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Abstract. This work deals with the study of magnetoelastic coupling in the framework of non-destructive
testing. Experimental hysteretic and cyclic piezomagnetic measurements carried out on a dual-phase steel sub-
mitted to different magnetic field and stress conditions are reported. The effect of concomitant magnetic field
and stress, considering static or variable amplitudes, is discussed. A new multiscale modeling of piezomagnetic
hysteresis is finally proposed.
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1 Introduction

The submission of a ferromagnetic material to a mag-
netic field leads to a geometric distortion of the sample.
This deformation is called the magnetostriction strain.
Conversely, the application of an external mechanical
stress to a ferromagnetic material, initially magnetized
even faintly, leads to a significant change of magneti-
zation. These behaviors are symptomatic of the same
coupling called the piezomagnetic or Villari effect [1].
Indeed mechanical stress is one of the three major factors
that can affect the magnetization in addition to magnetic
field and temperature. The magnetic behavior is thus sen-
sitive to any mechanical loading and its evolution will
be different depending on the loading level, direction and
nature [2]. Since then, numerous works have been initi-
ated to understand, model and use this coupling effect in
industrial applications such as on Non-Destructive Test-
ing (NDT). We can cite for example: magnetic particle
inspection (MPI), Eddy currents, Barkhausen noise, etc.
The purpose of all these magnetic methods is to extract
information about the metallurgical and mechanical states
of a material by analyzing the electromagnetic signal [3].
Piezomagnetic control methods have undergone recent

developments [4,5] but still face modeling issues, espe-
cially when no controlled magnetic field is applied [6].
The development, the implementation and the general-
ization of such techniques involve, in one hand, the estab-
lishment of experiments to highlight the magnetoelastic
coupling in a controlled framework, and on the other
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hand, the development of innovative modeling methods.
Both aspects are addressed in this paper. The measure-
ments presented are related to the hysteretic and cyclic
piezomagnetic behavior [7] of a dual-phase steel sub-
mitted to various magnetic field and stress conditions.
After describing a multiscale approach of magneto-elastic
couplings in a reversible framework and of associated mag-
netic hysteresis model, we then propose a new modeling
of piezomagnetic hysteresis behavior.

2 Material and procedure

2.1 Material

The material used for the experiments is a dual-phase low
carbon steel (DPS780 from ArcelorMittal). Its microstruc-
ture consists of about 30% vol. of hard (mechanically)
martensite islands dispersed in a soft (ductile) ferritic
matrix. From a magnetic consideration the material can
be considered as 70%-pure iron as a first approximation
since martensite exhibits a susceptibility much lower than
the susceptibility of ferrite. Its contribution is neglected
for the modeling. This material has been the subject of
several studies in particular in the context of the link
between mechanical state and magnetic behavior [8,9].

2.2 Set up and experiments

Samples consist in 200 mm long, 12.5 mm wide and
1.6 mm thick strips (Fig. 1) suitable for the experimental
set-up used for experiments.
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Fig. 1. Sample geometry and experimental set up.

Two different experiments have been carried out in
this study: hysteretic measurements under static mechan-
ical stress and piezomagnetic measurements under cyclic
mechanical stress. For both tests, the same experimental
apparatus has been used as sketched in Figure 1 (details
concerning the experimental apparatus can be found in
[4,5]). The sample is placed between two “U” ferrite yokes
allowing the re-close of the magnetic flux. The excita-
tion field is applied by the primary winding formed of
N = 81 turns and fed by an electrical current of inten-
sity i(t). The magnetic flux in the sample is estimated
by integrating the induced voltage at the terminals of
a B-coil, formed of n = 700 turns. The measurement
of the magnetic flux in the sample allows the induction
B, then the magnetization M to be calculated. The set-
up is mounted inside an electro-hydraulic MTS machine,
applying from compressive to tensile stresses. The set-
up allows the study of magnetic behavior of the material
under stress. A LabView system allows the simultane-
ous acquisition and recording of the different quantities of
interest (force, displacement, applied current and induced
voltage).
The first part of the work consists in measuring

the magnetic hysteresis behavior of the material under
static uniaxial stress. The magnetic cycles are produced

by applying a triangular current intensity (allowing a
constant magnetic field rate). Test parameters are the
mean magnetic field (Hm = 0A/m), the frequency
fmag (0.1Hz), the magnetic amplitude ∆H (850A/m,
1700A/m, 3400A/m, 8500A/m, 15000A/m) and the
static stress value σstat (from −100MPa to 300MPa).
The procedure is composed of the following steps: (1)
application of the mechanical loading σstat; (2) demagneti-
zating by applying a decreasing amplitude sinusoidal cur-
rent; (3) application of magnetic field H(t) and measure-
ment of induced voltage; (4) recording of measurements.
The second part of this work consists to measure

the piezomagnetic behavior of the material under differ-
ent levels of the static magnetic field Hstat (850A/m,
1700A/m, 3400A/m, 8500A/m, 15000A/m). A sinu-
soidal stress waveform has been used for mechanical
loading. Test parameters are the mean stress σm (from
−50MPa to 300MPa), the stress amplitude ∆σ (from
50MPa to 200MPa) and the frequency of loading fmec

(0.5Hz). The mechanical loading is chosen in the range
[−100MPa 300MPa] in order to avoid the sample yielding
(yield stress σy = 425MPa) and buckling.1

1 The critical buckling stress is given by the Euler formula. Consider-
ing an unsupported length of 80mm, and a Young modulus of 210GPa,
the critical buckling stress is estimated to −280MPa.
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The piezomagnetic measurement procedure is composed
of the following steps: (1) cyclic mechanical loading of
amplitude ∆σ; (2) application of the static magnetic
field after demagnetizing; (3) measurement and averag-
ing over 50 cycles after stabilization of induced voltage;
(4) recording of the measurements.

3 Experimental results

3.1 Magnetic hysteresis

When the material is submitted to an alternative magnetic
field, the magnetization forms an hysteresis loop illus-
trating the irreversibility of the magnetic behavior and
the presence of dissipative phenomena. Figure 2 depicts
the evolution of the magnetic hysteresis loop at differ-
ent magnetic field levels for σstat = 0MPa. The cycles
are nested inside each other. It can be noticed that the
evolution of the shape of the hysteresis cycles is highly
dependent on the magnetic field level. Indeed, we can
see that the maximal dM/dH slope and the cycle area
increase with increasing amplitude of the magnetic field.
It can be noticed also that magnetization saturation is not
far to be reached for loop obtained at the highest mag-
netic field strength. Its level remains however lower than
the theoretical saturation of pure iron (1.71 × 106 A/m)
due to the martensite ratio and various demagnetizing
effects.
Magnetic measurements reported in Figure 3 represent

the hysteretic cycles under uniaxial stress. Measurements
lead to conventional results for low carbon steel: global
degradation of magnetization due to compressive stress
at a given magnetic field (decrease of magnetic suscep-
tibility), improvement due to tensile stress and Villari
reversal effect [9]. The Villari reversal is associated with
the change of dM/dσ|H sign: at weak and intermediate
magnetic field, the ratio dM/dσ|H is positive. It becomes
negative at higher magnetic field leading to a change of
sign of dM/dσ|H (becoming negative and corresponding
to the reversal point). A higher stress level progressively
shifts the Villari reversal point to the lower magnetic field
values. It can be noticed that the Villari reversal can be
related to the change of sign of the magnetostriction vs.
magnetic field behavior [10].

3.2 Piezomagnetic hysteresis

Figure 4 shows the magnetic response associated with
the variation of stress (σm = 100MPa, ∆σ = 200MPa,
fmec = 0.5Hz) for Hstat = (850A/m, 1700A/m,3400A/m,
8500A/m, 15000A/m). In order to facilitate the com-
parison of the experimental and numerical results, we
considered the magnetic state at 300MPa as a reference
state for magnetization. As shown in Figure 4, the piezo-
magnetic cycles are not symmetric and non-monotonous:
positive stress leads to quasi-reversible situation and
negative stress increases the cycle area. Again, for a
weak to intermediate magnetic field, instantaneous slope
dM/dσ|H is practically positive for compressive to weak
tensile stress. The sign reversal of dM/dσ|H occurs for

Fig. 2. Experimental results: magnetic hysteresis at increasing
magnetic field levels without applied stress – M = f(H,σ =
0MPa).

Fig. 3. Experimental results: hysteretic cycles under different
mechanical loading conditions – M = f(H,σ = cte).

stress levels varying from 70MPa to 230MPa depend-
ing on position on the cycle. At higher magnetic field
strength, reversal clearly occurs at lower stress. High
magnetic fields (H ≥ 4kA/m) lead to a negative and
quasi constant slope. Moreover the piezomagnetic behav-
ior becomes quasi-reversible. This result is interesting if
a sensor application is looked for. Indeed, the applied
mechanical stress could be estimated by only measuring
the magnetization of material (and knowing a reference
point).
Readers interested in magnetostriction behavior of this
material under stress and associated models are invited
to consult reference [9].
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Fig. 4. Experimental results: piezomagnetic behavior obtained
under cyclic stress conditions and at different magnetic field
levels – M = f(H = cte, σ).

4 Multiscale modeling

The model is derived from a description of reversible
magneto-elastic behavior [10,11] extended recently to
magnetic hysteresis [12]. This description relies on the def-
inition of the material Gibbs free energy at the magnetic
domain scale and the estimation of the domains volume
fractions using a at equilibrium stochastic approach at the
grain scale. Some scale transition rules are used to define
the behavior at the polycrystalline scale considered as the
representative volume element (RVE).

4.1 Gibbs free energy and reversible modeling

The Gibbs free energy density is written at the magnetic
domain scale α. The reader can find in [10] complete and
comprehensive explanation and hypotheses about the con-
struct of this energy functional. Indeed at the domain
scale, both magnetization ~Mα and magnetostriction strain
εµα (seen as a free deformation tensor) can be considered
as homogeneous. The norm of ~Mα is the saturation mag-
netizationMs as a first constant of the model (see Eq. (1),
where γkα are the direction cosines of magnetization vec-
tor and ~ekα are the unit vectors of the crystallographic
frame). In the framework of linear magnetoelastic cou-
pling, εµα is stress independent and isochorus, given by
equation (2), where λ100 and λ111 are two other con-
stants measuring the saturation deformation along 〈100〉
and 〈111〉 crystallographic directions respectively. More-
over in the framework of this paper and for the seek of
simplicity, stress σ and magnetic field ~H are considered
homogeneous over the RVE (avoiding any complex rules
for localization or homogenization). Appendix A details
how it is possible to implement other estimates (homoge-
neous strain or self-consistent schemes) from grain to RVE
transitions. Piezomagnetic modeling results are however

close together whatever the estimate.

~Mα = Ms γ
k
α.~e

k
α (1)

εµα =
3

2

 λ100(γ21 − 1
3 ) λ111γ1γ2 λ111γ1γ3

λ111γ1γ2 λ100(γ22 − 1
3 ) λ111γ2γ3

λ111γ1γ3 λ111γ2γ3 λ100(γ23 − 1
3 )

.
(2)

Following these simplifications, the Gibbs free energy
density at the magnetic domain scale is simply expressed
as:

gα(~H,σ) = K1(γ21γ
2
2 + γ22γ

2
3 + γ23γ

2
1)− µ0

~H. ~Mα

−1

2
σ : C−1 : σ − σ : εµα, (3)

where µ0 is the vacuum magnetic permeability and C the
stiffness tensor of the medium.
The term K1(γ21γ

2
2 + γ22γ

2
3 + γ21γ

2
3) is the magnetocrys-

talline energy density with K1 a magnetocrystalline
constant. This non-convex term allows the so-called easy
magnetization directions (six 〈100〉 directions for iron and
iron alloys) to be defined. These directions define the
number of domains (or domain families α) that can
be seen as crystallographic variants. Calculation of mag-
netic domains volume fraction is made possible by using
a at equilibrium stochastic approach, which neglects the
transition zones (domain walls) between domains. This
calculation is complemented by a minimization process of
gα regarding the direction cosines of domain families α to
take the so-called magnetization rotation mechanism into
account. Following this strategy, a Boltzmann function
gives the solution of the stochastic approach [13] (with
V0 a reference microscopic volume, kB the Boltzmann
constant (1.38 × 10−23J.K−1) and T the temperature
(293K)).

fα =
exp

(
− V0

kBT
gα
)∑6

i=1 exp
(
− V0

kBT
gi
) (4)

~γα = min(gα(~γ, ~H,σ)). (5)

It must be noticed that since the mechanical contribu-
tion 1

2σ : C−1 : σ is uniform over the grain, it does not
participate to the energy equilibrium.
Averaging operations end the process as expressed in

equations (6) and (7), with Ng the number of grains
g involved in the process (a discrete orientation distri-
bution function – ODF – extracted from Electron Back
–Scattered Diffraction – EBSD – measurement is used).

~M =
1

Ng

∑
g

(

6∑
α=1

fα ~Mα) (6)

εµ =
1

Ng

∑
g

(

6∑
α=1

fαε
µ
α). (7)



A. Ouaddi et al.: Mechanics & Industry 20, 810 (2019) 5

Both stress and magnetic field variations are the pos-
sible loadings of the problem. A cyclic magnetic field at
constant stress leads to magnetic and field-induced mag-
netostriction behaviors at constant stress. A cyclic stress
at constant magnetic field leads to the piezomagnetic
and stress-induced magnetostriction behaviors at constant
magnetic field.

4.2 Irreversible modeling – application of Hauser’s
modeling to Piezomagnetic cycle

The multiscale approach is by definition anhysteretic,
meaning that it is restricted to the reversible part of
magneto-elastic behavior. It has been proposed in [12]
to introduce hysteresis effects in the multiscale model
in terms of irreversible magnetic field. The dissipation is
introduced (initially in the single crystal model) by adding
an irreversible contribution Hirr to the anhysteretic mag-
netic field H (considered as the reversible magnetic field
Hrev). The definition of Hirr is based on the works by
Hauser [14], extended to magneto-mechanical loadings.
The Hauser’s model predicts the magnetic state of the
ferromagnetic material by minimizing the overall energy
state of the system. This approach is based on a physical
and probabilistic description of the volume distribution
of the magnetic domain families. The dissipative behav-
ior results from the probability of encountering a defect
during the displacement of magnetic walls separating
the magnetic domains. The expression of the irreversible
energy is a decreasing exponential function which depends
on the variations of the anhysteretic volume fraction.
It reflects the fact that a wall has a lower probability of
being pinned to a defect, when it is away from it. Hauser
has often simplified this development by studying a load
applied along an easy magnetization axis of the material
and considering quantities as isotropic and at the macro-
scopic scale. Following these simplifications, equation (8)
gives the expression of Hirr retained for this work.

Hirr = δ(Hc + a|Hrev|)
[
1− κ exp

(
−ka
κ
|M −Mprev|

)]
(8)

where

κ = 2 − κ0 exp
(
−ka
κ0
|M −Mprev|

)
. (9)

Hirr is assumed to be parallel to H and Hrev, since
H = Hrev +Hirr. Hysteresis is restricted to magnetic field
amplitude effects, rotational effects cannot be modeled.
δ is equal to ±1, depending on the loading direction.
The sign of δ starts as positive and is then changed at
each inversion in loading direction. Hc denotes the coer-
cive field of the material (magnetic field required to annul
the remnant magnetization for a major cycle). a, ka and κ
are material parameters. a controls the first magnetization
behavior, and ka and κ the width and inclination of the
hysteresis cycle. The value of κ changes each time there is
an inversion in the loading direction. The new κ value is
calculated from the previous value κ0 according to equa-
tion (9). The initial κ value is a material constant. Mprev

is the value of magnetization M at the previous inversion
of the loading direction. In the case of a purely magnetic
loading, an inversion of loading direction is defined as
a change of sign for the time derivative of the applied
magnetic field.
Extension of this model to stress loading is key once a

piezomagnetic cycle is expected to be modeled. It must
be recalled that the expression from Hauser comes from
an observation and calculation of the energy dissipated by
the pinning mechanisms and by the wall jumps. It depends
only on the path made by the walls and does not depend
on the whether the walls movement is generated by the
application of a magnetic field or a mechanical stress.
Indeed the intrinsic dissipation part of Clausius-Duhem
inequality can be built at the macroscale using irreversible
magnetic field or irreversible stress following:

µ0
~̇M. ~Hirr + ε̇µ.σirr ≥ 0. (10)

It is possible to propose a dissipation pseudo-potential
Φ (convex and positive) so that, for a step-time dt and
considering a monotonous evolution of magnetization (by
part) in uniaxial condition, one gets:

~Hirr =
dΦ

µ0d ~M
dt. (11)

The definition of Hirr given by Hauser allows an
appropriate definition of dissipation pseudo-potential Φ.
The same comment can be made for irreversible stress.
Considering a monotonous evolution of magnetostriction
deformation in uniaxial condition, one gets:

σirr =
dΦ

dεµ
dt. (12)

The definition of an irreversible stress directly inspired
from the irreversible magnetic field definition can be pro-
posed, restricted to 1D loading (only axial stress and
strain components are considered):

σ = σrev + σirr (13)

with σrev the reversible stress leading to the at equilibrium
magnetization using the multiscale model. σirr is given by:

σirr = δ(σC + a′|σrev|)
[
1− κ′ exp(−k

′
a

κ′
|εµ − εµprev|)

]
(14)

and

κ′ = 2 − κ′0 exp
(
− k′a
κ′0
|εµ − εµprev|

)
. (15)

These equations define four more material coefficients:
a coercive stress σc, and parameters a′, k′a and κ′0. a′ con-
trols the first stress-induced magnetostriction behavior,
and k′a and κ′ the width and inclination of the stress-
induced magnetostriction hysteresis cycle. An inversion
of loading direction (leading to a change of the sign of
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Fig. 5. Illustration of dissipation pseudo-potential for magnetization ΦM at constant stress and for stress Φσ at constant magnetic
field during the transient first loading and the (stabilized) magnetic and mechanical cycles.

parameter δ) is defined as a change of sign for the time
derivative of the applied stress. Figure 5 illustrates the
dissipation pseudo-potential for magnetization ΦM at con-
stant stress and for stress Φσ at constant magnetic field
during the transient first loading (first magnetization and
first stress) and cycles (one curve per branch) for the
parameters reported in Tables 1 and 2 (but considering
parameters a and a′ at zero). It exhibits the appropriate
properties (positive and convex).
However, it must be underlined that the stress-induced

magnetostriction cycle (stress vs magnetostriction) can
hardly be obtained experimentally. The more relevant
indicator of the effect of a variable stress is of course
the piezomagnetic cycle. Comparisons of experimental and
modeled piezomagnetic cycles are possible thanks to the
definition of irreversible stress. They can help to adjust the
modeling parameters. It must be underlined on the other
hand that following the previous remarks and discussion,
a piezomagnetic cycle is not representative of an energy
dissipation, unlike a magnetostriction vs. stress cycle.

5 Modeling results and discussion

5.1 Numerical parameters used for modeling

Physical constants of pure iron have been used for the
anhysteretic parameters. They are reported in Table 1.
An orientation data file made of 440 orientations has been
used to model the RVE. Related pole figures are plotted
in Figure 6. Table 2 gathers parameters used to model the
irreversible magnetic field and stress, that fit properly the
experimental results, but without numerical optimization
(improvements are possible).

5.2 Magnetic hysteresis

In this section the multiscale model is applied to describe
the magnetic hysteresis behavior of the dual-phase steel.
As a first step, the material is supposed to have the same

Table 1. Parameters used in the multiscale modeling –
anhysteretic behavior.

Parameter Ms K1 λ100; λ111 V0

Value 1.71×106 48 21.5; −21.5 8000
Unit A/m kJ/m3 ppm nm3

Table 2. Parameters used in the multiscale modeling –
cyclic magnetic and cyclic piezomagnetic behaviors.

Parameter Hc a ka κ0 σc a′ k′a κ′0

Value 1300 0.0 1×10−5 1 123 0.0 1.3×106 1
Unit A/m – m.A−1 – MPa – – –

magnetic behavior as pure iron. Figure 7 reports the hys-
teretic cycles at the unloaded state for different magnetic
field levels used for experiments (Fig. 2). In the other
hand, the major hysteresis loops at the unloaded state
and under −100 MPa, 100MPa and 200MPa are plot-
ted in Figure 8 (to be compared with results plotted in
Fig. 3). The general trends are correctly met. The effect
of tensile and compressive uniaxial stress on the material
magnetization are properly rendered. Both experimental
and numerical results show that for low levels of magnetic
field, a tensile stress increases the magnetic susceptibility
represented by dM/dH|σ slope, whereas a compression
decreases it. This effect is inverse at high magnetic field
levels by Villari effect, and the modeling reproduces it
fairly. A cycle-to-cycle comparison is however not possi-
ble without taking into account the effective quantity of
magnetic material.

5.3 Piezomagnetic hysteresis

As explained in Section 4.2, the modeling of the piezomag-
netic behavior proposed in this work is inspired from the
description of the hysteretic irreversibility given by the
Hauser’s model. The definition of the irreversible stress
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Fig. 6. Poles figures of the material: (a) 〈100〉 poles; (b) 〈111〉 poles. RD: rolling direction; TD: transverse direction.

Fig. 7. Modeling results: evolution of the hysteretic cycles with
the applied magnetic field M = f(H,σ=0MPa).

Fig. 8. Modeling results: hysteretic cycles under different
mechanical loading conditions M = f(H,σ = cte).

Fig. 9. Modeling results: stress-induced magnetostriction vs.
stress cycle.

allows the modeling of the stress-induced magnetostric-
tion. Figure 9 represents this cycle, representative of a
mechanical dissipation.2 This cycle, drawn for pure iron,
can be hardly obtained experimentally because magne-
tostrictive deformations are very low compared to elastic
deformation.
Thanks to this modeling strategy we succeed to

reproduce piezomagnetic irreversibility. The piezomag-
netic cycles are calculated for different magnetic field
levels Hstat (850A/m, 1700A/m, 3400A/m, 8500A/m,
15000A/m) by plotting the magnetization as function
of total stress (σ = σrev + σirr) as shown in Figure 10.
This result is given for pure iron. The mechanical loading
used for modeling is a triangular stress waveform with a
frequency of fmec = 0.5Hz. The mechanical loading ampli-
tude is not perfectly mastered since the component σirr
changes its value at each step of calculation. The cycles
reproduced by the model show less variations and new
phenomena such as the presence of cross points close
to the Villari reversal points (Fig. 10), which has been

2 The dissipation can be estimated at 320 J/m3 per cycle. This value
is much lower than the dissipation measured during a magnetic cycle
that is about 9300 J/m3 for a major cycle.
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Fig. 10. Modeling results: evolution of the piezomagnetic cycles
with the magnetic field level M = f(H = cte, σ).

Fig. 11. Experimental measurements and modeling results
under different mechanical loadings.

observed for other steels [5]. Nevertheless, a good general
agreement with the experimental observations is obtained.
For comparison of magnetization levels, the volume frac-
tion of effective ferromagnetic material must be taken into
account.

5.4 Comparison between experimental measurements
and modeling results

The material is supposed to be composed of about 70%-
pure ferrite and that martensite brings non magnetic
contribution to the magnetization. Figure 11 shows a com-
parison between the experimental and modeled magnetic
behavior of the material under uniaxial stress (0 MPa,
+100 MPa and −100MPa). A good general agreement is
observed. The model tends to underestimate the magneti-
zation of the material for a given magnetic field, especially

Fig. 12. Piezomagnetic behavior measured and calculated by
the model.

at the magnetic saturation. Contribution of martensite is
probably missing.
Figure 12 presents the measured and predicted piezo-

magnetic loops under static magnetic field. The model
succeeds to reproduce the effect of the external magnetic
field on the piezomagnetic behavior. Some peculiar exper-
imental behaviors such as the change of the sign of the
dM/dσ|H slope and the decreasing of the dissipation are
well rendered by the model. The contribution of marten-
site does not seem to be missing here. The amplitude
of the modeled low-field cycle is even greater than the
amplitude observed during the experiment.

6 Conclusion

The subject of this work was the study of the hys-
teretic and piezomagnetic behavior of a dual-phase steel.
An experimental protocol was first presented. Hysteretic
and piezomagnetic measurements were then performed
under different loading (mechanical and magnetic) con-
ditions. Experimental results are consistent with former
results performed with low carbon steels. They highlight
the effect of uniaxial stress and the magnetic field level on
the magnetization of the material. A multiscale modeling
has been used to calculate both the hysteretic and piezo-
magnetic behavior. Comparisons have been made between
the prediction of modeled and measured results. The mul-
tiscale model seems able to describe correctly the effect
of an applied stress and of an external magnetic field on
the magnetization. Improvements are expected by taking
the magnetic behavior of martensite phase into account.
However, some shortcomings of the model are noticed:
the magnetic and mechanical stress are considered homo-
geneous at the RVE scale and the behavior is only seen
through the configuration of magnetic domains, neglecting
some boundary and interface effects. Applications to the
development of novel non destructive testing procedures
is foreseen.
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Appendix A: Localization and
homogenization

The calculation of the Gibbs free energy density at
the magnetic domains scale requires knowing the stress
applied at the grain scale constitutive of the polycrystal.
The numerical applications in Section 5 were carried out
using a homogeneous stress hypothesis for simplicity: the
local (grain = g) stress is corresponding to the applied
stress at the macroscale, leading to:

σg = σ. (A.1)

It is however possible to propose other estimates.
The most common are the homogeneous strain and
self-consistent schemes.

A.1 Homogeneous strain estimate

The deformation is considered as homogeneous when
the deformation of each crystal is corresponding to the
macroscopic deformation, leading to:

εg = ε. (A.2)

By additivity of the deformations of elastic and magne-
tostrictive origin, one obtains:

εeg + εµg = εe + εµ. (A.3)

Elastic deformations are related to stresses via the
stiffness tensors:

C−1g : σg + εµg = C−1 : σ + εµ. (A.4)

Stress at the grain scale is therefore linked to the macro-
scopic stress through a more complex relationship than in
a situation of homogeneous stress:

σg = Cg : C−1 : σ + Cg : (εµ − εµg ). (A.5)

Fourth rank tensor Bg = Cg : C−1 is the so-called stress
concentration operator.

This relation must be completed by an estimation of
the macroscopic stiffness tensor C and an estimation of
the macroscopic magnetostriction strain εµ. By consider-
ing on the one hand the problem as purely elastic, the
homogeneous deformation assumption leads to:

σg = Cg : C−1 : σ. (A.6)

The average stress is obtained by an averaging of the local
stresses following:

〈σg〉 = σ =< Cg : C−1 : σ >=< Cg >: C−1 : σ (A.7)

where 〈..〉 figures out a volume averaging (〈..〉 =
1
V

∫
V
...dv). This relationship leads to:

〈Cg〉 : C−1 = I (A.8)

where I is the fourth-rank identity operator, leading to
the homogeneous deformation estimate of the macroscopic
stiffness tensor (denoted as Voigt estimate):

C = 〈Cg〉. (A.9)

By applying on the other hand the average operation
to the localization equation (A.5), one gets:

〈σg〉 = 〈Cg : C−1 : σ〉+ 〈Cg : (εµ − εµg )〉 (A.10)

leading to:

〈Cg : (εµ − εµg )〉 = 0 (A.11)

〈Cg〉 : εµ = 〈Cg : εµg 〉 (A.12)

εµ = 〈Cg〉−1 : 〈Cg : εµg 〉 (A.13)

εµ = 〈C−1 : Cg : εµg 〉 = 〈tBg : εµg 〉. (A.14)

The average macroscopic magnetostriction is obtained
thanks to this equation where tBg indicates the transpose
of Bg.
The homogeneous deformation hypothesis leads to a self

consistent estimation of local stress σg, since it depends
on the local and macroscopic magnetostriction tensor that
depend on the local stress through the constitutive law.
The computation time is consequently significantly higher
than by using the homogeneous stress hypothesis.

A.2 Self consistent estimate

Each grain is considered as an inclusion in the homo-
geneous medium equivalent to the polycrystal, so that
the problem can be linked to the solution of the Eshelby
inclusion problem [15]. Considering on the one hand a
macroscopic applied stress σ, a local deformation εg and
a macroscopic deformation ε, the stress at the grain scale
is given by the Hill’s relationship [16]:

σg = σ + C? : (ε− εg) (A.15)

where C? is the Hill’s constraint operator defined by:

C? = C0 : (SE−1 − I) (A.16)

C0 is the stiffness tensor of the equivalent medium, taken
as the macroscopic stiffness tensor C in case of self-
consistent estimate. SE is the so-called Eshelby tensor.
SE only depends on the single crystal elastic moduli and
on the shape chosen for the inclusion. Elements concern-
ing the calculation of this tensor can be found in [17]. For
the applications considered in Appendix A.3 inclusions are
taken spherical, assuming an isotropic distribution of the
grains.
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By additivity of the deformations of elastic and magne-
tostrictive origin, the Hill relationship (A.15) transforms
into:

σg = σ + C? : (εe + εµ − εeg − εµg ). (A.17)

Elastic deformations are related to stresses via the
stiffness tensors, so that:

σg = σ + C? : (C−1 : σ + εµ − C−1g : σg − εµg ) (A.18)

or

(C? : C−1g + I) : σg = (C? : C−1 + I) : σ + C? : (εµ − εµg )
(A.19)

and

σg = (C? : C−1g + I)−1 : (C? : C−1 + I) : σ

+(C? : C−1g + I)−1 : C? : (εµ − εµg ) (A.20)

σg = Cg : (Cg + C?)−1 : (C + C?) : C−1 : σ

+Cg : (Cg + C?)−1 : C? : (εµ − εµg ) (A.21)

σg = Bg : σ + Caccg : (εµ − εµg ). (A.22)

The definition of stress concentration tensor is modified
into: Bg = Cg : (Cg+C?)−1 : (C+C?) : C−1. Caccg denotes
the accommodation stiffness tensor given by: Caccg = Cg :

(Cg + C?)−1 : C?.
Equation (A.22) allows the local stress as function

of macroscopic stress, macroscopic magnetostriction and
local magnetostriction to be obtained. As for homoge-
neous strain estimate, this relation must be completed by
an estimation of the macroscopic stiffness tensor C and
an estimation of the macroscopic magnetostriction strain
εµ. By considering on the one hand the problem as purely
elastic, the local and global stress are related by:

σg = Cg : (Cg + C?)−1 : (C + C?) : C−1 : σ. (A.23)

The average stress is obtained by an averaging of the local
stresses following:

〈σg〉 = σ = 〈Cg : (Cg + C?)−1 : (C + C?) : C−1 :

σ〉 = 〈Cg : (Cg + C?)−1 : (C + C?)〉 : C−1 : σ.

(A.24)

This relationship leads to:

〈Cg : (Cg + C?)−1 : (C + C?)〉 : C−1 = I (A.25)

The Self-Consistent estimate of the macroscopic stiffness
tensor is obtained:

C = 〈Cg : (Cg + C?)−1 : (C + C?)〉. (A.26)

Table A.1. Stiffness constants of the iron single crystal
– using Voigt notations [11].

Parameter C11 C12 C44

Value 238 142 232
Unit GPa GPa GPa

It must be remarked that this equation is an implicit equa-
tion since the equivalent medium stiffness is taken as the
macroscopic stiffness itself.
By applying on the other hand the average operation

to the localization equation (A.22), one gets:

〈σg〉 = 〈Cg : (Cg + C?)−1 : (C + C?)〉 : C−1 : σ〉
+〈Cg : (Cg + C?)−1 : C? : (εµ − εµg )〉 (A.27)

leading to:

〈Cg : (Cg + C?)−1 : C? : (εµ − εµg )〉 = 0 (A.28)

〈Cg : (Cg + C?)−1 : C?〉 : εµ

= 〈Cg : (Cg + C?)−1 : C? : εµg 〉 (A.29)

C : (C + C?)−1 : C? : εµ = 〈Cg : (Cg + C?)−1 : C? : εµg 〉
(A.30)

εµ = 〈C−1 : (C + C?) : (Cg + C?)−1 : Cg : εµg 〉
= 〈tBg : εµg 〉. (A.31)

A self-consistent equation is of course obtained where
the local and macroscopic magnetostriction tensors
depend on the local stress through the constitutive law.
The computation time is consequently significantly higher
than by using the homogeneous stress hypothesis but close
to the computation time observed with the homogeneous
strain hypothesis.

A.3 Illustrations

The two schemes have been applied for the calculation
of the macroscopic magnetostriction strain and magne-
tization during a piezomagnetic cycle. This calculation
requires the use of the pure iron stiffness constants as
three more parameters. They are given in Table A.1.
Figures A.1a and A.1b illustrate the corresponding

results compared to the homogeneous stress estimate
already reported in the main text.
It can be observed that homogeneous deformation con-

dition leads to a reduced magnitude of magnetostriction
and magnetization comparing to the homogeneous stress
condition. This result was awaited since homogeneous
deformation usually enhances the mechanical contrast
between grains. Stress always opposes to the free deforma-
tions. The self-consistent estimate leads to an intermediate
behavior between the two previous estimates.
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Fig. A.1. Comparison between homogeneous stress, homogeneous strain and self-consistent estimates: (a) stress-induced
magnetostriction vs. stress cycles; (b) piezomagnetic cycles.

References

[1] E. Villari, Change of magnetization by tension and by
electric current, Ann. Phys. Chem. 126, 87–122 (1865)

[2] R.M. Bozorth, Ferromagnetism, Van Nostrand (Ed.), Wiley
IEEE Press, New York, 1951

[3] J. Dumont-Fillon, Mesures, Analyses/Contôle non destruc-
tif, Techniques de l’ingénieur, 1996

[4] L. Lollioz, S. Pattofatto, O. Hubert, Application of piezo-
magnetism for the measurement of stress during an impact,
J. Elect. Eng. 57, 15–20 (2006)

[5] O. Hubert, K.J. Rizzo, Anhysteretic and dynamic piezo-
magnetic behavior of a low carbon steel, J. Mag. Mag.
Mater. 320, 979–982 (2008)

[6] S. Bao, T. Erber, S.A. Guralnick, W.L. Jin, Fatigue,
Magnetic and Mechanical Hysteresis, Strain 47, 372–381
(2011)

[7] K.J. Rizzo, O. Hubert, L. Daniel, A multiscale model for
piezomagnetic behavior, Eur. J. Electric. Eng. 12, 525–540
(2009)

[8] F.S. Mballa-Mballa, O. Hubert, S. Lazreg, P. Meilland,
Multidomain modelling of the magneto-mechanical
behaviour of dual-phase steels, 18th WCNDT – World
Conference on Nondestructive Testing. 16–20 April 2012,
Durban (South Africa)

[9] O. Hubert, S. Lazreg, Two phase modeling of the influ-
ence of plastic strain on the magnetic and magnetostrictive

behaviors of ferromagnetic materials, J. Mag. Mag. Mater.
424, 421–442 (2017)

[10] O. Hubert, Multiscale magneto-elastic modeling of mag-
netic materials including isotropic second order stress effect,
J. Magn. Magn. Mater. 491, 1–16 (2019)

[11] L. Daniel, O. Hubert, N. Buiron, R. Billardon, Reversible
magneto-elastic behavior: a multiscale approach, J. Mech.
Phys. Solids 56, 1018–1042 (2008)

[12] L. Daniel, M. Rekik, O. Hubert, A multiscale model
for magneto-elastic behaviour including hysteresis effects,
Arch. Appl. Mech. 84, 1307–1323 (2014)

[13] X. Chang, K. Lavernhe, O. Hubert, Stochastic multiscale
modeling of the thermomechanical behavior of polycrys-
talline shape memory alloys, Mech. Mater. 144, 1–27
(2020)

[14] H. Hauser, Energetic model of ferromagnetic hysteresis:
Isotropic magnetization, J. Appl. Phys. 96, 2753–2767
(2004)

[15] J.D. Eshelby, The determination of the elastic field of an
ellipsoidal inclusion, and related problems, Proc. R. Soc.
London, Ser. A 241, 376–396 (1957)

[16] R. Hill, Continuum micro-mechanics of elastoplastic
polycrystals, J. Mech. Phys. Solids 13, 89–101
(1965)

[17] T. Mura, Micromechanics of Defects in Solids, Martinus
Nijhoff Publishers, Dordrecht, MA, 1982

Cite this article as: A. Ouaddi, O. Hubert, J. Furtado, D. Gary, S. Depeyre, Piezomagnetic behavior: experimental observations
and multiscale modeling, Mechanics & Industry 20, 810 (2019)


	Piezomagnetic behavior: experimental observations and multiscale modeling
	1 Introduction
	2 Material and procedure
	2.1 Material
	2.2 Set up and experiments

	3 Experimental results
	3.1 Magnetic hysteresis
	3.2 Piezomagnetic hysteresis

	4 Multiscale modeling
	4.1 Gibbs free energy and reversible modeling
	4.2 Irreversible modeling rotect -- application of Hauser's modeling to Piezomagnetic cycle

	5 Modeling results and discussion
	5.1 Numerical parameters used for modeling
	5.2 Magnetic hysteresis
	5.3 Piezomagnetic hysteresis
	5.4 Comparison between experimental measurements and modeling results

	6 Conclusion
	Appendix A  Localization and homogenization
	A.1 Homogeneous strain estimate
	A.2 Self consistent estimate
	A.3 Illustrations


	References

