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Abstract 

This paper develops a multi-modal competitive hub location pricing problem whose target is 

the design of a transportation system for a company that plans to enter into a market with 

elastic demand, in which an existing transportation company operates its hub-and-spoke 

network. The entrant company aims to attract customers in the market by convenient locations 

for its hubs and proper pricing of its transportation services, while customer loyalty is different 

in the nodes. Hence, mixed-integer programming based on a multi-nominal logit model is 

proposed. Thereafter, to solve the single allocation hub-and-spoke model, it is decomposed into 

a bi-level model. In the new structure, the master problem is associated with hub location and 

assignment decisions, and the sub-problem is associated with pricing decisions. Moreover, 

upper and lower bounds are calculated to determine the price of transportation routes. Finally, 

based on a nested approach, a scatter search algorithm is used to search the solution space of 

the master problem, and a matheuristic method is designed to solve the pricing problem 

interactively. The proposed approach is employed to solve a case study in the postal service 

industry of Iran. 

 

Keywords: Pricing; Hub location; Multi-modal transportation; Elastic demand; Customer loyalty. 

 

1. Introduction 

The number of companies that offer similar services has been increasing in recent years. As a 

result, competition among companies has increased to earn maximum profit and market share. 

Based on these conditions, companies must pay attention to the proper pricing of their services 

and design appropriate transportation routes to fulfill their customers’ demands. For example, 

until recently, postal services in Iran were provided by a monopoly operator (Iran Post 

Company). To improve the quality of service and decrease prices, the government decided to 

open the market for other operators. The government believes that this policy is necessary to 
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ensure the development of effective competition. Based on this case, we assume in this study 

that a new transportation company intends to enter a monopoly market. The entrant tries to 

compete against the incumbent while having complete information about the location of the 

incumbent's hubs and spokes. The entrant applies optimal pricing and designs an appropriate 

network to obtain the maximum profit and market share. Therefore, to achieve this goal, the 

entrant has to consider the condition of a rival company (i.e., the incumbent) as well. 

Hub location problems (HLPs) are an important research area of logistic problems. That is 

because a solution of these problems allows a decrease in the number of transportation links 

between origin and destination nodes. Moreover, it reduces overall transportation costs by 

consolidating traffic flows from various origins and transferring them to hubs with various 

destinations. HLPs are applied in many settings, such as airline industries (Aykin, 1994; Jaillet et 

al., 1996; Adler and Smilowitz, 2007), package delivery firms (Kuby and Gray, 1993), message 

delivery networks (Klincewicz, 1998), cargo industries (Taylor et al., 1995; Lumsden et al., 

1999), telecom industries (Lee et al., 1996), emergency services and mobile post offices (Bashiri 

et al., 1996), and many other transportation systems.  

Studies of various hub network models began in 1986. The first model of an HLP was 

introduced by O’Kelly (1986). Thereafter, O’Kelly (1987) introduced the first formulation of the 

HLP as an optimization problem. Generally, HLPs can be classified into four parts (Campbell, 

1994): center, covering, fixed costs and median problems. Also, a hub median problem can be 

considered as a single allocation or multiple allocations (Ghaffarinasab et al., 2018). Alumur et 

al. (2012) presented a multi-modal hub location problem that jointly considered transportation 

costs and travel times. They studied decisions about how to design a hub network with various 

possible transportation modes. A complete literature review of HLPs can be seen in Alumur and 

Kara (2008), Campbell and O’Kelly (2012), Farahani et al. (2013), Contreras (2015). 

Competition among firms that utilize hub networks is an interesting topic of research. The 

first model of a competitive hub location problem was introduced by Marianov, Serra and 

ReVelle (1999). Thereafter, related studies were carried out by Sasaki and Fukushima (2001), 

Adler and Smilowitz (2007), Eiselt and Marianov (2009), Gelareh, Nickel, and Pisinger (2010) 

and Sasaki et al. (2014). Lüer-Villagra and Marianov (2013) were the first to explicitly utilize a 

pricing policy in a competitive HLP. They studied a single-modal and multiple-allocation HLP in 

a competitive environment. They argued that the revenue of firms that are new entrants into 

competitive markets depend on network design and pricing strategy. 

Competition in a market can be divided into three major types: static competition, dynamic 

competition, and competition with foresight (Farahani et al. 2014). The basic assumption in a 

static competition is that the existing rivals (i.e., incumbents) will not react to the entrance of a 

new competitor. However, the entrant should consider the effect of their rivals’ activities. As in 
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the other types of competition, incumbents can react to the entrance of a new competitor by 

changes in their characteristics, such as pricing. In dynamic competition, competitors 

simultaneously determine their competitive factors. In competition with foresight, a competitor 

will react to an entrant’s decisions sequentially. In the field of facility location, pricing has been 

studied for some time; however, to the best of our knowledge, there are a few studies in the case 

of hub location problems. Table 1 represents a brief overview of the most closely related studies. 

 
Table 1. Brief overview of competitive hub location and pricing problems 

Publications 

Competition type 

Research questions 

and main contributions 

D
y

n
a

m
ic

 

W
ith

 

fo
r

e
s

ig
h

t 

S
ta

tic
 

Lüer-Villagra and Marianov, 
(2013) 

  * - Entrant’s hub location and pricing problem 
- Proving an equation to determine the optimal price of each entrant’s route 
- Developing a genetic algorithm to solve the hub location problem  

Čvokić et al. (2016)  *  - Both entrant’s and incumbent’s hub locations under fixed markups 
- Reformulating the lower level problem (LLP) to develop a matheuristic to 
solve the hub location problem 

Čvokić et al. (2017) * *  - Hub location and pricing decisions for both competitors with and without 
relaxing the pre-commitment in terms of pricing 
- Providing that in the leader-follower hub location and pricing 
competition, where competitors are allowed to change their prices, there is 
a profit-maximizing solution for the leader 

Esmaeili, M., & Sedehzade, S. 
(2018) 

 *  - Modeling a CHLP problem based on Stackelberg-game 

- Demand of each firm depends on its price under the Bernard’s model 

- A solution approach is proposed using an imperialist competitive 
algorithm (ICA) and a closed expression 

Čvokić et al. (2019)  *  - Modeling an r/p hub-centroid problem under the price war 

- Finding a unique finite Bertrand-Nash price equilibrium for the follower 

This paper   * - Developing a mathematical formulation for a multi-modal CHLP problem. 

- Considering the effect of customer loyalty and elastic demand. 

- Decomposing the model and proposing two nested evolutionary 
algorithms based on scatter search and differential evolution to solve a 
single allocation hub-and-spoke network.  

 

A specific amount of price change does not always have the same effect on differences in 

demand. That is because the demand for a product/service can be elastic or inelastic, depending 

on the rate of change in demand relative to the change in the price of a product/service. Demand 

is elastic in the market when the response of demand is greater than a small proportional 

change in the price. Inelastic demand occurs when there is relatively less change in demand with 

greater change in price. There are a few studies that consider the effect of elastic demand. 

Redondo et al. (2012) studied the effect of elastic demand on competitive location problems. 

They showed that the assumption of fixed demand significantly affects location decisions; 

therefore, the correct type of demand (elastic or inelastic) must be considered for modeling 

location problems. Kaveh et al. (2016) designed a hub network with elastic demand, in which the 

demand is dependent on a utility that is related to the location of the hubs. Later, Rahimi et al. 

(2019) and Kaveh et al. (2019) utilized this concept in their hub location models; however, they 
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did not separately consider the effect of the price on demand. Two different hub location models 

considering the price-sensitive demand were studied by O’Kelly et al. (2015) and Čvokić and 

Stanimirović (2020); however, they developed their models for a non-competitive market.   

Another concept that can be useful for studying demand behavior in a market is customer 

loyalty. This occurs when customers prefer buying a specific product or using a specific shop, 

rather than buying products that are related to other brands or using other shops. Customers 

display such behavior if they purchase a specific brand or product consistently over an extended 

period. For example, many customers prefer to use a specific travel agent because of good 

experiences with their services (Tasci, 2017). To the best of our knowledge, customer loyalty has 

not yet been considered in location and pricing models. 

In the present paper, we develop a multi-modal competitive hub location pricing problem 

(CHLP) considering customer loyalty and elastic demand. The main contributions of the paper 

are as follows: 

• Developing a mathematical formulation for a multi-modal CHLP problem. 

• Modeling elastic demand in a competitive market. 

• Considering the effect of customer loyalty on the decision-making process. 

• Deriving a closed-form expression for the pricing problem when demand is inelastic. 

• Deriving an upper bound and a lower bound for the price of each route in the hub 

network when demand is elastic. 

• Decomposing the proposed model to a hub location problem (i.e., master problem) and 

a pricing problem (i.e., sub-problem). Then, proposing two nested evolutionary 

algorithms to tackle the complexity of solving this structure. 

• Developing a scatter search algorithm to solve the single allocation multi-modal HLP. 

• Developing a matheuristic based on differential evolution algorithms to solve the 

pricing sub-problem. 

• Investigating the characteristics of the model in a real-world example by exploring the 

sensitivity analyses. 

The rest of this paper is organized as follows. Section 2 describes a generic mathematical 

model of the problem and two extended versions considering the effect of elastic demand and 

customer loyalty. In Section 3, the problem has been decomposed to a master and a sub-problem 

based on location and pricing decisions. Thereafter, two solution approaches have been 

proposed to tackle the problem with/without elastic demand and customer loyalty 

considerations. Computational experiments have been explained in Section 4. Finally, in Section 

5 conclusions of the research have been provided. 
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2. Mathematical formulation 

2.1. Problem definition 

It is assumed that there is a situation where a new distribution company (entrant) intends to 

enter into a monopoly market. In this market, an existing company (incumbent) serves 

customers by a distribution network utilizing a hub-and-spoke topology. The entrant wants to 

design its service network and determine the related prices to compete with the incumbent’s 

servicing system. Both the entrant and incumbent offer their own servicing time and price for 

each pair of origin and destination (OD). 

The problem can be defined on a directed graph G= (N, A), where � is the set of admissible 

arcs and � is the set of nodes. Each node represents a customer zone (e.g., demand for a city or a 

region). To give a more clear representation of the model, we explain the developing process in 

three phases. First, we develop the proposed model by Lüer-Villagra and Marianov, (2013) 

adding the possibility of considering transportation modes. Moreover, to accommodate it with 

our case, a constraint is added to convert the model to a single-allocation HLP.  This can be 

considered as a generic model of our case. Thereafter, we extend the generic model considering 

the effect of elastic demand and the effect of customer loyalty in subsections 2.3 and 2.4 

respectively. To obtain insightful results, the following assumptions are made: 

1) In this research, we focus on designing an uncapacitated single-allocation hub network to 

have more adapt with the conditions of our case study in postal services. 

2) The hub nodes are not interconnected (Luer-Villagra and Marianov, 2013). 

3) On each OD, the fraction of demands absorbed by each company can be predicted based on a 

utility function using a logit model. In the related literature, logit models are extensively used 

to accommodate several attributes to select some alternatives (Zambrano-Rey et al., 2019; 

Čvokić et al., 2019). 

4) The customers have an overview of all service times and prices when they want to select their 

services. For example, the required information is presented on the website’s online store of 

each company. 

Notations for the model are defined as follows: 

 

Sets: � Set of nodes (�, �, �, � ∈ �) 	 Set of the incumbent’s hub nodes 
 Set of transportation modes (� ∈ 
) 
 
Parameters: �
�� Fixed cost of arc �� for transportation mode m. 
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�
�  Distance of arc �� �
�� Travel cost per unit of transportation mode � along arc �� �
�� Travel time per unit of transportation mode � along arc �� ��� Discount factor associated with the hub-to-hub travel cost along arc �� ���  discount factor associated with the hub-to-hub travel time along arc �� �� Cost of locating a hub at node � �
� Inelastic demand, the flow that should be sent from node � to node � �
��  Elastic demand, the flow that should be sent from node � to node � �
���� Maximum possible demand, the maximum flow that can be sent from node � to node � �� Sensitivity parameter of customers to service time �� Sensitivity parameter of customers to service price �
� Incumbent’s price to flow from node � to node �  
��  incumbent's time to flow from node � to node � !
�  Total utility of the incumbent's servicing system from node � to node � "#$� Customer loyalty index for incumbent’s services in node � (0 & "#$� & 1) 

 
Decision variables: (� 1 if a hub at node � is located by the entrant; 0, otherwise )
�� 1 if a direct connection by transportation mode � on arc �� (�, � ∈ �) is established by 

the entrant; 0, otherwise 	
�/�� Entrant’s price to service the demand along arc ��, using intermediate hubs � and �  +
�/�� Fraction of the demand flow along arc �� through the entrant’s hubs that are located at �, � ∈ � ,
�  Fraction of the demand flow along arc �� through the incumbent’s hubs -
�/�� Variable cost of the flow between nodes � and �, using hubs �, � ∈ � .
�/�� Response time for demand in node j from node �, using hubs �, � ∈ � 

 

2.2. Generic model: Competitive Hub Location Pricing Problem with Transportation 

Modes  

 

The competitive hub location pricing problem with transportation modes (CHLP-TM) can be 
formulated by: 

 / 0 Max 4 5	
�/�� 6 -
�/��7
,�,�,�∈8 �
� 	+
�/�� 6 4 �
��	)
��5
,�7∈:,�∈; 6 4 ��(��∈8  (1) 

s.t.  

			+
�/�� 0 (� . (� . ∑ 	)
��>�>∈; . ∑ 	)���?�?∈; . ∑ 	)���@�@∈; . exp	56��	.
�/�� 6 ��		
�/��7∑ (C . (DC,D∈8 . ∑ 	)
��>�>∈; . ∑ 	)���?�?∈; . ∑ 	)���@�@∈; . exp	56��	.
�/CD 6 ��		
�/CD7 E !
�	 ∀	�, �, �, � ∈ �				   (2) 

			!
� 0 expG6�� 
�� 6 ���
�H ∀	�, � ∈ � (3) 			-
�/�� 0 4 �
��	�
� 	)
���∈; E 4 ����	������ 	)����∈; E 4 ����	��� 	)����∈;  ∀	�, �, �, � ∈ � (4) 

			.
�/�� 0 4 �
��	�
� 	)
���∈; E 4 ����	���	��� 	)����∈; E 4 ����	��� 	)����∈;  ∀	�, �, �, � ∈ � (5) 

				4 )
���∈; & 1 ∀	�, � ∈ � (6) 				(� ∈ I0, 1J	 ∀	� ∈ � (7) 
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				)
�� ∈ I0, 1J ∀	5�, �7 ∈ �,� ∈ 
 (8) 					
�/�� K 0 ∀	�, �, �, � ∈ � (9) 

 

Objective function (1) maximizes the profit of the entrant’s decisions. The first term of the 

objective function indicates the net profit of transportation services. The second and third terms 

indicate the fixed cost of transportation routes and the fixed cost of locating hubs, respectively. 

According to a logit model, Constraint (2) assigns the entrant’s flows. Eq. (3) defines the utility of 

an incumbent’s network for the demand that should be sent from origin � to destination �. 

Constraints (4) and (5) state the transportation costs and times over a route � → � → � → �, 

respectively. Constraint (6) ensures that one transportation mode can be maximally assigned 

between every two nodes. Constraints (7) to (9) represent the domain of the decision variables. 

Also, if we want to have a single-allocation hub-and-spoke network, Constraint (10) should be 

considered as well: 

 1 6 (
 & 4 )
���∈8,�M
�∈; & 1 6 (
 E 5|�| 6 17. (
  ∀	� ∈ � (10) 

 
2.3. Considering the effect of elastic demand 

In the previous model (CHLP-TM), demand �
� is assumed to be fixed at all demand points. 

Now, let us make a more realistic assumption that the demand at each node is affected by the 

price. There are different possible expressions for the expenditure function in the literature. As 

Berman and Krass (2002) proposed, elastic demand based on an exponential expenditure 

function is defined by: 

 O
5P
7 0 	O
�
Q E 5O
��� 6 O
�
Q7 R 51 6 exp56S
. P
77 (11) 

 
where P
  is the utility of service �, and expenditure function O
5P
7 is a non-negative function of 

the utility vector, which is non-decreasing for all components of P
 . Also, O
��� and O
�
Q are 

the maximum and minimum demands of service �, respectively. S
 T 0 is a positive constant. 

In Eq. (11), it is assumed that utility has an additive effect on demand. However, we assume 

that demand is dependent on price. Despite utility, the price has a decreasing effect on demand. 

Considering this point, we can customize Eq. (11) as follows: 

 �
�� 0	�
��
Q E 5�
���� 6 �
��
Q7 R 5expG6��. 	U
�H7 (12) 

where 	U
�  is the mean of the prices that can be proposed for the demand in node � from node �. 
 

	U
� 0	�
� E ∑ 	
�/��(�(� 	)
��> 	)���? 	)���@�>,�?,�@∈;�,�	∈81 E ∑ (�(� 	)
��>	)���? 	)���@�>,�?,�@∈;�,�	∈8
	 ∀	�, � ∈ � (13) 
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Based on the assumption of single allocation of the hub network, there is just one unique 

route between each arbitrary pair of nodes i and j. Also, based on Eq. (10), the transportation 

mode for the mentioned route will be unique. So, the price for the paired nodes i and j will be 

unique. 

 	U
� 0	�
� E V
�2  ∀	�, � ∈ � (14) 

 
Since the market was a monopoly before the presence of an entrant, we can assume that the 

inelastic demand (�
�) in the previous model is related to the incumbent’s price (�
�). Therefore, 

the elastic demand (�
�� ) should consider the following conditions: 

 

�
�� 0	X�
���� if		U
� → 0�
�				 		if		U
� 0 �
��
��
Q 				if		U
� → E∞ (15) 

 

It is also assumed that �
��
Q 0 0. Considering 	U
� 0 �
� and replacing the second condition of 

(15) in (12), we will have: 

 �
� 0	�
���� R exp	56��. �
�7 			⇒ 				�
���� 0 �
� R exp	5��. �
�7			 (16) 

 
Finally, we can calculate the elastic demand by: 
 �
�� 0 �
�	. exp	5	��5�
� 6 	U
�77 (17) 

 
The competitive hub location and pricing problem with elastic demand and transportation 

modes (CHLP-ED/TM) problem can be formulated by: 

 

  / 0 �]+ ∑ 5	
�/�� 6 -
�/��7
,�,�,�∈8 �
�� 	+
�/�� 6 ∑ �
��	)
��5
,�7∈:,�∈; 6 ∑ ��(��∈8  (18) 

s.t. 
Constraints (2) − (9), (12) and (13).  

 

 
Moreover, if we want to have a single-allocation network in the CHLP-ED/TM, Constraints 

(12) and (13) should respectively be replaced by Constraints (17) and (14), and Constraint (10) 

should be added to the recent model. 

 

2.4. Considering the effect of customer loyalty 

Customer loyalty is the result of an affirmative perceived value of an experience, physical 

attribute-based satisfaction, or a consistently positive emotional experience that contains 
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products or services. In this model, customer loyalty has been considered in determining the 

market share of the entrant and incumbent. Hence, we characterize "#$
 as the loyalty index of 

the customer situated in node � to the incumbent’s services. Therefore, we can modify Eq. (2) to 

Eq. (19). 

 

+
�/�� 0 51 6 "#$
7. 5∑ (�(� 	)
��> 	)���? 	)���@�>,�?,�@∈; 7. exp	56��	.
�/�� 6 ��		
�/��751 6 "#$
7. ∑ (C(D 	)
C�> 	)CD�? 	)D��@�>,�?,�@∈;C,D∈8 . exp	56��	.
�/CD 6 ��		
�/CD7 E "#$
 . !
� (19) 

 
Note that if	"#$
 0 0.5, Eq. (19) will be returned to Eq. (2) again. That is while for 	"#$
 < 0.5, 

where the customer has low satisfaction to the incumbent services, more flows of demand can 

be absorbed by the entrant. On the other hand for 	"#$
 T 0.5, the entrant hardly can increase its 

market share because of the customer’s loyalty to the incumbent services. 

Finally, to model the competitive hub location and pricing problem considering elastic 

demand and customer loyalty (CHLP-ED/CL/TM), we can reformulate (18) subject to Eqs. (3) − 

(9), (13), (17) and (19). 

 

3. Solution approach 

The mathematical models proposed in the previous section are NP-hard. Even without 

pricing decisions, solution of a hub location problem is very complex. Therefore, considering 

pricing decisions and related nonlinear terms in the model increases problem complexity. The 

literature has proposed some hybrid approaches to solve such models. Lüer-Villagra and 

Marianov (2013) decomposed their proposed competitive hub location pricing model to a 

master problem and a sub-problem with a bi-level structure. The master problem was related to 

hub-and-spoke location decisions, and the sub-problem was related to pricing decisions based 

on a multinomial logit (MNL) function. Consequently, they proposed a hybrid solution approach 

based on a genetic algorithm (GA) to solve a single-level reduced model. Zhang (2015) presented 

a competitive location and pricing model for a retailer based on an MNL function, and proposed 

a two-phase solution framework based on decomposition that contains two major components, 

location and pricing problems. They examined the performance of three pricing heuristics, 

including a path-following approach (PF), a gradient descent method (GD), and a gradient 

descent method with multiple random starting points (GDM), and three location heuristics, 

including a tabu search procedure (TS), greedy search (GS), and GA. Based on the computational 

experiments, the two hybrid approaches (i.e., GA+PF and TS+PF) outperformed the other 

approaches.  

Bi-level decomposition algorithms are extensively used to solve certain nonconvex large-

scale optimization problems. Based on the literature, decomposing the location and pricing 

model to a bi-level structure and interactively solving these sub-problems are the main 
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alternative for tackling such problems. As a result, we can transform the proposed hub location 

and pricing models into a bi-level structure in which a pricing problem serves as a sub-routine 

for the location problem. This structure is represented in Fig. 1. 

 

 

Fig. 1. Decomposition of the CHLP problem 

 
Accordingly, we are faced with a bi-level model. There are various approaches to solving bi-

level problems. For a complete literature review on bi-level optimization problems (BOPs), see 

Sinha et al. (2017). These authors reviewed the classical and evolutionary approaches to solving 

BOPs. They emphasized evolutionary methods because of a high degree of difficulty in real-

world applications that usually lead to failure of the classical methods for solving BOPs. Hence, 

using heuristic/meta-heuristic and classical methods simultaneously (in a nested approach) is 

the main alternative for tackling BOPs (Talbi, 2013). Descriptions of some successful 

applications of the mentioned approach for solving multi-level problems can be found in 

(Parvasi et al., 2017; Akbari-Jafarabadi et al., 2017; Fard & Hajaghaei-Keshteli, 2018a; Fard & 

Hajaghaei-Keshteli, 2018b). 

In the next section, a scatter search (SS) algorithm for the hub location problem is designed. 

Because of different concavity conditions in the pricing problems of the CHLP-TM and CHLP-

ED/CL/TM, we discuss them separately, while the proposed approach to solve the hub location 

problem is same. Hence, an exact method for the pricing problem of the CHLP-TM and a 

matheuristic approach (named EGPSDE) for the pricing problem of CHLP-ED/TM and CHLP-

ED/CL/TM are suggested. Table 2 presents a general view of the combination of the proposed 

approaches to solve the problem. 

 

Table 2. Combination of the proposed solving approaches 
Model types  Master problem 

(Hub location and assignment) 

Sub-problem 

(Pricing) 

CHLP-TM Scatter search Extracted closed-form expression 

CHLP-ED/TM Scatter search Metaheuristic (EGPSDE) 



11 
 

CHLP-ED/CL/TM Scatter search Metaheuristic (EGPSDE) 

 

3.1. Solution approach for the CHLP-TM model 

3.1.1. Theoretical discussion  

For each solution generated in the master problem (i.e., the values `(a�b�∈8 and `)c
��b5
,�7∈:), 

we can define d
� as the set of feasible pairs of hubs 5�, �7 that can connect the origin-destination 

(O-D) pair	5�, �7, that is: 

 

 d
� 0 e5�, �7 ∈ ��f	∃	��,��, �h ∈ 
, (a� 0 (a� 0 )c
��> 0 )c���? 0 )c���@ 0 1i (20) 

 
Substituting Eq. (2) in Eq. (1), and using Eq. (20), the objective function of the entrant’s 

pricing problem in the sub-problem is: 

 

Maxj	kG(a, )c, 	H 0 4 �
� 	∑ 5	
�/�� 6 -
�/��7	exp	56��	.
�/�� 6 ��		
�/��75�,�7∈lmn∑ exp	56��	.
�/CD 6 ��		
�/CD75C,D7∈lmn E !
�
,�∈8 6 o (21) 

where o is a constant value that can be obtained from Eq. (22). 
 o 0 4 �
��	)c
��5
,�7∈:,�∈; E 4 ��(a��∈8  (22) 

 
The entrant’s optimal prices can be derived based on the first-order conditions that are 

represented in the following proposition. 

 

Proposition 1. The optimal price of the entrant’s service for each route � → � → � → � can be 

obtained from Eq. (23). 

 

	
�/��∗ 0 -
�/�� E 1�� q1 E Or s	 1!
� 4 exp	56��	.
�/CD 6 ��	-
�/CD 6 175C,D7∈lmn
t	u (23) 

where Or is the principal branch of the Lambert W function, which is defined as the inverse 

function of k5v7 0 vwx. 

 

Proof. Lüer-Villagra and Marianov (2013) derived a closed-form expression for optimal pricing 

in the case of multiple bundles (i.e., hub pairs) with a single attribute (i.e., price) in the MNL 

utility function. Our proof and formula are an extension of the case of a multi-attribute utility 

function considering an extra attribute (i.e., non-price option). The objective function (21) can 

be separated in some independent expressions for each origin-destination pair 5�, �7. Hence, the 
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expression (24) for a special route � → y →  → � can be obtained based on using the first-order 

conditions 
z{azjmn/|} 0 0;	∀	�, �, �, � ∈ �. 

 �4 exp	56��	.
�/�� 6 ��		
�/��75�,�7∈lmn E !
�� . 51 6 ��5	
�/CD 6 -
�/CD77
E �� �4 5	
�/�� 6 -
�/��7	exp	56��	.
�/�� 6 ��		
�/��75�,�7∈lmn � 0 0 

(24) 

 
Thereafter, we can consider another equivalent expression for another arbitrary route 

between origin node � and destination node �, such as	� → � → � → �. Then, we divide both 

expressions by �� and subtract them to obtain Eq. (25). 

 5	
�/�� 6 -
�/�� 6 	
�/�� E -
�/��7	!
� 0 0 (25) 

 
Since !
�  in Eq. (25) is non-negative, the expression in parenthesis should be zero. In another 

way, if there are multiple optimal routes for the O-D pair 5�, �7, the margins 	
�/∗∗ 6 -
�/∗∗ will be 

equal. Let us define �
� and �
�  as: 

 �
� 0 	
�/�� 6 -
�/�� (26) �
� 0 4 exp	56��	.
�/�� 6 ��	-
�/��75�,�7∈lmn  (27) 

 
Substituting �
� and �
�  in Eq. (24), we obtain: 

 �
� exp5617!
� 0 G61 E ��	�
�H expG61 E ��	�
�H 
(28) 

 
The Lambert function O5,7 can be defined such that ,	 0 O5,7	exp5O5,77. Let ,
� 0�mn ���5��7�mn   and G,
�H 0 61 E ��	�
� . Therefore, we have 61 E ��	�
� 0 Or ��mn ���5��7�mn � and: 

 �
� 0 1�� �1 E Or ��
� exp5617!
� �� 
(29) 

 
Substituting �
� in Eq. (26), we can obtain the optimal value of 	
�/�� as Eq. (23). ⎕ 

Eventually, based on Proposition 1, the optimum value of the prices can be replaced by the 

sub-problem. Hence, reducing the bi-level structure to a single-level model, the CHLP-TM 

problem can be reformulated by: 

 / 0 �]+�,� 	 4 5	
�/��∗ 6 -
�/��7
,�,�,�∈8 �
�	+
�/�� 6 4 �
��	)
��5
,�7∈:,�∈; 6 4 ��(��∈8  (30) 
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s.t. 

Constraints (2) − (9) and (23). 

 

Therefore, considering the binary variables of the resulting model, an appropriate binary 

search can be utilized to solve CHLP-TM.  

 

3.1.2. Developing scatter search for the hub location problem 

In this section, scatter search (SS) is presented to solve the CHLP-TM. Also, the presented 

algorithm can be utilized to solve the upper level of the CHLP-ED/CL/TM. Scatter search is a 

population-based meta-heuristic method. It has shown high-quality outcomes for combinatorial 

optimization problems to date. The search strategy of SS is based on combining the solution 

vectors that have proven effective in a variety of problem settings. It is worth noting that in the 

literature of meta-heuristics, obtaining good solutions is significantly dependent on designing 

the algorithm based on the problem at hand. In this regard, SS is specifically proposed by Marti 

et al. (2015) for an uncapacitated p-hub median problem. Based on the algorithm proposed by 

these authors, we design an SS algorithm for our model. Since there are some differences 

between the two models, we needed to improve some steps of the algorithm for matching. The 

general scheme of the proposed scatter search algorithm is presented in Fig. 2. Moreover, the 

details of main steps of the algorithm are represented as follows. 

 

 
Fig. 2. General scheme of the proposed scatter search algorithm 
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Step 1. Diversification generator method (DGM): It generates an initial population (i.e., π 

feasible solutions) for the problem. Indeed, this method is a mechanism to generate the first 

generation of solutions that consider a balance between quality and diversity. An appropriate 

diversification generator for this problem is described in Marti et al. (2015); however, we 

needed to consider the differences between the two problems. These included multi-modal 

transportation, a single-allocation hub network, fixed cost of arcs, cost of locating a hub, and 

uncertainty regarding the number of hubs. 

 

Step 1.1. Hub location methodology: To create an initial population, we develop seven different 

DGMs for the CHLP-TM. Six are based on greedy randomized adaptive search procedures 

(GRASP), and the seventh one is a random construction to provide diversity in an initial 

population. Indeed, each solution is a binary string ((�R|8|) including V-hub nodes such that V is 

a random integer parameter in an interval [���
Q R |�|�, ����� R |�|�] where 0 & ��
Q <���� & 1 are constant coefficients. These bounds help to accelerate the search process. 

Construction of a solution in the greedy approaches is based on a greedy function � that 

evaluates the attractiveness of solutions. Let ℎ ∈ � be a candidate node for the hub location. If ℎ 

is a hub, it will be used for transportation of loads among the other nodes, possibly the � 

terminals ��, ��, … , �� with a lower allocation cost to	ℎ, where � is a given parameter. Then, we 

compute �5ℎ7 by: 

 

�5ℎ7 0 4"�y 5�C, ℎ7�
C�� 	 ∀	ℎ ∈ � (31) 

where "�y 5�, ℎ7 indicates the assignment cost of node � to hub	ℎ. Three different approaches are 

proposed to calculate "�y 5�, ℎ7. The three types of proposed cost functions, combined with the 

two GRASP designs (the sampled greedy and the semi-greedy), are utilized to generate the initial 

population (Marti et al., 2015). 

 "�y �5�, ℎ7 0 k������ 
 R �U
¡ E �¢
¡ E �¡ (32) "�y �5�, ℎ7 0 k������ 
 R �U
¡ E k��£��� 
 R �U¡
 E �¢
¡ E �¡ (33) 

"�y h5�, ℎ7 0 k������ 
 R �U
¡ E �S�51 E �
̅27 E S�51 E �U
27� k��£��� 
	�U¡
 E �¢
¡ E �¡ (34) 

where k������ 
 0 ∑ �
��∈8,�M
 , is the sum of all the flows from node � to all terminals �. Also, k��£��� 
 0 ∑ ��
�∈8,�M
  is the sum of all the flows from all nodes � to terminal �. Moreover, �¢
�, �U
�  

and �̅
�  are the mean value of the various transportation parameters represented in Eqs. (35) − 

(37), respectively. Furthermore, the ot her parameters used in Eqs. (35) − (37) are represented 

in Eqs. (38) − (41). 
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�¢
� 0 ∑ �
���∈;|
|  (35) 

�U
� 0 ∑ �
���∈;|
|  (36) 

�̅
� 0 ∑ �
���∈;|
|  (37) 

�
̅ 0 ∑ �
��∈8|�| 6 1  (38) 

�U
 0 ∑ �
��∈8|�| 6 1  (39) 

S� 0 ���� E �� (40) 

S� 0 ���� E �� (41) 

 
Step 1.2. Spoke allocation methodology: Once p hubs are selected for a solution, the allocation 

phase can begin. Unlike Marti et al. (2015), we propose a procedure that operates just one time, 

at the beginning of the algorithm execution. In this procedure, called the random weighted 

matrix (RWM) method, each node is assigned to a hub based on a random weighted matrix. In 

RWM, first, a weight matrix should be calculated based on the problem parameters. Then, the 

weight matrix ()¥¦
§¡DC) multiplied by a same-dimension random matrix ()��Q¨) generates a 

random weighted matrix ()�¦��) for each solution.  

 )�¦��5�, ℎ7 0 )��Q¨5�, ℎ7 R )¥¦
§¡DC5�, ℎ7	 ∀	�, ℎ ∈ � (42) 

 
The procedure for calculating the weight matrix is represented in Eqs. (43) − (47). 
 ����-©ªCD5�, ℎ7 0 �U
¡ R k������ 
 E 4 �
�	�U¡��∈8 	E �¢
¡ ∀	�	, ℎ ∈ � (43) 

����-D
�¦5�, ℎ7 0 �̅
¡ R k������ 
 E 4 �
� 	�̅¡��∈8  ∀	�	, ℎ ∈ � (44) 

«���©ªCD5�, ℎ7 0 min¡®∈8 ����-©ªCD5�, ℎ�7����-©ªCD5�, ℎ7 	 ∀	�, ℎ ∈ � (45) 

«���D
�¦5�, ℎ7 0 min¡®∈8 ����-D
�¦5�, ℎ�7����-D
�¦5�, ℎ7  ∀	�, ℎ ∈ � (46) )¥¦
§¡DC5�, ℎ7 0 S� R «���D
�¦5�, ℎ7 E S� R «���©ªCD5�, ℎ7 ∀	�, ℎ ∈ � (47) 

 
Given a solution for the hub location, the allocation phase can be implemented based on )�¦��. Mohammadi et al. (2016) utilized such an approach, based on a random matrix instead of )�¦��. In this approach, the maximum value among the intersection arrays of each spoke row 

with the columns corresponding to the located hubs should be selected. An example is shown in 

Fig. 3. Eventually, allocation matrix ()) can be extracted as Fig. 4a. As shown in the extracted 

matrix, the allocation of the hub nodes to each other should also be considered. 
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Fig. 3. Allocation scheme ()�¦��) 

 

Step 1.3. Transportation mode selection: After allocation of spokes, a transportation mode on 

each generated link should be selected. To make this selection, a random matrix ()�¦��� ) with the 

same dimension of ) should be generated. Then, each bit of the matrix is multiplied by the 

number of transportation modes (|
|) and then rounded up. Finally, the transportation mode 

matrix ()�) can be extracted by a bit-by-bit multiplication of two given matrices. For example, 

considering the mentioned instance in Fig. 3, a random selection of transportation modes is 

illustrated in Fig. 4.   

Thereafter, the objective function value of each random solution should be calculated based 

on Eq. (30). It is worth noting that to calculate the value of  -
�/�� and 	.
�/��, the situation where 

the following route � → � → � → � starts from/ends to a hub node should be considered because 

in such situations, the value of the origin-to-hub (� → �) or hub-to-destination (� → �) arc should 

be discounted. For example, based on the illustrated instance in Fig. 4a, the flow that should be 

sent from spoke node 1 to the hub node 6 has a route as 1 → 2 → 2 → 6. Hence, the hub-to-

destination arc 2 → 6 should be discounted. 

 

  

a. Hub-and-spoke allocation matrix ()) b. A random matrix for transportation mode selection ()�¦��� ) 
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c. Transportation mode matrix ()�) 

Fig. 4. Illustration of generating a random solution for transportation modes (|�| 0 6, V 0 2, |
| 0 2	) 

 
Step 2. Reference set construction method: In this step, we need to construct a reference set 

(°wkdw ) by selecting only � solutions from the initial population. To construct the RefSet, the 

quality and diversity of the selected solutions should be considered (Laguna and Marti, 2012). 

Hence, at most � 2⁄  of the RefSet members will be selected based on the quality criterion. For 

this purpose, we first order the population in descending order of their objective function 

values. Then, the ordered solutions are introduced one by one. If there is no other solution that 

has already been introduced with the same objective function value, a newly introduced solution 

can be added to the	°wkdw . The selection process continues until 50% of the members of the 

population have been examined, or � 2⁄  qualified solutions are achieved. The rest of the 

members of RefSet will be selected from the rest of the initial population, based on the diversity 

criterion. This process tries to select those members of a population (y ∉ RefSet) that differ most 

from the selected solutions in the reference set ( ∈ °wkdw ). Therefore, the selected solution 

(y∗) should satisfy the following condition: 

 ��y ]«-w5y∗, RefSet7 0 
]+C∉¶�·¸�¹	I
�«D∈¶�·¸�¹	��5y,  7J (48) 
 

where 	��5y,  7 is the number of non-common hubs in solutions y and	 . In other words, ��5y,  7 0 V 6 |"| when	" 0 Iℎ: ℎ ∈ )C ∩ )DJ. Also, if there is a possible tie when more than one 

solution takes the same maximum distance, we can use another distance criterion (�:). This 

distance is based on the number of nodes allocated to the hubs in	". Let .C¡ be the set of arcs 

defined to connect the terminal nodes of solution y to the hubs in	". Therefore, the selected 

solution (y∗) should satisfy the following condition: 

 ��y ]«-w5y∗, RefSet7 0 
]+C∉¶�·¸�¹	I
�«D∈¶�·¸�¹	�:5y,  7J (49) 

 

where 	�:5y,  7 0 
�«¡∈¼½.C¡ ∩ .D¡½ and ½.C¡ ∩ .D¡½ is the number of assignments in common to 

hubs in both solutions. Finally, if there is still a tie, we can choose one of the solutions randomly. 

 

Step 3. Subset generation method (SGM): Once the RefSet is constructed, it should be defined as 

a selection approach for choosing the current solutions, aiming at generating new ones. 

Therefore, we define an SGM to produce different subsets ¾ ⊂ °wkdw  that will be utilized for 

creating structured combinations in Step 4. The SGM is typically designed to generate all 2-

element subsets from the RefSet. Then, for each subset, a fitness index should be calculated. The 
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fitness index is the mean fitness of the two individuals that are situated in each subset. This 

index will be used by a roulette wheel strategy to select the subsets.  

 

Step 4. Solution combination method (SCM): It operates as an effective element of SS. In this 

paper, we borrow some GA operators (e.g., crossover and mutation) used by Lüer-Villagra and 

Marianov (2013), who considered two row-and-column-based 1-point crossover strategies. 

Moreover, a mutation strategy is utilized to improve the exploration aspect of their proposed 

algorithm. Here, we utilize their approaches with some minor changes. The operators should be 

applied on the binary vector of hub-and-spoke locations (() and the matrices with real values to 

assign the spokes and indicate the transportation modes (i.e. )�¦�� and )�¦��� ). 

 

Step 5. Reference set update method: The new individuals constructed in the previous step are 

considered for membership in the reference set (i.e., RefSet). An individual may become a 

member of the RefSet if its fitness is better than the fitness of any of the individuals in the high-

quality subset (i.e., � 2⁄  of more qualified solutions in the RefSet). Alternatively, if a new 

individual improves the diversity of the RefSet, it can replace one that is currently in the diverse 

subset. 

 

Step 6. Improvement method: Generally, there are four decisions that should be made in the 

problem. While the pricing decision is made in the sub-problem based on one of the presented 

approaches in Table 2, the rest three decisions are determined based on the methods presented 

in Step 1. To improve the achieved random solutions, three local search approaches are 

considered in the SS algorithm. For hub location and assignment decisions, we utilize the local 

search approaches proposed by Marti et al., 2015. Also, we propose a simple local search to seek 

the other kinds of transportation modes for each achieved solution. In this method, the 

transportation mode of a random number of routes are changed to seek for a possible 

improvement. 

 

3.2. Solution approach for CHLP-ED/CL/TM 

3.2.1. Theoretical discussions of CHLP-ED/CL/TM 

Here, based on Propositions (2) and (3), upper and lower bounds of the pricing decision 

variables are presented. These values will facilitate the search process for the pricing problem. 

 

Proposition 2. The lower bound of the entrant’s prices for each route can be calculated by: 

 #ÀG	
���H 0 -
��� E 23	�� ∀	�, � ∈ �	, 5�, �7 ∈ d
�  (50) 
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Proof. Using the first-order conditions that are presented in Appendix A, the sign of the 
derivative is related to a term that is represented by:  

 � 0 51 6 "#$
7 expG6��	.
��� 6 ��	
���H 51 6 ��2 G	
�CD 6 -
�CDH7 E "#$
	!
�51
6 3��2 G	
�CD 6 -
�CDH7 

(51) 

 

All of the terms in � are always non-negative except 51 6 Â?� G	
�CD 6 -
�CDH7 and	51 6hÂ?� G	
�CD 6 -
�CDH7. So, the sign of these terms affects the behavior of the first derivative. 

Therefore, the objective function is strictly increasing when	� T 0.  
 1 6 ��2 G	
�CD 6 -
�CDH T 0				 ⇒ 			 	
�CD < -
�CD E 2��				1 6 3��2 G	
�CD 6 -
�CDH T 0		 ⇒ 			 	
�CD < -
�CD E 23	��

	ÃÄ
Å 		⇒ 			
�CD < -
�CD E 23	�� (52) 

 
Until the condition of Eq. (52) is considered for all of the prices, the objective function is 

strictly increasing, which means that the entrant can increase its benefits by increasing the 
prices. ⎕ 

 

Proposition 3. The upper bound of the entrant’s prices for each route can be calculated by: 
 PÀG	
���H 0 -
��� E 2��	 ∀	�, � ∈ �	, 5�, �7 ∈ d
�  (53) 

 

Proof. Similarly, using the first-order conditions, the objective function is strictly decreasing 
when	� < 0.  

 1 6 ��2 G	
�CD 6 -
�CDH < 0				 ⇒ 			 	
�CD T -
�CD E 2��			1 6 3��2 G	
�CD 6 -
�CDH < 0		 ⇒ 			 	
�CD T -
�CD E 23	��
	ÃÄ
Å 		⇒ 			
�CD T -
�CD E 2�� (54) 

 
Until the condition of Eq. (54) is considered for all of the prices, the objective function is 

strictly decreasing, which means that if the entrant increases the prices, its benefits are sure to 

decrease.⎕ 

Also, when 	
�CD  is located in interval Æ-
�CD E �h	Â? , -
�CD E �Â?	Ç, the first and second terms of Eq. 

(51) are positive and negative, respectively. At any rate, the sign of � is related to the values of 

the other factors. Therefore, to search the optimal pricing strategy, it is sufficient that the 

solution space be limited based on the mentioned intervals. 
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3.2.2. Developing a matheuristic-based differential evolution algorithm for the pricing 

problem 

The pricing sub-problem in the CHLP-ED/CL/TM model is non-linear, and we cannot ensure 

the concavity or convexity of the objective function. For this reason, and because of the high 

degree of complexity of the model, finding an optimal solution of the pricing problem using 

commercial software packages, even in instances with small or medium size, cannot be 

guaranteed. Therefore, we propose a matheuristic-based differential evolution (DE) algorithm 

and the mathematical characteristics of the pricing problem. 

A matheuristic algorithm, which is a combination of mathematical programming and meta-

heuristic approaches, is a growing field in operations research. For some recent studies, see (e.g., 

Aksen and Aras, 2013; Grangier et al., 2017; and Ghaffarinasab, 2018; Jelodari-Mamaghani et al., 

2020). Fig. 5 represents a classification of matheuristics proposed by Sinha et al. (2017). Here, 

we propose an integrative combination that incorporates an exact algorithm (i.e., gradient 

search) in a popular and efficient variant of DE. 

 

 
Fig. 5. Major structural classification of matheuristics/exact combinations 

 

Differential evolution is a powerful metaheuristic algorithm, especially in the field of 

continuous optimization problems, as proposed by Storn and Price (1997). The satisfactory 

performance of DE in terms of convergence speed, accuracy, and robustness makes its 

application attractive in various real-world optimization problems (Das and Suganthan, 2011). 

Moreover, we can point out some other reasons to select DE in this case. The DE-based approach 

has also been successfully applied in the field of bi-level optimization problems. Zhu et al. (2006) 

utilized a nested approach based on DE to solve a nonlinear bi-level programming model with 

linear constraints. They used DE to search the feasible region of ULP and the interior point 

algorithm to LLP.  Similarly, Angelo et al. (2013) combined two different specialized DE to 

handle both levels of a bi-level model. Besides, Angelo et al. (2015) studied a bi-level 

transportation routing problem and proposed a nested approach based on two intelligent 
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heuristics, namely ant colony optimization (ACO) to solve a routing problem in the upper-level 

problem (ULP), and DE to solve a transportation problem in the lower-level problem (LLP). 

Wang et al. (2017) proposed a hierarchical modified differential evolution (HMDE) algorithm 

to make pricing decisions in a multi-product vendor-buyer supply chain. They applied a bi-level 

mathematical model to specify optimal wholesale and retail prices, advertising expenditures, 

and buyer’s and vendor’s ordering policies, considering environmental improvement. They 

utilized the HMDE to handle both levels of the proposed bi-level model. 

Also, to enhance DE performance, several variants have been proposed in recent years. These 

variants are reviewed by Wu et al. (2018). The approach proposed in the present paper is based 

on EPSDE, a combination of mutation strategies and parameter values in differential evolution, 

which is a very popular and efficient variant of DE that is presented by Mallipeddi et al. (2011). 

Based on experimental studies, EPSDE has shown acceptable performance in comparison with 

other DE variants in solving some highly complex problems (Fan et al., 2017, Wu et al., 2018, and 

Mahmoodjanloo et al., 2020). 

The procedure for EGPSDE, a variant of the DE algorithm with an ensemble of gradient-based 

mutation strategies and parameters, is presented below: 

 

Step 1. Set the generation number È 0 0 and randomly generate the initial population:  Initialize 

a random population of �	 individuals (i.e., 	�VÉ 0 I¾�,É , ¾�,É , … , ¾8j,ÉJ). In the pricing 

problem, each individual is related to the entrant’s price of the flow between each pair of nodes, 

where 	
���  (∀	�, � ∈ �, 5�, �7 ∈ d
�) is uniformly distributed in the range Æ-
��� E �h	Â? , -
��� E �Â?	Ç. 
 

Step 2. Create three pools of strategies, including mutation strategies (	����), crossover rate 

values (	���¼Ê), and scaling factor values (	���Ë).  

Step 2.1. Crossover strategies (	���¼Ê): The different values of crossover rates for 	���¼Ê will be 

selected from the range [0.1, 0.9] in steps of 0.1. 

 

Step 2.2. Mutation strategies (	����): The different mutation strategies that can be used in 	���� contain “DE/current-to-rand/1/gradient-base/bin”, “DE/rand/1/gradient-base/bin” and 

“DE/current-to-best/1/gradient-base/bin”. 

 

DE/current-to-rand/1/gradient-base/bin: Í
,É 0 ¾
,É E 51 6 ÎÉ7 R �� R G¾�>,É 6 ¾�?,ÉH E ÎÉ R ��,É R ∇���kG¾
,ÉH (55) 

 
DE/rand/1/gradient-base/bin: Í
,É 0 ¾�>,É E 51 6 ÎÉ7 R �� R G¾�?,É 6 ¾�@,ÉH E ÎÉ R ��,É R ∇���kG¾
,ÉH (56) 
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DE/current-to-best/1/gradient-base/bin: Í
,É 0 ¾
,É E 51 6 ÎÉ7. ��. G¾Ð¦CD,É 6 ¾�>,ÉH E 51 6 ÎÉ7. ��. G¾�?,É 6 ¾�@,ÉHE ÎÉ . ��,É . ∇���kG¾
,ÉH 

(57) 

where corresponding to a target vector ¾
,É  (i.e., current solution), a mutation vector (i.e., Í
,É) is 

generated using one of the mentioned mutation strategies. In the above equations, �� and	��,É , 

the scaling factors, are the parameters that control the magnitude of the random vectors and 

gradient vector respectively. ��, �� and �h are exclusive integer numbers (i.e., from 1 to NP) that 

are different from �. ¾Ð¦CD,É  is the best solution in the È-th generation. Moreover, ÎÉ  is a 

coefficient in the range 0-1 that controls the efficiency of the gradient vector. Indeed, the greater 

the value of	ÎÉ , the more the focus on exploitation. That is because the mutation strategy 

operates based on the gradient vector, and it is converted to a local search strategy. In contrast, 

the lower the value of	ÎÉ , the more the focus on exploration. Therefore, we consider a special 

value for	ÎÉ  in each generation. The value of	ÎÉ  starts from a very small value (i.e.,	Î�
Q) at the 

beginning of the search procedure. Thereafter, it increases based on Eq. (58), which is borrowed 

from Beasley and Chu (1996). 

 ÎÉ 0 Î�
Q E G5�Ñ 6 Î�
Q7/51 E expG64 R �§ R 5È 6 �©7/5�Ñ 6 Î�
Q7	H7	H (58) 

 

where È is the number of generations. ÎÉ  starts at Î�
Q and tends to a final stable rate (�Ñ 6Î�
Q). �© specifies the number of generations required for ÎÉ  to reach �Ñ 2⁄ . Also, �§ specifies 

the increasing rate of ÎÉ  (i.e., a slope of the diagram). The changing procedure for ÎÉ  is 

illustrated in Fig. 6a. 

 

Step 2.3. The values of scaling factors: In the mutation strategies, we have two types of scaling 

factors (i.e.,	�� and	��,É). Like EPSDE, �� will be selected randomly from 	���Ë, which includes 

different values that are taken in the range 0.4-0.9 in steps of 0.1. But we propose a different 

strategy for	��,É , to control the process of exploration and exploitation more efficiently. Based on 

the behavior of	ÎÉ , the effect of a gradient vector will be enhanced in the last iterations of the 

algorithm (i.e., the exploitation phase). Therefore, we can consider a constant value for	��,É  

before the exploitation phase (e.g., for È 0 1 to	0.8 R È���). Thereafter, while converting the 

mutation strategies to gradient search, the value of 	��,É decreases linearly for a more accurate 

search process. The changing procedure for ��,É  is illustrated in Fig. 6b. 

 

Step 3. Select a hybrid strategy randomly for each individual: Each hybrid strategy contains a 

mutation strategy from 	����, a crossover rate from 	���¼Ê , and a scaling factor from 	���Ë. 
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Step 4. If the stopping criteria are not satisfied (e.g., È & È���), carry out the following steps.  

Step 4.1. Mutation step: For each individual (¾
,É), generate a mutation vector (Í
,É) using the 

related mutation strategy and scaling factor. 

 

  
(a) Changing procedure of ÎÉ (b) Changing procedure of ��,É 

Fig. 6. Changing procedure for the control parameters of the proposed mutation strategies  
(e.g., 	�§ 0 0.03,�© 0 60, È��� 0 100,�Ñ 0 1, Î�
Q 0 0.02) 

 

Step 4.2. Crossover step: For each individual ¾
,É 0 `+
,É� , +
,É� , … , +
,ÉÔ b and its mutation vector Í
,É 0 `�
,É� , �
,É� , … , �
,ÉÔ b, generate a trial vector P
,É 0 `�
,É� , �
,É� , … , �
,ÉÔ b using the related 

crossover rate ("°
). 

 

�
,É� 0 Õ	�
,É� if		�]«�� & "°
		��		� 0 ���Q¨+
,É� otherwise  (59) 

 

where � denotes the dimensionality of the problem (� 0 1, 2, … , �). Also, �]«�� is a random 

value that is distributed in the range [0, 1] uniformly, and ���Q¨ is a random integer value that 

will be selected from I1, 2, … , �J. It guarantees that at least one dimension of ¾
,É  and P
,É  will be 

different. 

 

Step 4.3. Selection step: Once P
,É  is produced, it should be compared with ¾
,É . If the trial 

vector	P
,É  is better than the target vector	¾
,É , it should be replaced. So	¾
,ÉÛ� is found by: 

 ¾
,ÉÛ� 0 Ü	P
,É if		kGP
,ÉH K kG¾
,ÉH¾
,É otherwise  (60) 

 

Step 4.4. Updating step: For each individual whose related strategies have not been successful 

(kGP
,ÉH < kG¾
,ÉH), a new parameter value from the stored successful combinations and a new 
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mutation strategy from the pools should be selected. Eventually, the generation number 

increases one step (È 0 È E 1). 

 

4. Computational experiments 

Here, the results and analyses of experiments are presented to evaluate the validity of the 

proposed mathematical model and the performance of the suggested algorithms. For the 

experiments, we utilize the approach of generating random instances, which was used by Lüer-

Villagra and Marianov (2013). Moreover, some parameters are specific to the proposed model. 

The travel costs per unit (�
��) are randomly selected in the range [0.5, 1] in step 0.1. Also, for 

each arc ��, the travel time per unit �
�� 0 �]«� R �ÝmnÞ where �]«� is uniformly distributed in the 

range [0.3, 0.6]. To obtain the scale of �� and ��, a discussion is presented in Subsection 4.1. 

Thereafter, to evaluate the validity of the CHLP-TM model and the performance of the proposed 

scatter search for the hub location sub-problem, the computational results are presented in 

Subsection 4.2. Also, to evaluate the validity of the pricing sub-problem of the CHLP-ED/CL/TM 

model and the performance of the related matheuristic method, the computational results are 

presented in Subsection 4.3. Finally, to validate the correctness of the CHLP-ED/CL/TM model 

and the performance of the joint solution approaches, an illustrative example is represented in 

Subsection 4.4. 

 

4.1. Discussion of the scale of ßà and ßá 

Based on the theoretical discussion presented in Subsection 3.2.1, the scale of the sensitivity 

parameter of customers to service price (��) is highly important. That is because the optimal 

solution of the pricing sub-problem is situated in the interval Æ-
�CD E �h	Â? , -
�CD E �Â?	Ç, which 

depends on ��. On the other hand, �� and �� are two conceptual coefficients that reflect 

customer tendencies. The ratio of these two factors can be extracted based on customer 

behavior; however, the scale of �� and �� are related to the scale of variable costs (-
���) and 

response times (.
���) respectively. Since the scales of �
�� and �
�� are considered the same, it is 

sufficient to discuss the scale of one of these two parameters (e.g.,	��). Based on Eqs. (50) and 

(53), the profit margin for each route (	 6 ") is situated in interval	ÆâãÂ? , âäÂ?Ç. Hence, the scale 

of	�� can be determined by: 

 åæ	 6 " & �� & åç	 6 " (61) 
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To estimate the scale of ��, we utilize the concept of the profit margin ratio, also called the 

return-on-sales ratio, which can be estimated for each market sector. Therefore, we can replace 	 6 " by [$�
Q, $���] R ", where [$�
Q, $���] is a common range for the profit margin ratio in the 

market. A conservative interval for	�� can be calculated as Eq. (62). The mean of this interval can 

be an acceptable estimation for ��. Therefore, �� can be calculated from Eq. (63), where "̅ is the 

mean of transportation costs (i.e., "̅ 0 �U
�� R �̅
�). For example, if "̅ 0 50, $�
Q 0 5% and $��� 015%, then �é� 0 0.444. Eventually, based on customer behavior, the relative effect of time rather 

than cost can be extracted to estimate ��. For example, if the effect of cost is twice the effect of 

time, then �é� 0 0.222. 

 åæ$���. " & �� & åç$�
Q. " (62) 

�é� 0 $�
Q. åæ E $���. åç2. "̅. $�
Q. $���  (63) 

 

4.2. Computational results of the CHLP-TM model 

This section investigates the validity of the CHLP-TM model and the approaches to its 

solution. To evaluate the performance of SS, the results are compared with the results of the GA 

proposed by Lüer-Villagra and Marianov (2013). Additionally, to solve the CHLP-TM model with 

the GA, we utilize the transportation mode selection approach presented in Section 3.1.2. In all 

instances, two types of transportation modes are considered. To tune the parameters of the SS 

and GA, we try to consider the values proposed in Marti et al. (2015) and Lüer-Villagra and 

Marianov (2013) respectively. For the SS, we consider ê 0 100,	� 0 20, $ w�] ��« 0 100, [��
Q, ����] 0 [0.1, 0.3] and a mutation probability of 1%. For the GA, we consider «	�V 0100, $ w�] ��« 0 100 and a mutation probability of 1%. The meta-heuristics are coded in 

MATLAB 2017 and tested on an Intel Core i7 processor with 2.5 GHz CPU and 8 GB of RAM. Each 

of the instances is run 20 times. The mean value of the level objective function, the standard 

deviation of each instance, and the CPU times are shown in Table 3. Moreover, the last column 

shows the percentage of differences between outputs of the SS and GA, i.e., ∆/ll/É: 0 {ìì�{íî{íî R
100. 

The computational results of 27 random instances shown in Table 2 show that the proposed 

SS performs better in 20 instances. To more accurately evaluate the results, we utilize the 

relative percentage deviation (RPD) index to neutralize the effect of variant measures of 

instance problems. The index for a maximization problem can be computed by: 

 °	� 0 ï���� 6 ï�
ï����  (66) 
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where ï���� is the maximum value (i.e., best value) of the objective functions of 20 runs for 

each instance. Also, ï�
 is the objective value of the �-th run for each instance problem. So, we 

have 540 data points with a similar scale for each algorithm. The performance of the two 

algorithms is illustrated in the boxplot of Fig. 7. The boxplot shows that the SS performed better 

in terms of both the mean value and dispersion of outputs. The computational results show the 

superiority of the proposed SS compared to the GA. The percentage of differences in the RPD of 

each instance is presented in Fig. 8. 

 

Table 3. Computational results of CHLP-TM 

ID 
No. of 

nodes 

Genetic algorithm  Scatter search ∆ðññ/òó5%7 ðòó St. Dev. CPU time (s) ðññ St. Dev. CPU time (s) 

HL-01 7 3,007,755 96,372 56  3,099,774 33,904 64 3/06 

HL-02 7 3,422,759 109,240 34  3,394,766 43,954 33 -0/82 

HL-03 7 3,444,960 96,978 51  3,337,114 43,490 43 -3/13 

HL-04 8 3,601,163 106,292 63  3,731,214 38,535 72 3/61 

HL-05 8 3,420,465 95,466 79  3,380,896 46,909 71 -1/16 

HL-06 8 3,568,251 102,376 59  3,829,773 40,507 65 7/33 

HL-07 9 4,707,494 100,236 76  4,903,573 59,261 81 4/17 

HL-08 9 4,266,664 131,706 81  4,403,657 48,400 73 3/21 

HL-09 9 4,171,062 131,464 86  4,358,149 57,047 98 4/49 

HL-10 10 4,915,033 161,207 146  5,209,019 58,324 139 5/98 

HL-11 10 4,939,191 143,598 127  4,915,610 57,361 148 -0/48 

HL-12 10 4,508,556 148,522 135  4,413,085 53,408 151 -2/12 

HL-13 11 4,958,490 108,735 184  5,372,238 65,642 189 8/34 

HL-14 11 4,682,396 128,130 212  5,139,130 47,942 205 9/75 

HL-15 11 5,426,456 156,445 201  5,948,956 64,410 220 9/63 

HL-16 13 5,677,692 133,456 243  5,772,833 71,109 276 1/68 

HL-17 13 6,106,429 168,599 237  5,896,537 70,479 228 -3/44 

HL-18 13 6,284,311 192,533 256  6,321,120 78,114 283 0/59 

HL-19 15 7,537,221 203,388 384  7,512,084 95,221 363 -0/33 

HL-20 15 6,880,412 164,269 479  6,947,225 79,983 518 0/97 

HL-21 15 7,067,451 219,806 466  7,391,838 86,428 478 4/59 

HL-22 17 7,086,327 219,756 514  7,416,782 89,795 512 4/66 

HL-23 17 8,386,967 262,656 601  8,742,379 107,443 631 4/24 

HL-24 17 8,583,669 244,931 526  8,904,276 99,170 495 3/74 

HL-25 20 9,037,651 328,299 757  9,550,987 93,383 716 5/68 

HL-26 20 9,336,825 271,465 613  9,848,408 104,439 627 5/48 

HL-27 20 8,944,959 259,662 675  9,131,655 100,324 669 2/09 
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Fig. 7. Performance comparison of SS and GA for the CHLP-TM problem. 

 

 

Fig. 8. Performance comparison of SS and GA in 27 instance problems. 

 
4.3. Computational results of the CHLP-ED/CL/TM model 

4.3.1. Performance evaluation of the EGPSDE algorithm 

In this section, first, the validity of the proposed approach to solving the pricing sub-problem 

in the CHLP-ED/CL/TM model is presented. To evaluate the performance of EGPSDE, the results 

are compared with the results of two efficient and highly popular DE variants, EPSDE 

(Mallipeddi et al., 2011) and JADE (Zhang and Sanderson, 2009). Hence, we utilize the 27 

random instances generated in the previous section. For each instance, a random solution of a 

hub-location problem is considered, and based on these fixed variables, the pricing sub-problem 

is solved by the suggested algorithms. Also, the customer loyalty index for the incumbent’s 

services is considered to be 0.5 for each node ("#$� 0 0.5). The parameter values of the 

compared algorithms are presented in Table 4. Finally, the 27 instances are run 20 times each. 

Table 5 shows the mean value and the standard deviation of the obtained objective function for 

each instance over these runs. 
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The experiments show the superiority of the suggested algorithm compared to the EPSDE 

and JADE algorithms. As mentioned above, to more accurately evaluate the results, we utilize the 

RPD index. So, we will have 540 data points on a similar scale for each algorithm. The 

characteristics of RPD results are presented in Table 6. Moreover, the boxplots shown in Fig. 9 

illustrate the performance of the three algorithms. The results confirm the acceptable 

performance of EGPSDE in terms of both the mean value and the dispersion of outputs. 

 

Table 4. Parameter configuration of tested algorithms for the pricing sub-problem of CHLP-ED/CL/TM 

Algorithm Parameter settings 

EPSDE CR range [0.1, 0.9] and F range [0.4, 0.9], NP=100, Max Iteration=500 
JADE P=0.5, c=0.1, NP=100, Max Iteration=500 
EGPSDE CR range [0.1, 0.9] and F range [0.4, 0.9], NP=100, Max Iteration=500 

 

Table 5. Computational results of the pricing sub-problem of CHLP-ED/CL/TM 

 
EGPSDE  EPSDE  JADE 

Mean St. Dev.  Mean St. Dev.  Mean St. Dev. 

HL-01  2,741,879   22,475    2,517,438   23,030   2,325,178  38,372  

HL-02  2,918,176   16,622    2,508,688   24,350   2,509,609  28,972  

HL-03  2,903,098   23,649    2,923,658   27,837   2,851,759  85,357  

HL-04  2,962,347   22,160    2,790,570   19,277   2,651,284  22,062  

HL-05  2,759,827   18,797    2,561,641   21,563   2,338,709  35,215  

HL-06  4,264,153   25,888    3,882,410   39,808   3,979,973  43,256  

HL-07  5,199,542   54,921    4,809,435   42,114   4,481,471  37,596  

HL-08  3,872,636   24,308    3,587,225   28,984   3,460,221  31,655  

HL-09  3,526,592   26,674    3,256,957   28,150   3,161,938  41,224  

HL-10  4,868,947   44,862    4,602,960   42,004   4,407,252  54,727  

HL-11  4,851,190   34,694    4,222,342   43,218   4,539,650  36,763  

HL-12  4,288,237   38,446    3,940,808   38,317   3,991,535  32,174  

HL-13  5,749,990   40,161    5,442,322   48,831   4,946,738  40,843  

HL-14  5,441,531   42,127    4,716,803   48,134   5,035,425  53,047  

HL-15  6,348,039   51,986    5,661,624   61,985   5,536,895  89,406  

HL-16  6,505,784   57,353    6,121,704   56,678   5,594,945  69,716  

HL-17  4,990,035   38,757    4,678,431   40,738   4,611,149  68,385  

HL-18  6,147,391   43,607    5,385,232   49,293   5,464,067  60,621  

HL-19  8,306,818   73,614    8,038,362   71,408   7,688,339  85,263  

HL-20  6,258,580   51,318    5,829,616   66,557   6,074,171  76,224  

HL-21  6,159,861   54,536    5,801,960   50,800   5,821,553  57,769  

HL-22  6,181,584   41,385    6,098,263   50,573   5,584,075  74,047  

HL-23  7,355,568   76,470    7,069,777   63,621   6,518,722  83,430  

HL-24  7,088,710   55,666    6,195,456   58,811   6,687,638  91,853  

HL-25 10,003,891 91,897  9,524,973 91,248  9,936,625 79,241 

HL-26  7,533,688   63,531    7,124,206   60,428   7,214,584  93,797  

HL-27  7,812,759   58,996    7,320,473   78,745   7,403,805  101,476  

 

Table 6. Specifications obtained from the RPD results to solve the pricing sub-problem. 

 EGPSDE EPSDE JADE 

Mean 2.712 9.827 11.419 
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Median 2.089 9.365 11.154 
Standard Dev. 2.187 3.077 3.395 
GAP 9.458 13.457 13.842 

 

 

Fig. 9. Performance comparison of EGPSDE, EPSDE and JADE to solve the pricing sub-problem. 

 
4.3.2. Sensitivity analysis of the pricing problem 

Due to the effective performance of the proposed algorithms, the SS for a hub location 

problem and EGPSDE for a pricing problem, we use them in a nested approach to solving the 

CHLP-ED/CL/TM model. Here, to verify the behavior of the model, a sensitivity analysis is 

carried out for some instances. An effective sensitivity analysis illustrates the effect of the input 

parameters of the model. Thus, we consider some key parameters to assess the performance of 

the model. 

Consequently, to study the behavior of the model related to market price changes, the 

incumbent’s prices are changed by applying ± 10%. The behavior of the model, based on the 

range of profit gained by the entrant and incumbent under both elastic and inelastic demand in 

the market, is presented in Fig. 10. Fig. 10a shows the increase of the incumbent’s prices in an 

inelastic market; there is always an uptrend in the entrant’s profit; however, this process cannot 

be observed in an elastic market (Fig. 10b). In an elastic demand market, a rise in the 

incumbent’s prices and a competitive pricing policy for the entrant consecutively lead to a 

reduction in market demand, which causes the profits of both rivals to be reduced. Also, it is 

worth noting that in both types of markets, the incumbent’s profit changes in the form of a 

nearly concave function. Note that the function’s maximum in both types of markets occurred 

before the current situation, with the coefficient of variation equal to 1 in the horizontal axis. It 

can be concluded that the incumbent is not in the best margin of its profit.  
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a. Inelastic demand b. Elastic demand 

Fig. 10. Entrant’s and incumbent’s profit as a function of incumbent’s price, with ∆0 15%  (Ins-10). 

 
In the following, to analyze two markets better according to elastic and inelastic demand, the 

trend of changes in the entrant’s market share based on variations in market prices is studied. 

These trends are shown in Fig. 11. The first point that can be seen from these graphs is that the 

elastic demand curve is generally higher than that for inelastic demand. This indicates that the 

entrant’s pricing policies are more effective in a competitive market for more elastic demand. 

Moreover, given the tangency of the two curves at higher price levels, it can be noted that the 

effectiveness of the entrant’s pricing policies is decreased by increases in the incumbent’s prices. 

This can be related to a reduction in the total quantity of the market’s elastic demand if there is a 

rise in prices.  

In general, what follows from the analysis of trends is that a rise in the incumbent’s prices in 

an inelastic market is in a favor of the entrant. This is because the entrant will either attract 

more market share or gain more revenue by the possibility of increasing the profit margin. In an 

elastic demand market, an increase in the incumbent’s prices leads to an increase in the market 

share of the entrant (Fig. 11); however, the entrant’s demand will be also decreased due to a 

decline in overall market demand. These changes will eventually cause a reduction in the 

entrant’s profit (Fig. 10b). 
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Fig. 11. Entrant’s market share, for different values of the incumbent’s price, with ∆0 15% (Ins-10). 

 
4.3.3. Illustrative example 

As previously mentioned, until recently, postal services in Iran were provided by a monopoly 

operator (Iran Post Company). In 2017, the Ministry of Information and Communications 

Technology of Iran decided to utilize a new operator from the private sector. Hence, this real 

case can be considered as an appropriate application of the proposed model. 

In this section, we design an example based on Iran’s postal industry. In this case, Iran 

National Post Company is considered the incumbent, and the new operator is considered the 

entrant. To facilitate and provide appropriate analyses, we consider a network with 13 nodes 

that are the most populated and industrialized cities in Iran. Fig. 12a depicts the incumbent’s 

transportation network. Thereafter, the entrant’s network with two transportation modes is 

designed by the proposed model (see Figs. 12b and 12c). In these figures, two transportation 

modes (i.e., road and air) are presented by dashed and solid lines, respectively. 

To analyze the effect of the customer loyalty index, the value of this index for all network 

nodes is set to 0.5 at first. As was seen in Section 2.4, in this case, by simplification of the "#$
 
coefficients from the numerator and denominator, the impact of customer loyalty is considered 

to be ignored. Fig. 12b shows a solution obtained under these conditions. Then, by considering "#$�� 0 "#$�h 0 0.8, we solve the problem one more time. Fig. 12c shows the solution obtained 

after increasing these two indices. As can be observed, the proposed network structure changes 

as these indices vary. This can also be important in the real world. Customers receive their 

postal services from the incumbent for many years. This may give customers a subjective sense 

of reliance on the system. Customer uncertainty about a new system or their normal resistance 

to change can justify the consideration of this index with values higher than 0.5. On the other 

hand, it may be that in some situations, due to inadequate performance by the previous operator 

in some parts of the network, the coefficient should be lower than 0.5.  
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a. Incumbent’s hub network b. Entrant’s hub network with "#$
 0 0.5 (/ 0 559 R 10ô) 

 

c. Entrant’s network with "#$�� 0 "#$�h 0 0.8 and "#$
 0 0.5 for � õ 12, 13 (/ 0 488 R 10ô) 

Fig. 12. Structure of hub networks for the incumbent (a) and the entrant (b, c), with �� 0 0.222, �� 0 0.444 and 
different values of the customer loyalty index. 

 
Our proposed model includes three subjective parameters, ��, �� and CLI. Normally, there is 

not a firm basis for calculating subjective parameters. Therefore, we are interested in assessing 

and comparing the sensitivity of the model to these parameters. Fig. 13 shows the effect of these 

parameters on a tornado diagram. These changes are obtained by applying a ±10% change in the 

parameters. As shown in Fig. 13, the CLI parameter has a greater impact on the target function 

value. This reveals the necessity of estimating this parameter properly in decision-making 

models. 
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Fig. 13. Tornado diagram of the sensitivity analysis of the subjective parameters ��, �� and "#$ 

 

As can be seen in this example, customer loyalty has a significant effect on the results. 

However, we attempt to show these effects based on a sensitivity analysis utilizing a simple 

equation presented in Eq. (19) while in the marketing literature, there are more deeply 

definitions in this field. For example, there are four distinctly different types of loyalty (i.e., 

inertia loyalty, mercenary loyalty, true loyalty and cult loyalty). Each level of loyalty requires 

different strategies to be achieved. Hence, it seems that entering into a market which the 

incumbent companies have own special strategies needs different approaches to competition. 

On this topic, the interested readers can refer to related literature (Benati and Hansen, 2002; 

Irani-kermani, 2017; Elshiewy et al., 2017). 

 

5. Conclusions 

In this paper, we developed a framework to design a hub-and-spoke network for a firm that 

plans to enter into a competitive market with elastic demand, in which the existing 

transportation company operates its network, and applied mill pricing. For this purpose, we 

developed a mixed-integer non-linear programming model and used a multi-nominal logit 

function to estimate the market share of each firm. Our approach is different from that of Lüer-

Villagra and Marianov (2013), who just considered customer sensitivity to prices. In addition to 

prices, we consider customer sensitivity to service time duration. Moreover, for the first time, to 

the best of our knowledge, we modeled elastic demand in a competitive market and considered 

the effect of customer loyalty in a mathematical framework. To solve the proposed model, we 

decomposed it into a hub location problem (i.e., master problem) and a pricing problem (i.e., 

sub-problem). We then derived a closed-form expression for the pricing problem when demand 

is inelastic. Also, we derived upper and lower bounds for the price of each route in the hub 

network when demand is elastic. Eventually, in a nested structure, a scatter search (SS) 

algorithm and a matheuristic based on a differential evolution (DE) algorithm were proposed to 

solve the multi-modal hub location problem and the pricing sub-problem, respectively. The 

computational experiments confirmed the performance of the proposed algorithms. 

Several sensitivity analyses were carried out to show the effect of elastic demand and 

customer loyalty in a competitive market. These analyses can be important from a management 

point of view because they showed that the rival’s pricing policies in the market along with 
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elastic and inelastic demands could have different outcomes. Therefore, the type of market had 

to be considered in decision-making models. It was also important to consider customer loyalty 

in competitive markets. This could make the behavior of competitors in such models more 

realistic. The subjective nature of the customer loyalty index and the high sensitivity of the 

related model to its value highlights the necessity of carrying out further research on quantifying 

methods. The other subjective parameters of the model were �� and ��. Although we proposed 

an approach to determining their scale in Section 4.1, there is a need for future research on the 

role of these parameters in making appropriate decisions and to determine their quantities 

more precisely based on data mining techniques.  

Further, in the presented model, we tried to develop a method to estimate the behavior of 

customers based on the multi-nominal logit model. However, like any other estimation 

techniques, some errors could occur. For example, utilizing some other center measures (e.g., 

median or mode) instead of the mean value can be studied to explore the performance of the 

estimation model in some real-world cases. Hence, studying such methods can be interesting for 

future researches, in which some special approaches (e.g., statistical techniques) can be utilized. 

Moreover, although brand loyalty is extensively used in the marketing literature, it seems that 

there is a lack of such studies in the field of the logistics distribution network design. Hence, this 

paper can motivate interested research to make the related models much more applicable 

utilizing the concepts of brand loyalty. Furthermore, the model was developed in the point of 

view of an entrant company into a competitive distribution market. However, it can be revised 

for the point of view of the incumbent companies in the market or be utilized in other 

applications such as maritime transportation, industrial distribution, urban transportation and 

city logistics. 
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Appendix A: 

To describe the behavior of the objective function, the derivative sign patterns should be 

extracted by using the first-order conditions. 
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Let us introduce the following variables to facilitate the presentation of the process. γ
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Accordingly, the derivation of γ
�CD, ÷
�CD�  and ÷
�CD�  can respectively be calculated by: 
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Moreover, let us to define the variable �
�  as follows. 
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Therefore, we have: 
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Also, consider the numerator of the obtained fraction in Eq. (A10) as follows. 
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Considering a single-assignment assumption, there is only one unique route between each 

arbitrary pair of nodes i and j such as � → y →  → �. Hence, d
� includes only the set 5y,  7. 

Therefore, substituting Equations (A2) – (A4) in Eq. A11, we can extract the following equations. 
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All of the terms in A15 are always non-negative except 51 6 Â?� G	
�CD 6 -
�CDH7 and 51 6 hÂ?� G	
�CD 6 -
�CDH7. So, the sign of these terms has an effect on the behavior of the first 

derivative. 




