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Nowadays, model predictive control is widely applied in industrial processes, however this control technique in most cases is implemented under assumption that the process components are free from faults. This paper describes the design of a reconfigurable model predictive control, in which the reconfiguration mechanism is driven by a fault detection and isolation (FDI) system based on structural analysis approach. Particularly this design is carried out on the Quadruple Tank Process considering the possible presence of faults in actuators or sensors. In this case, the proposed reconfigurable model predictive control is capable of compensating the gain change in an actuator (pump) by switching its control signal to another actuator (its related valve), and upon a sensor fault switch its output to a dedicated observer. Simulation tests show that the proposed approach can handle the considering faults and is able to recover the original process performance / nominal operation when a fault occurs.

Introduction

In today's industry, automation is implemented in order to reduce human intervention, obtain high quality and standardized products and increase factories capacity to meet the growing demand, as a result industrial processes have become more complex. In this way, it is necessary continuous improvements in the theoretical and practical understanding of process automation and process supervision since they play a main role in efficiency, reliability and safety of such processes [START_REF] Isermann | Fault-Diagnosis Systems[END_REF]. Within automation and supervision of processes, management of liquid fluids plays an important role in a large number of cases, therefore control of these fluids dynamics is a recurrent demand. Clear examples are control systems for flotation cells [START_REF] Kampjarvi | Level control strategies for flotation cells[END_REF], supervision and control system for tanks coupled in series [START_REF] Khorasgani | Structural approach for distributed fault detection and isolation[END_REF][START_REF] Pérez | Fault-Driven Structural Diagnosis Approach in a Distributed Context[END_REF], level control in the evaporator of an ammonium nitrate granulation plant [START_REF] Smith | Control automático de procesos. Teora y prctica[END_REF], level control of the bottom liquid of the absorber in a natural gas dehydration plant [START_REF] Smith | Control automático de procesos. Teora y prctica[END_REF], among many others. In said systems, any component failure can lead to a fault condition affecting its operation. Thus, development of fault diagnosis systems for these processes is very important for FDI. Likewise, the use of system reconfiguration is an option to take corrective measures to eliminate the fault or reduce its effects. In particular, actuator and sensor faults reduce performance of control systems [START_REF] Blanke | Diagnosis and Fault-Tolerant Control[END_REF][START_REF] Isermann | Fault-Diagnosis Systems[END_REF], therefore, using FDI system based on structural analysis that drives a reconfiguration mechanism of the control system may increase reliability by detecting possible faults and may guarantee the operation when such faults occur. This proposal is developed and implemented for a process of four coupled tanks in order to evaluate and validate the performance of the control system. A multivariable laboratory process that consists of four interconnected water tanks was described in [START_REF] Johansson | The quadruple-tank process: a multivariable laboratory process with an adjustable zero[END_REF][START_REF] Johansson | A multivariable laboratory process with an adjustable zero[END_REF] has been widely used for control systems and FDI systems design and test for its versatility showing multivariable, nonlinear and coupling dynamics. For instance, in [START_REF] Ferrese | Decentralized control of coupled nonlinear dynamic systems with appl. to quadruple-tank process[END_REF] a multivariable PI decentralized control system is designed, in [START_REF] Johansson | Teaching multivariable control using the quadruple-tank process[END_REF] both decentralized and statically decoupled PI control are applied, a multivariable robust control is designed in [START_REF] Vadigepalli | Robust Control of a Multivariable Experimental Four-Tank System[END_REF], in [START_REF] Dai | Dynamic matrix control of a quadruple tank process[END_REF] a multivariable control with dynamic matrices is used, a distributed predictive model based control is applied in [START_REF] Mercangoz | Distributed model predictive control of an experimental four-tank system[END_REF]. On the other hand, FDI systems applied to this benchmark plant were designed. In [START_REF] Detroja | Fault isolability analysis based on steady state fault signatures[END_REF] a simple to implement FDI system that uses steady state nonlinear equations to detect and isolate sensors and actuator faults during steady state operation is designed, however, this work does not propose a control law variation in order to compensate such fault. A Luneburg observer based FDI system for the quadruple tank process is proposed in [START_REF] Gharaee | An observer based fault detection and isolation in quadruple-tank process[END_REF], there, process equations are linearized in order to be used by the observer being faults as leaks on the bottom of tanks and their detection only considered in this work, nevertheless, no corrective action in control law is taken. The design of a model reference adaptive control for the quadruple tank process considering actuator faults and comparing its design to a classic decentralized proportional integrative controller (decentralized PI controller) is proposed in [START_REF] Arici | Model reference adaptive control of a quadruple tank process with actuator faults[END_REF]. Not only model based methods were designed for this benchmark plant but also data and statistic based approaches. In [START_REF] Jiyang | Incipient Sensor Fault Diagnosis Based on Average Residual-Difference Reconstruction Contribution Plot[END_REF] a method to diagnose incipient single sensor fault for data-driven process monitoring based on average residual-difference reconstruction contribution plot is presented and the effectiveness of this fault diagnosis method is verified by a simulation on the benchmark quadruple tank process, a methodology that relies on the principle of distributional equivalence in order to achieve data reduction is proposed in [START_REF] Detroja | reduction and fault diagnosis using principle of distributional equivalence[END_REF], a non-stationary FDI system for multimode processes based on a data-driven approach is designed in [START_REF] Liu | Nonstationary fault detection and diagnosis for multimode processes[END_REF]. In summary, several approaches were used to solve not only the control problem for this benchmark plant but also for FDI systems, however, hardware reconfiguration has not been taken into account.This work proposes a model predictive control with a reconfigurable mechanism driven by a FDI system based on structural analysis approach, which is tested in a pilot plant in order to evaluate and validate the control system performance. In the Advanced Control Laboratory of the Engineering Department of Pontifical Catholic University of Peru a pilot plant was implemented (see Figure 1a) this plant allows the study of hydraulic process through different configurations, in the following it will be referred as the pilot plant. In this paper, the pilot plant is considered in the configuration based on the multivariable laboratory process proposed in [START_REF] Johansson | A multivariable laboratory process with an adjustable zero[END_REF]. A reduced diagram is shown in Figure 1b. In this configuration, four interconnected tanks T i (i = 1, ..., 4) are filled with water by two pumps (P 1 and P 2 ) that generate flow towards them. Pump P 1 generates flow towards T 4 and T 2 in a fixed proportion defined by ball valves BV 1 and BV 2 (quantified with the constant γ 1 ), similarly for pump P 2 , tanks T 3 and T 1 , valves BV 3 and BV 4 and constant γ 2 . Sensors available for control design are level transmitters LT i (i = 1, ..., 4) and flow transmitters F T 1 and F T 2 . Moreover, there are two more actuators available for control design, proportional valves V 1 and V 2 whose opening percentages are quantified with variables k 1 and k 2 .

Mathematical model

In nominal operation, the opening percentage of valves V 1 , V 2 , BV 1 , BV 2 , BV 3 and BV 4 are fixed, flow generated by pump P 1 is distributed to tanks T 4 and T 2 , similarly for pump P 2 and tanks T 3 and T 1 . In this condition, dynamic equations of tank levels are:

ḣ1 = - a 1 √ 2gh 1 A 1 + (1 -γ 2 )k 2 u 2 A 1 (1) ḣ2 = - a 2 √ 2gh 2 A 2 + (1 -γ 1 )k 1 u 1 A 2 (2) ḣ3 = - a 3 √ 2gh 3 A 3 + a 2 √ 2gh 2 A 3 + (γ 2 )k 2 u 2 A 3 (3) ḣ4 = - a 4 √ 2gh 4 A 4 + a 1 √ 2gh 1 A 4 + (γ 1 )k 1 u 1 A 4 (4) 
Where h i is the level at the tank T i , γ i is the flow proportion from pump P i to the corresponding tanks, u i is the flow generated by pump P i , k i is the proportional control valve V i opening percentage, A i is the tank T i bottom section, a i is the tank T i bottom pipeline section. For control design purposes, mathematical model is linearized around an operating point chosen according to pilot plant design. Operation point is defined by operating point tank levels

x 0 = [h 0 1 h 0 2 h 0 3 h 0 4 ]
T and operating point pumps flow u 0 = [u 0 1 u 0 2 ] T . In Equations 5 and 6 linearized system is shown and in Table 1 operating point and pilot plant parameters for nominal operation are shown.

ẋ = Ax + B ū (5) 
y = C x + Dū (6) 
Where

x = [h 1 h 2 h 3 h 4 ] T , x = x-x 0 , u = [u 1 u 2 ]
T , ū = u-u 0 . Linearized model matrices are calculated considering the constant T i = A i 2h 0 i /g/a i (i = 1, ..., 4) as: of the plant, considerations of physical limitations, among others [START_REF] Rivas-Perez | Real-Time Implementation of an Expert Model Predictive Controller in a Pilot-Scale Reverse Osmosis Plant for Brackish and Seawater Desalination[END_REF][START_REF] Rivas-Perez | Adaptive Expert Generalized Predictive Multivariable Control of Seawater RO Desalination Plant for a Mineral Processing Facility[END_REF][START_REF] Perez-Zuniga | Generalized predictive control of lamination temperature in a steel slab furnace[END_REF][START_REF] Perez-Zuñiga | Control predictivo generalizado de la temperatura de laminación de un horno siderúrgico[END_REF]. Likewise, in [START_REF] Morari | Model predictive control-past, present and future[END_REF] MPC based on state space model basic concepts were developed being related to the control problem with the linear quadratic regulator(LQR).

A =     -1/T 1 0 0 0 0 -1/T 2 0 0 0 A 2 /(A 3 T 2 ) -1/T 3 0 A 1 /(A 4 T 1 ) 0 0 -1/T 4     B =     0 (1 -γ 2 )k 2 /A 1 (1 -γ 1 )k 1 /A 2 0 0 γ 2 k 2 /A 3 γ 1 k 1 /A 4 0     , C = 0 0 1 0 0 0 0 1 , D = 0 0 0 0 (7) 2 
In [START_REF] Muske | Linear model predictive control of unstable processes[END_REF] implementation techniques of linear model based predictive control for unstable plants are analyzed. All of this validates performance of predictive control for stable, unstable and multivariable plants. In this paper, it is considered discrete MPC taken into account the benefits of predictive control and considering that the pilot plant has several sensors useful for implement state space model based control.

Discrete MPC algorithm. In the following, the discrete MPC algorithm is presented, based on previous works in [START_REF] Wang | Model Predictive Control System Design and Implementation using MATLAB[END_REF][START_REF] Deepa | Level control of quadruple tank process using discrete time model predictive control[END_REF] as well as the application for nominal operation of the pilot plant model. First, a discrete space state model, with n e inputs and n s outputs, state vector x m (k), output vector y(k), input vector u(k) and disturbance vector w(k), is defined by matrices A m , B m , C m , B d and difference equations such that:

x m (k + 1) = A m x m (k) + B m u(k) + B d w(k) (8) 
y(k) = C m x(k) (9) 
At any given instant k can be calculated variations variables such as:

∆x m (k) = x m (k) -x m (k -1) is the state vector variation, ∆u(k) = u(k) -u(k -1) is the control vector variation and ε(k) = w(k) -w(k -1)
is the disturbance variation that is assumed as white noise. With this, an extended discrete space state model is defined:

x(k + 1) = A m 0 T m C m A m I nsxns x(k) + B m C m B m ∆u(k) + B d C m B d ε(k) (10) y(k) = 0 m I nsxns x(k) (11) 
Where

x(k) = [∆x m (k) T y(k) T ]
T is the state vector of the extended discrete model and the matrices

A = A m 0 T m C m A m I nsxns , B = B m C m B m
, C = 0 m I nsxns are defined. Also, the following notation is used: for a given instant k i , the prediction for the variable v for the instant

k i + j is v(k i + j | k i ).
After defining the extended discrete state space model, design of a predictive control system requires to calculate the predicted output of the plant on a prediction window of N p samples and the predicted control signal on a prediction window of N c samples. In addition, it is only possible to assume that the white noise w(k) is not going to change on the prediction horizon and the best prediction for the variation of white noise ε(k i + j | k i ) = 0 for any j. Then, based on the extended state space representation defined above, it is possible to calculate the prediction state space vector from time

k i + 1(x(k i + 1 | k i )) to k i + N p (x(k i + N p | k i ))
and with this, the output vector prediction are calculated:

y(k i + 1 | k i ) = CAx(k i ) + CB∆u(k i ) (12) 
y(k i + 2 | k i ) = CA 2 x(k i ) + CAB∆u(k i ) + CB∆u(k i + 1) (13) 
. . .

y(k i + N p | k i ) = CA Np x(k i ) + CA Np-1 B∆u(k i ) + CA Np-2 B∆u(k i + 1) + ... ...CA Np-Nc B∆u(k i + N c -1) (14) 
Now, for any instant k i the prediction output vector (N p samples horizon) and the prediction control law variation vector (N c samples horizon) are defined by

Y = [y(k i + 1 | k i ) T . . . y(k i + N p | k i ) T ] T and ∆U = [∆u(k i ) T . . . ∆u(k i + N c - 1 
) T ] T respectively. Then, it is possible to write set of equations ( 12)-( 14) as:

Y = F x(k i ) + Φ∆U (15) 
Where,

F =     CA CA 2 . . . CA Np     , Φ =      CB 0 nsxne . . . 0 nsxne CAB CB . . . 0 nsxne . . . . . . . . . . . . CA Np-1 B . . . . . . CA Np-Nc B      .
For a given set point signal with value r(k that contains the array of set points on the prediction horizon for the system outputs. Now, it is defined the cost function

i ) = [r 1 (k i ) r 2 (k i ) . . . r ns (k i )] T in the instant k i ,
J = (R s -Y ) T (R s -Y )+∆U T R∆U .
Where R is a diagonal matrix R = r w I NcxNc and r w is used as a sintonization parameter for closed loop control system performance. Then, in order to find an optimal ∆U that minimizes J, it is possible to apply partial derivative:

∂J ∂∆U = -2Φ T Rs r(k i ) -F x(k i )) + 2(Φ T Φ + R)∆U (16) 
Which gives an optimal ∆U when ∂J/∂∆U = 0.

Then, ∆U = (Φ T Φ+ R) -1 Φ T ( Rs r(k i )-F x(k i )), it is assumed that exists (Φ T Φ+ R) -1
, also, ∆U contains control law variations over all control prediction horizon, but in implementation it is only used the first term ∆u(k i ), such that u(k i ) = u(k i -1) + ∆u(k i ). However, ∆U must be calculated each sampling period. With the optimal prediction control law variation for the instant k i as:

∆u(k i ) = [I nexne 0 nexne . . . 0 nexne ] nex(nexNc) ∆U (17) 
It is defined that the state space control law gain K y and the prediction control law gain

K c such that ∆u(k i ) = K y r(k i ) -K c x(k i )
where:

K y = [I nexne 0 nexne . . . 0 nexne ] nex(nexNc) (Φ T Φ + R) -1 Φ T Rs ( 18 
)
K c = [I nexne 0 nexne . . . 0 nexne ] nex(nexNc) (Φ T Φ + R) -1 Φ T F (19) 
Finally, with gains K y and K c calculated, it is possible to find the close loop control law variation ∆u(k i ) for each instant k i .

Discrete MPC system in nominal operation. Parameters and control gain vectors necessary for this control of the quadruple-tank process in nominal operation are calculated using the model detailed in Section 2.1 and Table 1. Values of matrices A, B, C and D are calculated and according with the approach in [START_REF] Shridhar | A tuning strategy for unconstrained multivariable modelpredictive control[END_REF] to adjust controller parameters referred in Section 2.2: N p = 50, N c = 10, r w = 0.001. Then, calculation of control gain vectors gives: 

K y = 0.
In first instance, the set point chosen considers the operating point of linealization, then a set point change of 20% above its operating point is made for tank T 3 in the time t = 201s. Next, a set point change of 20% below its operating point is made for tank T 4 in the time t = 390s. Finally, both set point signals return to their respective operating point in time t = 900s. These changes validate performance of control system around operating point. In Figure 2, control signal and tank levels are shown. It is concluded that the control goal is achieved within nominal operation.

3 Model of the Quadruple Tank Process for FDI Despite control system achieves nominal operation goals, industrial processes are vulnerable to faults. In this section, a mathematical model for FDI of pilot plant is presented considering a set of faults of interest and how they affect nominal operation of the overall system. Actuator faults reduce capability of control systems to respond effectively and reduce performance, sensor faults produce operating points that are far from the optimal or designed ones and plant faults For the pilot plant, there are 10 faults considered, 2 actuator faults f bi (i = 1, 2) associated with pumps P i (i = 1, 2), 4 sensor faults f mi (i = 1, ..., 4) associated with level sensor LT i (i = 1, ..., 4) and 4 faults related to the plant modeled as f pi (i = 1, ..., 4) associated with leaks in tanks T i (i = 1, ..., 4). Considering this, dynamic plant Equations 1 to 4 can be rewritten as:

e 1 : q 1 = k 1 u 1 + f b1 (22) 
e 2 : q 2 = k 2 u 2 + f b2 (23) 
e 3 : ḣ1 = - q 01 A 1 + (1 -γ 2 )q 2 A 1 + f p1 (24) 
d 4 : ḣ1 = dh 1 dt (25) 
e 5 : q 01 = a 1 2gh 1 (26)

e 6 : y 1 = h 1 + f m1 (27) 
e 7 : ḣ2 = - q 02 A 2 + (1 -γ 1 )q 1 A 2 + f p2 (28) 
d 8 : ḣ2 = dh 2 dt ( 29 
)
e 9 : q 02 = a 2 2gh 2 (30) 
e 10 : y 2 = h 2 + f m2 (31) 
e 11 : ḣ3 = -

q 03 A 3 + q 02 A 3 + (γ 2 )q 2 A 3 + f p3 (32) 
d 12 : ḣ3 = dh 3 dt ( 33 
)
e 13 : q 03 = a 3 2gh 3 (34) e 14 :

y 3 = h 3 + f m3 (35) 
e 15 : ḣ4 = -

q 04 A 4 + q 01 A 4 + (γ 1 )q 1 A 4 + f p4 (36) 
d 16 : ḣ4 = dh 4 dt (37) 
e 17 : q 04 = a 4 2gh 4 (38)

e 18 : y 4 = h 4 + f m4 (39) 
Where q i is the flow generated by pump P i (i = 1, 2), q 0i (i = 1, ..., 4) is the bottom output flow of tank T i (i = 1, ..., 4), y i (i = 1, ..., 4) is measure of level sensor LT i (i = 1, ..., 4)(see Figure 1b). Also note that differential equations are considered separately.

Faults impact on nominal operation

Different faults have different impacts during nominal operation, in this section these impacts are analyzed. Taking advantage of pilot plant symmetry, only faults {f b1 , f m1 , f m4 , f p1 , f p4 } are analyzed as they have an equivalent impact to {f b2 , f m2 , f m3 , f p2 , f p3 } respectively. Faults {f b1 , f m1 , f m4 , f p1 , f p4 } are introduced for each simulation in the interval t = 480s to t = 801. For f b1 it is considered a fault magnitude of 1000cm 3 /s, for f m1 and f m4 it is considered a fault magnitude of 10cm and for f p1 and f p4 is considered a fault magnitude of 0.2cm/s. In Figure 3 impact of fault f b1 to tanks levels and control variables are shown, the control signal generated by the control system is represented in a continuous blue line and the actual flow, generated by the faulty pump, is shown in a dotted black line, the gap between these two signals is the magnitude of fault f b1 , i.e. the control system sends a control signal(continues blue line) but it is different to the actual flow generated by the pump(dotted black line). It is clear that the control system compensates the fault impact; however, this affects directly to tank level of T 4 preventing it to achieve its control goal, this can be solved by hardware reconfiguration, it is available a second actuator(proportional valve V 1 ) that can be used instead of pump in order to prevent system breakdown and achieve control goal. In Figure 4, the impact of fault f m4 to tanks levels and control signals are shown, a sensor fault or breakdown of sensor level of inferior section of the pilot plant impacts directly its the operation point, this can be solved by two approaches: hardware redundancy, this means a second level transmitter available to switch measure, or analytical redundancy, this means an observer design in order to estimate actual tank level. In Figure 5, the impact of fault f p4 to tanks levels and control signals are shown, it is clear that the control system compensates successfully leaks impact and does not miss the control goal. Alike last data, impact of faults f p1 , f m1 is compensated by the control system.

In conclusion, the system performance decreases considerably when faults f b1 and f m4 appear, according to this, this paper proposes the development of an Fig. 5: Impact of f p4 on system variables diagnosis [START_REF] Pérez | Fault-Driven Structural Diagnosis Approach in a Distributed Context[END_REF][START_REF] Pérez | Decentralized Diagnosis via Structural Analysis and Integer Programming[END_REF][START_REF] Krysander | A structural algorithm for finding testable sub-models and multiple fault isolability analysis[END_REF][START_REF] Blanke | Diagnosis and Fault-Tolerant Control[END_REF] since this analysis relates directly the relations between constraints and their variables despite the control law is linearized. In this paper, a structural analysis based FDI system is proposed.

Structural analysis approach.

A FDI system, based on structural analysis, uses Equations 22 to 39 of the system model associated with each component of the plant under study in order to detect violations of them by using analytical redundancy relations. When an analytical redundancy relation does not meet expected value, it indicates a faulty component. In the following, some definitions and methodology necessary for the development of the FDI system are summarized, these concepts and notations are presented and widely extended in [START_REF] Pérez | Fault-Driven Structural Diagnosis Approach in a Distributed Context[END_REF][START_REF] Pérez | Decentralized Diagnosis via Structural Analysis and Integer Programming[END_REF][START_REF] Krysander | A structural algorithm for finding testable sub-models and multiple fault isolability analysis[END_REF][START_REF] Blanke | Diagnosis and Fault-Tolerant Control[END_REF][START_REF] Pérez | Fault-Driven Minimal Structurally Overdetermined Set in a Distributed Context[END_REF][START_REF] Pérez | Decentralized diagnosis in a spacecraft attitude determination and control system[END_REF]. In this paper, using notation of [START_REF] Pérez | Fault-Driven Structural Diagnosis Approach in a Distributed Context[END_REF], a system is any set of equations relating z, x and f. Where z, x, f are the set of known variables, unknown variables and faults and is denoted Σ(z, x, f) or Σ for short.

Analytical redundancy relations referred as ARRs are equations derived from an analytical model and involve only known variables of z.

A system taking a subset of the variables z as input, and generating a scalar signal arr, named residual, as output, is a residual generator for the model Σ(z, x, f) [START_REF] Pérez | Decentralized Diagnosis via Structural Analysis and Integer Programming[END_REF]. The calculation of residuals(value of ARR) based on measured variables z allows monitoring and detecting faults in the system by checking if such residuals meet expected values. The structural redundancy ρ Σ ′ of a set of equations Σ ′ ⊆ Σ is defined as the difference between the number of equations and the number of unknown variables [START_REF] Pérez | Decentralized Diagnosis via Structural Analysis and Integer Programming[END_REF]. A key tool for analyzing a structural model is the Dulmage-Mendelson(DM) canonical decomposition. It results in a partition of the system model into three parts: the structurally over determined(SO) part + with more equations than unknown variables; the struc-turally just determined 0 with exactly the equations and variables, and the structurally under determined part -with more unknown variables than equations [START_REF] Blanke | Diagnosis and Fault-Tolerant Control[END_REF].

Definition 1 (MSO sets). A set of equations Σ is proper structurally overdetermined (PSO) if Σ = Σ + and minimally structurally overdetermined (MSO) if no proper subset of Σ is overdetermined [START_REF] Krysander | A structural algorithm for finding testable sub-models and multiple fault isolability analysis[END_REF].

For residual generation, MSO sets are of special interest because they have a structural redundancy of 1 (ρ = 1).However, not all MSO sets are directly impacted by faults. Hence, it is desirable to define a fault-focused concept.

The fault support F Σ ′ of a set of equations Σ ′ ⊆ Σ is defined as the set of faults that are involved in the equations of Σ ′ .

Definition 2 (FMSO set). A subset of equations

ϕ ⊆ Σ(z, x, f) is an FMSO set of Σ(z, x, f) if (1) F ϕ = ∅ and ρ ϕ = 1 that means |ϕ| = |X ϕ | + 1, (2) no
proper subset of ϕ is overdeterminated [START_REF] Pérez | Fault-Driven Structural Diagnosis Approach in a Distributed Context[END_REF].

With this, a fault f ∈ F is defined as detectable if exist an FMSO set ϕ such that f ∈ F ϕ . And given two detectable faults f i and f j of F (i = j), f i is isolable from f j if there exists a FMSO set ϕ such that f i ∈ F ϕ and f j / ∈ F ϕ . Then, a set of FMSO sets can be properly chosen to detect and isolate each detectable and isolable faults respectively. It is clear that not all faults in F are necessarily detectable or isolable.

FDI system designed for the Quadruple Tank Process

A FDI system is designed to monitor the pilot plant along its operation with the main goal of effectively detect and isolate faults f b1 and f m4 , for this, a structural system analysis is required. For the FDI system analysis, it is considered the mathematical model presented in Section 3 that consists of 18 equations e i (i = 1, ..., 18), 14 unknown variables X = { ḣi (i = 1, ..., 4), h i (i = 1, ..., 4), q 1 , q 2 , q 0i (i = 1, ..., 4)}, 6 known variables Z = {y i (i = 1, ..., 4), u 1 , u 2 } and 10 modeled faults considered for the pilot plant F = {f b1 , f b2 , f mi (i = 1, ..., 4), f pi (i = 1, ..., 4)}. Then, it is possible to find the incidence matrix shown in Figure 6a which is a matrix that relate every equation with variables mentioned (X, Z, F ). Consequently, based on the incidence matrix, 30 MSO sets are found, and from all MSO sets, it is possible to find 30 FMSO sets for this particular case of study. It is important to remark that FMSO sets are a subset of MSO sets, and not always have the same number of sets of equations (in the following, for ease, a FMSO set FMSO i is referred as ϕ i and the residual value of the FMSO set F M SO i is referred as arr i ). Then, it is found the detection and isolation graph, shown in Figure 6b where each point represents that the fault associated with the abscissa axis can not be isolated with the fault associated with the axis ordinates. It is clear that all faults are detectable, however, only faults f b1 , f b2 , f m1 , f m2 , f p1 , f p2 are isolable. In particular, for detection and isolation of actuator fault f b1 it can be used the FMSO sets ϕ 17 = {e 1 , e h 1 h 2 h 3 h 4 h 1 h 2 h 3 h 4 q 1 q 2 q 01 q 02 q 03 q 04 f b1 f b2 f m1 f m2 f m3 f m4 f p1 f p2 f p3 f p4 y 1 y 2 y 3 y 4 u 1 u 2 

D I D I D I D I (a) Incidence matrix f b1 f b2 f m1 f m2 f m3 f m4 f p3 f p4 f p1 f p2 f b1 f b2 f m1 f m2 f m3 f m4 f p3 f p4 f p1 f p2 (b) Isolation analysis
F ϕ17 = {f b1 , f m2 , f p2 } and F ϕ18 = {f b1 , f m1 , f p2 , f m4 , f p4 } respectively.
If the FDI system monitor both residuals and they indicate a fault within their respective fault support at the same time, it indicates that a fault in f b1 occurred, i.e. if residuals arr 17 and arr 18 have unexpected values at the same time, fault f b1 is detected and isolated. Now, from Figure 6b it is noticed that fault f m4 is not isolable, to solve this, an analytical redundancy approach is developed, this means an observer design in order to estimate actual tank level and introduce additional constraints that allow f m4 to be isolable.

Dedicated observer design for sensor fault diagnosis. A dedicated observer estimates each output of the system separately and in case of a sensor fault, this estimation is available to be used for the control law calculation and increases the number of constraints available for structural analysis. In Equations 8 and 9 the discrete model for the pilot plant was presented, from this, it is possible to check that the observability matrix has a rank equal to the number of states. This model can be used to design the dedicate observer:

ẋ(k + 1) = A m x(k) + B m u(k) + K e (y(k) -C m x(k)) (40) 
Where x(k) is the estimated state space vector for the time k and K e is the observer gain. With this, it is defined the estimation error e(k) as e(k) = x(k)x(k) and it can be derived the following:

e(k + 1) = (A m -K e C m )e(k) (41) 
Where a K e can be chosen to assure the convergence of the variable e using the pole placing method. For this particular case, it was generated a gain vector K e considering a 30s convergence time of estimation variables(as the stabilization time of the h 1 h 2 h 3 h 4 h 1 h 2 h 3 h 4 q 1 q 2 q 01 q 02 q 03 q 04 f b1 f b2 f m1 f m2 f m3 f m4 f p1 f p2 f p3 f p4 y 1 y 2 y 3 y 4 y 5 y 6 u 1 u 2 (a) Incidence matrix with observer In this scenario, a fault in an actuator is considered. In particular, if a fault in pump P 1 appears, reconfiguration of the control system consists in changing the control signal target from P 1 to V 1 , i.e. flow rate is regulated via actuators V 1 and P 2 sending control signals k 1 and u 2 respectively, and signal for actuator P 1 (u 1 ) does not change. In this condition, actual flow rate generated for faulty pump P 1 is measured via flow sensor F T 1 for control purposes(see Figure 1b). For validation, a fault f b1 with magnitude 1000cm 3 /s is introduced in the interval t = 480s to t = 801, f b1 is effectively detected and isolated by the FDI system(as shown in Section 4.2). In Figure 11a tanks levels and control signals are shown. Also, it is shown that the control signal value u 1 (continuous blue line) does not change during the fault event, and the dotted black line shows the actual flow that is generated by the faulty pump. In Figure 11b how the opening percentage of V 1 (k 1 ) is adjusted by the control system is shown. It can be seen the nominal operation until fault appear in t = 480s and the reconfigurable control system switches the actuator target(from P 1 to V 1 ). When faulty pump recovers in t = 801s the control system switches back(from V 1 to P 1 ) and nominal operation can be seen from this moment. Taking advantage of the pilot plant symmetry, this proposal is also valid for a faulty actuator P 2 event, reconfiguring the control signal target from P 2 to V 2 . the sensor signal LT 4 to the signal generated by the dedicated observer of the state h 4 , i.e. the signal from LT 4 is not longer used for control purposes and the estimated state of h 4 is used instead. For a fault f m4 with magnitude 10cm is introduced in the interval t = 480s to t = 801, f m4 is effectively detected and isolated by the FDI system(as shown in Section 4.2). In Figure 12 tank levels and control signals are shown, it can be seen the nominal operation until fault appear in t = 480s and the reconfigurable control system switches the control law calculation element(from LT 4 signal to estimated state of h 4 ), when faulty sensor recovers in t = 801 the control system switches back (from estimated state of h 4 to LT 4 signal) and nominal operation can be seen from this moment. Because of the pilot plant symmetry, this proposal is also valid for a faulty sensor LT 3 event, reconfiguring the calculation element that corresponds to the state h 3 from the sensor signal LT 3 to the estimated state of h 3 .

f b1 f b2 f m1 f m2 f m3 f m4 f p3 f p4 f p1 f p2 f b1 f b2 f m1 f m2 f m3 f m4 f p3 f p4 f p1 f p2

Conclusion

The design procedure for a Reconfigurable Model Predictive Control for a Quadruple tank process was proposed in this paper. Here, a discrete MPC algorithm based on state space model was developed and then combined with a FDI system which drives a reconfiguration mechanism in order to detect actuators or sensors faults. Simulation results show that once a fault occurs, this control, through reconfiguration, is able to recover the nominal operation. Therefore, this reconfigurable model control has operation of the process after the occurrence of faults in sensors or actuators.
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	.2	Discrete model predictive control (discrete MPC)
	Control of the quadruple tank process is presented by several approaches achiev-
	ing control goal within nominal operation as referred in Section 1. Furthermore,
	model based predictive control(MPC) is a very successful advanced control tech-
	nique as it provides stability, reliability and robustness since it involves advan-
	tages of predictive control; such as, the use of a model to predict future behavior
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  Where the first column of K e is used for the dedicated observer for the level of tank T 3 and the second column of K e is used for the dedicated observer for the level of tank T 4 . With this, two more constraints are added to the mathematical model presented in Section 3 that is used in this section for diagnosis: the equation related to the estimated state of h 3 (e 19 : ŷ5 = h 3 ) and the equation that is related to the estimated state of h 4 (e 20 : ŷ6 = h 4 ). Now, a new incidence matrix and a new detection and isolation graph are found, these are shown in Figure7. It is clear that all faults are isolable. Consequently, a new set with a total of 92 MSO sets is found and within, it is possible to find 92 FMSO sets, then it is used the set φ1 = {e 18 , e 20 } with fault support F φ1 = {f m4 }. This means that if the FDI system monitors that the residual arr 1 has an unexpected value, fault f m4 is detected and isolated. For validation of the FDI system, residuals
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Fig. 4: Impact of f m4 on system variables advanced reconfigurable control system taking into account faults related to actuators(f b1 , f b2 ) and sensors(f m3 , f m4 ) since they are the faults with greater impact.

FDI system for the Quadruple Tank Process

In this section, the development of a fault detection and isolation(FDI) system to be used later for reconfiguration decision making as well as the calculation methodology for this goal are presented. When it comes to monitor non-linear systems, structural analysis has shown to be a flexible and efficient tool for fault during this is shown. It is clear that residual arr 1 detects and isolates effectively fault f m4 . 

Reconfigurable Model Predictive Control

This paper proposes a reconfigurable model predictive control based on a discrete MPC and FDI system and focuses on a set faults of interest. Reconfiguration decision is driven by the FDI system designed using a structural analysis approach. In Figure 10 the block diagram of the proposed system is presented. When the FDI system does not detect any abnormal operation, actuators used as the target of the control signal are pumps P 1 and P 2 , and sensor signals from LT 3 and LT 4 are used for control signal calculation. When the FDI system detects an actuator or sensor fault, it drives the reconfiguration mechanism for necessary changes in control law targeting and calculations for each case, this will be extended in the following sections.