influence on the complex band structure and group velocity in phononic crystals[END_REF][START_REF] Laude | Effect of loss on the dispersion relation of photonic and phononic crystals[END_REF], it has mostly been applied to specific metrology applications [START_REF] Lim | High-accuracy measurement of cladding noncircularity based on phase velocity difference between acoustic polarization modes[END_REF].

In order to consider its influence on the SBS dynamics, a first approach is to adapt the coherent 3-wave model by integrating in the acoustic Eq. ( 3) an additional perturbative term , where = 2 2 1 is the acoustic group velocity dispersion coefficient, yielding:

( + + + ) = * (4) 

Stationary SBS mirror

In the full stationary approximation, = 0 and the SBS mirror solution [START_REF] Tang | Saturation and spectral caracteristics of the stokes emission in the stimulated brillouin process[END_REF][START_REF] Enns | Saturation and depletion in stimulated light scattering[END_REF] is obviously identical for both models with [Eqs. (1, 2 & 3)] and without [Eqs. (1, 2 & 4)] acoustic dispersion. The SBS gain remains unchanged. Taking into account both first order optical and acoustical dispersion yields a somewhat more complicated form of the gain profile of SBS amplifiers when the intensities are constant but not the phases, with:

(Ω) = 2 2 + [( + ) Ω] 2 (5) 
where is the usual SBS gain at resonance;

Ω = - = - ; = 1 - | ; and = + | .
It is interesting to note that the maximum value of the gain, at resonance, is not modified, but that this expression predicts an almost flat SBS gain whenever

( + ) = 0, i.e. ≈ 2 ( - 2 
).

Dynamics of SBS solitons in presence of weak acoustic dispersion

Like single-mode fiber SBS lasers [START_REF] Picholle | Observation of dissipative superluminous solitons in a brillouin fiber ring laser[END_REF], PCF lasers with small enough feedback [START_REF] Montes | Bifurcation in a cw-pumped brillouin fiber ring laser: coherent sbs soliton morphogenesis[END_REF] exhibit pulsed solitonic behaviours. Our reference will be the experiment by Woodward et al. [START_REF] Woodward | Stimulated brillouin scattering of visible light in small-core photonic crystal fibers[END_REF], where a SBS linear cavity is constituted by the small Fresnel reflexions at both ends of a 9m-long PCF fiber with a 3 core and an hexagonal structure of 0.7 air holes spaced by 1.9 , yielding an effective area of 4.73 2 at the pump wavelength = 532 . For pump powers between 57 and 123 , they observed stable solitonic outputs, either sub-or superluminal, with pulses widths (FWHM) of 14.5 ± 1.5 [START_REF] Woodward | Brillouin solitons and enhanced mirror in the presence of acoustic dispersion in a small-core photonic crystal fiber[END_REF]. This 10% fluctuation in soliton width could not be simply interpreted in the frame of the dispersionless 3-wave model.

Although neither the acoustic dispersion of the PCF fiber used in this experiment, nor a fortiori its dependence on the pump wavelength, has been determined, a possible interpretation of this fluctuation would make it a consequence of a steep dispersion relation of the involved acoustic mode. Thus, we performed numerical simulations of the Woodward experiment through the 3-wave model both without [Eqs. , and the small (intensity) reinjection coefficient √ = 0.091, ensuring a dynamics well into the solitonic region [START_REF] Montes | Self-pulsing and bistability in cw-pumped brillouin fiber ring laser[END_REF].

As expected, both simulations yielded stable solitonic outputs (Fig. 2), in sound qualitative agreement with the experiment, but with quite different quantitative features. Indeed, all other parameters being identical, the dispersionless model yielded almost luminal ( = 1.005 / ) with a width (FWHM) around 5 , or 0.125 linear roundtrip time [Fig. 2, left], while = 0.01 yielded slightly faster ( = 1.025 / ), but significantly compressed pulses, with a width of 4. [START_REF] Picholle | Observation of dissipative superluminous solitons in a brillouin fiber ring laser[END_REF] [Fig. 2, right], or a compression factor of 15 %. These value roughly corresponded to the extreme experimental values for the largest and slowest, and most narrow and fastest observed pulses, respectively.

A perturbative acoustic dispersion value thus appears sufficient to induce significant changes in the dynamics of a SBS laser, allowing typically for the possibility of a 10 to 15% variations in the SBS solitons temporal width, and a 2% velocity variation in such devices for variations of the order of 1% from run to run, depending for instance on the exact pump wavelength or even on room temperature fluctuations. 

Inertial model of SBS in presence of strong acoustic dispersion

Inertial model

A key feature of the acoustic wave produced through the stimulated Brillouin process is its long lifetime, typically in the 10 ns range, well above the duration of the optical pulses used in telecommunications, yielding for instance long range interaction between the latter in fiber telecommunications [START_REF] Dianov | Electrostriction mechanism of soliton interaction in optical fibers[END_REF][START_REF] Jang | Untraweak long-range interactions of solitons over galactical distances[END_REF]. A soliton train is best described by a standard nonlinear Schrödinger (NLS) equation whose solutions are injected as source input in Eq. ( 1) [START_REF] Montes | Stimulated brillouin scatteringfrom trains of solitons in optical fibers: information degradation[END_REF].

A similar procedure can be followed to take into account a strong acoustic group velocity dispersion. When the slowly varying envelopes approximation is dropped, the acoustic dispersion relation may become quite complicated (see Appendix), like in the strong field limit previously explored in laser-plasma SBS interactions [START_REF] Montes | Inertial response to nonstationary stimulated brillouin backscattering: Damage of optical and plasma fibers[END_REF]. We may thus write = + , where is the inertial part of the acoustic dispersion, which can become dominant for rapidly evolving acoustic fields.

We thus define the generalized acoustic dispersion parameter

= 2 2 ( ) 0 /2 .
Note than, even when the inertial part of the dispersion can be neglected, the reduced parameter may cease to be perturbative not only for very high values of the material acoustic GVD , but also, for a given , for high input pump intensities. To obtain the so-called 'inertial' model of SBS [START_REF] Montes | Inertial response to nonstationary stimulated brillouin backscattering: Damage of optical and plasma fibers[END_REF], we can now re-write Eq. (1) for non-slowly varying acoustic envelopes, yielding:

[(1 + 2 ) + + ( -2 + ] = * (6) 
where the small parameter = / is of the order of 10 -5 .

Substituting again the full Eq. ( 6) to the perturbative Eq. ( 4), we obtain the 1D coherent 3-wave inertial model of SBS by coupling the three Eqs. (1, 2, & 6).

Dynamical regimes

Implementing numerically this inertial model with parameters corresponding to various experimental devices, either in ring [START_REF] Picholle | Observation of dissipative superluminous solitons in a brillouin fiber ring laser[END_REF][START_REF] Montes | Self-pulsing and bistability in cw-pumped brillouin fiber ring laser[END_REF] or in line [START_REF] Woodward | Stimulated brillouin scattering of visible light in small-core photonic crystal fibers[END_REF] geometries, and various values of , we were not able to obtain asymptotically stable solitonic regimes. This result holds both for initial conditions starting from an uniform noise, and when the acoustic dispersion (i.e. Eq. ( 6)) is 'switched on' from an initial condition corresponding to a fully stable solitonic regime obtained with the dispersionless model (Eqs (1,2 &3) with otherwise identical parameters.

Indeed, when a significant positive acoustic dispersion > 0.1 was taken into account, all simulated devices asymptotically evolved towards a quasi-cw SBS mirror regime, either after a only few roundtrip times in the former case (noisy initial condition), or after very long transitories in the latter (solitonic initial condition).

Novel SBS mirror regime with inverted acoustic profile

For long enough evolution times (typically, several hundred roundtrip times, starting from a pulsed initial condition), all configurations yield stationary regimes for the intensities of the three waves. The three phases may continue to evolve, as a fully stationary asymptotic regime was never reached even for very long simulation times.

An unexpected feature of this new inertial SBS mirror is that the spatial distribution of the acoustic wave is inverted. Indeed, while in the usual, dispersionless SBS mirror ( §2.2), the amplitude of the acoustic wave monotonously decreases from its maximum value at the fiber end closest to the pump laser (Fig. 1), it now monotonously increases from the input end towards the far end of the fiber (upper part of Fig. 3) in this new inertial mirror regime.

Another remarkable feature is that this new mirror regime is obtained even for very low SBS gains of the order of = 1 or below ( = 0.05 in Fig. 3), to be compared to the = 14.5 used in the common mirror of Fig. 1. This is a direct consequence of the build-up of a very strong acoustic wave at the far end of the fiber: the SBS dynamics and the efficiency of the SBS mirror is no longer determined either by the level of spontaneous acoustic noise [START_REF] Boyd | Noise initiation of stimulated brillouin scattering[END_REF] or by the reinjected Brillouin intensity [START_REF] Montes | Bifurcation in a cw-pumped brillouin fiber ring laser: coherent sbs soliton morphogenesis[END_REF], but by the intensity of the acoustic wave.

As can be seen on the lower part of Fig. 3, while the spatial profile of the intensities have reached a stable enough asymptotic regime by = 341 roundtrip times, this is not entirely true for the phases, which still continue to slowly evolve.

For higher values of the dispersion the inverted mirror presents an almost total reflection, thus a reflectivity ∼ 1 as is shown in the upper part of Fig. 4 ( = 0.5, = 0.35) and Fig. 5 ( = 0.55, = 0.55). On the other hand, a more complex and rapid phase dynamics sets up at the far end of the fiber, while the amplitude of the acoustic wave (and thus the acoustic pressure) is already one order of magnitude higher at the far end of the fiber than in the previous case (lower part of Figs. 4 &5).

It is interesting to note that this fast phase dynamics, which can be interpreted in terms of a significant spectral broadening of the two optical waves, remains localized near the far end of the fiber, with a rather slow variation of the phases on the pump laser side, meaning a still very coherent Brillouin output. The dynamical self-correction of this complex phase dynamics upstream of the phase-turbulent zone is reminiscent of the dynamic self-stabilization process of ultra-coherent SBS lasers [START_REF] Picholle | Observation of dissipative superluminous solitons in a brillouin fiber ring laser[END_REF].

For even higher values of the acoustic dispersion ( = 1), the same process are observed, only faster (with the inverted mirror fully established in only about 400 roundtrip times, to be compared to the 1000 of the previous case), and with a far more efficient accumulation process of the acoustic wave, yielding potentially huge values of the acoustic intensity, to the point of mechanically damaging the fiber [START_REF] Montes | Inertial response to nonstationary stimulated brillouin backscattering: Damage of optical and plasma fibers[END_REF].

Discussion

Conventional wisdom suggests that an usual SBS mirror is established when the gain is sufficient for the three waves to reach together a sufficient intensity, which normally happens near the laser input end of the device, where the pump intensity is maximal, having not been depleted yet, as well as the Brillouin intensity, after a cumulative amplification process during its propagation along the fiber, the much smaller acoustic intensity being mostly considered as a slave variable in the stationary approximation. Eq. ( 3) then yields = * if the acoustic propagation term is neglected, thus = and Φ ∼ 0, that is, a permanent reconstruction of the acoustic wave through a succession of Stokes (Φ < ) and antiStokes ( < Φ < 2 ) SBS sequences, and a reduced efficiency of the usual Brillouin mirror whenever the relative phases of the three waves evolve rapidly, whether due to the low coherence of the pump or here, to the propagation properties of the acoustic wave in presence of strong acoustic GVD.

A direct corollary is that the phase of the acoustic wave 'mirrors' the fluctuations of the pump wave to maintain not only Φ ∼ 0, but also a fairly constant phase = --Φ for the Brillouin wave [START_REF] Picholle | Observation of dissipative superluminous solitons in a brillouin fiber ring laser[END_REF] accounting for the nonlinearly self-stabilized ultracoherent SBS laser regimes [START_REF] Smith | Narrow-linewidth stimulated brillouin fiber laser and applications[END_REF][START_REF] Picholle | Observation of dissipative superluminous solitons in a brillouin fiber ring laser[END_REF][START_REF] Gundavarapu | Sub-hertz fundamental linewidth photonic integrated brillouin laser[END_REF].

Let us now consider the opposite situation, when the pump is the weakest of the three waves. Conversely, this is most likely to happen at the far end of the device, where the pump wave is mostly depleted, while a significant Brillouin amplitude has just been fed through the cavity feedback. It is no longer the acoustic wave, but the pump wave itself that will act as an 'absorber' of the rapid phase evolution of the other two waves to maintain Φ ∼ 0 and an efficient SBS process. Note that since, to the first order, ∝ 1/ [START_REF] Botineau | A coherent approach to stationary stimulated brillouin fiber amplifiers[END_REF], the closer to the input end of the fiber and the higher the pump amplitude, the less efficient this mechanism.

The above-mentioned phase self-stabilization process now operates to the benefit of the acoustic wave, with the phase of the pump wave mirroring the fluctuations of the phase of the Brillouin wave to maintain Φ ∼ 0, and a fairly constant phase = --Φ, yielding an ultracoherent acoustic wave inside the fiber. Fig. 6 presents two levels of zooming on the phase dynamics in the right-hand part of Fig. 5 (namely, near = 4). Note, on the left-hand part of Fig. 6, the small but significant acoustic phase gradient, which constitutes a signature of a very coherent but slightly off-resonance acoustic wave, and on its right-hand part, at a stronger magnification rate, the slight spatial shift between the strongly (anti-)correlated, yet distinct phase patterns of the two optical waves. A direct corollary is the possibility of locally very narrow acoustic spectra, potentially yielding linewidths in the Hz range or below. [START_REF] Smith | Narrow-linewidth stimulated brillouin fiber laser and applications[END_REF] Another key difference between the two situations is that while, taking into account the very low quality factor of the cavity, the average Brillouin intensity cannot significantly exceed the input pump intensity 0 , the same limitation does not apply to the acoustic wave (or rather, would only apply for values of of the order of 0 ∼ 10 5 0 ). For the acoustic wave, the finite amplification length is the limiting factor.

Finally, we note that, somewhat counter-intuitively, a strong acoustic dispersion may increase the efficiency of SBS amplifiers, since the inverted SBS mirror regime appears very effective, with reflection rates close to 100% for relatively low gain values, such as = 0.35.

Due to numerical stability problems of our 4-point Runge-Kutta algorithm, we were not able to reliably implement this inertial model with perturbative values of the acoustic dispersion, but only for values of > 0.1. Thus, we couldn't obtain in this frame the usual SBS mirror regimes, as observed with the 3-wave model with perturbative acoustic dispersion, nor explore numerically the transition towards the inverted SBS mirror regime for increasing values of the pump power (thus of ). However, formal calculations (see Appendix) allowed us to plot the temporal growth rate [not to be confused with the loss coefficients and ] of an acoustic perturbation as a function of . A key result is that any such perturbation is initially unstable ( > 0) for any positive value of the acoustic dispersion, > 0, and even for some negative values (Fig. 7). The inertial regime may thus yield a full mirror behavior even for relatively small values of the acoustic dispersion.

Identification of regions of strong inertial dispersion

To identify the spectral regions of strong acoustic dispersion in which we may expect to observe the new inverted SBS mirror regime, as well as, conversely, the regions of weak dispersion where a bridge could be established between the two models, inertial and perturbative, we shall search the maximum values of the temporal growth rate of the acoustic amplitude, , that is, the extrema of the function ( , ).

To this end, and for the simplicity of the already bulky expressions, we will from now on shift to reduced variables, defining the reduced acoustic amplitude = /| 0 |, the reduced acoustical losses = / | 0 |, and setting: 

/ = | 0 | → /Λ 0 = | 0 |/ → (7) 
The linearized complex evolution equation for the acoustic amplitude now reads:

[ + + + ( + 2 ] ( + ) = (8) 
Let us take:

-→ + -→ (9) 
in order to obtain the complex characteristic equation:

[ + + + + ( 2 + 2 -2 + 2 )] ( + + ) = 1 ( 10 
)
giving rise to two real equations for the variables , , and :

2 -2 + - - -2 + 3 -2 -2 -2 -2 -2 2 + = 1 (11) 2 + + + + + 3 -3 2 + 2 -2 = 0 ( 12 
)
The aim is to eliminate from both equations to obtain an equation = ( , ) and calculate [ ( , )] with respect to the parameter . Ordering both equations in polynomial form with respect to , we get:

3 -2 -( + + 3 2 + 2 ) + -2 -2 -2 + + 2 = 1 ( 13 
)
-(3 ) 2 + (2 + -2 ) + + + + 3 + 2 ) = 0 (14) 
These cubic Eq. ( 13) and quadratic Eq. ( 14) equations in can be solved, but the elimination of leads to a lenghty polynomial expression for = ( , ) (detailed in the Appendix: Eq. ( 15)), which maximum with respect to can only be found numerically. Formal calculations using the Maple algorithm confirm that certain values of the acoustic (thus of the pump) frequency maximize the acoustic dispersion up to values where it can be considered strong.

Working Eq.( 15) with Maple also allowed us to look into the dependence of the reduced dispersion over the wavevector . For a given value of the losses, we obtain a double implicit mathematical solutions ( ) of Eq. ( 15), as shown in Figure 8. Of these two, only the lower one presents a physical meaning. The apparent avoided crossing between the upper and the lower solutions defines a critical value of the wavevector, , below which the dispersion reaches very high values (almost vertical section in Fig. 8, yielding ∼ 2.8 for = 21). Moreover, since varies almost linearly with (Fig. 9), we can also deduce a critical acoustic frequency below which the dispersion may be strongly enhanced.

Conclusion

We have established that, for singular values of the pump wavelength associated to high values of the acoustic group velocity dispersion, which may be observed in photonic crystal fibers, this latter parameter can have a significant influence on the dynamics of SBS devices. We have further established the possibility of a new SBS mirror regime with an inverted spatial acoustic profile, which may offer a high reflectance (∼ 100%) even for rather small pump intensities for some special frequencies at which the acoustic dispersion is strong enough, that may appear with a high spectral selectivity in PCFs of, possibly, in specially designed Brillouin microcavities.

We have also identified a new nonlinear self-stabilisation process of the phase of the acoustic wave, which may occur in the inverted mirror regime when the pump intensity is severely depleted and drops to very low values.

Further research will nevertheless be needed in order to validate the full 3-wave inertial model of stimulated Brillouin scattering for weak or moderate values of the acoustic dispersion and/or of the pump power and determine the respective validity domains of this inertial model and of the pertubative acoustic dispersion model.
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Appendix: Resolution of the complex dispersion relation in the inertial limit

Eqs. ( 13) and ( 14) contain six variables, namely , k, = , the reduced acoustic dispersion and losses , and the growth rate of the acoustic instability. We are interested on the function ( ) and we thus keep the other variables as known parameters. Eliminating and calculating the lexicographical Gröbner basis expression [START_REF] Cox | Ideals,Varieties and Algorithms[END_REF], we obtain the following 5-parameter polynomial : = 64 9 4 -3 7 4 2 -8 5 4 4 + 192 7 4 + 96 7 3 + 18 6 3 2 -68 5 4 2 -34 5 3 3 + 8 4 3 4 -16 3 4 4 -8 3 3 5 + 144 5 2 4 + 64 7 3 + 60 6 3 + 144 5 3 + 9 5 2 2 2 + 108 4 3 2 -124 3 2 4 2 + 54 4 2 2 3 + 4 5 3 3 -10 4 3 3 -124 3 3 3 -31 3 2 2 4 + 32 3 3 4 -36 5 2 + 116 5 3 + 128 4 2 3 + 48 3 2 3 + 58 5 2 2 + 64 4 2 2 + 24 3 2 2 2 + 4 3 3 3 -12 4 2 3 + 6 3 2 3

+ 8 3 3 3 -20 2 2 3 3 + 4 

From there, formal calculations in Maple allowed us to determine the growth rate as a function of for any given set of values of the other parameters (Fig. 7). These results appear mostly insensitive to the order of magnitude of the small parameter , from 10 -5 to about 0.1.

It also allowed to plot the acoustic dispersion 2 2 as a function of (Fig. 10) (Note that this physical parameter may vary with and 0 even as the reduced parameter = 2 2 0 /2 remains constant.)

Figure 11 shows two sets of the same implicit mathematical solutions for different values of . Note that these are not monotonous, almost parallel curves, as might appear at first glance, but two upper and two lower sets of solutions with avoided crossings, as emphasized by the zoom of Fig. 7. 

Fig. 1 .

 1 Fig. 1. Common (dispersionless, = 0) SBS mirror: Spatial distribution of the amplitudes of the three waves (numerical, the dimensionless abscissa is the reduced fiber length -→ /Λ = 0 / ; = 14.5; /Λ = 30, = 4.24, √ = 0.091, / = 25.46). Note that the intensities of all three waves monotonously decrease from the laser input end (left).

Further

  neglecting the pump depletion would yield an exponential amplification of the Brillouin wave : ( ) = 0 ( -) where = 2

  (1,2 & 3), = 0] and with [Eqs. (1,2 & 4), = 0.01] perturbative acoustic dispersion. The normalized SBS gain was set at = 10.5, corresponding to an injected pump power of about 100

Fig. 2 .

 2 Fig. 2. Output of a soliton laser (numerical, coherent 3-wave SVE model for a gain = 10.5, √ = 0.091). Left: Amplitude (0, ) of the Brillouin output without dispersion ( = 0), the soliton travel at almost luminal velocity ( = 1.005 / ); right: idem, but taking into account a perturbative acoustic dispersion ( = 0.01), the velocity slightly increases ( = 1.026 / ) while the solitons are compressed by about 15%. (numerical. The parameters correspond to those of the experiment described in [17].)

Fig. 3 .

 3 Fig. 3. SBS mirror with an inverted acoustic profile for a moderate acoustic dispersion ( = 0.11) and a very low gain ( = 0.05): Spatial distribution of the amplitudes and phases of the three waves (pump, Brillouin, acoustic) (numerical, dimensionless abscissa /Λ with /Λ = 1.49, = 59.96, √ = 0.091). The very strong damping avoids total mirror reflection. Note the increasing acoustic intensity at the far end of the fiber (top right).

Fig. 4 .

 4 Fig. 4. SBS mirror with an inverted acoustic profile for an acoustic dispersion = 0.5 showing total reflection. (numerical, dimensionless abscissa /Λ with /Λ = 3.86, = 0.35, = 22.07, √ = 0.09). Asymptotic stage for the intensities.

Fig. 5 .

 5 Fig. 5. SBS mirror with an inverted acoustic profile for a strong acoustic dispersion = 1.0 showing total reflection and turbulent pump and Brillouin phases at the far end of the fiber (right). Asymptotic stage (numerical, = 0.55, /Λ = 4.84, = 17.60, √ = 0.09, / = 422.78).

Fig. 6 .Fig. 7 .

 67 Fig. 6. Same as Fig. 5: Successive zooms on the spatial evolution of the phases. Note the strong anticorrelation of the phases of the pump and Brillouin waves, yielding an almost uniform phase of the acoustic wave (Φ = --∼ )

Fig. 8 .

 8 Fig. 8. Implicit solutions ( ) of the dispersion relation (Eq. 15) for = 0.35, = 10 -5 and = 21. Note, on the upper left, the avoided crossing between the upper and lower solutions, only the latter having a physical meaning, and the almost vertical slope below ∼ 2.8.

Fig. 9 .

 9 Fig. 9. Quasi-linear dispersion relation ( ) for = 0.2573, = 0.745, = 0 and a set of values of the dissipation from = 4 to = 20, allowing to deduce from .

Fig. 10 .

 10 Fig. 10. Acoustic dispersion curve 2 2 ( ) (numerical; = 17.5; = 0.8; = 0.29; and = 10 -2 ). Note the strong maximum value of the dispersion ( > 1.55) for = 22.8.

Fig. 11 .

 11 Fig. 11. Same as Fig. 7 for different values of the losses (left to right : = 5 to 25 by increments of 2).The dots figure the avoided crossings, visible on the zoomed Fig. 7 but not resolved at this scale. Only the lower part of the curves have a physical meaning.
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