
HAL Id: hal-02906514
https://hal.science/hal-02906514

Submitted on 22 Aug 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Flexible job shop scheduling problem with
reconfigurable machine tools: An improved differential

evolution algorithm
Mehdi Mahmoodjanloo, Reza Tavakkoli-Moghaddam, Armand Baboli, Ali

Bozorgi-Amiri

To cite this version:
Mehdi Mahmoodjanloo, Reza Tavakkoli-Moghaddam, Armand Baboli, Ali Bozorgi-Amiri. Flexible
job shop scheduling problem with reconfigurable machine tools: An improved differential evolution al-
gorithm. Applied Soft Computing, 2020, 94, pp.106416. �10.1016/j.asoc.2020.106416�. �hal-02906514�

https://hal.science/hal-02906514
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

1

Flexible job shop scheduling problem with reconfigurable machine

tools: An improved differential evolution algorithm

Mehdi Mahmoodjanloo a, Reza Tavakkoli-Moghaddam a,b,*, Armand Baboli c,*, Ali Bozorgi-Amiri a

a School of Industrial Engineering, College of Engineering, University of Tehran, Tehran, Iran
b Universal Scientific Education and Research Network (USERN), Tehran, Iran

c LIRIS laboratory, UMR 5205 CNRS, INSA of Lyon, 69621 Villeurbanne cedex, France

Abstract

Developing reconfigurable machine tools (RMTs) has attracted increasing attention

recently. An RMT can be utilized as a group of machines, which can obtain different

configurations to satisfy manufacturing requirements. This paper deals with a production

scheduling problem in a shop-floor with RMTs as an extension of a flexible job shop

scheduling problem (FJSSP). To begin with, two mixed-integer linear programming models

with the position- and sequence-based decision variables are formulated to minimize the

maximum completion time (i.e., makespan). The CPLEX solver is used to solve the small- and

medium-sized instances. The computational experiments show that the sequence-based

model significantly outperforms the other one. Since even the sequence-based model cannot

optimally solve most of the medium-sized problems, a self-adaptive differential evolution

(DE) algorithm is proposed to efficiently solve the given problem. Moreover, the

effectiveness of the proposed algorithm is enhanced by introducing a new mutation strategy

based on a searching approach hired from a Nelder-Mead method. The performance of the

proposed method and three other well-known variants of the DE algorithm are first

validated by comparing their results with the results of the sequence-based model.

Additional experiments on another data set including large-sized problems also confirm that

the proposed algorithm is extremely efficient and effective.

Keywords: Flexible job shop; Configuration-dependent setup times; Industry 4.0; Self-

adaptive differential evolution; Nelder-Mead mutation strategy.

1. Introduction

In recent decades, economic globalization and market competition lead to the rapid

introduction of new products, more variants, low prices and high fluctuations in demand.

Therefore, manufacturing systems are adjusting to satisfy these requirements. A significant

approach to cope with these issues is the ability of reconfigurability for manufacturing

systems and tools. Hence, a new class of production machines, called reconfigurable machine

* Corresponding authors.
Email addresses: mehdi.janloo@ut.ac.ir (M. Mahmoodjanloo), tavakoli@ut.ac.ir (R. Tavakkoli-Moghaddam),
armand.baboli@insa-lyon.fr (A. Baboli), alibozorgi@ut.ac.ir (A. Bozorgi-Amiri).

© 2020 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S1568494620303562
Manuscript_c26df4b89a8216d2e89b57524300a6f1

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S1568494620303562
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S1568494620303562

2

tools (RMTs), have been introduced. An RMT machine usually has a modular structure, which

makes it able to obtain different configurations to satisfy manufacturing requirements. One

of the benefits of developing RMTs is that the use of several different machines that share

many costly and common modules while being rarely used at the same time can be prevented

(Gadalla and Xue, 2017). An RMT in each configuration can process one or more operations

with a certain rate. By changing the configuration, the machine can either perform some new

operations or perform the same operation/operations with a different production rate

(Moghaddam et al., 2019). In the development of RMTs, rapid conversion of the machine –

decreasing the reconfiguration time – is one of the main objectives that can improve the

responsiveness of a manufacturing system to produce highly customized products.

Designing efficient RMTs and trying to decrease their reconfiguration time and to develop

self-reconfigurable modular machines are the challenging and yet interesting problems

(Aguilar et al., 2013; Hasan et al., 2013; Azulay, 2014; Pérez et al., 2014). Considering the

high level of dynamism, it seems that the studies in production scheduling in these systems

face new challenges.

In this paper, it is assumed that several jobs are assigned to a shop floor including several

RMTs. Each job has a set of operations, which need to be processed in a specific order, and

each operation can be processed at least on one configuration of one of the existing RMTs.

Hence, the problem can be an extension of a flexible job shop scheduling problem (FJSSP).

The objective is to minimize makespan (i.e., the maximum completion time of the jobs). The

problem is more complicated than the FJSSP because three decisions have to be taken; these

decisions include allocating of the operations to the machines, sequencing of the jobs and

determining of the configuration of the machines to perform the allocated operations.

Moreover, each RMT needs an amount of time to reconfiguration. We name it configuration-

dependent setup time since it depends on the current and next configurations of the

machine. Conversion time between every two configurations can be different because it

needs to remove/add different auxiliary modules from/to the machine (Moghaddam et al.,

2018).

The main contributions of this paper are as follows:

• Studying a new variant of a job shop scheduling problem (JSSP) that contains

reconfigurable machine tools among the first studies in this area.

• Developing two mixed-integer linear programming (MILP) models based on

operation-position and operation-sequence formulations and comparing them

based on their computational performances.

• Extracting a lower bound for the problem.

• Developing a self-adaptive differential evolution (DE) algorithm to solve the

problem efficiently.

• Enhancing the efficiency of the proposed algorithm by introducing a new mutation

strategy inspired by the Nelder-Mead search approach.

3

The rest of the paper is organized as follows. Section 2 reviews the related literature.

Section 3 presents two mathematical models and the formulation to calculate the lower

bound of the problem. Section 4 proposes the solving approach. Sections 5 and 6 present the

results of computational experiments and the conclusions, respectively.

2. Literature review

2.1. Reconfigurable machine tools

For the first time, Koren and Kota (1999) developed a new generation of machines, named

as RMTs, with the ability of easy and rapid change to perform different kinds of machining

operations. Thereafter, the research on this kind of machines was initiated, and many

researchers developed various prototypes of these tools (Gadalla and Xue, 2017). Indeed, an

RMT can be used as a group of machines so that different functionality or capacity for a set

of certain operations can be achieved through a change of its configurations. To compete

with conventional machines, reconfiguration in RMTs must be done with the minimum loss

of time. Hence, the concept of reconfigurability is defined as the ability to change the

functionality or capacity of the RMT by changing/rearranging the components of the

machine. Over the last two decades, a lot of research has been done to fulfill this objective, in

which a few of them can be referred to as follows.

Ersal et al. (2004) presented a methodology to make an RMT able to be automatically

reconfigured using a library of modular components. A modular reconfigurable machine has

been developed by Padayachee and Bright (2012). They utilized a plug-and-play approach

to control the scalability of the machine and developed a control system to support the

modularity and reconfigurability. The developed machine could support turning and milling

tasks. Pérez et al. (2014) developed a micro/mesoscale computer numerical control (CNC)

machine tool with the ability of reconfiguration to do different machining operations (e.g.,

milling, drilling, and turning). Aguilar et al. (2013) designed a lathe-mill RMT and developed

a prototype of the machine, which could be used in the jewelry industry. The RMT could

achieve four different configurations including a mill configuration, a rotated mill

configuration, a lathe configuration and a heavy mill configuration to perform various

turning and milling tasks. Required time to change configurations among these four states

was less than 15 minutes. Fig. 1 represents the four possible configurations for the lathe-mill

RMT.

RMTs also play an important role in developing modern manufacturing approaches, like

reconfigurable manufacturing systems (RMS). Indeed, an RMS is a system with the

advantages of dedicated manufacturing systems (DMS) and flexible manufacturing systems

(FMS), which is designed to adjust with rapid changes in volume or variety of market

demand. To have a responsible and cost-effective system, RMSs need to have six

characteristics including convertibility, scalability, modularity, customization,

diagnosability, and integrability.

4

Fig. 1. Four possible configurations in the lathe-mill RMT designed by Aguilar et al. (2013)

Development of RMSs is also a promising area for the achievement of Industry 4.0, known

as the fourth industrial revolution or cyber-physical system. Qin et al. (2016) reviewed the

significant characteristics of some current manufacturing systems (including single-station

automated cells, automated assembly systems, computer-integrated manufacturing (CIM)

systems, FMSs, and RMSs) to identify the research gaps between Industry 4.0 and these

systems’ requirements. They found that RMSs are the most potential production systems to

achieve Industry 4.0 objectives such as the ability of self-optimization and self-configuration.

One of the most important objective in Industry 4.0 is to produce individualized products at

a reasonable cost or so-called mass-individualization. While traditional RMSs have been

designed for high-volume manufacturing, it is emerged some new challenges to adjust them

with the requirements of mass-individualization paradigm. Gu and Koren (2018) proposed

a new manufacturing system architecture to satisfy these requirements. In the proposed

architecture to achieve a high-mix/low-volume production at affordable costs, a material

handling system based on forward/return conveyors (or gantry) is designed to provide a

flexible routing of the parts among the stages. The system can also contain some high-level

production machines (e.g., RMTs, CNCs, and additive manufacturing tools). Based on the

suggested architecture, each job has its production route, and it can enter one stage more

than once or bypass some stages by utilizing the designed transferring system. They

highlighted some operational challenges of the suggested architecture, including the

effective scheduling algorithms to improve the utilization of each machine. In this paper, we

aim to study the scheduling problem in such systems.

5

2.2. FJSSP with family setup times

The considered scheduling problem has many similarities to the FJSSP with sequence-

dependent family setup times. This problem is an extension of job shop scheduling problem,

which was originally introduced by Brucker and Schlie (1990). In the FJSSP, each operation

can be performed on a set of compatible machines. This is a common case especially in FMSs,

whose machines have a high level of flexibility to perform variant operations (Rossi, 2014).

The importance of such systems is that the availability of alternative machines can improve

performance and reliability (Rohaninejad et al. 2015; Abdollahzadeh-Sangroudi and

Ranjbar-Bourani, 2019). Moreover, considering setup times is an important issue in

scheduling problems. It is an important characteristic that has a significant impact on the

performance and applicability of many practical scheduling settings. In many real-world

applications (e.g., automobile, pharmaceutical, and chemical manufacturing), machines need

to a setup operation between jobs. Also, the setups may depend on the preceding process on

the same machine (Shen et al. 2018).

In some production systems (e.g., Cellular Manufacturing Systems (CMSs)), there are

several job families, which should be processed in the same production line (Gholipour-

Kanani et al., 2012). Each family includes a set of jobs with similar features in terms of

tooling, setups and operation sequence. To process two sequent jobs on the same machine,

a setup operation is required if the jobs belong to two different families (Allahverdi, 2015).

In traditional RMSs, the scheduling problem can be described as follows. There is a

product family, which can be classified into several product subfamilies, and each subfamily

contains several jobs that should be done in a predesignated configuration. The objective is

to determine an optimal sequence of subfamilies and optimal scheduling of the jobs inside

each subfamily regarding one or more predefined performance criteria. Normally,

performing the jobs inside each subfamily needs no setup time, while changing configuration

to perform two different subfamilies requires a sequence-dependent setup time (Azab and

Naderi, 2015). Based on the scheduling literature, such problem only needs to sequencing

decisions, so it can, for example, be associated with the flow shop scheduling problems. On

the other hand, scheduling in the above-mentioned modified RMS architecture can be

associated to the JSSP because each job has its production route. Moreover, since each

operation can be processed on more than one machine or on more than one machine-

configuration, we have a FJSSP with group/family setup times.

Also, it is worth notable that the problem is different from the classic FJSSP with sequence-

dependent family setup times because in this case, a job can belong simultaneously to more

than one group (i.e., an operation can be performed on different configurations of a

machine). Performing two consecutive operations on the same machine needs no setup time

if both of them would be performed on the same configuration. Therefore, the setup times

depend on the machine configurations rather than the job sequences. To the best of our

knowledge, there is no study to tackle this problem. In this paper, regarding the existence of

the research gaps in this area, a scheduling problem is modeled.

6

2.3. Corresponding solution methods

As mentioned before, the JSSP and its extensions are some of the most complicated

combinatorial optimization problems, which are strongly NP-hard. So, even with a medium

size, they cannot be solved exactly in a reasonable time. Therefore, some researchers have

started to utilize heuristics and meta-heuristics to solve JSSPs in reasonably computational

time (Jamili et al., 2011). Zhang et al. (2019) reviewed some of the most successful meta-

heuristics to solve JSSPs, including Genetic Algorithm (GA), Tabu Search (TS), Ant Colony

Optimization (ACO), Particle Swarm Optimization (PSO), Differential Evolution (DE), and

Firefly Algorithm (FA).

In the current use, DE is one of the most powerful stochastic optimization algorithms,

especially in the field of continuous optimization problems. The satisfying performance of

DE in terms of robustness, convergence speed, and accuracy still makes it attractive for many

researchers to apply DE in various real-world optimization problems (Das and Suganthan,

2011). Since more than two decades ago, DE and its variants have been placed among the

best evolutionary algorithms as indicated by the IEEE Congress on Evolutionary

Computation (CEC) competition series (Yuen and Zhang, 2015). Although DE was developed

at first for the problems with continuous search space, DE-based approaches have been

applied successfully in the field of discrete optimization, such as scheduling problems.

However, DE alone could not be efficient to solve scheduling problems. The reason may be

that the searching mechanisms of the classic DE (especially the mutation operator) are not

able to be adapted on a permutation representation (Ponsich et al., 2009). Hence, to make

the algorithm more efficient, some local search approaches have been hybridized with DE in

the literature (e.g., a combination of DE with TS) to solve the JSSP (Ponsich and Coello, 2013),

embedding a local search algorithm based on the critical path into DE to solve the FJSSP

(Yuan and Xu, 2013), introducing a chaotic strategy to update the parameters and two new

mutation operators for DE to solve the JSSP (Zhang et al., 2016), embedding a speed-up

neighborhood search procedure into DE to solve the FJSSP (Zhao et al., 2016), combination

of DE with Simulated Annealing (SA) to solve the distributed FJSSP (Wu and Liu, 2018; Wu

et al., 2018).

The Nelder-Mead (NM) simplex search is a numerical optimization method, which is

designed for unconstrained problems with multidimensional space. It is a direct search

method, which can converge to non-stationary points without using gradient information.

The procedure of the NM algorithm is based on geometric operators contain reflection,

expansion, contraction and shrinking. By taking advantages of these operators, NM is known

as an effective method in local search; however, it has some weaknesses in global search

(Wang et al., 2011). Hence, to utilize its exploitation abilities, there are lots of efforts in the

literature to combine NM with meta-heuristics as global exploration approaches (Chelouah

and Siarry, 2005; Moravec and Rudolf, 2018). Since NM is a close relative of DE, some

researchers have been motivated to design hybrid approaches based on NM and DE (for

7

example see: Menchaca-Mendez and Coello, 2009; Moraglio and Johnson, 2010; Gao et al.,

2011; Wang et al., 2011; Fan and Yan, 2015a).

In this research, a new mutation strategy based on the NM operators has been introduced,

whose aim is to speed up convergence and to strengthen the exploitation phase of the DE

algorithm. Moreover, to more efficiently control the parameters and mutation strategies, a

self-adaptive strategy based on the research of Fan and Yan (2015a) has been developed.

3. Problem description and MILP modelling

3.1. Problem definition

The FJSSP with machine configuration-dependent setup times (FJSSP-CDST) can be

described as follows. There is a set � of RMTs on a shop floor with a predefined layout. Each

RMT � has a set of �� configurations. One or more operations can be processed in each

configuration with a special rate. A set � of � jobs should be processed in the shop floor. Each

job � has a set of �� operations with a predefined sequence that has already been determined

by process planning unit (e.g., 	�,� → 	�,
 → ⋯ → 	�,��). Moreover, it is assumed that each

operation � of job � (��) can be processed at least on one configuration of one of the existing

RMTs. No setup is needed to perform operations in a machine configuration, while to switch

to a different configuration on the machine, the RMT needs to a setup that is dependent on

two consecutive configurations. It is assumed that the configuration-dependent setup times

satisfy the triangular inequality. Moreover, each RMT can only fit into one configuration at a

time, and it cannot perform more than one operation simultaneously. All the jobs are

available at time 0, and preemption is not allowed. The main decisions of the problem include

allocating of each operation to an eligible RMT, sequencing of the jobs and determining the

appropriate configurations of each machine to perform the allocated operations. The

objective is to minimize makespan.

3.2. Mathematical formulations

In this section, two different MILP models of the problem are developed based on

operation-position and operation-sequence formulations. The following sets, indices and

parameters are used in both developed models.

Sets and indices: � Set of jobs, and each job � ∈ � �� Set of operations related to job �, where the operation � of job � is denoted by 	�� � Set of machines and index � ∈ � �� Set of configurations of machine � and index � ∈ ��

Parameters: ����� Processing time of operation 	�� on �th configuration of machine �

8

����� 1 if operation 	�� can be processed on configuration � of machine �; 0, otherwise ����,��,� Configuration-dependent setup time when the configuration is changed from ��

to �
 (i.e., �� ≠ �
) on machine � � A big positive number

3.2.1. Operation-position based (PB) model

At the first model, the scheduling problem has been considered as positioning decisions

(i.e., assigning the operations to some predefined time-positions). Hence, we need to define

a new set � for the positions of the machine � and its related index !, in which an operation

can be processed or setup can be done.

 ! Index for job positions processed on machine �, index ! ∈ � (i.e., | �| =∑ ∑ ∑ ������∈%&�∈'��∈() and = ⋃ ��∈* .

Decision variables of the PB model: +���,� Binary variable. If operation 	�� is processed on position ! of machine � (i.e., the

position �!) with configuration �, then +���,� = 1; otherwise, +���,� = 0. /��,��,�,, Binary variable. If at the beginning of position �!, the machine’s configuration is

changed from �� to �
 (i.e., �� ≠ �
), then /��,��,�,, = 1; otherwise, /��,��,�,, = 0. 0�� Completion time of operation 	�� 0�,1
 Finishing time of position �! �234 Completion time (i.e., makespan)

The PB model is as follows:

 Min �234 (1)

s.t. 8 8 8 +���,��∈%&,∈9&�∈* = 1 ∀ � ∈ �, � ∈ �� (2)

8 +���,�,∈9&
≤ ����� ∀ � ∈ �, � ∈ �� , � ∈ �, � ∈ �� (3)

8 8 8 +���,��∈%&�∈'��∈� ≤ 1 ∀ � ∈ �, ! ∈ � (4)

8 8 8 +���,,<�,��∈%&�∈'��∈� ≥ 8 8 8 +���,��∈%&�∈'��∈� ∀ � ∈ �, ! ∈ �, ! ≠ 1 (5)

8 8 +���,,<�,�� �∈'��∈� + 8 8 +���,,,���∈'��∈� ≥ 2 /��,��,�,, ∀ � ∈ �, ! ∈ �, ��, �
 ∈ �� , �� ≠ �
 (6)

8 8 +���,,<�,�� �∈'��∈� + 8 8 +���,,,���∈'��∈� − 1 ≤ /��,��,�,, ∀ � ∈ �, ! ∈ �, ��, �
 ∈ �� , �� ≠ �
 (7)

9

0�� ≥ 0�,�<� + 8 8 8 ����� +���,��∈%&,∈9&�∈* ∀ � ∈ �, � ∈ �� (8)

0�,1 ≥ 0�,,<�1 + 8 8 ����,��,� /��,��,�,,��∈%&��A����∈%&
+ 8 8 8 ����� +���,� �∈%& �∈'��∈�

 ∀ � ∈ �, ! ∈ �

(9)

0�,1 ≤ 0�� + � B1 − 8 +���,��∈%&
C ∀ � ∈ �, ! ∈ �, � ∈ �, � ∈ �� (10)

0�,1 ≥ 0�� − � B1 − 8 +���,��∈%&
C ∀ � ∈ �, ! ∈ �, � ∈ �, � ∈ �� (11)

0��� ≤ �234 ∀ � ∈ � (12) +���,� , /��,��,�,, ∈ D0, 1E ∀ � ∈ �, ! ∈ � , � ∈ �� , � ∈ �, � ∈ �� (13) 0��, 0�,1 ≥ 0 ∀ � ∈ �, ! ∈ � , � ∈ �, � ∈ �� (14)

Eq. (1) is the objective function. Constraints (2) ensure that each operation should be

assigned to one position of an existing machine configuration. If operation 	�� is not allowed

to be processed on configuration � of machine � (����� = 0), then Constraint (3) prevent the

assignment of the operation 	�� to any positions of the machine configuration ��. Constraint

set (4) is to show that in each machine position �! at most one operation can be processed.

Constraints (5) ensure that each machine position can be assigned only when the previous

position is allocated. Constraints (6) and (7) ensure that for each machine, if two consecutive

positions are allocated to different configurations, then a proper setup should be done.

Constraints (8) guarantee that the completion time of the operation 	�� should be greater

than the completion time of the previous operation plus processing time of 	��. Constraints

(9) guarantee that the completion time of each machine position should be greater than the

completion time of the previous position plus a possible setup time and the processing time

of an operation, which is allocated to the position. Constraints (10) and (11) ensure that the

completion time of each operation should be set with its associated position. Constraint set

(12) is used to determine the completion time. 0��� is the completion time of the last

operation of job �. In other words, Constraints (12) are the linear form of �234 =max�∈�I0���J. Constraints (13) and (14) define the decision variables.

3.2.2. Operation-sequence based (SB) model

At the second model, the scheduling problem is considered as a sequencing decision.

Decision variables of the SB model: K���� 1 if operation 	�� is processed on configuration � of machine �; 0, otherwise

10

L���M�M 1 if operation 	�� is scheduled before 	�M�M , then L���M�M = 1; 0, otherwise 0�� Completion time of operation 	�� �234 Maximum completion time (i.e., makespan)

The SB model is as follows:

 Min �234 (15)

s.t. 8 8 K�����∈%&�∈* = 1 ∀ � ∈ �, � ∈ �� (16)

K���� ≤ ����� ∀ � ∈ �, � ∈ ��, � ∈ �, � ∈ �� (17) 0�� ≥ 0�,�<� + 8 8 ����� K�����∈%&�∈* ∀ � ∈ �, � ∈ �� (18)

0�� ≥ 0�M�M + ������ + ����,��,�− N2 − K����� − K�M�M��� + L���M�MO�

∀ � ∈ �, ��, �
 ∈ ��, �, �1 ∈ �, � ∈ �� , �1 ∈ ��M , 	�� ≠ 	�M�M (19)

0�M�M ≥ 0�� + ��M�M��� + ����,�� ,�− N3 − K����� − K�M�M��� − L���M�MO�

∀ � ∈ �, ��, �
 ∈ ��, �, �1 ∈ �, � ∈ �� , �1 ∈ ��M , 	�� ≠ 	�M�M (20)

�234 ≥ 0��� ∀ � ∈ � (21) K���� ∈ D0, 1E ∀ � ∈ �, � ∈ ��, � ∈ �, � ∈ �� (22) L���M�M ∈ D0, 1E ∀ �, �1 ∈ �, � ∈ �� , �1 ∈ ��M , 	��≠ 	�M�M
(23)

0�� ≥ 0 ∀ � ∈ �, � ∈ �� (24)

Eq. (15) is the objective function. Constraint (16) ensures that each operation should be

assigned to one machine configuration. If operation 	�� is not allowed to be processed on

configuration � of machine � (����� = 0), then Constraint (17) prevent the assignment of

operation 	�� to machine configuration ��. Constraint (18) guarantees that the completion

time of operation 	�� should be greater than the completion time of the previous operation

plus processing time of 	��. On each machine �, Constraints (19) and (20) prevent the

overlapping of the allocated operations. Constraint set (21) is used to determine the

completion time. Constraints (22) – (24) define the decision variables.

3.3. Lower-bound method

The FJSSP-CDST is a generalization of the classical JSSP, and the JSSP is NP-hard (Garey et

al., 1976), therefore the FJSSP-CDST is also an NP-hard problem. Moreover, by adding the

machine configuration decisions, the problem is even more complicated than some other

extensions of JSSP (e.g., flexible JSSP with sequence-dependent setup times). Hence,

developing a lower bound (LB) can be helpful to analyze the outcomes of proposed

11

algorithms. The goal is to develop a new formulation, whose complex constraints relaxation

provides an LB for the original problem.

The developed models contain three types of decisions including machine configuration,

job assignment and sequencing. Since the complexity of the models results from the

sequencing decisions, relaxation of this type of decisions can decrease the complexity of the

models. Hence, the obtained objective value can be considered as an LB for makespan. The

independent variables in the proposed models, including K���� and L���M�M in the SB model

and +���,� in the PB model, deal with three types of decisions in the problem. Variable L���M�M

deal with sequencing decisions in the SB model. In the PB model, how the positioning of the

operations on each machine determines the sequence of them. Hence, extracting the lower

bound based on the PB model needs to decompose the variable +���,� . Because of its simpler

structure, we prefer to extract the LB based on the SB model.

In shop scheduling problems, a LB for completion time can be achieved based on machine

lower bound (Q�) (i.e., the maximum of the total processing time of operations allocated to

the machines) and job lower bound (Q
) (i.e., the maximum of the total processing time of

the jobs). Finally, the lower bound of the problem can be achieved as Q = maxD Q�, Q
E.

Proposition 1. Q� is an LB of the total processing time of the operations allocated to the

machines.

 Q� = max�∈* R8 8 minI�∈%&ST�U&VAWJI�����J�∈'��∈� X (25)

Proof. For each machine � ∈ �, an LB for the allocated operations can be achieved if each

operation is processed on an admissible configuration of the machine with the minimum

processing time without considering any reconfiguration time. ⎕

Proposition 2. Q
 is an LB for the total processing time of each job.

 Q
 = max�∈� R 8 minI�∈*,�∈%&ST�U&VAWJI�����J�∈'�
X (26)

Proof. For each job � ∈ �, a lower bound for the operations can be achieved if each operation

is processed on an admissible machine configuration with the minimum processing time. ⎕

To incorporate the machine and job lower bounds into the SB model, Constraints (28) –
(30) and (31) – (33) should be considered to linearize Eq. (25) and Eq. (26), respectively.

 Min4 Y9Z = �234 (27)

12

s.t.

Constraint sets (16) and (17) Θ��� ≤ ����� + �N1 − K����O ∀ � ∈ �, � ∈ �� , � ∈ �, � ∈ �� (28) Θ��� ≥ ����� − �N1 − K����O ∀ � ∈ �, � ∈ �� , � ∈ �, � ∈ �� (29)

�234 ≥ 8 8 Θ��� �∈'��∈(∀ � ∈ � (30)

Φ�� ≤ ����� + �N1 − K����O ∀ � ∈ �, � ∈ �� , � ∈ �, � ∈ �� (31) Φ�� ≥ ����� − �N1 − K����O ∀ � ∈ �, � ∈ �� , � ∈ �, � ∈ �� (32)

�234 ≥ 8 Φ���∈'�
 ∀ � ∈ � (33)

K���� ∈ D0,1E ∀ � ∈ �, � ∈ �� , � ∈ �, � ∈ �� (34) �234, Φ��, Θ��� ≥ 0 ∀ � ∈ �, � ∈ �� , � ∈ � (35)

where Θ��� is the processing time of 	�� on machine � if the operation is assigned to one of

the admissible configurations of the machine. Constraints (16) and (17) ensure that each

operation is assigned to an admissible machine configuration. Since there are not any

constraints to select the admissible configurations of the machine, Constraints (28) and (29),

and a minimization logic of the objective function guarantee that the minimum processing

time is selected to perform each operation, hence Θ��� = minI�∈%&ST�U&VAWJI�����J. Moreover,

based on Eq. (25), we have Q� = max�∈*I∑ ∑ Θ����∈'��∈� J. Therefore Q� ≥ ∑ ∑ Θ��� �∈'��∈(.

The same procedure is used for the job lower bound (i.e., Q
 ≥ ∑ Φ���∈'�). Finally, since the

LB of makespan is equal to the maximum of Q� and Q
, Constraints (30) and (33) can be

extracted.

4. Solution Algorithm

The proposed self-adaptive DE algorithm based on the Nelder-Mead mutation strategy

(SADE-NMMS) has been presented as follows.

4.1. Required basic concepts

4.1.1. Differential evolution (DE)

DE is a simple, reliable, and efficient population-based stochastic optimization technique

(Storn & Price, 1997). The classic DE algorithm has three parameters contain the number of

population (NP), mutation scale factor (F) and crossover rate (CR). The algorithm starts by

generating a population of NP random solutions, called individuals. Then the main loop of

the algorithm starts working until a termination criterion is met (e.g., for a number of

iterations). In each iteration, mutation and crossover operators should be done for each

individual to obtain a trial vector (new solution), respectively. Eventually, a greedy approach

is done to select between the trial vector and the individual. The selected one is promoted to

the next iteration. The process of mutation and crossover for an individual] ∈ ^� can be

described as follows.

13

Mutation: For individual]�, three distinct randomly selected individuals with indices ��, �

and �_ (i.e., � ≠ �� ≠ �
 ≠ �_) are considered to generate a mutated individual �̀ as follows.

DE/rand/1:

�̀ =]T� + 0. N]T� −]TbO (36)

Crossover: Based on current individual]� and mutated individual �̀, a trial individual �� is

formed by:

 c�� = de��K�� if � ≤ �^ g� � = �T3�hotherwise ∀ � = 1, 2, … , � (37)

where c�� is element � of ��, the CR is the crossover rate, � = �q�r[0, 1], and �T3�h is an index,

which is randomly selected to guarantee that at least one element of the mutated individual

should be chosen.

4.1.2. Nelder-Mead simplex search

The Nelder-Mead (NM) simplex search, originally published in 1965 (Nelder and Mead,

1965), is one of the best known numerical optimization method designed for unconstrained

problems with multidimensional space. In n-dimensional solution space (] ∈ ^�), NM

initializes with n+1 random solutions (called individuals) and orders them based on their

function values from the best to the worst (e.g., to minimize a function u(])), suppose u(]�) ≤ u(]
) ≤ ⋯ ≤ u(]�x�). Then a centroid (]y) of the n best individuals should be

calculated (]y = ∑]���z�). Considering four factors including reflection coefficient ({T > 0),

expansion coefficient ({} > 1), contraction coefficient (0 < {� < 1) and shrinkage

coefficient (0 < {� < 1), the steps of the algorithm can be described below. Based on these

steps, the algorithm starts working until a termination condition is met.

Reflection: Compute the reflected point as follows.

]T =]� + {�. N]� −]�x�O (38)

If the reflected point is better than the best point (i.e., u(]T) < u(]�)), then the expansion

phase should be applied, else if u(]�) ≤ u(]T) < u(]�), the reflected point should be

replaced with the worst point]�x�, and the iteration should be terminated. Otherwise, if u(]�) ≤ u(]T), the contraction phase should be applied.

Expansion: Compute the expansion point as follows.

]} =]� + {�. N]T −]�O (39)

14

If the expanded point is better than the reflected point (i.e., u(]}) ≤ u(]T)), then the

expanded point should be replaced with the worst point]�x�; otherwise, the reflected point

should be replaced with the worst point, and the iteration should be terminated.

Contraction: Compute the contraction point between the centroid and the better of the two

points]T and]�x�. If u(]�x�) ≤ u(]T), then the inside contraction should be performed

using Eq. (40). Otherwise, the outside contraction should be performed using Eq. (41).

]� =]� − {�. N]� −]�O (40)]� =]� + {�. N]� −]�+1O (41)

In inside contraction, if u(]�) ≤ u(]�x�), or in outside contraction, if u(]�) ≤ u(]T), then]� should be replaced with the worst point, and the iteration should be terminated.

Otherwise, the shrinking phase should be applied.

Shrink: This operator is applied to converge the points around the best point to adjust the

accuracy of the algorithm. The operator is performed as follows.

]�1 =]� + {�. (]� −]�) ∀ � = 2, 3, … , � + 1 (42)

Eventually, the set I]1,]2′ ,]3′ , … ,]�+1′ J can be used for the next iteration.

4.1.3. Proposed Nelder-Mead mutation strategy

In the literature, different mutation strategies have been utilized to enhance the

exploitation and exploration capabilities of the DE variants. Many pieces of evidence reveal

that different optimization problems require different strategies for parameter settings and

mutation (Qin et al., 2009). Most of the proposed mutation strategies in the literature have a

simple structure to randomly obtain a single target. For example, the mutation strategy

“rand/1”, which is defined in Eq. (36), is a suitable strategy for an exploration target, while

another strategy named “current-to-best/1” is usually used for exploitation. Hence, some

researchers have started to develop new intelligent approaches to utilize various capabilities

of the different mutation strategies (Fan and Yan, 2015b). Besides these approaches, which

focus on making intelligent the whole of the algorithm, it seems that developing some new

flexible mutation strategies can be advantageous to search the solution space more efficient.

Inspiring the Nelder-Mead operators, we develop a new mutation strategy, which can

intelligently search the solution space. The procedure of the NM-based-rand/3 mutation

strategy is presented in Fig. 2. The number “3” refers to the number of initial points as a

parameter of the algorithm to start the searching procedure. It is worth mentioning that the

parameter can be tuned for different utilizations.

15

To illustrate how the proposed mutation strategy can efficiently search the solution space,

an instance based on various mutation strategies is considered. Current point K� and three

randomly selected individuals are considered, which can be ordered as KTb , KT� and KT� (i.e., u(KTb) < u(KT�) < u(KT�)). In Fig. 3, three mutated individuals based on some of the most

popular mutation strategies are represented. As can be seen from the figures, none of these

strategies utilizes all of the useful information. In a similar situation, the potential mutated

points, based on the proposed strategy, is represented in Fig. 4. Some other information (e.g.,

the position of the worst point and the weight of the rest individuals) is utilized. Moreover,

coefficients {T , {} , {� and {� help to improve efficiency. For example, the higher values of the

reflection and explosion coefficients, more effective exploration, and the lower values of the

contraction and shrinkage coefficients, the more effective exploitation.

4.2. Details of the proposed SADE-NMMS to solve FJSSP-CDST

To efficiently solve the FJSSP-CDST as a combinatorial optimization problem with discrete

solution space, an improved variant DE is proposed based on the new mutation strategy and

a self-adaptive procedure. The main steps of the algorithm are presented in Fig. 5. Moreover,

the details of the algorithm are presented below.

Fig. 2. Procedure of the NM-based-rand/3 mutation strategy

16

Fig. 3. Three well-known mutation strategies in the DE algorithm

Fig. 4. NM-based-rand/3 mutation strategy for the DE algorithm

17

Fig. 5. Main flow chart of SADE-NMMS

4.2.1. Encoding

To apply a DE-based algorithm for solving FJSSP-CDST as a discrete optimization problem,

it is needed to design an appropriate encoding approach with real values to represent a

feasible solution. Each solution needs to present the operations scheduling and the machine

configuration simultaneously. Hence, we design an encoding method including two parts,

which can be represented as a two-dimensional matrix (�
×�). The solution matrix has two

rows. The first row is related to the machine configuration decisions, and the second row is

related to the operations scheduling decisions. The number of columns is equal to the total

number of operations (i.e., � = ∑ ���∈�).

To better illustrate the encoding scheme, we design a simple instance with two jobs and

two machines. The first job needs four operations, and the second job needs two operations.

Moreover, each machine has two configurations. Table 1 shows the processing time of the

operations on each machine configuration (�����). The reconfiguration times for the

machines are as follows: ����,�
,� = 65, ���
,��,� = 85, ����,�
,
 = 90 and ���
,��,
 = 120.

18

Table 1. Processing times of the example

Machine Configuration
Job 1 Job 2 	�� 	�
 	�_ 	�� 	
� 	

1 1 150 140

 2 80 140 120

2 1 200 160 80

 2 90 90

Fig. 6 shows a random solution (chromosome) of the example. To determine the

sequencing of the operations based on the chromosome, the value of the elements associated

to the first operation of the jobs should be compared (e.g., �
,� and �
,�), where ��,� refers to

the element (�, �) of the chromosome. The operation with a smaller value is selected, and

then, the next operation should be compared with remain operations of other jobs. For

example, since �
,� is smaller than �
,� (i.e., 0.15 < 0.32), 	�� should be selected as the first

operation. Thereafter, the next operation of job 1 (�
) should be compared with 	
�. Since �
,
 is not smaller than �
,� (0.51 > 0.32), 	
� should be selected as the second operation.

The procedure continues until all of the operations be placed on the sequence. Based on this

procedure, the final sequence of the example can be extracted as 	�� → 	
� → 	�
 → 	�_ →	�� → 	

.

Fig. 6. Random solution (chromosome) for the example

To select a machine configuration for each operation, the first row of the chromosome and

a probability matrix (�y) should be utilized. Each element of the probability matrix (i.e., �y =��̅�����) can be calculated as Eq. (43). The probability matrix of the example is presented in

Fig. 7. For example, as it presented in Table 1, 	�� can be performed on both machine-

configurations � = 1, � = 1 and � = 2, � = 1 with processing times 150 and 200,

respectively. Hence, we can calculate the associated elements as: �̅�,�,�,� =� ���W� � ���W + �
WW�� = 0.571 and �̅�,�,
,� = � �
WW� � ���W + �
WW�� = 0.429. Therefore, the first

configuration of the first machine, which is faster in performing 	��, has more chance to be

selected.

�̅���� =
1�����∑ 1������∈�,�∈��

 ∀ � ∈ �, � ∈ �� , ����� ≠ 0 (43)

19

Fig. 7. Probability matrix (�y) for machine-configuration selection

Based on the presented chromosome in Fig. 6 and the extracted probability matrix in Fig.

7, a machine configuration for each operation can be selected. To do this, the value of each

element in the first row of the chromosome should be compared with the cumulative

summation of the related column in the probability matrix. For example, 	�� should be

processed on the first configuration of the machine 1 because of ��,� ∈ [0, 0.571], and 	�

should be processed on the second configuration of the machine 2 because of ��,
 ∈ (0.36, 1].

The resultant schedule of the chromosome is presented in Fig. 8. Makespan of the schedule

is equal to 460.

Fig. 8. Resultant schedule of the chromosome

4.2.2. Initialization

The initialization phase starts by random generation of NP chromosomes (i.e.,

individuals). Each individual should be decoded to evaluate the resultant schedule and

extract the makespan. These individuals can be considered as the initial generation (i.e., � =0). Thereafter, the mutation and crossover operators should be utilized iteratively to search

the solution space.

4.2.3. Mutation and crossover

To balance between exploitation and exploration abilities of the algorithm, the

generations of DE are divided into two phases. At the first phase (� ≤ ��), to enhance the

exploration ability, the mutation strategy rand/1 is utilized alone, where �� is a predefined

point to change the searching strategy (i.e., �� = � × �234 and � ∈ [0, 1]). Thereafter, at the

second phase (�� < � ≤ �234), six mutation strategies including rand/1, rand/2, best/2,

current-to-best/1, current-to-best/2 and NM-based-rand/3 can be utilized based on a self-

20

adaptive manner. Other useful strategies including rand/2, best/2, current-to-best/1 and

current-to-best/2 are respectively as Eqs. (44) – (47):

DE/rand/2:

�̀�x� =]T�� + 0. N]T�� −]Tb� O + 0. N]T�� −]T�� O (44)

DE/best/2:

�̀�x� =]�}��� + 0. N]T�� −]T�� O + 0. N]Tb� −]T�� O (45)

DE/current-to-best/1:

�̀�x� =]�� + 0. N]�}��� −]��O + 0. N]T�� −]T�� O (46)

DE/current-to-best/2:

�̀�x� =]�� + 0. N]�}��� −]��O + 0. N]T�� −]T�� O + 0. N]Tb� −]T�� O (47)

where]�}��� is the best solution vector achieved in generation G. Thereafter, based on current

individual]�� and mutated individual �̀�x�, trial individual ���x� is formed as Eq. (37).

Eventually, a greedy approach is done to select between trial vector ���x� and individual]�� .

It is worth noting that the feasibility of each mutated individual should be checked. After

applying a mutation strategy, the elements in the first row of the mutated individual

(chromosome) maybe exceed the admissible range [0, 1]. In such cases, the outlier elements

should be corrected to zero if ��,� < 0, or they should be corrected to one if ��,� > 1.

4.2.4. Evaluation and selection of the parameters

In each generation of the algorithm, the setting of parameters F and CR as well as the

selecting of a mutation strategy of each individual are performed based on a self-adaptive

manner, which was introduced by Fan and Yan (2015a). In this approach, the triplex N0�� , �^�� , ��c���O as a vector of control parameters and mutation strategy (��c�) is

associated with each individual]�� . The procedure of adaptation is summarized below.

Self-adaptive control of the parameters F and CR:

For a minimization problem, the gap between each mutated individual and the worst

solution in the generation � is calculated by:

 ∆u�� = u234 − uN �̀�O ∀ � = 1, 2, … , �� (48)

where u234 is the objective function value for the worst mutated individual (i.e., u234 =max� �uN �̀�O�). The weighted value of each individual (���) can be calculated by:

��� = ∆u��∑ ∆u�M�'��Mz� (49)

Thereafter, the average value of mutation (0y��) and crossover (�^yyyy��) control parameters

in each generation are respectively calculated as follows.

21

0y�� = 8 ��� × 0��
'�
�z� (50)

�^yyyy�� = 8 ��� × �^��
'�
�z� (51)

Eventually, the mutation and crossover control parameters for the next generation are

respectively updated as Eq. (52) and Eq. (53), where N is the normal distribution function,

and � is the standard deviation associated with generation G (i.e., � = 0.8 − 0.45(1 −(�/�234)
)) (Fan and Yan; 2015a).

 0��x� = �(0y�� , �) (52) �^��x� = �(�^yyyy�� , �) (53)

Self-adaptive control of the mutation strategies:

For the first phase of generations, there is only one mutation strategy for each individual

(i.e., ��c��� = �q�r/1 for � ≤ ��)). For the second phase of generations (�� < � ≤ �234),

we need to select a mutation strategy for each individual among six candidate strategies. At

generation �� + 1, we create a fair condition for all strategies. Therefore, at this generation,

the number of individuals, which are mutated based on each of the six strategies is equal to �� 6⁄ . Thereafter, the self-adaptive procedure controls the number of mutation strategies

which are used by the individuals in each generation; however, the selection of the strategies

by each individual is performed randomly.

Due to the strength of the NM-based-rand/3 mutation strategy in performing the

exploitation tasks and to avoid local optimums, we consider a more conservative approach

to control the number of individuals, which select this mutation strategy. Hence, a set of

other five mutation strategies (i.e., ��^ = D�q�r/1, �q�r/2, £��c/2, �¤����c − cg − £��c/1, current − to − best/2E) is utilized to explain the formulation. Moreover, �̈�T� is defined as

the set of individuals, which use the mutation strategy �c� ∈ ��^ at the generation G (i.e.,

�̈�T� = I�S��c��� = �c�J). Besides, ©��T� represents the number of members of the set �̈�T�

(i.e., ©��T� = | �̈�T� |). To determine the number of each mutation strategy, which should be

used in the next generation, a trial vector ©̂� is computed as Eq. (54), and eventually, the

values of ©��T�x� are computed based on Eq. (55).

©«��T� = round ­5 6 �� × ∑ ∆u���∈ ®̈¯°±∑ ∆u��'��z� ² ∀ �c� ∈ ��^ (54)

22

©��T�x� = R©��T� + 1©��T� − 1©��T�
if ©«��T� > ©��T�
if ©«��T� < ©��T�otherwise ∀ �c� ∈ ��^ (55)

The rest of individuals use the NM-based-rand/3 mutation strategy in the next generation,

hence the number of these individuals can be determined by:

 ©'³<�3�}h�x� = �� − 8 ©��T�x�
��T∈´µ¶ (56)

To self-adaptive control of the parameters of the NM-based mutation strategy, the

weighted average of mutation scale factor (0y��) is utilized. Hence, we consider the

parameters as {T = {} = 0y�� and {� = {� = �
 0y�� .

5. Computational Experiments

The performance of the two proposed formulations of FJSSP-CDST and the proposed

solving approach (SADE-NMMS) are tested in this section. Hence, two experiments are

conducted to perform the evaluations. In the first experiment, the two proposed

formulations are compared, then the performance of SADE-NMMS is compared with the

objective values obtained by the MILP models and three different meta-heuristic algorithms.

The MILP models are implemented in GAMS 24.1.3 and solved using the solver CPLEX.

Moreover, the meta-heuristics are coded on MATLAB 2017. All test instances are performed

on a computer with a 2.8 GHz Intel CPU and with 4 GB of installed memory.

5.1. Random instance generation

To do the experiments, two sets of random instance problems are generated. The size of

each instance problem is dependent to the size of the shop floor, which is related to the

number of RMTs (|�|) and the total number of machine configurations (∑ ��), as well as the

number of jobs (|�|) and the total number of operations (∑ ��). For the first set, two

experiments are designed. At the first experiment, the MILP models are compared in term of

computational complexities. At the second experiment, the best solution obtained by the

MILP models in the previous experiment is utilized to validate the meta-heuristic algorithms.

Finally, the performance of the meta-heuristics is tested using the second set, which includes

some instance problems with larger sizes.

In the first set, we generate 12 small instances (Subset-A) and 16 medium instances

(Subset-B). The considered levels are presented in Table 2. To more illustration, a shop floor

with seven RMTs and 16 machine configurations (K7C16) is represented in Fig. 9. Also, the

data for every one of the different instances includes the processing time of operations

(�����) and the configuration-dependent setup times (����,��,�). The processing times are

23

generated based on a uniform distribution between 40 and 100, and the setup times are

generated based on a uniform distribution between 75 and 150. In the second set, we

considered three different levels for the number of facilities in the shop floor. Thereafter, in

each level, 30 random instance problems are generated. Thus, there are 90 large instances

in the second set.

Table 2. Parameter levels for data generation

 First set Second set

No. of machine configurations

(|�|, ∑ ��)

A. (2, 4); (2, 5); (2, 6)

B. (3, 7); (7, 16)

(10, 20); (10, 30); (20, 50)

No. of job operations (|�|, ∑ ��) A. (2, 8); (2, 15); (3, 10); (3, 20)

B. |�| = [3 − 10], �� = �q�r(4 − 12)

|�| = �q�r(10 − 20) �� = �q�r(5 − 15)

Fig. 9. Shop floor with seven RMTs and 16 machine configurations (K7C16)

5.2. Models evaluation

In this section, two proposed MILP models are compared based on computational

complexities and size, as two frequently used performance measures (Naderi and Azab,

2014). Table 4 represents the number of constraints and binary variables of different

instance sizes. The position-based model needs fewer constraints than the sequence-based

model, but it needs more binary variables. Both the number of constraints and binary

variables are effective on the computational complexity. Hence, to compare the

computational complexity of the proposed models, 28 instances, including 12 small

instances (Subset-A) and 16 medium instances (Subset-B), are solved with a maximum time

limit of 3600 seconds using CPLEX solver in GAMS 24.1.3 software. The results are presented

in Table 5. The SB model optimally solves all 12 small instances, while the PB model solves

nine of them. Indeed, the PB model cannot even optimally solve the small instances with 20

operations. Out of 16 instances with a medium size in the Subset-B, the SB and PB models

optimally solve only four and two instances, respectively. Moreover, the average optimality

24

gap of the SB and PB models is 18.07% and 39.09%, respectively. Considering the

computational complexity, the SB model outperforms the PB model.

Table 4. Comparison of the position- and sequence-based models

Problem size #Constraints #Binary variables |�| ∑ �� |�| ∑ �� SBM PBM SBM PBM

2 5 3 10 2’414 654 140 584

2 5 3 20 10’024 2’339 480 2’374

3 7 3 20 13’104 3’068 520 3’098

3 7 10 51 87’170 17’773 2’907 19’795

7 16 3 20 29’244 6’977 700 7’052

7 16 10 51 194’729 40’221 3’366 44’317

Table 5. Results of the position- and sequence-based models

#Instance |�| ∑ ��
PB model SB model LB �234
Time (sec)/ opt. gap
(%), Best bound

 �234
Time (sec)/ opt. gap
(%), Best bound

 �234 Time (sec)

K2C4Ins01 2 8 305* 0.515 305* 0.218 277 0.14
K2C4Ins02 2 15 620* 136.046 620* 1 537 0.047
K2C4Ins03 3 10 532* 7.5 532* 0.578 365 0.078
K2C4Ins04 3 20 866 11.16%, 769 860* 14.765 659 0.093
K2C5Ins01 2 8 555* 0.562 555* 0.234 311 0.094
K2C5Ins02 2 15 908* 681.108 908* 0.688 555 0.188
K2C5Ins03 3 10 531* 3.812 531* 0.625 403 0.063
K2C5Ins04 3 20 958 18.4%, 781 872* 13.578 652 0.109
K2C6Ins01 2 8 585* 1.282 585* 0.281 392 0.032
K2C6Ins02 2 15 1000* 160.47 1000* 0.703 530 0.062
K2C6Ins03 3 10 496* 10.343 496* 0.672 356 0.125
K2C6Ins04 3 20 1226 19%, 993 1155* 25.25 734 0.156
K3C7Ins01 3 20 613 28.22%, 467 559* 15.937 436 0.078
K3C7Ins02 4 30 1035 40.77%, 613 900 27.97%, 648 658 0.156
K3C7Ins03 5 29 1182 59.73%, 476 762 32.92%, 511 598 0.094
K3C7Ins04 6 47 3098 78.44%, 668 1379 49.56%, 695 994 0.214
K3C7Ins05 7 59 5678 88.96%, 627 2016 67.61%, 653 1200 0.203
K3C7Ins06 8 61 5821 88.56%, 666 1978 64.18%, 708 1302 0.328
K3C7Ins07 9 71 8512 92.2%, 664 2203 68.5%, 694 1515 0.329
K3C7Ins08 10 51 3823 85.87%, 540 1566 61.24%, 607 1115 0.203
K7C16Ins01 3 20 436* 201.922 436* 5.109 436 0.047
K7C16Ins02 4 30 997 38.52%, 613 613* 65.203 613 0.141
K7C16Ins03 5 29 476* 2925.78 476* 55.954 476 0.078
K7C16Ins04 6 47 3340 80%, 668 725 7.86%, 668 668 0.094
K7C16Ins05 7 59 6654 90.58%, 627 933 32.8%, 627 627 0.313
K7C16Ins06 8 61 7241 90.8%, 666 921 27.69%, 666 666 0.297
K7C16Ins07 9 71 8603 92.28%, 664 1136 41.55%, 664 664 10.922
K7C16Ins08 10 51 5545 91.13%, 492 711 24.05%, 540 540 0.125

* Optimum value

In addition to the comparison of two MILP models, Table 5 shows the value of the LBs

calculated based on the model presented in Eqs. (27) – (35). Comparing the best bounds

achieved by the implementation of the MILP models after 3600 seconds, some better values

of LBs are extracted for seven instances (the underlined values in column eight of Table 5).

25

Generally, the experiments show that at least a value and the estimated best bounds achieved

by the MILP models are extracted for the LB of each instance.

5.3. Evaluations of the proposed solving approach

To test the performance of SADE-NMMS, three different variants of DE algorithms are

considered. These variants contain the classic DE (Storn and Price, 1997), the DE algorithm

with self-adaptive mutation strategy and control parameters (SSCPDE) (Fan and Yan,

2015a), and the hybrid Nelder–Mead simplex search and DE algorithm (NMDE) (Wang et al.

2011). We utilize SSCPDE and NMDE in our experiments to evaluate the effect of our

approach in the hybridization of NM simplex search and self-adaptation strategy on the DE

algorithm. Moreover, to have a comparison with other meta-heuristics, we use a self-

adaptive Cuckoo Optimization Algorithm (SA-COA), which has recently been developed in

the related literature of a flexible job-shop scheduling problem by Abdollahzadeh-Sangroudi

and Ranjbar-Bourani (2019). Actually, the classic COA was first introduced by Rajabioun

(2011) inspired by the immigration and egg laying behavior of Cuckoo, a special kind of bird

that lives in the nature. Recently, Abdollahzadeh-Sangroudi and Ranjbar-Bourani (2019)

improved it to solve a kind of a flexible job-shop scheduling problem. Because of the existing

some similarities between the structures of the habitat encoding used in their problem and

the introduced encoding method in this paper, we accommodate the proposed SA-COA to

solve the proposed problem as well.

On the other hand, each algorithm has some parameters, which need to be accurately

calibrated to guarantee the best performance. To tune the parameters of the DE and NMDE

algorithms, we utilize the Taguchi method that is a practical approach for parameter tuning

of meta-heuristics used in the literature (Akbari-Jafarabadi et al. 2015; Parvasi et al. 2017;

Akbari-Jafarabadi et al. 2017; Sahebjamnia et al. 2018). The results are summarized in Table

6. Although the SADE-NMMS and SSCPDE algorithms use a self-adaptive manner to control

their parameters, the number of their population (NP) should be adjusted. We test four

different levels of NP including 60, 90, 120 and 150 for each algorithm. In this experiment,

we consider the medium-sized instances (Subset-B) as the test problems. The analysis of

variance (ANOVA) test is used to analyze the results. The means plot and least significant

difference (LSD) intervals for different levels of NP are represented in Fig. 10. As can be seen, �� = 120 provides the best results for both algorithms. To determine the value of

parameters in the SA-COA, Abdollahzadeh-Sangroudi and Ranjbar-Bourani (2019) proposed

an initial value for each parameter, which could be controlled in a self-adaptive manner

during the solving approach. Also, we utilize their proposed method in our current paper.

Moreover, we consider a stopping condition based on a CPU time fixed to maxN(∑ ��) ×(∑ ��)
 , 1000O milliseconds for each instance problem when it is solved by each of the

algorithms. Run time limitation is an applicable and flexible measure to show the searching

strength of the algorithms within a fixed time horizon (Roshanaei et al. 2009). Also, in this

26

research to compare the algorithms, we use the relative percentage deviation (RPD) as a

common performance measure (Mahmoodjanloo et al. 2016; Fathollahi-Fard et al. 2019). It

can be calculated by:

^�· = ¸!¹ − ������ × 100 (57)

where ¸!¹ is makespan of an instance obtained for a given algorithm, and ��� is the best

makespan obtained for each instance.

Table 6. Selected value of parameters for the DE and NMDE algorithms.

Algorithm Parameters

DE �� = 90, 0 = 1, �^ = 0.2

NMDE �� = 60, 0 = 0.9, �^ = 0.3 {T = 1, {} = 1.5, {� = 0.5 , {� = 0.5, ℚ = 3 *

* ℚ is the number of top individuals used to calculate the initial simplex centroid for the NM method

(a) SADE-NMMS (b) SSCPDE

Fig. 10. Means plot and LSD intervals (at the 95% confidence level) for the different levels of the population

number (NP) of the SADE-NMMS and SSCPDE algorithms.

To evaluate the general performance of the four abovementioned algorithms, we use the

first data set and compare the results with the objective values obtained by the sequence-

based model (SBM). In this experiment, each instance problem is solved 20 times by each of

the four algorithms. The results (including the best-obtained makespan, the mean value, and

the standard deviation of each instance problem) are presented in Table 7. We bold the

values, which are equal or less than the values obtained by the SBM.

To better understand the performance of algorithms, the minimum and mean RPD values

of the objective functions are separately represented in Fig 11. As can be seen, SADE-NMMS

performs the best among the four algorithms. Among the 16 instances, whose optimum

makespan is obtained by solving the SB model, SADE-NMMS can obtain the optimum

solutions in 14 instances. Moreover, in ten items out of the rest of the instances, including 12

instance problems, which the CPLEX solver cannot obtain the optimum solution in a time

27

limit of 3600 seconds, SADE-NMMS obtained a better solution in a reasonable time (e.g., a

solution of K3C7Ins05 with �234 = 1733 obtained by SADE-NMMS in 24.4 seconds while the

CPLEX obtained a solution with �234 = 2016 in 3600 seconds).

In addition to the SADE-NMMS algorithm, SSCPDE also performs at an acceptable level,

and it has the nearest performance to SADE-NMMS. Hence, we utilize the second data set to

compare more precisely the performance of the tested algorithms. Also, the performance of

the SA-COA is compared in this experiment. The ANOVA test is used to analyze the results in

the experiment. As can be seen in Fig 12, the SADE-NMMS outperforms the other algorithms.

Among the tested algorithms, the classic DE has the worst performance. This can be referred

to the weaknesses of its mutation strategy in the exploitation phase of the searching process.

Table 7. Computational comparison of the algorithms on small and medium instance problems of the first

data set.

#Ins.
MILP(SBM) �234

SADE-NMMS

DE SSCPDE NMDE

Min Ave.
St.

Dev.
Min Ave.

St.
Dev.

 Min Ave.
St.

Dev.
 Min Ave.

St.
Dev.

K2C4Ins01 305* 305 305 0.0 397 424.3 14.7 307 341.7 15.7 338 378.4 24.9

K2C4Ins02 620* 620 637.8 27.6 821 888.5 48.2 627 693.8 49.7 691 791.1 60.9

K2C4Ins03 532* 532 532 0.0 695 741.6 35.2 542 588.4 26.7 595 664.4 43.2

K2C4Ins04 860* 861 913.5 41.2 1138 1268 86.8 861 1000 65.8 987 1131 100.5

K2C5Ins01 555* 555 555 0.0 731 764.9 25.1 572 615.7 27.1 620 693.1 49.0

K2C5Ins02 908* 908 908 0.0 1197 1276 42.5 911 992.3 51.5 1013 1108 73.8

K2C5Ins03 531* 531 538.5 21.7 694 745.6 37.7 537 582.6 35.1 597 680.5 51.9

K2C5Ins04 872* 872 921.9 24.0 1205 1280 52.7 903 1020 55.8 969 1146 65.4

K2C6Ins01 585* 585 585 0.0 762 824.5 28 589 637.7 29.5 651 734.5 57.1

K2C6Ins02 1000* 1000 1000 0.0 1302 1388 67 1019 1130 54.9 1119 1271 77.3

K2C6Ins03 496* 496 497.8 5.4 653 693.7 31.9 496 547 28.5 547 601.9 43.5

K2C6Ins04 1155* 1155 1186 10.1 1513 1640 61.8 1186 1284 82.9 1317 1522 116.3

K3C7Ins01 559* 559 605.6 25.2 777 835.8 44.4 601 664.9 38.9 669 762.9 55.5

K3C7Ins02 900 942 985.1 36.7 1244 1378 73.3 964 1085 74.6 1066 1237 110.8

K3C7Ins03 762 756 809.1 27.4 1003 1120 58.1 794 881.6 58.3 867 1012 88.9

K3C7Ins04 1379 1393 1531 74.6 1964 2183 164.2 1411 1660 118.6 1720 1901 113.5

K3C7Ins05 2016 1733 1887 88.1 2363 2773 251.6 1786 2040 152.0 1971 2355 214.0

K3C7Ins06 1978 1808 1942 85.5 2438 2797 241 1874 2141 126.7 1996 2401 218.9

K3C7Ins07 2203 2087 2293 123.0 2856 3415 281.1 2209 2544x 170.6 2403 2895 263.9

K3C7Ins08 1566 1376 1533 73.8 1889 2162 129.3 1524 1684 105.9 1620 1885 191.2

K7C16Ins01 436* 436 446 9.4 571 613.9 26.5 447 490.3 28.8 491 564.7 32.5

K7C16Ins02 613* 622 641.6 9.5 838 903.6 37.4 647 710.4 38.7 736 805.3 45.9

K7C16Ins03 476* 476 487.6 8.6 631 680 35.6 490 536.9 28.9 551 612.5 37.5

K7C16Ins04 725 717 796.2 32.5 971 1133 68 786 885 57.0 832 970.9 81.3

K7C16Ins05 933 830 895.7 26.7 1138 1262 60.6 846 972.3 47.6 978 1127 85.0

K7C16Ins06 921 896 925.1 20.8 1199 1306 65.4 921 1013 50.7 1041 1143 73.2

K7C16Ins07 1136 940 1021 54.1 1261 1513 134.1 1018 1136 72.4 1110 1271 119.1

K7C16Ins08 711 645 693.5 25.7 892 975.5 44.4 646 749.4 46.9 737 863 74.4

28

(a) Minimum values (b) Mean values

Fig. 11. Minimum and mean RPD values of different algorithms over 20 independent runs on 28 test instance

problems of the first data set.

Fig. 12. Means plot and LSD intervals (at the 95% confidence level) for the tested algorithms on 90 instance

problems of the second data set.

5.4. Sensitivity analysis

A significant observation in our experiments is the impact of reconfiguration ability of the

machines on the scheduling decisions. This ability maybe leads to several changes in the

configurations of a machine to obtain a feasible schedule. To show this ability, an example is

illustrated in Fig. 13. In this Gantt chart, the best resultant schedule of the instance

K7C16Ins05 with �234 = 830 obtained by the SADE-NMMS algorithm is presented. In each

box, two items are noted (i.e., the job’s number and the configuration’s number, in which the

machine should perform that job). For example, (J5, C2) on the first box of Machine-1 shows

that Job-5 should be performed on the second configuration of Machine-1. Besides, Machine-

1 performs the first and the second operations of Job-5 on its second configuration.

Thereafter, the machine should be reconfigured from the second to the third configuration

with setup time ��(�2, �3) = 150 to perform some other operations. As can be seen, some

machines need to be reconfigured one or more times in the schedule, and some others need

no reconfiguration (e.g., Machine-5).

29

Regarding the impact of reconfiguration activities and the related setup times on the

scheduling decisions, several analyses are done. For this purpose, we change the

configuration-dependent setup times of several instances in a predefined range. In these

experiments, we define ����,��,��}� = » × ����,��,� while » is a constant coefficient. As an

example, the trend of changing in makespan and the number of machine reconfigurations

are presented in Fig. 14 for 0 ≤ ω ≤ 4. As expected, makespan has a non-decreasing

behavior concerning an increase in the setup times, though for the larger instances the

behavior is much more non-linear. On the other hand, changing the number of machine

reconfigurations is more complex. As can be seen in Fig. 14(b), the diagrams have different

trends in response to the variations of the setup times.

Fig. 13. Best resultant schedule of K7C16Ins05 with �234 = 830 obtained by the SADE-NMMS algorithm.

(a) (b)

Fig. 14. Trend of changing in makespan and the number of machine reconfigurations based on variations in

the setup times

To improve the searching process, a two-phase mechanism is utilized to balance between

exploitation and exploration abilities of the proposed algorithm. In this mechanism,

threshold value �� is considered to change the searching policy, where �� = � × �234 and � ∈ [0, 1]. In the first phase for � ≤ ��, we utilize the DE/rand/1 mutation strategy, which is

30

one of the most popular strategies in the literature that bears stronger exploration

capabilities (Mallipeddi et al. 2011; Fan and Yan, 2015a; Fan and Yan, 2015b). Thereafter, a

self-adaptive policy is used to automatically guide the searching process.

Now, we aim to evaluate the effectiveness of the two-phase searching strategy. Hence, we

design another experiment to show the performance of the SADE-NMMS algorithm with

different values of parameter �. In this experiment, the algorithm is used to solve some

selected instances of Subset-B for � = 0, 0.2, 0.4 and 1. It is worth noting that the algorithm

with � = 0 is a full self-adaptive version. On the other hand, the algorithm with � = 1 can be

considered as a classic DE with one mutation strategy. The means plot and Least Significant

Difference (LSD) intervals for different levels of � are represented in Fig. 15. As can be seen, � = 0.2 provides the best results for the algorithm. Moreover, it means that the designed

two-phase policy has a positive effect on the searching process of the algorithm. Also, Fig. 16

shows the trend of optimization for the proposed algorithm with different values of � on two

selected instances from Subset-B.

Fig. 15. Means plot and LSD intervals (at the 95% confidence level) for different values of � in algorithm

SADE-NMMS.

(a) K7C16Ins08

(b) K3C7Ins08

Fig. 16. Effect of parameter � on the searching process of the algorithm SADE-NMMS

31

6. Conclusions

Reconfigurable machine tools (RMTs) have been developed to benefit from using several

different machines that share many costly and common modules while being rarely used at

the same time. They could obtain different configurations to satisfy manufacturing

requirements. Hence, RMTs have a high potential to obtain both cost-effectiveness and

responsiveness as the main objectives of market competition. Considering the complexity of

scheduling in production systems, which utilize RMTs, some specialized models and

algorithms should be developed. In this paper, the scheduling decisions in a shop-floor with

RMTs, named the FJSSP with configuration-dependent setup times have been studied. At

first, two different mathematical models with the position- and sequence-based decision

variables have been formulated to minimize the completion time of the jobs (i.e., makespan).

Moreover, a mathematical formulation has also been developed to calculate the lower bound

of makespan. Thereafter, we tried to optimally solve the small- and medium-sized instances

using each of the two models and CPLEX solver. The experiments showed that the sequence-

based model outperformed the position-based model in all 28 instance problems. However,

even the sequence-based model could not to optimally solve most of the medium-size

problems (it only optimally solved three instances out of 16). Hence, regarding the

computational complexity of the models, we utilized a self-adaptive DE algorithm and

enhanced its effectiveness by introducing a new mutation strategy based on a searching

approach hired from the Nelder-Mead method. The performance of the proposed method,

named SADE-NMMS, and three other variants of the DE algorithm were first validated by

comparison with the results of the sequence-based model for small- and medium-sized

problems. Thereafter, another data set including larger-sized problems has been utilized to

compare more precisely the performance of the tested algorithms. The ANOVA test was used

to analyze the results in the experiment. It turned out that the SADE-NMMS outperforms the

other algorithms.

For future studies, some of the real-world considerations (e.g., the uncertainty in

configuration-dependent setup times or the effect of reliability on different machine

configurations) can be discussed in the model. Besides, different machine configurations in

addition to the different production rate maybe have different cost or quality to perform the

operations. Hence, it will be interesting to develop some multi-objective models in this area.

Finally, the proposed mutation strategy based on the Nelder-Mead method has a high

potential to be utilized in other variants of the DE algorithm to improve their performance.

CRediT authorship contribution statement

Mehdi Mahmoodjanloo: Conceptualization, Writing - original draft, Software. Reza

Tavakkoli-Moghaddam: Methodology, Supervision, Writing – review & editing. Armand

32

Baboli: Project administration, Resources, Visualization. Ali Bozorgi-Amiri: Data curation,

Validation.

Acknowledgments

The authors would like to thank the Editor-in-Chief, Associate Editor and anonymous

reviewers for their valuable comments on this paper for the improvements.

References

Abdollahzadeh Sangroudi, H., & Ranjbar-Bourani, M. (2019). Solving a flexible job shop lot

sizing problem with shared operations using a self-adaptive COA. International Journal

of Production Research, Article in Press.

Allahverdi, A. (2015). The third comprehensive survey on scheduling problems with setup

times/costs. European Journal of Operational Research, 246(2), 345-378.

Aguilar, A., Roman-Flores, A., & Huegel, J. C. (2013). Design, refinement, implementation and

prototype testing of a reconfigurable lathe-mill. Journal of Manufacturing Systems, 32(2),

364-371.

Akbari-Jafarabadi, M., Tavakkoli-Moghaddam, R., Mahmoodjanloo, M., & Rahimi, Y. (2015). A

three-level mathematical model for an r-interdiction hierarchical facilities location

problem. Iranian Journal of Operations Research, 6(2), 58-72.

Akbari-Jafarabadi, M., Tavakkoli-Moghaddam, R., Mahmoodjanloo, M., & Rahimi, Y. (2017). A

tri-level r-interdiction median model for a facility location problem under imminent

attack. Computers & Industrial Engineering, 114, 151-165.

Azab, A., & Naderi, B. (2015). Modelling the problem of production scheduling for

reconfigurable manufacturing systems. Procedia CIRP, 33, 76-80.

Azulay, H. (2014). A design methodology for reconfigurable milling machine tools and an

implementation, Ph.D. dissertation, Department of Mechanical and Industrial

Engineering, University of Toronto, Toronto, Canada

Brucker, P., & Schlie, R. (1990). Job-shop scheduling with multi-purpose machines.

Computing, 45(4), 369-375.

Chelouah, R., & Siarry, P. (2005). A hybrid method combining continuous tabu search and

Nelder–Mead simplex algorithms for the global optimization of multi-minima functions.

European Journal of Operational Research, 161(3), 636-654.

Das, S., & Suganthan, P. N. (2011). Differential evolution: A survey of the state-of-the-art. IEEE

Transactions on Evolutionary Computation, 15(1), 4-31.

Ersal, T., Stein, J. L., & Louca, L. S. (2004, January). A modular modeling approach for the

design of reconfigurable machine tools. In: ASME 2004 International Mechanical

33

Engineering Congress and Exposition (pp. 393-399). American Society of Mechanical

Engineers, Anaheim, California, USA, 13-19 November 2004.

Fan, Q., & Yan, X. (2015a). Differential evolution algorithm with self-adaptive strategy and

control parameters for P-xylene oxidation process optimization. Soft Computing, 19(5),

1363-1391.

Fan, Q., & Yan, X. (2015b). Self-adaptive differential evolution algorithm with zoning

evolution of control parameters and adaptive mutation strategies. IEEE Transactions on

Cybernetics, 46(1), 219-232.

Fathollahi-Fard, A. M., Ranjbar-Bourani, M., Cheikhrouhou, N., & Hajiaghaei-Keshteli, M.

(2019). Novel modifications of social engineering optimizer to solve a truck scheduling

problem in a cross-docking system. Computers & Industrial Engineering, 137, 103-118.

Gadalla, M., & Xue, D. (2017). Recent advances in research on reconfigurable machine tools:

a literature review. International Journal of Production Research, 55(5), 1440-1454.

Gao, Z., Xiao, T., & Fan, W. (2011). Hybrid differential evolution and Nelder–Mead algorithm

with re-optimization. Soft Computing, 15(3), 581-594.

Garey, M. R., Johnson, D. S., & Sethi, R. (1976). The complexity of flow shop and job shop

scheduling. Mathematics of Operations Research, 1(2), 117-129.

Gholipour-Kanani, Y., Tavakkoli-Moghaddam, R., Cheraghalizadeh, R., & Mahmoodjanloo, M.

(2012). A new mathematical model for a multi-criteria group scheduling problem in a

cms solved by a branch-and-bound method. In Proceedings of the 2012 international

conference on industrial engineering and operations management.

Gu, X., & Koren, Y. (2018). Manufacturing system architecture for cost-effective mass-

individualization. Manufacturing Letters, 16, 44-48.

Hasan, F., Jain, P. K., & Kumar, D. (2013). Machine reconfigurability models using multi-

attribute utility theory and power function approximation. Procedia Engineering, 64,

1354-1363.

Jamili, A., Shafia, M. A., & Tavakkoli-Moghaddam, R. (2011). A hybrid algorithm based on

particle swarm optimization and simulated annealing for a periodic job shop scheduling

problem. The International Journal of Advanced Manufacturing Technology, 54(1-4), 309-

322.

Koren, Y., & Kota, S. (1999). U.S. Patent No. 5,943,750. Washington, DC: U.S. Patent and

Trademark Office.

Mahmoodjanloo, M., Parvasi, S. P., & Ramezanian, R. (2016). A tri-level covering fortification

model for facility protection against disturbance in r-interdiction median problem.

Computers & Industrial Engineering, 102, 219-232.

34

Mallipeddi, R., Suganthan, P. N., Pan, Q. K., & Tasgetiren, M. F. (2011). Differential evolution

algorithm with ensemble of parameters and mutation strategies. Applied Soft Computing,

11(2), 1679-1696.

Menchaca-Mendez, A., & Coello, C. A. C. (2009, May). A new proposal to hybridize the nelder-

mead method to a differential evolution algorithm for constrained optimization. In 2009

IEEE Congress on Evolutionary Computation (pp. 2598-2605). IEEE, Trondheim, Norway,

18-21 May 2009.

Moghaddam, S. K., Houshmand, M., & Fatahi Valilai, O. (2018). Configuration design in

scalable reconfigurable manufacturing systems (RMS): A case of single-product flow line

(SPFL). International Journal of Production Research, 56(11), 3932-3954.

Moghaddam, S. K., Houshmand, M., Saitou, K., & Fatahi Valilai, O. (2019). Configuration design

of scalable reconfigurable manufacturing systems for part family. International Journal

of Production Research, Article in Press.

Moraglio, A., & Johnson, C. G. (2010). Geometric generalization of the nelder-mead algorithm.

In: European Conference on Evolutionary Computation in Combinatorial Optimization (pp.

190-201). Springer, Istanbul, Turkey, 7-9 April 2010.

Moravec, P., & Rudolf, P. (2018). Combination of a particle swarm optimization and Nelder–

Mead algorithm in a diffuser shape optimization. In: Advances in Hydroinformatics (pp.

997-1012). Springer, Singapore.

Naderi, B., & Azab, A. (2014). Modeling and heuristics for scheduling of distributed job shops.

Expert Systems with Applications, 41(17), 7754-7763.

Nelder, J.A., Mead, R.A. (1965), A simplex method for function minimization. Computer

Journal, 7, 308–313

Padayachee, J., & Bright, G. (2012). Modular machine tools: Design and barriers to industrial

implementation. Journal of Manufacturing Systems, 31(2), 92-102.

Parvasi, S. P., Mahmoodjanloo, M., & Setak, M. (2017). A bi-level school bus routing problem

with bus stops selection and possibility of demand outsourcing. Applied Soft Computing,

61, 222-238.

Pérez, R., Molina, A., & Ramírez-Cadena, M. (2014). Development of an integrated approach

to the design of reconfigurable micro/mesoscale CNC machine tools. Journal of

Manufacturing Science and Engineering, 136(3), 031003.

Ponsich, A., Tapia, M. G. C., & Coello, C. A. C. (2009). Solving permutation problems with

differential evolution: an application to the job shop scheduling problem. In 2009 Ninth

International Conference on Intelligent Systems Design and Applications (pp. 25-30). IEEE,

Pisa, Italy, 30 November – 02 December 2009.

35

Ponsich, A., & Coello, C. A. C. (2013). A hybrid differential evolution - Tabu search algorithm

for the solution of job-shop scheduling problems. Applied Soft Computing, 13(1), 462-

474.

Qin, AK, Huang, VL, & Suganthan, PN (2009). Differential evolution algorithm with strategy

adaptation for global numerical optimization. IEEE Transactions on Evolutionary

Computation, 13(2), 398-417

Qin, J., Liu, Y., & Grosvenor, R. (2016). A categorical framework of manufacturing for industry

4.0 and beyond. Procedia CIRP, 52, 173-178.

Rajabioun, R. (2011). Cuckoo optimization algorithm. Applied soft computing, 11(8), 5508-

5518.

Roshanaei, V., Naderi, B., Jolai, F., & Khalili, M. (2009). A variable neighborhood search for job

shop scheduling with set-up times to minimize makespan. Future Generation Computer

Systems, 25(6), 654-661.

Rossi, A. (2014). Flexible job shop scheduling with sequence-dependent setup and

transportation times by ant colony with reinforced pheromone relationships.

International Journal of Production Economics, 153, 253-267.

Rohaninejad, M., Kheirkhah, A., Fattahi, P., & Vahedi-Nouri, B. (2015). A hybrid multi-

objective genetic algorithm based on the ELECTRE method for a capacitated flexible job

shop scheduling problem. The International Journal of Advanced Manufacturing

Technology, 77(1-4), 51-66.

Sahebjamnia, N., Fathollahi-Fard, A. M., & Hajiaghaei-Keshteli, M. (2018). Sustainable tire

closed-loop supply chain network design: Hybrid metaheuristic algorithms for large-

scale networks. Journal of Cleaner Production, 196, 273-296.

Shen, L., Dauzère-Pérès, S., & Neufeld, J. S. (2018). Solving the flexible job shop scheduling

problem with sequence-dependent setup times. European Journal of Operational

Research, 265(2), 503-516.

Storn, R., & Price, K. (1997). Differential evolution - A simple and efficient heuristic for global

optimization over continuous spaces. Journal of Global Optimization, 11(4), 341-359.

Wang, L., Xu, Y., & Li, L. (2011). Parameter identification of chaotic systems by hybrid Nelder–

Mead simplex search and differential evolution algorithm. Expert Systems with

Applications, 38(4), 3238-3245.

Wu, X., Liu, X., & Zhao, N. (2018). An improved differential evolution algorithm for solving a

distributed assembly flexible job shop scheduling problem. Memetic Computing, 1-21.

Wu, X. and Liu, X. (2018, August). An improved differential evolution algorithm for solving a

distributed flexible job shop scheduling problem. In: 2018 IEEE 14th International

Conference on Automation Science and Engineering (CASE) (pp. 968-973). IEEE, Munich,

Germany, 20-24 August 2018.

36

Yuan, Y., & Xu, H. (2013). Flexible job shop scheduling using hybrid differential evolution

algorithms. Computers & Industrial Engineering, 65(2), 246-260.

Yuen, S. Y., & Zhang, X. (2015). On composing an algorithm portfolio. Memetic Computing,

7(3), 203-214.

Zhang, H., Yan, Q., Zhang, G., & Jiang, Z. (2016). A chaotic differential evolution algorithm for

flexible job shop scheduling. In: Theory, Methodology, Tools and Applications for Modeling

and Simulation of Complex Systems (pp. 79-88). Springer, Singapore.

Zhang, J., Ding, G., Zou, Y., Qin, S., & Fu, J. (2019). Review of job shop scheduling research and

its new perspectives under Industry 4.0. Journal of Intelligent Manufacturing, 30(4),

1809-1830.

Zhao, F., Shao, Z., Wang, J., & Zhang, C. (2016). A hybrid differential evolution and estimation

of distribution algorithm based on neighborhood search for job shop scheduling

problems. International Journal of Production Research, 54(4), 1039-1060.

