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Abstract 

Developing reconfigurable machine tools (RMTs) has attracted increasing attention 

recently. An RMT can be utilized as a group of machines, which can obtain different 

configurations to satisfy manufacturing requirements. This paper deals with a production 

scheduling problem in a shop-floor with RMTs as an extension of a flexible job shop 

scheduling problem (FJSSP). To begin with, two mixed-integer linear programming models 

with the position- and sequence-based decision variables are formulated to minimize the 

maximum completion time (i.e., makespan). The CPLEX solver is used to solve the small- and 

medium-sized instances. The computational experiments show that the sequence-based 

model significantly outperforms the other one. Since even the sequence-based model cannot 

optimally solve most of the medium-sized problems, a self-adaptive differential evolution 

(DE) algorithm is proposed to efficiently solve the given problem. Moreover, the 

effectiveness of the proposed algorithm is enhanced by introducing a new mutation strategy 

based on a searching approach hired from a Nelder-Mead method. The performance of the 

proposed method and three other well-known variants of the DE algorithm are first 

validated by comparing their results with the results of the sequence-based model. 

Additional experiments on another data set including large-sized problems also confirm that 

the proposed algorithm is extremely efficient and effective. 

 

Keywords: Flexible job shop; Configuration-dependent setup times; Industry 4.0; Self-

adaptive differential evolution; Nelder-Mead mutation strategy. 

 

1. Introduction 

In recent decades, economic globalization and market competition lead to the rapid 

introduction of new products, more variants, low prices and high fluctuations in demand. 

Therefore, manufacturing systems are adjusting to satisfy these requirements. A significant 

approach to cope with these issues is the ability of reconfigurability for manufacturing 

systems and tools. Hence, a new class of production machines, called reconfigurable machine 
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tools (RMTs), have been introduced. An RMT machine usually has a modular structure, which 

makes it able to obtain different configurations to satisfy manufacturing requirements. One 

of the benefits of developing RMTs is that the use of several different machines that share 

many costly and common modules while being rarely used at the same time can be prevented 

(Gadalla and Xue, 2017). An RMT in each configuration can process one or more operations 

with a certain rate. By changing the configuration, the machine can either perform some new 

operations or perform the same operation/operations with a different production rate 

(Moghaddam et al., 2019). In the development of RMTs, rapid conversion of the machine – 

decreasing the reconfiguration time – is one of the main objectives that can improve the 

responsiveness of a manufacturing system to produce highly customized products. 

Designing efficient RMTs and trying to decrease their reconfiguration time and to develop 

self-reconfigurable modular machines are the challenging and yet interesting problems 

(Aguilar et al., 2013; Hasan et al., 2013; Azulay, 2014; Pérez et al., 2014). Considering the 

high level of dynamism, it seems that the studies in production scheduling in these systems 

face new challenges. 

In this paper, it is assumed that several jobs are assigned to a shop floor including several 

RMTs. Each job has a set of operations, which need to be processed in a specific order, and 

each operation can be processed at least on one configuration of one of the existing RMTs. 

Hence, the problem can be an extension of a flexible job shop scheduling problem (FJSSP). 

The objective is to minimize makespan (i.e., the maximum completion time of the jobs). The 

problem is more complicated than the FJSSP because three decisions have to be taken; these 

decisions include allocating of the operations to the machines, sequencing of the jobs and 

determining of the configuration of the machines to perform the allocated operations. 

Moreover, each RMT needs an amount of time to reconfiguration. We name it configuration-

dependent setup time since it depends on the current and next configurations of the 

machine. Conversion time between every two configurations can be different because it 

needs to remove/add different auxiliary modules from/to the machine (Moghaddam et al., 

2018). 

The main contributions of this paper are as follows: 

• Studying a new variant of a job shop scheduling problem (JSSP) that contains 

reconfigurable machine tools among the first studies in this area. 

• Developing two mixed-integer linear programming (MILP) models based on 

operation-position and operation-sequence formulations and comparing them 

based on their computational performances. 

• Extracting a lower bound for the problem. 

• Developing a self-adaptive differential evolution (DE) algorithm to solve the 

problem efficiently. 

• Enhancing the efficiency of the proposed algorithm by introducing a new mutation 

strategy inspired by the Nelder-Mead search approach. 
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The rest of the paper is organized as follows. Section 2 reviews the related literature. 

Section 3 presents two mathematical models and the formulation to calculate the lower 

bound of the problem. Section 4 proposes the solving approach. Sections 5 and 6 present the 

results of computational experiments and the conclusions, respectively.  

 

2. Literature review 

2.1. Reconfigurable machine tools  

For the first time, Koren and Kota (1999) developed a new generation of machines, named 

as RMTs, with the ability of easy and rapid change to perform different kinds of machining 

operations. Thereafter, the research on this kind of machines was initiated, and many 

researchers developed various prototypes of these tools (Gadalla and Xue, 2017). Indeed, an 

RMT can be used as a group of machines so that different functionality or capacity for a set 

of certain operations can be achieved through a change of its configurations. To compete 

with conventional machines, reconfiguration in RMTs must be done with the minimum loss 

of time. Hence, the concept of reconfigurability is defined as the ability to change the 

functionality or capacity of the RMT by changing/rearranging the components of the 

machine. Over the last two decades, a lot of research has been done to fulfill this objective, in 

which a few of them can be referred to as follows.  

Ersal et al. (2004) presented a methodology to make an RMT able to be automatically 

reconfigured using a library of modular components. A modular reconfigurable machine has 

been developed by Padayachee and Bright (2012). They utilized a plug-and-play approach 

to control the scalability of the machine and developed a control system to support the 

modularity and reconfigurability. The developed machine could support turning and milling 

tasks. Pérez et al. (2014) developed a micro/mesoscale computer numerical control (CNC) 

machine tool with the ability of reconfiguration to do different machining operations (e.g., 

milling, drilling, and turning). Aguilar et al. (2013) designed a lathe-mill RMT and developed 

a prototype of the machine, which could be used in the jewelry industry. The RMT could 

achieve four different configurations including a mill configuration, a rotated mill 

configuration, a lathe configuration and a heavy mill configuration to perform various 

turning and milling tasks. Required time to change configurations among these four states 

was less than 15 minutes. Fig. 1 represents the four possible configurations for the lathe-mill 

RMT. 

RMTs also play an important role in developing modern manufacturing approaches, like 

reconfigurable manufacturing systems (RMS). Indeed, an RMS is a system with the 

advantages of dedicated manufacturing systems (DMS) and flexible manufacturing systems 

(FMS), which is designed to adjust with rapid changes in volume or variety of market 

demand. To have a responsible and cost-effective system, RMSs need to have six 

characteristics including convertibility, scalability, modularity, customization, 

diagnosability, and integrability. 
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Fig. 1. Four possible configurations in the lathe-mill RMT designed by Aguilar et al. (2013) 

 

Development of RMSs is also a promising area for the achievement of Industry 4.0, known 

as the fourth industrial revolution or cyber-physical system. Qin et al. (2016) reviewed the 

significant characteristics of some current manufacturing systems (including single-station 

automated cells, automated assembly systems, computer-integrated manufacturing (CIM) 

systems, FMSs, and RMSs) to identify the research gaps between Industry 4.0 and these 

systems’ requirements. They found that RMSs are the most potential production systems to 

achieve Industry 4.0 objectives such as the ability of self-optimization and self-configuration. 

One of the most important objective in Industry 4.0 is to produce individualized products at 

a reasonable cost or so-called mass-individualization. While traditional RMSs have been 

designed for high-volume manufacturing, it is emerged some new challenges to adjust them 

with the requirements of mass-individualization paradigm. Gu and Koren (2018) proposed 

a new manufacturing system architecture to satisfy these requirements. In the proposed 

architecture to achieve a high-mix/low-volume production at affordable costs, a material 

handling system based on forward/return conveyors (or gantry) is designed to provide a 

flexible routing of the parts among the stages. The system can also contain some high-level 

production machines (e.g., RMTs, CNCs, and additive manufacturing tools). Based on the 

suggested architecture, each job has its production route, and it can enter one stage more 

than once or bypass some stages by utilizing the designed transferring system. They 

highlighted some operational challenges of the suggested architecture, including the 

effective scheduling algorithms to improve the utilization of each machine. In this paper, we 

aim to study the scheduling problem in such systems. 
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2.2. FJSSP with family setup times 

The considered scheduling problem has many similarities to the FJSSP with sequence-

dependent family setup times. This problem is an extension of job shop scheduling problem, 

which was originally introduced by Brucker and Schlie (1990). In the FJSSP, each operation 

can be performed on a set of compatible machines. This is a common case especially in FMSs, 

whose machines have a high level of flexibility to perform variant operations (Rossi, 2014). 

The importance of such systems is that the availability of alternative machines can improve 

performance and reliability (Rohaninejad et al. 2015; Abdollahzadeh-Sangroudi and 

Ranjbar-Bourani, 2019). Moreover, considering setup times is an important issue in 

scheduling problems. It is an important characteristic that has a significant impact on the 

performance and applicability of many practical scheduling settings. In many real-world 

applications (e.g., automobile, pharmaceutical, and chemical manufacturing), machines need 

to a setup operation between jobs. Also, the setups may depend on the preceding process on 

the same machine (Shen et al. 2018). 

In some production systems (e.g., Cellular Manufacturing Systems (CMSs)), there are 

several job families, which should be processed in the same production line (Gholipour-

Kanani et al., 2012). Each family includes a set of jobs with similar features in terms of 

tooling, setups and operation sequence. To process two sequent jobs on the same machine, 

a setup operation is required if the jobs belong to two different families (Allahverdi, 2015). 

In traditional RMSs, the scheduling problem can be described as follows. There is a 

product family, which can be classified into several product subfamilies, and each subfamily 

contains several jobs that should be done in a predesignated configuration. The objective is 

to determine an optimal sequence of subfamilies and optimal scheduling of the jobs inside 

each subfamily regarding one or more predefined performance criteria. Normally, 

performing the jobs inside each subfamily needs no setup time, while changing configuration 

to perform two different subfamilies requires a sequence-dependent setup time (Azab and 

Naderi, 2015). Based on the scheduling literature, such problem only needs to sequencing 

decisions, so it can, for example, be associated with the flow shop scheduling problems. On 

the other hand, scheduling in the above-mentioned modified RMS architecture can be 

associated to the JSSP because each job has its production route. Moreover, since each 

operation can be processed on more than one machine or on more than one machine-

configuration, we have a FJSSP with group/family setup times. 

Also, it is worth notable that the problem is different from the classic FJSSP with sequence-

dependent family setup times because in this case, a job can belong simultaneously to more 

than one group (i.e., an operation can be performed on different configurations of a 

machine). Performing two consecutive operations on the same machine needs no setup time 

if both of them would be performed on the same configuration. Therefore, the setup times 

depend on the machine configurations rather than the job sequences. To the best of our 

knowledge, there is no study to tackle this problem. In this paper, regarding the existence of 

the research gaps in this area, a scheduling problem is modeled. 
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2.3. Corresponding solution methods 

As mentioned before, the JSSP and its extensions are some of the most complicated 

combinatorial optimization problems, which are strongly NP-hard. So, even with a medium 

size, they cannot be solved exactly in a reasonable time. Therefore, some researchers have 

started to utilize heuristics and meta-heuristics to solve JSSPs in reasonably computational 

time (Jamili et al., 2011). Zhang et al. (2019) reviewed some of the most successful meta-

heuristics to solve JSSPs, including Genetic Algorithm (GA), Tabu Search (TS), Ant Colony 

Optimization (ACO), Particle Swarm Optimization (PSO), Differential Evolution (DE), and 

Firefly Algorithm (FA). 

In the current use, DE is one of the most powerful stochastic optimization algorithms, 

especially in the field of continuous optimization problems. The satisfying performance of 

DE in terms of robustness, convergence speed, and accuracy still makes it attractive for many 

researchers to apply DE in various real-world optimization problems (Das and Suganthan, 

2011). Since more than two decades ago, DE and its variants have been placed among the 

best evolutionary algorithms as indicated by the IEEE Congress on Evolutionary 

Computation (CEC) competition series (Yuen and Zhang, 2015). Although DE was developed 

at first for the problems with continuous search space, DE-based approaches have been 

applied successfully in the field of discrete optimization, such as scheduling problems. 

However, DE alone could not be efficient to solve scheduling problems. The reason may be 

that the searching mechanisms of the classic DE (especially the mutation operator) are not 

able to be adapted on a permutation representation (Ponsich et al., 2009). Hence, to make 

the algorithm more efficient, some local search approaches have been hybridized with DE in 

the literature (e.g., a combination of DE with TS) to solve the JSSP (Ponsich and Coello, 2013), 

embedding a local search algorithm based on the critical path into DE to solve the FJSSP 

(Yuan and Xu, 2013), introducing a chaotic strategy to update the parameters and two new 

mutation operators for DE to solve the JSSP (Zhang et al., 2016), embedding a speed-up 

neighborhood search procedure into DE to solve the FJSSP (Zhao et al., 2016), combination 

of DE with Simulated Annealing (SA) to solve the distributed FJSSP (Wu and Liu, 2018; Wu 

et al., 2018).  

The Nelder-Mead (NM) simplex search is a numerical optimization method, which is 

designed for unconstrained problems with multidimensional space. It is a direct search 

method, which can converge to non-stationary points without using gradient information. 

The procedure of the NM algorithm is based on geometric operators contain reflection, 

expansion, contraction and shrinking. By taking advantages of these operators, NM is known 

as an effective method in local search; however, it has some weaknesses in global search 

(Wang et al., 2011). Hence, to utilize its exploitation abilities, there are lots of efforts in the 

literature to combine NM with meta-heuristics as global exploration approaches (Chelouah 

and Siarry, 2005; Moravec and Rudolf, 2018). Since NM is a close relative of DE, some 

researchers have been motivated to design hybrid approaches based on NM and DE (for 
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example see: Menchaca-Mendez and Coello, 2009; Moraglio and Johnson, 2010; Gao et al., 

2011; Wang et al., 2011; Fan and Yan, 2015a). 

In this research, a new mutation strategy based on the NM operators has been introduced, 

whose aim is to speed up convergence and to strengthen the exploitation phase of the DE 

algorithm. Moreover, to more efficiently control the parameters and mutation strategies, a 

self-adaptive strategy based on the research of Fan and Yan (2015a) has been developed. 

 

3. Problem description and MILP modelling 

3.1. Problem definition 

The FJSSP with machine configuration-dependent setup times (FJSSP-CDST) can be 

described as follows. There is a set � of RMTs on a shop floor with a predefined layout. Each 

RMT � has a set of ��  configurations. One or more operations can be processed in each 

configuration with a special rate. A set � of � jobs should be processed in the shop floor. Each 

job � has a set of �� operations with a predefined sequence that has already been determined 

by process planning unit (e.g., 	�,� → 	�, → ⋯ → 	�,��). Moreover, it is assumed that each 

operation � of job � (	��) can be processed at least on one configuration of one of the existing 

RMTs. No setup is needed to perform operations in a machine configuration, while to switch 

to a different configuration on the machine, the RMT needs to a setup that is dependent on 

two consecutive configurations. It is assumed that the configuration-dependent setup times 

satisfy the triangular inequality. Moreover, each RMT can only fit into one configuration at a 

time, and it cannot perform more than one operation simultaneously. All the jobs are 

available at time 0, and preemption is not allowed. The main decisions of the problem include 

allocating of each operation to an eligible RMT, sequencing of the jobs and determining the 

appropriate configurations of each machine to perform the allocated operations. The 

objective is to minimize makespan. 

 

3.2. Mathematical formulations 

In this section, two different MILP models of the problem are developed based on 

operation-position and operation-sequence formulations. The following sets, indices and 

parameters are used in both developed models. 

 

Sets and indices: � Set of jobs, and each job � ∈ � �� Set of operations related to job �, where the operation � of job � is denoted by 	�� � Set of machines and index � ∈ � �� Set of configurations of machine � and index � ∈ �� 
  

Parameters: �����  Processing time of operation 	�� on �th configuration of machine � 
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�����  1 if operation 	�� can be processed on configuration � of machine �; 0, otherwise ����,��,� Configuration-dependent setup time when the configuration is changed from �� 

to � (i.e., �� ≠  �) on machine � � A big positive number 

 

3.2.1. Operation-position based (PB) model 

At the first model, the scheduling problem has been considered as positioning decisions 

(i.e., assigning the operations to some predefined time-positions). Hence, we need to define 

a new set  � for the positions of the machine � and its related index !, in which an operation 

can be processed or setup can be done.  

 ! Index for job positions processed on machine �, index ! ∈  � (i.e., | �| =∑ ∑ ∑ ������∈%&�∈'��∈( ) and  = ⋃  ��∈* . 

 

Decision variables of the PB model: +���,�  Binary variable. If operation 	�� is processed on position ! of machine � (i.e., the 

position �!) with configuration �, then +���,� = 1; otherwise, +���,� = 0. /��,��,�,,  Binary variable. If at the beginning of position �!, the machine’s configuration is 

changed from �� to � (i.e., �� ≠  �), then /��,��,�,, = 1; otherwise, /��,��,�,, = 0. 0��  Completion time of operation 	�� 0�,1
 Finishing time of position �! �234 Completion time (i.e., makespan) 

 

The PB model is as follows: 

 Min �234 (1) 

s.t.  8 8 8 +���,��∈%&,∈9&�∈* = 1 ∀ � ∈ �, � ∈ �� (2) 

8 +���,�,∈9&
≤ �����  ∀ � ∈ �, � ∈ �� , � ∈ �, � ∈ �� (3) 

8 8 8 +���,��∈%&�∈'��∈� ≤ 1 ∀ � ∈ �, ! ∈  � (4) 

8 8 8 +���,,<�,��∈%&�∈'��∈� ≥ 8 8 8 +���,��∈%&�∈'��∈�  ∀ � ∈ �, ! ∈  �, ! ≠ 1 (5) 

8 8 +���,,<�,�� �∈'��∈� + 8 8 +���,,,���∈'��∈� ≥ 2 /��,��,�,, ∀ � ∈ �, ! ∈  �, ��, � ∈ �� , �� ≠ � (6) 

8 8 +���,,<�,�� �∈'��∈� + 8 8 +���,,,���∈'��∈� − 1 ≤  /��,��,�,, ∀ � ∈ �, ! ∈  �, ��, � ∈ �� , �� ≠ � (7) 
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0�� ≥ 0�,�<� + 8 8 8 �����  +���,��∈%&,∈9&�∈*  ∀ � ∈ �, � ∈ �� (8) 

0�,1 ≥ 0�,,<�1 + 8 8 ����,��,� /��,��,�,,��∈%&��A����∈%&
+ 8 8 8 �����  +���,� �∈%& �∈'��∈�  

 

 

 ∀ � ∈ �, ! ∈  � 

(9) 

0�,1 ≤ 0�� + � B1 − 8 +���,��∈%&
C ∀ � ∈ �, ! ∈  �, � ∈ �, � ∈ ��  (10) 

0�,1 ≥ 0�� − � B1 − 8 +���,��∈%&
C ∀ � ∈ �, ! ∈  �, � ∈ �, � ∈ �� (11) 

0��� ≤ �234 ∀ � ∈ � (12) +���,� , /��,��,�,, ∈ D0, 1E ∀ � ∈ �, ! ∈  � , � ∈ �� , � ∈ �, � ∈ �� (13) 0��, 0�,1 ≥ 0 ∀ � ∈ �, ! ∈  � , � ∈ �, � ∈ �� (14) 

 

Eq. (1) is the objective function. Constraints (2) ensure that each operation should be 

assigned to one position of an existing machine configuration. If operation 	�� is not allowed 

to be processed on configuration � of machine � (����� = 0), then Constraint (3) prevent the 

assignment of the operation 	�� to any positions of the machine configuration ��. Constraint 

set (4) is to show that in each machine position �! at most one operation can be processed. 

Constraints (5) ensure that each machine position can be assigned only when the previous 

position is allocated. Constraints (6) and (7) ensure that for each machine, if two consecutive 

positions are allocated to different configurations, then a proper setup should be done. 

Constraints (8) guarantee that the completion time of the operation 	�� should be greater 

than the completion time of the previous operation plus processing time of 	��. Constraints 

(9) guarantee that the completion time of each machine position should be greater than the 

completion time of the previous position plus a possible setup time and the processing time 

of an operation, which is allocated to the position. Constraints (10) and (11) ensure that the 

completion time of each operation should be set with its associated position. Constraint set 

(12) is used to determine the completion time. 0���  is the completion time of the last 

operation of job �. In other words, Constraints (12) are the linear form of �234 =max�∈�I0���J. Constraints (13) and (14) define the decision variables. 

 

3.2.2. Operation-sequence based (SB) model 

At the second model, the scheduling problem is considered as a sequencing decision.  

 

Decision variables of the SB model: K���� 1 if operation 	�� is processed on configuration � of machine �; 0, otherwise 
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L���M�M  1 if operation 	�� is scheduled before 	�M�M , then L���M�M = 1; 0, otherwise 0��  Completion time of operation 	�� �234 Maximum completion time (i.e., makespan) 

 

The SB model is as follows: 

 Min �234 (15) 

s.t.   8 8 K�����∈%&�∈* = 1 ∀ � ∈ �, � ∈ ��  (16) 

K���� ≤ ����� ∀ � ∈ �, � ∈ ��, � ∈ �, � ∈ �� (17) 0�� ≥ 0�,�<� + 8 8 �����  K�����∈%&�∈*  ∀ � ∈ �, � ∈ ��  (18) 

0�� ≥ 0�M�M + ������ + ����,��,�− N2 − K����� − K�M�M��� + L���M�MO� 

∀ � ∈ �, ��, � ∈ ��, �, �1 ∈ �,     � ∈ �� , �1 ∈ ��M , 	�� ≠ 	�M�M (19) 

0�M�M ≥ 0�� + ��M�M��� + ����,�� ,�− N3 − K����� − K�M�M��� − L���M�MO� 

∀ � ∈ �, ��, � ∈ ��, �, �1 ∈ �,     � ∈ �� , �1 ∈ ��M , 	�� ≠ 	�M�M (20) 

�234 ≥ 0���  ∀ � ∈ � (21) K���� ∈ D0, 1E ∀ � ∈ �, � ∈ ��, � ∈ �, � ∈ �� (22) L���M�M ∈ D0, 1E ∀ �, �1 ∈ �, � ∈ �� , �1 ∈ ��M , 	��≠ 	�M�M 
(23) 

0�� ≥ 0 ∀ � ∈ �, � ∈ ��  (24) 

 

Eq. (15) is the objective function. Constraint (16) ensures that each operation should be 

assigned to one machine configuration. If operation 	�� is not allowed to be processed on 

configuration � of machine � (����� = 0), then Constraint (17) prevent the assignment of 

operation 	�� to machine configuration ��. Constraint (18) guarantees that the completion 

time of operation 	�� should be greater than the completion time of the previous operation 

plus processing time of 	��. On each machine �, Constraints (19) and (20) prevent the 

overlapping of the allocated operations. Constraint set (21) is used to determine the 

completion time. Constraints (22) – (24) define the decision variables. 

 

3.3. Lower-bound method 

The FJSSP-CDST is a generalization of the classical JSSP, and the JSSP is NP-hard (Garey et 

al., 1976), therefore the FJSSP-CDST is also an NP-hard problem. Moreover, by adding the 

machine configuration decisions, the problem is even more complicated than some other 

extensions of JSSP (e.g., flexible JSSP with sequence-dependent setup times). Hence, 

developing a lower bound (LB) can be helpful to analyze the outcomes of proposed 
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algorithms. The goal is to develop a new formulation, whose complex constraints relaxation 

provides an LB for the original problem.  

The developed models contain three types of decisions including machine configuration, 

job assignment and sequencing. Since the complexity of the models results from the 

sequencing decisions, relaxation of this type of decisions can decrease the complexity of the 

models. Hence, the obtained objective value can be considered as an LB for makespan. The 

independent variables in the proposed models, including K���� and L���M�M  in the SB model 

and +���,�  in the PB model, deal with three types of decisions in the problem. Variable L���M�M  

deal with sequencing decisions in the SB model. In the PB model, how the positioning of the 

operations on each machine determines the sequence of them. Hence, extracting the lower 

bound based on the PB model needs to decompose the variable +���,� . Because of its simpler 

structure, we prefer to extract the LB based on the SB model. 

In shop scheduling problems, a LB for completion time can be achieved based on machine 

lower bound ( Q�) (i.e., the maximum of the total processing time of operations allocated to 

the machines) and job lower bound ( Q) (i.e., the maximum of the total processing time of 

the jobs). Finally, the lower bound of the problem can be achieved as  Q = maxD Q�,  QE.  

 

Proposition 1.  Q� is an LB of the total processing time of the operations allocated to the 

machines. 

 

 Q� = max�∈* R8 8 minI�∈%&ST�U&VAWJI�����J�∈'��∈� X  (25) 

 

Proof. For each machine � ∈ �, an LB for the allocated operations can be achieved if each 

operation is processed on an admissible configuration of the machine with the minimum 

processing time without considering any reconfiguration time. ⎕ 

 

Proposition 2.  Q is an LB for the total processing time of each job. 

 

 Q = max�∈� R 8 minI�∈*,�∈%&ST�U&VAWJI�����J�∈'�
X  (26) 

 

Proof. For each job � ∈ �, a lower bound for the operations can be achieved if each operation 

is processed on an admissible machine configuration with the minimum processing time. ⎕ 

 

To incorporate the machine and job lower bounds into the SB model, Constraints (28) – 
(30) and (31) – (33) should be considered to linearize Eq. (25) and Eq. (26), respectively. 

 Min4 Y9Z = �234 (27) 
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s.t.   

Constraint sets (16) and (17)   Θ��� ≤ �����  + �N1 − K����O ∀ � ∈ �, � ∈ �� , � ∈ �, � ∈ �� (28) Θ��� ≥ ����� − �N1 − K����O ∀ � ∈ �, � ∈ �� , � ∈ �, � ∈ �� (29) 

�234 ≥ 8 8 Θ��� �∈'��∈(  ∀ � ∈ � (30) 

Φ�� ≤ ����� + �N1 − K����O ∀ � ∈ �, � ∈ �� , � ∈ �, � ∈ �� (31) Φ�� ≥ ����� − �N1 − K����O ∀ � ∈ �, � ∈ �� , � ∈ �, � ∈ �� (32) 

�234 ≥ 8 Φ���∈'�
 ∀ � ∈ � (33) 

K���� ∈ D0,1E ∀ � ∈ �, � ∈ �� , � ∈ �, � ∈ �� (34) �234, Φ��, Θ��� ≥ 0 ∀ � ∈ �, � ∈ �� , � ∈ � (35) 

where Θ��� is the processing time of 	�� on machine � if the operation is assigned to one of 

the admissible configurations of the machine. Constraints (16) and (17) ensure that each 

operation is assigned to an admissible machine configuration. Since there are not any 

constraints to select the admissible configurations of the machine, Constraints (28) and (29), 

and a minimization logic of the objective function guarantee that the minimum processing 

time is selected to perform each operation, hence Θ��� = minI�∈%&ST�U&VAWJI�����J. Moreover, 

based on Eq. (25), we have  Q� = max�∈*I∑ ∑ Θ����∈'��∈� J. Therefore  Q� ≥ ∑ ∑ Θ��� �∈'��∈( . 

The same procedure is used for the job lower bound (i.e.,  Q ≥ ∑ Φ���∈'� ). Finally, since the 

LB of makespan is equal to the maximum of  Q� and  Q, Constraints (30) and (33) can be 

extracted. 

 

4. Solution Algorithm 

The proposed self-adaptive DE algorithm based on the Nelder-Mead mutation strategy 

(SADE-NMMS) has been presented as follows. 

 

4.1. Required basic concepts 

4.1.1. Differential evolution (DE) 

DE is a simple, reliable, and efficient population-based stochastic optimization technique 

(Storn & Price, 1997). The classic DE algorithm has three parameters contain the number of 

population (NP), mutation scale factor (F) and crossover rate (CR). The algorithm starts by 

generating a population of NP random solutions, called individuals. Then the main loop of 

the algorithm starts working until a termination criterion is met (e.g., for a number of 

iterations). In each iteration, mutation and crossover operators should be done for each 

individual to obtain a trial vector (new solution), respectively. Eventually, a greedy approach 

is done to select between the trial vector and the individual. The selected one is promoted to 

the next iteration. The process of mutation and crossover for an individual ] ∈ ^� can be 

described as follows. 
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Mutation: For individual ]�, three distinct randomly selected individuals with indices ��, � 

and �_ (i.e., � ≠ �� ≠ � ≠ �_) are considered to generate a mutated individual �̀ as follows. 

 

DE/rand/1: 

�̀ = ]T� + 0. N]T� − ]TbO (36) 

 

Crossover: Based on current individual ]� and mutated individual �̀, a trial individual ��  is 

formed by:  

 c�� = de��K��   if  � ≤ �^  g�  � = �T3�hotherwise   ∀ � = 1, 2, … , � (37) 

where c�� is element � of ��, the CR is the crossover rate, � = �q�r[0, 1], and �T3�h is an index, 

which is randomly selected to guarantee that at least one element of the mutated individual 

should be chosen.  

 

4.1.2. Nelder-Mead simplex search 

The Nelder-Mead (NM) simplex search, originally published in 1965 (Nelder and Mead, 

1965), is one of the best known numerical optimization method designed for unconstrained 

problems with multidimensional space. In n-dimensional solution space (] ∈ ^�), NM 

initializes with n+1 random solutions (called individuals) and orders them based on their 

function values from the best to the worst (e.g., to minimize a function u(])), suppose u(]�) ≤ u(]) ≤ ⋯ ≤ u(]�x�). Then a centroid (]y) of the n best individuals should be 

calculated (]y = ∑ ]���z� ). Considering four factors including reflection coefficient ({T > 0), 

expansion coefficient ({} > 1), contraction coefficient (0 < {� < 1) and shrinkage 

coefficient (0 < {� < 1), the steps of the algorithm can be described below. Based on these 

steps, the algorithm starts working until a termination condition is met. 

 

Reflection: Compute the reflected point as follows. 

 ]T = ]� + {�. N]� − ]�x�O (38) 

 

If the reflected point is better than the best point (i.e., u(]T) < u(]�)), then the expansion 

phase should be applied, else if u(]�) ≤ u(]T) < u(]�), the reflected point should be 

replaced with the worst point ]�x�, and the iteration should be terminated. Otherwise, if u(]�) ≤ u(]T), the contraction phase should be applied. 

 

Expansion: Compute the expansion point as follows. 

 ]} = ]� + {�. N]T − ]�O (39) 
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If the expanded point is better than the reflected point (i.e., u(]}) ≤ u(]T)), then the 

expanded point should be replaced with the worst point ]�x�; otherwise, the reflected point 

should be replaced with the worst point,  and the iteration should be terminated. 

 

Contraction: Compute the contraction point between the centroid and the better of the two 

points ]T and ]�x�. If u(]�x�) ≤ u(]T), then the inside contraction should be performed 

using Eq. (40). Otherwise, the outside contraction should be performed using Eq. (41). 

 ]� = ]� − {�. N]� − ]�O (40) ]� = ]� + {�. N]� − ]�+1O (41) 

 

In inside contraction, if u(]�) ≤ u(]�x�), or in outside contraction, if u(]�) ≤ u(]T), then ]� should be replaced with the worst point, and the iteration should be terminated. 

Otherwise, the shrinking phase should be applied. 

 

Shrink: This operator is applied to converge the points around the best point to adjust the 

accuracy of the algorithm. The operator is performed as follows. 

 ]�1 = ]� + {�. (]� − ]�) ∀ � = 2, 3, … , � + 1 (42) 

 

Eventually, the set I]1, ]2′ , ]3′ , … , ]�+1′  J can be used for the next iteration. 

 

4.1.3. Proposed Nelder-Mead mutation strategy 

In the literature, different mutation strategies have been utilized to enhance the 

exploitation and exploration capabilities of the DE variants. Many pieces of evidence reveal 

that different optimization problems require different strategies for parameter settings and 

mutation (Qin et al., 2009). Most of the proposed mutation strategies in the literature have a 

simple structure to randomly obtain a single target. For example, the mutation strategy 

“rand/1”, which is defined in Eq. (36), is a suitable strategy for an exploration target, while 

another strategy named “current-to-best/1” is usually used for exploitation. Hence, some 

researchers have started to develop new intelligent approaches to utilize various capabilities 

of the different mutation strategies (Fan and Yan, 2015b). Besides these approaches, which 

focus on making intelligent the whole of the algorithm, it seems that developing some new 

flexible mutation strategies can be advantageous to search the solution space more efficient. 

Inspiring the Nelder-Mead operators, we develop a new mutation strategy, which can 

intelligently search the solution space. The procedure of the NM-based-rand/3 mutation 

strategy is presented in Fig. 2. The number “3” refers to the number of initial points as a 

parameter of the algorithm to start the searching procedure. It is worth mentioning that the 

parameter can be tuned for different utilizations. 



15 

 

To illustrate how the proposed mutation strategy can efficiently search the solution space, 

an instance based on various mutation strategies is considered. Current point K�  and three 

randomly selected individuals are considered, which can be ordered as KTb , KT�  and KT�  (i.e., u(KTb) < u(KT�) < u(KT�)). In Fig. 3, three mutated individuals based on some of the most 

popular mutation strategies are represented. As can be seen from the figures, none of these 

strategies utilizes all of the useful information. In a similar situation, the potential mutated 

points, based on the proposed strategy, is represented in Fig. 4. Some other information (e.g., 

the position of the worst point and the weight of the rest individuals) is utilized. Moreover, 

coefficients {T , {} , {� and {� help to improve efficiency. For example, the higher values of the 

reflection and explosion coefficients, more effective exploration, and the lower values of the 

contraction and shrinkage coefficients, the more effective exploitation.  

 

4.2. Details of the proposed SADE-NMMS to solve FJSSP-CDST 

To efficiently solve the FJSSP-CDST as a combinatorial optimization problem with discrete 

solution space, an improved variant DE is proposed based on the new mutation strategy and 

a self-adaptive procedure. The main steps of the algorithm are presented in Fig. 5. Moreover, 

the details of the algorithm are presented below. 

 

 
Fig. 2. Procedure of the NM-based-rand/3 mutation strategy 
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Fig. 3. Three well-known mutation strategies in the DE algorithm 

 

 
Fig. 4. NM-based-rand/3 mutation strategy for the DE algorithm 
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Fig. 5. Main flow chart of SADE-NMMS 

 

4.2.1. Encoding 

To apply a DE-based algorithm for solving FJSSP-CDST as a discrete optimization problem, 

it is needed to design an appropriate encoding approach with real values to represent a 

feasible solution. Each solution needs to present the operations scheduling and the machine 

configuration simultaneously. Hence, we design an encoding method including two parts, 

which can be represented as a two-dimensional matrix (�×�). The solution matrix has two 

rows. The first row is related to the machine configuration decisions, and the second row is 

related to the operations scheduling decisions. The number of columns is equal to the total 

number of operations (i.e., � = ∑ ���∈� ).  

To better illustrate the encoding scheme, we design a simple instance with two jobs and 

two machines. The first job needs four operations, and the second job needs two operations. 

Moreover, each machine has two configurations. Table 1 shows the processing time of the 

operations on each machine configuration (�����). The reconfiguration times for the 

machines are as follows: ����,�,� = 65, ���,��,� = 85, ����,�, = 90 and ���,��, = 120. 
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Table 1. Processing times of the example 

Machine Configuration 
Job 1  Job 2 	�� 	� 	�_ 	��  	� 	 

1 1 150     140  

 2   80 140  120  

2 1 200 160     80 

 2  90    90  

 

Fig. 6 shows a random solution (chromosome) of the example. To determine the 

sequencing of the operations based on the chromosome, the value of the elements associated 

to the first operation of the jobs should be compared (e.g., �,� and �,�), where ��,� refers to 

the element (�, �) of the chromosome. The operation with a smaller value is selected, and 

then, the next operation should be compared with remain operations of other jobs. For 

example, since �,� is smaller than �,� (i.e., 0.15 < 0.32), 	�� should be selected as the first 

operation. Thereafter, the next operation of job 1 (	�) should be compared with 	�. Since �, is not smaller than �,� (0.51 > 0.32), 	� should be selected as the second operation. 

The procedure continues until all of the operations be placed on the sequence. Based on this 

procedure, the final sequence of the example can be extracted as 	�� → 	� → 	� → 	�_ →	�� → 	. 

 

 
Fig. 6. Random solution (chromosome) for the example  

 

To select a machine configuration for each operation, the first row of the chromosome and 

a probability matrix (�y) should be utilized. Each element of the probability matrix (i.e., �y =��̅�����) can be calculated as Eq. (43). The probability matrix of the example is presented in 

Fig. 7. For example, as it presented in Table 1, 	�� can be performed on both machine-

configurations � = 1, � = 1 and � = 2, � = 1 with processing times 150 and 200, 

respectively. Hence, we can calculate the associated elements as: �̅�,�,�,� =� ���W� � ���W + �WW�� = 0.571  and �̅�,�,,� = � �WW� � ���W + �WW�� = 0.429. Therefore, the first 

configuration of the first machine, which is faster in performing 	��, has more chance to be 

selected. 

 

�̅���� =
1�����∑ 1������∈�,�∈��

 ∀ � ∈ �, � ∈ �� , ����� ≠ 0 (43) 
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Fig. 7. Probability matrix (�y) for machine-configuration selection 

 

Based on the presented chromosome in Fig. 6 and the extracted probability matrix in Fig. 

7, a machine configuration for each operation can be selected. To do this, the value of each 

element in the first row of the chromosome should be compared with the cumulative 

summation of the related column in the probability matrix. For example, 	�� should be 

processed on the first configuration of the machine 1 because of ��,� ∈ [0, 0.571], and 	� 

should be processed on the second configuration of the machine 2 because of ��, ∈ (0.36, 1]. 

The resultant schedule of the chromosome is presented in Fig. 8. Makespan of the schedule 

is equal to 460. 

 

 
Fig. 8. Resultant schedule of the chromosome 

 

4.2.2. Initialization 

The initialization phase starts by random generation of NP chromosomes (i.e., 

individuals). Each individual should be decoded to evaluate the resultant schedule and 

extract the makespan. These individuals can be considered as the initial generation (i.e., � =0). Thereafter, the mutation and crossover operators should be utilized iteratively to search 

the solution space.  

 

4.2.3. Mutation and crossover 

To balance between exploitation and exploration abilities of the algorithm, the 

generations of DE are divided into two phases. At the first phase (� ≤ ��), to enhance the 

exploration ability, the mutation strategy rand/1 is utilized alone, where �� is a predefined 

point to change the searching strategy (i.e., �� = � × �234 and � ∈ [0, 1]). Thereafter, at the 

second phase (�� < � ≤ �234), six mutation strategies including rand/1, rand/2, best/2, 

current-to-best/1, current-to-best/2 and NM-based-rand/3 can be utilized based on a self-
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adaptive manner. Other useful strategies including rand/2, best/2, current-to-best/1 and 

current-to-best/2 are respectively as Eqs. (44) – (47): 

 

DE/rand/2: 

�̀�x� = ]T�� + 0. N]T�� − ]Tb� O + 0. N]T�� − ]T�� O (44) 

DE/best/2: 

�̀�x� = ]�}��� + 0. N]T�� − ]T�� O + 0. N]Tb� − ]T�� O (45) 

DE/current-to-best/1: 

�̀�x� = ]�� + 0. N]�}��� − ]��O + 0. N]T�� − ]T�� O (46) 

DE/current-to-best/2: 

�̀�x� = ]�� + 0. N]�}��� − ]��O + 0. N]T�� − ]T�� O + 0. N]Tb� − ]T�� O (47) 

where ]�}���  is the best solution vector achieved in generation G. Thereafter, based on current 

individual ]�� and mutated individual �̀�x�, trial individual ���x� is formed as Eq. (37). 

Eventually, a greedy approach is done to select between trial vector ���x� and individual ]�� . 

It is worth noting that the feasibility of each mutated individual should be checked. After 

applying a mutation strategy, the elements in the first row of the mutated individual 

(chromosome) maybe exceed the admissible range [0, 1]. In such cases, the outlier elements 

should be corrected to zero if  ��,� < 0, or they should be corrected to one if ��,� > 1. 

 

4.2.4. Evaluation and selection of the parameters 

In each generation of the algorithm, the setting of parameters F and CR as well as the 

selecting of a mutation strategy of each individual are performed based on a self-adaptive 

manner, which was introduced by Fan and Yan (2015a). In this approach, the triplex N0�� , �^�� , ��c���O as a vector of control parameters and mutation strategy (��c�) is 

associated with each individual ]�� . The procedure of adaptation is summarized below. 

 

Self-adaptive control of the parameters F and CR: 

For a minimization problem, the gap between each mutated individual and the worst 

solution in the generation � is calculated by: 

 ∆u�� = u234 − uN �̀�O ∀ � = 1, 2, … , �� (48) 

where u234 is the objective function value for the worst mutated individual (i.e., u234 =max� �uN �̀�O�). The weighted value of each individual (���) can be calculated by: 

 

��� = ∆u��∑ ∆u�M�'��Mz�   (49) 

 

Thereafter, the average value of mutation (0y��) and crossover (�^yyyy�� ) control parameters 

in each generation are respectively calculated as follows. 
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0y�� = 8 ��� × 0��
'�
�z�   (50) 

�^yyyy�� = 8 ��� × �^��
'�
�z�   (51) 

 

Eventually, the mutation and crossover control parameters for the next generation are 

respectively updated as Eq. (52) and Eq. (53), where N is the normal distribution function, 

and  � is the standard deviation associated with generation G (i.e.,  � = 0.8 − 0.45(1 −(�/�234))) (Fan and Yan; 2015a).  

 0��x� = �(0y��  ,  �)    (52) �^��x� = �(�^yyyy��  ,  �)    (53) 

 

Self-adaptive control of the mutation strategies: 

For the first phase of generations, there is only one mutation strategy for each individual 

(i.e., ��c��� = �q�r/1 for � ≤ ��)). For the second phase of generations (�� < � ≤ �234), 

we need to select a mutation strategy for each individual among six candidate strategies. At 

generation �� + 1, we create a fair condition for all strategies. Therefore, at this generation, 

the number of individuals, which are mutated based on each of the six strategies is equal to �� 6⁄ . Thereafter, the self-adaptive procedure controls the number of mutation strategies 

which are used by the individuals in each generation; however, the selection of the strategies 

by each individual is performed randomly.  

Due to the strength of the NM-based-rand/3 mutation strategy in performing the 

exploitation tasks and to avoid local optimums, we consider a more conservative approach 

to control the number of individuals, which select this mutation strategy. Hence, a set of 

other five mutation strategies (i.e., ��^ = D�q�r/1, �q�r/2, £��c/2, �¤����c − cg − £��c/1, current − to − best/2E) is utilized to explain the formulation. Moreover, �̈�T�  is defined as 

the set of individuals, which use the mutation strategy �c� ∈ ��^ at the generation G (i.e., 

�̈�T� = I�S��c��� = �c�J). Besides, ©��T�  represents the number of members of the set �̈�T�  

(i.e., ©��T� = | �̈�T� |). To determine the number of each mutation strategy, which should be 

used in the next generation, a trial vector ©̂�  is computed as Eq. (54), and eventually, the 

values of ©��T�x� are computed based on Eq. (55). 

 

©«��T� = round 5 6 �� × ∑ ∆u���∈ ®̈¯°±∑ ∆u��'��z� ² ∀ �c� ∈ ��^ (54) 
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©��T�x� = R©��T� + 1©��T� − 1©��T�            
if    ©«��T� > ©��T�
if    ©«��T� < ©��T�otherwise          ∀ �c� ∈ ��^ (55) 

 

The rest of individuals use the NM-based-rand/3 mutation strategy in the next generation, 

hence the number of these individuals can be determined by: 

 ©'³<�3�}h�x� = �� − 8 ©��T�x�
��T∈´µ¶   (56) 

 

To self-adaptive control of the parameters of the NM-based mutation strategy, the 

weighted average of mutation scale factor (0y��) is utilized. Hence, we consider the 

parameters as {T = {} = 0y��  and {� = {� = � 0y�� .  

 

5. Computational Experiments 

The performance of the two proposed formulations of FJSSP-CDST and the proposed 

solving approach (SADE-NMMS) are tested in this section. Hence, two experiments are 

conducted to perform the evaluations. In the first experiment, the two proposed 

formulations are compared, then the performance of SADE-NMMS is compared with the 

objective values obtained by the MILP models and three different meta-heuristic algorithms. 

The MILP models are implemented in GAMS 24.1.3 and solved using the solver CPLEX. 

Moreover, the meta-heuristics are coded on MATLAB 2017. All test instances are performed 

on a computer with a 2.8 GHz Intel CPU and with 4 GB of installed memory. 

 

5.1. Random instance generation 

To do the experiments, two sets of random instance problems are generated. The size of 

each instance problem is dependent to the size of the shop floor, which is related to the 

number of RMTs (|�|) and the total number of machine configurations (∑ ��), as well as the 

number of jobs (|�|) and the total number of operations (∑ ��). For the first set, two 

experiments are designed. At the first experiment, the MILP models are compared in term of 

computational complexities. At the second experiment, the best solution obtained by the 

MILP models in the previous experiment is utilized to validate the meta-heuristic algorithms. 

Finally, the performance of the meta-heuristics is tested using the second set, which includes 

some instance problems with larger sizes. 

In the first set, we generate 12 small instances (Subset-A) and 16 medium instances 

(Subset-B). The considered levels are presented in Table 2.  To more illustration, a shop floor 

with seven RMTs and 16 machine configurations (K7C16) is represented in Fig. 9. Also, the 

data for every one of the different instances includes the processing time of operations 

(�����) and the configuration-dependent setup times (����,��,�). The processing times are 
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generated based on a uniform distribution between 40 and 100, and the setup times are 

generated based on a uniform distribution between 75 and 150. In the second set, we 

considered three different levels for the number of facilities in the shop floor. Thereafter, in 

each level, 30 random instance problems are generated. Thus, there are 90 large instances 

in the second set.  

 
Table 2. Parameter levels for data generation 

 First set Second set 

No. of machine configurations 

(|�|, ∑ ��) 

 

A. (2, 4); (2, 5); (2, 6) 

B. (3, 7); (7, 16) 

(10, 20); (10, 30); (20, 50) 

No. of job operations (|�|, ∑ ��) A. (2, 8); (2, 15); (3, 10); (3, 20) 

B. |�| = [3 − 10], �� = �q�r(4 − 12) 

|�| = �q�r(10 − 20) �� = �q�r(5 − 15) 

 

 
Fig. 9. Shop floor with seven RMTs and 16 machine configurations (K7C16) 

 

5.2. Models evaluation 

In this section, two proposed MILP models are compared based on computational 

complexities and size, as two frequently used performance measures (Naderi and Azab, 

2014). Table 4 represents the number of constraints and binary variables of different 

instance sizes. The position-based model needs fewer constraints than the sequence-based 

model, but it needs more binary variables. Both the number of constraints and binary 

variables are effective on the computational complexity. Hence, to compare the 

computational complexity of the proposed models, 28 instances, including 12 small 

instances (Subset-A) and 16 medium instances (Subset-B), are solved with a maximum time 

limit of 3600 seconds using CPLEX solver in GAMS 24.1.3 software. The results are presented 

in Table 5. The SB model optimally solves all 12 small instances, while the PB model solves 

nine of them. Indeed, the PB model cannot even optimally solve the small instances with 20 

operations. Out of 16 instances with a medium size in the Subset-B, the SB and PB models 

optimally solve only four and two instances, respectively. Moreover, the average optimality 
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gap of the SB and PB models is 18.07% and 39.09%, respectively. Considering the 

computational complexity, the SB model outperforms the PB model. 

 
Table 4. Comparison of the position- and sequence-based models 

Problem size  #Constraints  #Binary variables |�| ∑ ��   |�| ∑ ��    SBM PBM  SBM PBM 

2 5 3 10  2’414 654  140 584 

2 5 3 20  10’024 2’339  480 2’374 

3 7 3 20  13’104 3’068  520 3’098 

3 7 10 51  87’170 17’773  2’907 19’795 

7 16 3 20  29’244 6’977  700 7’052 

7 16 10 51  194’729 40’221  3’366 44’317 

 
Table 5. Results of the position- and sequence-based models 

#Instance |�| ∑ ��  
PB model  SB model  LB �234 
Time (sec)/ opt. gap 
(%), Best bound 

 �234 
Time (sec)/ opt. gap 
(%), Best bound 

 �234 Time (sec) 

K2C4Ins01 2 8 305* 0.515  305* 0.218  277 0.14 
K2C4Ins02 2 15 620* 136.046  620* 1  537 0.047 
K2C4Ins03 3 10 532* 7.5  532* 0.578  365 0.078 
K2C4Ins04 3 20 866 11.16%, 769  860* 14.765  659 0.093 
K2C5Ins01 2 8 555* 0.562  555* 0.234  311 0.094 
K2C5Ins02 2 15 908* 681.108  908* 0.688  555 0.188 
K2C5Ins03 3 10 531* 3.812  531* 0.625  403 0.063 
K2C5Ins04 3 20 958 18.4%, 781  872* 13.578  652 0.109 
K2C6Ins01 2 8 585* 1.282  585* 0.281  392 0.032 
K2C6Ins02 2 15 1000* 160.47  1000* 0.703  530 0.062 
K2C6Ins03 3 10 496* 10.343  496* 0.672  356 0.125 
K2C6Ins04 3 20 1226 19%, 993  1155* 25.25  734 0.156 
K3C7Ins01 3 20 613 28.22%, 467  559* 15.937  436 0.078 
K3C7Ins02 4 30 1035 40.77%, 613  900 27.97%, 648  658 0.156 
K3C7Ins03 5 29 1182 59.73%, 476  762 32.92%, 511  598 0.094 
K3C7Ins04 6 47 3098 78.44%, 668  1379 49.56%, 695  994 0.214 
K3C7Ins05 7 59 5678 88.96%, 627  2016 67.61%, 653  1200 0.203 
K3C7Ins06 8 61 5821 88.56%, 666  1978 64.18%, 708  1302 0.328 
K3C7Ins07 9 71 8512 92.2%, 664  2203 68.5%, 694  1515 0.329 
K3C7Ins08 10 51 3823 85.87%, 540  1566 61.24%, 607  1115 0.203 
K7C16Ins01 3 20 436* 201.922  436* 5.109  436 0.047 
K7C16Ins02 4 30 997 38.52%, 613  613* 65.203  613 0.141 
K7C16Ins03 5 29 476* 2925.78  476* 55.954  476 0.078 
K7C16Ins04 6 47 3340 80%, 668  725 7.86%, 668  668 0.094 
K7C16Ins05 7 59 6654 90.58%, 627  933 32.8%, 627  627 0.313 
K7C16Ins06 8 61 7241 90.8%, 666  921 27.69%, 666  666 0.297 
K7C16Ins07 9 71 8603 92.28%, 664  1136 41.55%, 664  664 10.922 
K7C16Ins08 10 51 5545 91.13%, 492  711 24.05%, 540  540 0.125 

* Optimum value 

 

In addition to the comparison of two MILP models, Table 5 shows the value of the LBs 

calculated based on the model presented in Eqs. (27) – (35). Comparing the best bounds 

achieved by the implementation of the MILP models after 3600 seconds, some better values 

of LBs are extracted for seven instances (the underlined values in column eight of Table 5). 
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Generally, the experiments show that at least a value and the estimated best bounds achieved 

by the MILP models are extracted for the LB of each instance. 

 

5.3. Evaluations of the proposed solving approach 

To test the performance of SADE-NMMS, three different variants of DE algorithms are 

considered. These variants contain the classic DE (Storn and Price, 1997), the DE algorithm 

with self-adaptive mutation strategy and control parameters (SSCPDE) (Fan and Yan, 

2015a), and the hybrid Nelder–Mead simplex search and DE algorithm (NMDE) (Wang et al. 

2011). We utilize SSCPDE and NMDE in our experiments to evaluate the effect of our 

approach in the hybridization of NM simplex search and self-adaptation strategy on the DE 

algorithm. Moreover, to have a comparison with other meta-heuristics, we use a self-

adaptive Cuckoo Optimization Algorithm (SA-COA), which has recently been developed in 

the related literature of a flexible job-shop scheduling problem by Abdollahzadeh-Sangroudi 

and Ranjbar-Bourani (2019). Actually, the classic COA was first introduced by Rajabioun 

(2011) inspired by the immigration and egg laying behavior of Cuckoo, a special kind of bird 

that lives in the nature. Recently, Abdollahzadeh-Sangroudi and Ranjbar-Bourani (2019) 

improved it to solve a kind of a flexible job-shop scheduling problem. Because of the existing 

some similarities between the structures of the habitat encoding used in their problem and 

the introduced encoding method in this paper, we accommodate the proposed SA-COA to 

solve the proposed problem as well. 

On the other hand, each algorithm has some parameters, which need to be accurately 

calibrated to guarantee the best performance. To tune the parameters of the DE and NMDE 

algorithms, we utilize the Taguchi method that is a practical approach for parameter tuning 

of meta-heuristics used in the literature (Akbari-Jafarabadi et al. 2015; Parvasi et al. 2017; 

Akbari-Jafarabadi et al. 2017; Sahebjamnia et al. 2018). The results are summarized in Table 

6. Although the SADE-NMMS and SSCPDE algorithms use a self-adaptive manner to control 

their parameters, the number of their population (NP) should be adjusted. We test four 

different levels of NP including 60, 90, 120 and 150 for each algorithm. In this experiment, 

we consider the medium-sized instances (Subset-B) as the test problems. The analysis of 

variance (ANOVA) test is used to analyze the results. The means plot and least significant 

difference (LSD) intervals for different levels of NP are represented in Fig. 10. As can be seen, �� = 120 provides the best results for both algorithms. To determine the value of 

parameters in the SA-COA, Abdollahzadeh-Sangroudi and Ranjbar-Bourani (2019) proposed 

an initial value for each parameter, which could be controlled in a self-adaptive manner 

during the solving approach. Also, we utilize their proposed method in our current paper. 

Moreover, we consider a stopping condition based on a CPU time fixed to maxN(∑ ��) ×(∑ ��) , 1000O milliseconds for each instance problem when it is solved by each of the 

algorithms. Run time limitation is an applicable and flexible measure to show the searching 

strength of the algorithms within a fixed time horizon (Roshanaei et al. 2009). Also, in this 
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research to compare the algorithms, we use the relative percentage deviation (RPD) as a 

common performance measure (Mahmoodjanloo et al. 2016; Fathollahi-Fard et al. 2019). It 

can be calculated by: 

 

^�· = ¸!¹ − ������ × 100  (57) 

where ¸!¹ is makespan of an instance obtained for a given algorithm, and ��� is the best 

makespan obtained for each instance. 

 
Table 6. Selected value of parameters for the DE and NMDE algorithms. 

Algorithm Parameters 

DE �� = 90, 0 = 1, �^ = 0.2 

NMDE �� = 60, 0 = 0.9, �^ = 0.3 {T = 1, {} = 1.5, {� = 0.5 , {� = 0.5, ℚ = 3 * 

* ℚ is the number of top individuals used to calculate the initial simplex centroid for the NM method 

 

  
(a) SADE-NMMS (b) SSCPDE 

Fig. 10. Means plot and LSD intervals (at the 95% confidence level) for the different levels of the population 

number (NP) of the SADE-NMMS and SSCPDE algorithms. 

 

To evaluate the general performance of the four abovementioned algorithms, we use the 

first data set and compare the results with the objective values obtained by the sequence-

based model (SBM). In this experiment, each instance problem is solved 20 times by each of 

the four algorithms. The results (including the best-obtained makespan, the mean value, and 

the standard deviation of each instance problem) are presented in Table 7. We bold the 

values, which are equal or less than the values obtained by the SBM.  

To better understand the performance of algorithms, the minimum and mean RPD values 

of the objective functions are separately represented in Fig 11. As can be seen, SADE-NMMS 

performs the best among the four algorithms. Among the 16 instances, whose optimum 

makespan is obtained by solving the SB model, SADE-NMMS can obtain the optimum 

solutions in 14 instances. Moreover, in ten items out of the rest of the instances, including 12 

instance problems, which the CPLEX solver cannot obtain the optimum solution in a time 
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limit of 3600 seconds, SADE-NMMS obtained a better solution in a reasonable time (e.g., a 

solution of K3C7Ins05 with �234 = 1733 obtained by SADE-NMMS in 24.4 seconds while the 

CPLEX obtained a solution with �234 = 2016 in 3600 seconds). 

In addition to the SADE-NMMS algorithm, SSCPDE also performs at an acceptable level, 

and it has the nearest performance to SADE-NMMS. Hence, we utilize the second data set to 

compare more precisely the performance of the tested algorithms. Also, the performance of 

the SA-COA is compared in this experiment. The ANOVA test is used to analyze the results in 

the experiment. As can be seen in Fig 12, the SADE-NMMS outperforms the other algorithms. 

Among the tested algorithms, the classic DE has the worst performance. This can be referred 

to the weaknesses of its mutation strategy in the exploitation phase of the searching process. 

 

Table 7. Computational comparison of the algorithms on small and medium instance problems of the first 

data set. 

#Ins. 
MILP(SBM) �234 

SADE-NMMS 
 

DE  SSCPDE  NMDE 

Min Ave. 
St. 

Dev. 
Min Ave. 

St. 
Dev. 

 Min Ave. 
St. 

Dev. 
 Min Ave. 

St. 
Dev. 

K2C4Ins01 305* 305 305 0.0  397 424.3 14.7  307 341.7 15.7  338 378.4 24.9 

K2C4Ins02 620* 620 637.8 27.6  821 888.5 48.2  627 693.8 49.7  691 791.1 60.9 

K2C4Ins03 532* 532 532 0.0  695 741.6 35.2  542 588.4 26.7  595 664.4 43.2 

K2C4Ins04 860* 861 913.5 41.2  1138 1268 86.8  861 1000 65.8  987 1131 100.5 

K2C5Ins01 555* 555 555 0.0  731 764.9 25.1  572 615.7 27.1  620 693.1 49.0 

K2C5Ins02 908* 908 908 0.0  1197 1276 42.5  911 992.3 51.5  1013 1108 73.8 

K2C5Ins03 531* 531 538.5 21.7  694 745.6 37.7  537 582.6 35.1  597 680.5 51.9 

K2C5Ins04 872* 872 921.9 24.0  1205 1280 52.7  903 1020 55.8  969 1146 65.4 

K2C6Ins01 585* 585 585 0.0  762 824.5 28  589 637.7 29.5  651 734.5 57.1 

K2C6Ins02 1000* 1000 1000 0.0  1302 1388 67  1019 1130 54.9  1119 1271 77.3 

K2C6Ins03 496* 496 497.8 5.4  653 693.7 31.9  496 547 28.5  547 601.9 43.5 

K2C6Ins04 1155* 1155 1186 10.1  1513 1640 61.8  1186 1284 82.9  1317 1522 116.3 

K3C7Ins01 559* 559 605.6 25.2  777 835.8 44.4  601 664.9 38.9  669 762.9 55.5 

K3C7Ins02 900 942 985.1 36.7  1244 1378 73.3  964 1085 74.6  1066 1237 110.8 

K3C7Ins03 762 756 809.1 27.4  1003 1120 58.1  794 881.6 58.3  867 1012 88.9 

K3C7Ins04 1379 1393 1531 74.6  1964 2183 164.2  1411 1660 118.6  1720 1901 113.5 

K3C7Ins05 2016 1733 1887 88.1  2363 2773 251.6  1786 2040 152.0  1971 2355 214.0 

K3C7Ins06 1978 1808 1942 85.5  2438 2797 241  1874 2141 126.7  1996 2401 218.9 

K3C7Ins07 2203 2087 2293 123.0  2856 3415 281.1  2209 2544x 170.6  2403 2895 263.9 

K3C7Ins08 1566 1376 1533 73.8  1889 2162 129.3  1524 1684 105.9  1620 1885 191.2 

K7C16Ins01 436* 436 446 9.4  571 613.9 26.5  447 490.3 28.8  491 564.7 32.5 

K7C16Ins02 613* 622 641.6 9.5  838 903.6 37.4  647 710.4 38.7  736 805.3 45.9 

K7C16Ins03 476* 476 487.6 8.6  631 680 35.6  490 536.9 28.9  551 612.5 37.5 

K7C16Ins04 725 717 796.2 32.5  971 1133 68  786 885 57.0  832 970.9 81.3 

K7C16Ins05 933 830 895.7 26.7  1138 1262 60.6  846 972.3 47.6  978 1127 85.0 

K7C16Ins06 921 896 925.1 20.8  1199 1306 65.4  921 1013 50.7  1041 1143 73.2 

K7C16Ins07 1136 940 1021 54.1  1261 1513 134.1  1018 1136 72.4  1110 1271 119.1 

K7C16Ins08 711 645 693.5 25.7  892 975.5 44.4  646 749.4 46.9  737 863 74.4 
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(a) Minimum values (b) Mean values 

Fig. 11. Minimum and mean RPD values of different algorithms over 20 independent runs on 28 test instance 

problems of the first data set. 

 

 
Fig. 12. Means plot and LSD intervals (at the 95% confidence level) for the tested algorithms on 90 instance 

problems of the second data set. 

 

5.4. Sensitivity analysis 

A significant observation in our experiments is the impact of reconfiguration ability of the 

machines on the scheduling decisions. This ability maybe leads to several changes in the 

configurations of a machine to obtain a feasible schedule. To show this ability, an example is 

illustrated in Fig. 13. In this Gantt chart, the best resultant schedule of the instance 

K7C16Ins05 with �234 = 830 obtained by the SADE-NMMS algorithm is presented. In each 

box, two items are noted (i.e., the job’s number and the configuration’s number, in which the 

machine should perform that job). For example, (J5, C2) on the first box of Machine-1 shows 

that Job-5 should be performed on the second configuration of Machine-1. Besides, Machine-

1 performs the first and the second operations of Job-5 on its second configuration. 

Thereafter, the machine should be reconfigured from the second to the third configuration 

with setup time ��(�2, �3) = 150 to perform some other operations.  As can be seen, some 

machines need to be reconfigured one or more times in the schedule, and some others need 

no reconfiguration (e.g., Machine-5). 
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Regarding the impact of reconfiguration activities and the related setup times on the 

scheduling decisions, several analyses are done. For this purpose, we change the 

configuration-dependent setup times of several instances in a predefined range. In these 

experiments, we define ����,��,��}� = » × ����,��,� while » is a constant coefficient. As an 

example, the trend of changing in makespan and the number of machine reconfigurations 

are presented in Fig. 14 for 0 ≤ ω ≤ 4. As expected, makespan has a non-decreasing 

behavior concerning an increase in the setup times, though for the larger instances the 

behavior is much more non-linear. On the other hand, changing the number of machine 

reconfigurations is more complex. As can be seen in Fig. 14(b), the diagrams have different 

trends in response to the variations of the setup times. 

 

 
Fig. 13. Best resultant schedule of K7C16Ins05 with �234 = 830 obtained by the SADE-NMMS algorithm. 

 

  
(a) (b) 

Fig. 14. Trend of changing in makespan and the number of machine reconfigurations based on variations in 

the setup times 

 

To improve the searching process, a two-phase mechanism is utilized to balance between 

exploitation and exploration abilities of the proposed algorithm. In this mechanism, 

threshold value �� is considered to change the searching policy, where �� = � × �234 and � ∈ [0, 1]. In the first phase for � ≤ ��, we utilize the DE/rand/1 mutation strategy, which is 
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one of the most popular strategies in the literature that bears stronger exploration 

capabilities (Mallipeddi et al. 2011; Fan and Yan, 2015a; Fan and Yan, 2015b). Thereafter, a 

self-adaptive policy is used to automatically guide the searching process.  

Now, we aim to evaluate the effectiveness of the two-phase searching strategy. Hence, we 

design another experiment to show the performance of the SADE-NMMS algorithm with 

different values of parameter �. In this experiment, the algorithm is used to solve some 

selected instances of Subset-B for � = 0, 0.2, 0.4 and 1. It is worth noting that the algorithm 

with � = 0 is a full self-adaptive version. On the other hand, the algorithm with � = 1 can be 

considered as a classic DE with one mutation strategy. The means plot and Least Significant 

Difference (LSD) intervals for different levels of � are represented in Fig. 15. As can be seen, � = 0.2 provides the best results for the algorithm. Moreover, it means that the designed 

two-phase policy has a positive effect on the searching process of the algorithm. Also, Fig. 16 

shows the trend of optimization for the proposed algorithm with different values of � on two 

selected instances from Subset-B. 

 

Fig. 15. Means plot and LSD intervals (at the 95% confidence level) for different values of � in algorithm 

SADE-NMMS. 

 

  
(a) K7C16Ins08 

 
(b) K3C7Ins08  

 

Fig. 16. Effect of parameter � on the searching process of the algorithm SADE-NMMS 
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6. Conclusions 

Reconfigurable machine tools (RMTs) have been developed to benefit from using several 

different machines that share many costly and common modules while being rarely used at 

the same time. They could obtain different configurations to satisfy manufacturing 

requirements. Hence, RMTs have a high potential to obtain both cost-effectiveness and 

responsiveness as the main objectives of market competition. Considering the complexity of 

scheduling in production systems, which utilize RMTs, some specialized models and 

algorithms should be developed. In this paper, the scheduling decisions in a shop-floor with 

RMTs, named the FJSSP with configuration-dependent setup times have been studied. At 

first, two different mathematical models with the position- and sequence-based decision 

variables have been formulated to minimize the completion time of the jobs (i.e., makespan). 

Moreover, a mathematical formulation has also been developed to calculate the lower bound 

of makespan. Thereafter, we tried to optimally solve the small- and medium-sized instances 

using each of the two models and CPLEX solver. The experiments showed that the sequence-

based model outperformed the position-based model in all 28 instance problems. However, 

even the sequence-based model could not to optimally solve most of the medium-size 

problems (it only optimally solved three instances out of 16). Hence, regarding the 

computational complexity of the models, we utilized a self-adaptive DE algorithm and 

enhanced its effectiveness by introducing a new mutation strategy based on a searching 

approach hired from the Nelder-Mead method. The performance of the proposed method, 

named SADE-NMMS, and three other variants of the DE algorithm were first validated by 

comparison with the results of the sequence-based model for small- and medium-sized 

problems. Thereafter, another data set including larger-sized problems has been utilized to 

compare more precisely the performance of the tested algorithms. The ANOVA test was used 

to analyze the results in the experiment. It turned out that the SADE-NMMS outperforms the 

other algorithms. 

For future studies, some of the real-world considerations (e.g., the uncertainty in 

configuration-dependent setup times or the effect of reliability on different machine 

configurations) can be discussed in the model. Besides, different machine configurations in 

addition to the different production rate maybe have different cost or quality to perform the 

operations. Hence, it will be interesting to develop some multi-objective models in this area. 

Finally, the proposed mutation strategy based on the Nelder-Mead method has a high 

potential to be utilized in other variants of the DE algorithm to improve their performance. 
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