Mehdi Mahmoodjanloo
email: mehdi.janloo@ut.ac.ir

Reza Tavakkoli-Moghaddam

Armand Baboli
email: armand.baboli@insa-lyon.fr

Ali Bozorgi-Amiri

Flexible job shop scheduling problem with reconfigurable machine tools: An improved differential evolution algorithm

Keywords: Flexible job shop, Configuration-dependent setup times, Industry 4.0, Selfadaptive differential evolution, Nelder-Mead mutation strategy

Developing reconfigurable machine tools (RMTs) has attracted increasing attention recently. An RMT can be utilized as a group of machines, which can obtain different configurations to satisfy manufacturing requirements. This paper deals with a production scheduling problem in a shop-floor with RMTs as an extension of a flexible job shop scheduling problem (FJSSP). To begin with, two mixed-integer linear programming models with the position-and sequence-based decision variables are formulated to minimize the maximum completion time (i.e., makespan). The CPLEX solver is used to solve the small-and medium-sized instances. The computational experiments show that the sequence-based model significantly outperforms the other one. Since even the sequence-based model cannot optimally solve most of the medium-sized problems, a self-adaptive differential evolution (DE) algorithm is proposed to efficiently solve the given problem. Moreover, the effectiveness of the proposed algorithm is enhanced by introducing a new mutation strategy based on a searching approach hired from a Nelder-Mead method. The performance of the proposed method and three other well-known variants of the DE algorithm are first validated by comparing their results with the results of the sequence-based model. Additional experiments on another data set including large-sized problems also confirm that the proposed algorithm is extremely efficient and effective.

Introduction

In recent decades, economic globalization and market competition lead to the rapid introduction of new products, more variants, low prices and high fluctuations in demand. Therefore, manufacturing systems are adjusting to satisfy these requirements. A significant approach to cope with these issues is the ability of reconfigurability for manufacturing systems and tools. Hence, a new class of production machines, called reconfigurable machine tools (RMTs), have been introduced. An RMT machine usually has a modular structure, which makes it able to obtain different configurations to satisfy manufacturing requirements. One of the benefits of developing RMTs is that the use of several different machines that share many costly and common modules while being rarely used at the same time can be prevented [START_REF] Gadalla | Recent advances in research on reconfigurable machine tools: a literature review[END_REF]). An RMT in each configuration can process one or more operations with a certain rate. By changing the configuration, the machine can either perform some new operations or perform the same operation/operations with a different production rate [START_REF] Moghaddam | Configuration design of scalable reconfigurable manufacturing systems for part family[END_REF]. In the development of RMTs, rapid conversion of the machinedecreasing the reconfiguration time -is one of the main objectives that can improve the responsiveness of a manufacturing system to produce highly customized products. Designing efficient RMTs and trying to decrease their reconfiguration time and to develop self-reconfigurable modular machines are the challenging and yet interesting problems [START_REF] Aguilar | Design, refinement, implementation and prototype testing of a reconfigurable lathe-mill[END_REF][START_REF] Hasan | Machine reconfigurability models using multiattribute utility theory and power function approximation[END_REF][START_REF] Azulay | A design methodology for reconfigurable milling machine tools and an implementation[END_REF][START_REF] Pérez | Development of an integrated approach to the design of reconfigurable micro/mesoscale CNC machine tools[END_REF]. Considering the high level of dynamism, it seems that the studies in production scheduling in these systems face new challenges.

In this paper, it is assumed that several jobs are assigned to a shop floor including several RMTs. Each job has a set of operations, which need to be processed in a specific order, and each operation can be processed at least on one configuration of one of the existing RMTs. Hence, the problem can be an extension of a flexible job shop scheduling problem (FJSSP). The objective is to minimize makespan (i.e., the maximum completion time of the jobs). The problem is more complicated than the FJSSP because three decisions have to be taken; these decisions include allocating of the operations to the machines, sequencing of the jobs and determining of the configuration of the machines to perform the allocated operations. Moreover, each RMT needs an amount of time to reconfiguration. We name it configurationdependent setup time since it depends on the current and next configurations of the machine. Conversion time between every two configurations can be different because it needs to remove/add different auxiliary modules from/to the machine [START_REF] Moghaddam | Configuration design in scalable reconfigurable manufacturing systems (RMS): A case of single-product flow line (SPFL)[END_REF].

The main contributions of this paper are as follows:

• Studying a new variant of a job shop scheduling problem (JSSP) that contains reconfigurable machine tools among the first studies in this area. • Developing two mixed-integer linear programming (MILP) models based on operation-position and operation-sequence formulations and comparing them based on their computational performances.

• Extracting a lower bound for the problem.

• Developing a self-adaptive differential evolution (DE) algorithm to solve the problem efficiently.

• Enhancing the efficiency of the proposed algorithm by introducing a new mutation strategy inspired by the Nelder-Mead search approach.

The rest of the paper is organized as follows. Section 2 reviews the related literature. Section 3 presents two mathematical models and the formulation to calculate the lower bound of the problem. Section 4 proposes the solving approach. Sections 5 and 6 present the results of computational experiments and the conclusions, respectively.

Literature review 2.1. Reconfigurable machine tools

For the first time, Koren and Kota (1999) developed a new generation of machines, named as RMTs, with the ability of easy and rapid change to perform different kinds of machining operations. Thereafter, the research on this kind of machines was initiated, and many researchers developed various prototypes of these tools [START_REF] Gadalla | Recent advances in research on reconfigurable machine tools: a literature review[END_REF]. Indeed, an RMT can be used as a group of machines so that different functionality or capacity for a set of certain operations can be achieved through a change of its configurations. To compete with conventional machines, reconfiguration in RMTs must be done with the minimum loss of time. Hence, the concept of reconfigurability is defined as the ability to change the functionality or capacity of the RMT by changing/rearranging the components of the machine. Over the last two decades, a lot of research has been done to fulfill this objective, in which a few of them can be referred to as follows. [START_REF] Ersal | A modular modeling approach for the design of reconfigurable machine tools[END_REF] presented a methodology to make an RMT able to be automatically reconfigured using a library of modular components. A modular reconfigurable machine has been developed by [START_REF] Padayachee | Modular machine tools: Design and barriers to industrial implementation[END_REF]. They utilized a plug-and-play approach to control the scalability of the machine and developed a control system to support the modularity and reconfigurability. The developed machine could support turning and milling tasks. [START_REF] Pérez | Development of an integrated approach to the design of reconfigurable micro/mesoscale CNC machine tools[END_REF] developed a micro/mesoscale computer numerical control (CNC) machine tool with the ability of reconfiguration to do different machining operations (e.g., milling, drilling, and turning). [START_REF] Aguilar | Design, refinement, implementation and prototype testing of a reconfigurable lathe-mill[END_REF] designed a lathe-mill RMT and developed a prototype of the machine, which could be used in the jewelry industry. The RMT could achieve four different configurations including a mill configuration, a rotated mill configuration, a lathe configuration and a heavy mill configuration to perform various turning and milling tasks. Required time to change configurations among these four states was less than 15 minutes. Fig. 1 represents the four possible configurations for the lathe-mill RMT.

RMTs also play an important role in developing modern manufacturing approaches, like reconfigurable manufacturing systems (RMS). Indeed, an RMS is a system with the advantages of dedicated manufacturing systems (DMS) and flexible manufacturing systems (FMS), which is designed to adjust with rapid changes in volume or variety of market demand. To have a responsible and cost-effective system, RMSs need to have six characteristics including convertibility, scalability, modularity, customization, diagnosability, and integrability. Development of RMSs is also a promising area for the achievement of Industry 4.0, known as the fourth industrial revolution or cyber-physical system. [START_REF] Qin | A categorical framework of manufacturing for industry 4.0 and beyond[END_REF] reviewed the significant characteristics of some current manufacturing systems (including single-station automated cells, automated assembly systems, computer-integrated manufacturing (CIM) systems, FMSs, and RMSs) to identify the research gaps between Industry 4.0 and these systems' requirements. They found that RMSs are the most potential production systems to achieve Industry 4.0 objectives such as the ability of self-optimization and self-configuration. One of the most important objective in Industry 4.0 is to produce individualized products at a reasonable cost or so-called mass-individualization. While traditional RMSs have been designed for high-volume manufacturing, it is emerged some new challenges to adjust them with the requirements of mass-individualization paradigm. [START_REF] Gu | Manufacturing system architecture for cost-effective massindividualization[END_REF] proposed a new manufacturing system architecture to satisfy these requirements. In the proposed architecture to achieve a high-mix/low-volume production at affordable costs, a material handling system based on forward/return conveyors (or gantry) is designed to provide a flexible routing of the parts among the stages. The system can also contain some high-level production machines (e.g., RMTs, CNCs, and additive manufacturing tools). Based on the suggested architecture, each job has its production route, and it can enter one stage more than once or bypass some stages by utilizing the designed transferring system. They highlighted some operational challenges of the suggested architecture, including the effective scheduling algorithms to improve the utilization of each machine. In this paper, we aim to study the scheduling problem in such systems.

FJSSP with family setup times

The considered scheduling problem has many similarities to the FJSSP with sequencedependent family setup times. This problem is an extension of job shop scheduling problem, which was originally introduced by [START_REF] Brucker | Job-shop scheduling with multi-purpose machines[END_REF]. In the FJSSP, each operation can be performed on a set of compatible machines. This is a common case especially in FMSs, whose machines have a high level of flexibility to perform variant operations [START_REF] Rossi | Flexible job shop scheduling with sequence-dependent setup and transportation times by ant colony with reinforced pheromone relationships[END_REF]. The importance of such systems is that the availability of alternative machines can improve performance and reliability [START_REF] Rohaninejad | A hybrid multiobjective genetic algorithm based on the ELECTRE method for a capacitated flexible job shop scheduling problem[END_REF][START_REF] Sangroudi | Solving a flexible job shop lot sizing problem with shared operations using a self-adaptive COA[END_REF]. Moreover, considering setup times is an important issue in scheduling problems. It is an important characteristic that has a significant impact on the performance and applicability of many practical scheduling settings. In many real-world applications (e.g., automobile, pharmaceutical, and chemical manufacturing), machines need to a setup operation between jobs. Also, the setups may depend on the preceding process on the same machine [START_REF] Shen | Solving the flexible job shop scheduling problem with sequence-dependent setup times[END_REF].

In some production systems (e.g., Cellular Manufacturing Systems (CMSs)), there are several job families, which should be processed in the same production line [START_REF] Gholipour-Kanani | A new mathematical model for a multi-criteria group scheduling problem in a cms solved by a branch-and-bound method[END_REF]. Each family includes a set of jobs with similar features in terms of tooling, setups and operation sequence. To process two sequent jobs on the same machine, a setup operation is required if the jobs belong to two different families [START_REF] Allahverdi | The third comprehensive survey on scheduling problems with setup times/costs[END_REF].

In traditional RMSs, the scheduling problem can be described as follows. There is a product family, which can be classified into several product subfamilies, and each subfamily contains several jobs that should be done in a predesignated configuration. The objective is to determine an optimal sequence of subfamilies and optimal scheduling of the jobs inside each subfamily regarding one or more predefined performance criteria. Normally, performing the jobs inside each subfamily needs no setup time, while changing configuration to perform two different subfamilies requires a sequence-dependent setup time [START_REF] Azab | Modelling the problem of production scheduling for reconfigurable manufacturing systems[END_REF]. Based on the scheduling literature, such problem only needs to sequencing decisions, so it can, for example, be associated with the flow shop scheduling problems. On the other hand, scheduling in the above-mentioned modified RMS architecture can be associated to the JSSP because each job has its production route. Moreover, since each operation can be processed on more than one machine or on more than one machineconfiguration, we have a FJSSP with group/family setup times.

Also, it is worth notable that the problem is different from the classic FJSSP with sequencedependent family setup times because in this case, a job can belong simultaneously to more than one group (i.e., an operation can be performed on different configurations of a machine). Performing two consecutive operations on the same machine needs no setup time if both of them would be performed on the same configuration. Therefore, the setup times depend on the machine configurations rather than the job sequences. To the best of our knowledge, there is no study to tackle this problem. In this paper, regarding the existence of the research gaps in this area, a scheduling problem is modeled.

Corresponding solution methods

As mentioned before, the JSSP and its extensions are some of the most complicated combinatorial optimization problems, which are strongly NP-hard. So, even with a medium size, they cannot be solved exactly in a reasonable time. Therefore, some researchers have started to utilize heuristics and meta-heuristics to solve JSSPs in reasonably computational time [START_REF] Jamili | A hybrid algorithm based on particle swarm optimization and simulated annealing for a periodic job shop scheduling problem[END_REF]. [START_REF] Zhang | Review of job shop scheduling research and its new perspectives under Industry 4.0[END_REF] reviewed some of the most successful metaheuristics to solve JSSPs, including Genetic Algorithm (GA), Tabu Search (TS), Ant Colony Optimization (ACO), Particle Swarm Optimization (PSO), Differential Evolution (DE), and Firefly Algorithm (FA).

In the current use, DE is one of the most powerful stochastic optimization algorithms, especially in the field of continuous optimization problems. The satisfying performance of DE in terms of robustness, convergence speed, and accuracy still makes it attractive for many researchers to apply DE in various real-world optimization problems [START_REF] Das | Differential evolution: A survey of the state-of-the-art[END_REF]. Since more than two decades ago, DE and its variants have been placed among the best evolutionary algorithms as indicated by the IEEE Congress on Evolutionary Computation (CEC) competition series [START_REF] Yuen | On composing an algorithm portfolio[END_REF]. Although DE was developed at first for the problems with continuous search space, DE-based approaches have been applied successfully in the field of discrete optimization, such as scheduling problems. However, DE alone could not be efficient to solve scheduling problems. The reason may be that the searching mechanisms of the classic DE (especially the mutation operator) are not able to be adapted on a permutation representation [START_REF] Ponsich | Solving permutation problems with differential evolution: an application to the job shop scheduling problem[END_REF]. Hence, to make the algorithm more efficient, some local search approaches have been hybridized with DE in the literature (e.g., a combination of DE with TS) to solve the JSSP [START_REF] Ponsich | A hybrid differential evolution -Tabu search algorithm for the solution of job-shop scheduling problems[END_REF], embedding a local search algorithm based on the critical path into DE to solve the FJSSP [START_REF] Yuan | Flexible job shop scheduling using hybrid differential evolution algorithms[END_REF], introducing a chaotic strategy to update the parameters and two new mutation operators for DE to solve the JSSP [START_REF] Zhang | A chaotic differential evolution algorithm for flexible job shop scheduling[END_REF], embedding a speed-up neighborhood search procedure into DE to solve the FJSSP [START_REF] Zhao | A hybrid differential evolution and estimation of distribution algorithm based on neighborhood search for job shop scheduling problems[END_REF], combination of DE with Simulated Annealing (SA) to solve the distributed FJSSP (Wu and Liu, 2018;Wu et al., 2018).

The Nelder-Mead (NM) simplex search is a numerical optimization method, which is designed for unconstrained problems with multidimensional space. It is a direct search method, which can converge to non-stationary points without using gradient information. The procedure of the NM algorithm is based on geometric operators contain reflection, expansion, contraction and shrinking. By taking advantages of these operators, NM is known as an effective method in local search; however, it has some weaknesses in global search [START_REF] Wang | Parameter identification of chaotic systems by hybrid Nelder-Mead simplex search and differential evolution algorithm[END_REF]. Hence, to utilize its exploitation abilities, there are lots of efforts in the literature to combine NM with meta-heuristics as global exploration approaches [START_REF] Chelouah | A hybrid method combining continuous tabu search and Nelder-Mead simplex algorithms for the global optimization of multi-minima functions[END_REF][START_REF] Moravec | Combination of a particle swarm optimization and Nelder-Mead algorithm in a diffuser shape optimization[END_REF]. Since NM is a close relative of DE, some researchers have been motivated to design hybrid approaches based on NM and DE (for example see: [START_REF] Menchaca-Mendez | A new proposal to hybridize the neldermead method to a differential evolution algorithm for constrained optimization[END_REF][START_REF] Moraglio | Geometric generalization of the nelder-mead algorithm[END_REF][START_REF] Gao | Hybrid differential evolution and Nelder-Mead algorithm with re-optimization[END_REF][START_REF] Wang | Parameter identification of chaotic systems by hybrid Nelder-Mead simplex search and differential evolution algorithm[END_REF]Fan and Yan, 2015a).

In this research, a new mutation strategy based on the NM operators has been introduced, whose aim is to speed up convergence and to strengthen the exploitation phase of the DE algorithm. Moreover, to more efficiently control the parameters and mutation strategies, a self-adaptive strategy based on the research of Fan and Yan (2015a) has been developed.

Problem description and MILP modelling 3.1. Problem definition

The FJSSP with machine configuration-dependent setup times (FJSSP-CDST) can be described as follows. There is a set of RMTs on a shop floor with a predefined layout. Each RMT has a set of configurations. One or more operations can be processed in each configuration with a special rate. A set of jobs should be processed in the shop floor. Each job has a set of operations with a predefined sequence that has already been determined by process planning unit (e.g., , → , → ⋯ → ,). Moreover, it is assumed that each operation of job () can be processed at least on one configuration of one of the existing RMTs. No setup is needed to perform operations in a machine configuration, while to switch to a different configuration on the machine, the RMT needs to a setup that is dependent on two consecutive configurations. It is assumed that the configuration-dependent setup times satisfy the triangular inequality. Moreover, each RMT can only fit into one configuration at a time, and it cannot perform more than one operation simultaneously. All the jobs are available at time 0, and preemption is not allowed. The main decisions of the problem include allocating of each operation to an eligible RMT, sequencing of the jobs and determining the appropriate configurations of each machine to perform the allocated operations. The objective is to minimize makespan.

Mathematical formulations

In this section, two different MILP models of the problem are developed based on operation-position and operation-sequence formulations. The following sets, indices and parameters are used in both developed models.

Sets and indices:

Set of jobs, and each job ∈ Set of operations related to job , where the operation of job is denoted by Set of machines and index ∈ Set of configurations of machine and index ∈

Parameters:

Processing time of operation on th configuration of machine 1 if operation can be processed on configuration of machine ; 0, otherwise , ,

Configuration-dependent setup time when the configuration is changed from to (i.e., ≠) on machine A big positive number

Operation-position based (PB) model

At the first model, the scheduling problem has been considered as positioning decisions (i.e., assigning the operations to some predefined time-positions). Hence, we need to define a new set for the positions of the machine and its related index !, in which an operation can be processed or setup can be done.

! Index for job positions processed on machine , index ! ∈

(i.e., | | = ∑ ∑ ∑ ∈% & ∈' ∈(
) and = ⋃ ∈* .

Decision variables of the PB model: + ,

Binary variable. If operation is processed on position ! of machine (i.e., the position !) with configuration , then + , = 1; otherwise, + , = 0. / , , ,, Binary variable. If at the beginning of position !, the machine's configuration is changed from to (i.e., ≠), then / , , ,, = 1; otherwise, / , , ,, = 0. The PB model is as follows:

Min 234 (1) s.t.

8 8 8 + , ∈% & ,∈9 & ∈* = 1 ∀ ∈ , ∈ (2) 8 + , ,∈9 & ≤ ∀ ∈ , ∈ , ∈ , ∈ (3)
8 8 8 + , ∈% & ∈' ∈ ≤ 1 ∀ ∈ , ! ∈ (4) 8 8 8 + ,,< , ∈% & ∈' ∈ ≥ 8 8 8 + , ∈% & ∈' ∈ ∀ ∈ , ! ∈ , ! ≠ 1 (5) 8 8 + ,,< , ∈' ∈ + 8 8 + ,,, ∈' ∈ ≥ 2 / , , ,, ∀ ∈ , ! ∈ , , ∈ , ≠ (6)
8 8 + ,,< , ∈' ∈ + 8 8 + ,,, ∈' ∈ -1 ≤ / , , ,, ∀ ∈ , ! ∈ , , ∈ , ≠ (7) 0 ≥ 0 , < + 8 8 8 + , ∈% & ,∈9 & ∈* ∀ ∈ , ∈ (8) 0 , 1 ≥ 0 ,,< 1 + 8 8 , , / , , ,, ∈% & A ∈% & + 8 8 8 + , ∈% & ∈' ∈ ∀ ∈ , ! ∈ (9) 0 , 1 ≤ 0 + B1 -8 + , ∈% & C ∀ ∈ , ! ∈ , ∈ , ∈ (10)
0 , 1 ≥ 0 -B1 -8 + , ∈% & C ∀ ∈ , ! ∈ , ∈ , ∈ (11)
0 ≤ 234 ∀ ∈ (12) + , , / , , ,, ∈ D0, 1E ∀ ∈ , ! ∈ , ∈ , ∈ , ∈ (13) 0 , 0 , 1 ≥ 0 ∀ ∈ , ! ∈ , ∈ , ∈ (14)
Eq. (1) is the objective function. Constraints (2) ensure that each operation should be assigned to one position of an existing machine configuration. If operation is not allowed to be processed on configuration of machine (= 0), then Constraint (3) prevent the assignment of the operation to any positions of the machine configuration . Constraint set (4) is to show that in each machine position ! at most one operation can be processed. Constraints (5) ensure that each machine position can be assigned only when the previous position is allocated. Constraints (6) and (7) ensure that for each machine, if two consecutive positions are allocated to different configurations, then a proper setup should be done. Constraints (8) guarantee that the completion time of the operation should be greater than the completion time of the previous operation plus processing time of . Constraints (9) guarantee that the completion time of each machine position should be greater than the completion time of the previous position plus a possible setup time and the processing time of an operation, which is allocated to the position. Constraints (10) and (11) ensure that the completion time of each operation should be set with its associated position. Constraint set (12) is used to determine the completion time. 0 is the completion time of the last operation of job . In other words, Constraints (12) are the linear form of 234 = max ∈ I0 J. Constraints (13) and (14) define the decision variables.

Operation-sequence based (SB) model

At the second model, the scheduling problem is considered as a sequencing decision.

Decision variables of the SB model:

K 1 if operation is processed on configuration of machine ; 0, otherwise The SB model is as follows:

L M M 1 if operation is scheduled before M M , then L M M = 1; 0, otherwise 0
Min 234 (15) s.t.

8 8 K ∈% & ∈* = 1 ∀ ∈ , ∈ (16)
K ≤ ∀ ∈ , ∈ , ∈ , ∈ (17)
0 ≥ 0 , < + 8 8 K ∈% & ∈* ∀ ∈ , ∈ (18)
0 ≥ 0 M M + + , , -N2 -K -K M M + L M M O ∀ ∈ , , ∈ , , 1 ∈ , ∈ , 1 ∈ M , ≠ M M (19) 0 M M ≥ 0 + M M + , , -N3 -K -K M M -L M M O ∀ ∈ , , ∈ , , 1 ∈ , ∈ , 1 ∈ M , ≠ M M (20) 234 ≥ 0 ∀ ∈ (21) K ∈ D0, 1E ∀ ∈ , ∈ , ∈ , ∈ (22) L M M ∈ D0, 1E ∀ , 1 ∈ , ∈ , 1 ∈ M , ≠ M M (23) 0 ≥ 0 ∀ ∈ , ∈ (24)
Eq. (15) is the objective function. Constraint (16) ensures that each operation should be assigned to one machine configuration. If operation is not allowed to be processed on configuration of machine (= 0), then Constraint (17) prevent the assignment of operation to machine configuration . Constraint (18) guarantees that the completion time of operation should be greater than the completion time of the previous operation plus processing time of . On each machine , Constraints (19) and (20) prevent the overlapping of the allocated operations. Constraint set (21) is used to determine the completion time. Constraints (22) -(24) define the decision variables.

Lower-bound method

The FJSSP-CDST is a generalization of the classical JSSP, and the JSSP is NP-hard [START_REF] Garey | The complexity of flow shop and job shop scheduling[END_REF], therefore the FJSSP-CDST is also an NP-hard problem. Moreover, by adding the machine configuration decisions, the problem is even more complicated than some other extensions of JSSP (e.g., flexible JSSP with sequence-dependent setup times). Hence, developing a lower bound (LB) can be helpful to analyze the outcomes of proposed algorithms. The goal is to develop a new formulation, whose complex constraints relaxation provides an LB for the original problem.

The developed models contain three types of decisions including machine configuration, job assignment and sequencing. Since the complexity of the models results from the sequencing decisions, relaxation of this type of decisions can decrease the complexity of the models. Hence, the obtained objective value can be considered as an LB for makespan. The independent variables in the proposed models, including K and L M M in the SB model and + , in the PB model, deal with three types of decisions in the problem. Variable L M M deal with sequencing decisions in the SB model. In the PB model, how the positioning of the operations on each machine determines the sequence of them. Hence, extracting the lower bound based on the PB model needs to decompose the variable + , . Because of its simpler structure, we prefer to extract the LB based on the SB model.

In shop scheduling problems, a LB for completion time can be achieved based on machine lower bound (Q) (i.e., the maximum of the total processing time of operations allocated to the machines) and job lower bound (Q) (i.e., the maximum of the total processing time of the jobs). Finally, the lower bound of the problem can be achieved as

Q = maxD Q , Q E.
Proposition 1. Q is an LB of the total processing time of the operations allocated to the machines.

Q = max ∈* R8 8 min I ∈% & ST U&V AWJ I J ∈' ∈ X (25)
Proof. For each machine ∈ , an LB for the allocated operations can be achieved if each operation is processed on an admissible configuration of the machine with the minimum processing time without considering any reconfiguration time. ⎕ Proposition 2. Q is an LB for the total processing time of each job.

Q = max ∈ R 8 min I ∈*, ∈% & ST U&V AWJ I J ∈' X (26)
Proof. For each job ∈ , a lower bound for the operations can be achieved if each operation is processed on an admissible machine configuration with the minimum processing time. ⎕

To incorporate the machine and job lower bounds into the SB model, Constraints (28) -(30) and (31) -(33) should be considered to linearize Eq. (25) and Eq. (26), respectively.

Min 4 Y 9Z = 234 (27) s.t.
Constraint sets (16) and (17)

Θ ≤ + N1 -K O ∀ ∈ , ∈ , ∈ , ∈ (28) Θ ≥ -N1 -K O ∀ ∈ , ∈ , ∈ , ∈ (29) 234 ≥ 8 8 Θ ∈' ∈(∀ ∈ (30) Φ ≤ + N1 -K O ∀ ∈ , ∈ , ∈ , ∈ (31)
Φ ≥ -N1 -K O ∀ ∈ , ∈ , ∈ , ∈ (32) 234 ≥ 8 Φ ∈' ∀ ∈ (33) K ∈ D0,1E ∀ ∈ , ∈ , ∈ , ∈ (34) 234 , Φ , Θ ≥ 0 ∀ ∈ , ∈ , ∈ (35)
where Θ is the processing time of on machine if the operation is assigned to one of the admissible configurations of the machine. Constraints (16) and (17) ensure that each operation is assigned to an admissible machine configuration. Since there are not any constraints to select the admissible configurations of the machine, Constraints (28) and (29), and a minimization logic of the objective function guarantee that the minimum processing time is selected to perform each operation, hence Θ = min I ∈% & ST U&V AWJ I J. Moreover, based on Eq. (25), we have

Q = max ∈* I∑ ∑ Θ ∈' ∈ J. Therefore Q ≥ ∑ ∑ Θ ∈' ∈(
. The same procedure is used for the job lower bound (i.e., Q ≥ ∑ Φ ∈'

). Finally, since the LB of makespan is equal to the maximum of Q and Q , Constraints (30) and (33) can be extracted.

Solution Algorithm

The proposed self-adaptive DE algorithm based on the Nelder-Mead mutation strategy (SADE-NMMS) has been presented as follows.

Required basic concepts 4.1.1. Differential evolution (DE)

DE is a simple, reliable, and efficient population-based stochastic optimization technique [START_REF] Storn | Differential evolution -A simple and efficient heuristic for global optimization over continuous spaces[END_REF]. The classic DE algorithm has three parameters contain the number of population (NP), mutation scale factor (F) and crossover rate (CR). The algorithm starts by generating a population of NP random solutions, called individuals. Then the main loop of the algorithm starts working until a termination criterion is met (e.g., for a number of iterations). In each iteration, mutation and crossover operators should be done for each individual to obtain a trial vector (new solution), respectively. Eventually, a greedy approach is done to select between the trial vector and the individual. The selected one is promoted to the next iteration. The process of mutation and crossover for an individual] ∈ ^ can be described as follows.

Mutation: For individual] , three distinct randomly selected individuals with indices , and _ (i.e., ≠ ≠ ≠ _) are considered to generate a mutated individual ` as follows.

DE/rand/1:

` =] T + 0. N] T -] T b O (36)
Crossover: Based on current individual] and mutated individual ` , a trial individual is formed by:

c = d e K if ≤ ^ g = T3 h otherwise ∀ = 1, 2, … , (37)
where c is element of , the CR is the crossover rate, = q r[0, 1], and T3 h is an index, which is randomly selected to guarantee that at least one element of the mutated individual should be chosen.

Nelder-Mead simplex search

The Nelder-Mead (NM) simplex search, originally published in 1965 [START_REF] Nelder | A simplex method for function minimization[END_REF], is one of the best known numerical optimization method designed for unconstrained problems with multidimensional space. In n-dimensional solution space (] ∈ ^), NM initializes with n+1 random solutions (called individuals) and orders them based on their function values from the best to the worst (e.g., to minimize a function u(])), suppose u(]) ≤ u(]) ≤ ⋯ ≤ u(] x). Then a centroid (] y) of the n best individuals should be calculated (] y = ∑] z). Considering four factors including reflection coefficient ({ T > 0), expansion coefficient ({ } > 1), contraction coefficient (0 < { < 1) and shrinkage coefficient (0 < { • < 1), the steps of the algorithm can be described below. Based on these steps, the algorithm starts working until a termination condition is met.

Reflection: Compute the reflected point as follows.

] T =] € + { . N] € -] x O (38)
If the reflected point is better than the best point (i.e., u(] T) < u(])), then the expansion phase should be applied, else if u(]) ≤ u(] T) < u(]), the reflected point should be replaced with the worst point] x , and the iteration should be terminated. Otherwise, if u(]) ≤ u(] T), the contraction phase should be applied.

Expansion: Compute the expansion point as follows.

] } =] € + { • . N] T -] € O (39)
If the expanded point is better than the reflected point (i.e., u(] }) ≤ u(] T)), then the expanded point should be replaced with the worst point] x ; otherwise, the reflected point should be replaced with the worst point, and the iteration should be terminated.

Contraction:

Compute the contraction point between the centroid and the better of the two points] T and] x . If u(] x) ≤ u(] T), then the inside contraction should be performed using Eq. (40). Otherwise, the outside contraction should be performed using Eq. (41).

] =] € -{ . N] -] € O (40)] =] € + { . N] € -] +1 O (41)
In inside contraction, if u(]) ≤ u(] x), or in outside contraction, if u(]) ≤ u(] T), then] should be replaced with the worst point, and the iteration should be terminated. Otherwise, the shrinking phase should be applied.

Shrink:

This operator is applied to converge the points around the best point to adjust the accuracy of the algorithm. The operator is performed as follows.

] 1 =] + { ' . (] -]) ∀ = 2, 3, … , + 1 (42)
Eventually, the set I] 1 ,] 2

′ ,] 3 ′ , … ,] +1 ′ J can be used for the next iteration.

Proposed Nelder-Mead mutation strategy

In the literature, different mutation strategies have been utilized to enhance the exploitation and exploration capabilities of the DE variants. Many pieces of evidence reveal that different optimization problems require different strategies for parameter settings and mutation [START_REF] Qin | Differential evolution algorithm with strategy adaptation for global numerical optimization[END_REF]. Most of the proposed mutation strategies in the literature have a simple structure to randomly obtain a single target. For example, the mutation strategy "rand/1", which is defined in Eq. (36), is a suitable strategy for an exploration target, while another strategy named "current-to-best/1" is usually used for exploitation. Hence, some researchers have started to develop new intelligent approaches to utilize various capabilities of the different mutation strategies [START_REF] Fan | Self-adaptive differential evolution algorithm with zoning evolution of control parameters and adaptive mutation strategies[END_REF]. Besides these approaches, which focus on making intelligent the whole of the algorithm, it seems that developing some new flexible mutation strategies can be advantageous to search the solution space more efficient. Inspiring the Nelder-Mead operators, we develop a new mutation strategy, which can intelligently search the solution space. The procedure of the NM-based-rand/3 mutation strategy is presented in Fig. 2. The number "3" refers to the number of initial points as a parameter of the algorithm to start the searching procedure. It is worth mentioning that the parameter can be tuned for different utilizations.

To illustrate how the proposed mutation strategy can efficiently search the solution space, an instance based on various mutation strategies is considered. Current point K and three randomly selected individuals are considered, which can be ordered as K T b , K T and K T (i.e., u(K T b) < u(K T) < u(K T)). In Fig. 3, three mutated individuals based on some of the most popular mutation strategies are represented. As can be seen from the figures, none of these strategies utilizes all of the useful information. In a similar situation, the potential mutated points, based on the proposed strategy, is represented in Fig. 4. Some other information (e.g., the position of the worst point and the weight of the rest individuals) is utilized. Moreover, coefficients { T , { } , { and { • help to improve efficiency. For example, the higher values of the reflection and explosion coefficients, more effective exploration, and the lower values of the contraction and shrinkage coefficients, the more effective exploitation.

Details of the proposed SADE-NMMS to solve FJSSP-CDST

To efficiently solve the FJSSP-CDST as a combinatorial optimization problem with discrete solution space, an improved variant DE is proposed based on the new mutation strategy and a self-adaptive procedure. The main steps of the algorithm are presented in Fig. 5. Moreover, the details of the algorithm are presented below.

Encoding

To apply a DE-based algorithm for solving FJSSP-CDST as a discrete optimization problem, it is needed to design an appropriate encoding approach with real values to represent a feasible solution. Each solution needs to present the operations scheduling and the machine configuration simultaneously. Hence, we design an encoding method including two parts, which can be represented as a two-dimensional matrix (" ×). The solution matrix has two rows. The first row is related to the machine configuration decisions, and the second row is related to the operations scheduling decisions. The number of columns is equal to the total number of operations (i.e., = ∑ ∈). To better illustrate the encoding scheme, we design a simple instance with two jobs and two machines. The first job needs four operations, and the second job needs two operations. Moreover, each machine has two configurations. Table 1 shows the processing time of the operations on each machine configuration (

). The reconfiguration times for the machines are as follows:

, , = 65, , , = 85, , , = 90 and , , = 120. Fig. 6 shows a random solution (chromosome) of the example. To determine the sequencing of the operations based on the chromosome, the value of the elements associated to the first operation of the jobs should be compared (e.g., ‹ , and ‹ ,OE), where ‹ , refers to the element (,) of the chromosome. The operation with a smaller value is selected, and then, the next operation should be compared with remain operations of other jobs. For example, since ‹ , is smaller than ‹ ,OE (i.e., 0.15 < 0.32), should be selected as the first operation. Thereafter, the next operation of job 1 () should be compared with . Since ‹ , is not smaller than ‹ ,OE (0.51 > 0.32), should be selected as the second operation. The procedure continues until all of the operations be placed on the sequence. Based on this procedure, the final sequence of the example can be extracted as → → → _ → Š → . To select a machine configuration for each operation, the first row of the chromosome and a probability matrix (• y) should be utilized. Each element of the probability matrix (i.e., • y = Ž ̅ Ž) can be calculated as Eq. (43). The probability matrix of the example is presented in Fig. 7. For example, as it presented in Table 1, can be performed on both machineconfigurations = 1, = 1 and = 2, = 1 with processing times 150 and 200, respectively. Hence, we can calculate the associated elements as:

̅ , , , = • OEW ' • OEW + WW ' ' = 0.571 and ̅ , , , = • WW ' • OEW + WW ' '
= 0.429. Therefore, the first configuration of the first machine, which is faster in performing , has more chance to be selected. Based on the presented chromosome in Fig. 6 and the extracted probability matrix in Fig. 7, a machine configuration for each operation can be selected. To do this, the value of each element in the first row of the chromosome should be compared with the cumulative summation of the related column in the probability matrix. For example, should be processed on the first configuration of the machine 1 because of ‹ , ∈ [0, 0.571], and should be processed on the second configuration of the machine 2 because of ‹ , ∈ (0.36, 1]. The resultant schedule of the chromosome is presented in Fig. 8. Makespan of the schedule is equal to 460.

̅ = 1 ∑ 1 ∈ , ∈ ∀ ∈ , ∈ , ≠ 0 (43)

Initialization

The initialization phase starts by random generation of NP chromosomes (i.e., individuals). Each individual should be decoded to evaluate the resultant schedule and extract the makespan. These individuals can be considered as the initial generation (i.e., • = 0). Thereafter, the mutation and crossover operators should be utilized iteratively to search the solution space.

Mutation and crossover

To balance between exploitation and exploration abilities of the algorithm, the generations of DE are divided into two phases. At the first phase (• ≤ • •), to enhance the exploration ability, the mutation strategy rand/1 is utilized alone, where • • is a predefined point to change the searching strategy (i.e., • • = -× • 234 and -∈ [0, 1]). Thereafter, at the second phase (• • < • ≤ • 234), six mutation strategies including rand/1, rand/2, best/2, current-to-best/1, current-to-best/2 and NM-based-rand/3 can be utilized based on a self-adaptive manner. Other useful strategies including rand/2, best/2, current-to-best/1 and current-to-best/2 are respectively as Eqs. (44) -(47): DE/rand/2:

` -x =] T -+ 0. N] T --] T b -O + 0. N] T --] T ™ -O (44)
DE/best/2:

` -x =] š}•› - + 0. N] T --] T -O + 0. N] T b --] T -O (45)
DE/current-to-best/1:

` -x =] -+ 0. N] š}•› - -] -O + 0. N] T --] T -O (46)
DE/current-to-best/2:

` -x =] -+ 0. N] š}•› - -] -O + 0. N] T --] T -O + 0. N] T b --] T -O (47)
where] š}•› is the best solution vector achieved in generation G. Thereafter, based on current individual] -and mutated individual -x , trial individual -x is formed as Eq. (37). Eventually, a greedy approach is done to select between trial vector -x and individual] -. It is worth noting that the feasibility of each mutated individual should be checked. After applying a mutation strategy, the elements in the first row of the mutated individual (chromosome) maybe exceed the admissible range [0, 1]. In such cases, the outlier elements should be corrected to zero if ‹ , < 0, or they should be corrected to one if ‹ , > 1.

Evaluation and selection of the parameters

In each generation of the algorithm, the setting of parameters F and CR as well as the selecting of a mutation strategy of each individual are performed based on a self-adaptive manner, which was introduced by Fan and Yan (2015a). In this approach, the triplex N0 -, ^ -, c -O as a vector of control parameters and mutation strategy (c) is associated with each individual] -. The procedure of adaptation is summarized below.

Self-adaptive control of the parameters F and CR:

For a minimization problem, the gap between each mutated individual and the worst solution in the generation • is calculated by:

∆u -= u 234 -uN` -O ∀ = 1, 2, … , • (48)
where u 234 is the objective function value for the worst mutated individual (i.e., u 234 = max •uN` -O'). The weighted value of each individual (• -) can be calculated by:

• -= ∆u - ∑ ∆u M - 'ž M z (49)
Thereafter, the average value of mutation (0 y Ÿ -) and crossover (ŷyyy Ÿ -) control parameters in each generation are respectively calculated as follows.

0 y Ÿ -= 8 • -× 0 - 'ž z (50) ŷyyy Ÿ -= 8 • -× ^ - 'ž z (51)
Eventually, the mutation and crossover control parameters for the next generation are respectively updated as Eq. (52) and Eq. (53), where N is the normal distribution function, and -is the standard deviation associated with generation G (i.e., -= 0.8 -0.45(1 -(•/• 234))) (Fan and Yan; 2015a).

0 -x = (0 y Ÿ -, -) (52) ^ -x = (ŷyyy Ÿ -, -) (53)
Self-adaptive control of the mutation strategies:

For the first phase of generations, there is only one mutation strategy for each individual (i.e., c -= q r/1 for • ≤ • •)). For the second phase of generations (• • < • ≤ • 234), we need to select a mutation strategy for each individual among six candidate strategies. At generation • • + 1, we create a fair condition for all strategies. Therefore, at this generation, the number of individuals, which are mutated based on each of the six strategies is equal to • 6 ⁄ . Thereafter, the self-adaptive procedure controls the number of mutation strategies which are used by the individuals in each generation; however, the selection of the strategies by each individual is performed randomly.

Due to the strength of the NM-based-rand/3 mutation strategy in performing the exploitation tasks and to avoid local optimums, we consider a more conservative approach to control the number of individuals, which select this mutation strategy. Hence, a set of other five mutation strategies (i.e., ^= D q r/1, q r/2, £•'c/2, ¤ • c -cg -£•'c/ 1, current -to -best/2E) is utilized to explain the formulation. Moreover, ¨•›T -is defined as the set of individuals, which use the mutation strategy 'c ∈ ^ at the generation

G (i.e., ¨•›T -= I S c -= 'c J). Besides, © •›T -represents the number of members of the set ¨•›T - (i.e., © •›T -= |¨• ›T -|).
To determine the number of each mutation strategy, which should be used in the next generation, a trial vector ©̂-is computed as Eq. (54), and eventually, the values of © •›T -x are computed based on Eq. (55).

© « •›T -= round - 5 6 • × ∑ ∆u - ∈¨® ¯°± ∑ ∆u - 'ž z ² ∀ 'c ∈ ^ (54) if © « •›T -< © •›T - otherwise ∀ 'c ∈ ^ (55)
The rest of individuals use the NM-based-rand/3 mutation strategy in the next generation, hence the number of these individuals can be determined by:

© '³<š3•}h -x = • -8 © •›T -x •›T∈´µ ¶ (56)
To self-adaptive control of the parameters of the NM-based mutation strategy, the weighted average of mutation scale factor (0 y Ÿ -) is utilized. Hence, we consider the parameters as { T = { } = 0 y Ÿ -and { = { • = 0 y Ÿ -.

Computational Experiments

The performance of the two proposed formulations of FJSSP-CDST and the proposed solving approach (SADE-NMMS) are tested in this section. Hence, two experiments are conducted to perform the evaluations. In the first experiment, the two proposed formulations are compared, then the performance of SADE-NMMS is compared with the objective values obtained by the MILP models and three different meta-heuristic algorithms. The MILP models are implemented in GAMS 24.1.3 and solved using the solver CPLEX. Moreover, the meta-heuristics are coded on MATLAB 2017. All test instances are performed on a computer with a 2.8 GHz Intel CPU and with 4 GB of installed memory.

Random instance generation

To do the experiments, two sets of random instance problems are generated. The size of each instance problem is dependent to the size of the shop floor, which is related to the number of RMTs (| |) and the total number of machine configurations (∑), as well as the number of jobs (| |) and the total number of operations (∑). For the first set, two experiments are designed. At the first experiment, the MILP models are compared in term of computational complexities. At the second experiment, the best solution obtained by the MILP models in the previous experiment is utilized to validate the meta-heuristic algorithms. Finally, the performance of the meta-heuristics is tested using the second set, which includes some instance problems with larger sizes.

In the first set, we generate 12 small instances (Subset-A) and 16 medium instances (Subset-B). The considered levels are presented in Table 2. To more illustration, a shop floor with seven RMTs and 16 machine configurations (K7C16) is represented in Fig. 9. Also, the data for every one of the different instances includes the processing time of operations (

) and the configuration-dependent setup times (, ,). The processing times are gap of the SB and PB models is 18.07% and 39.09%, respectively. Considering the computational complexity, the SB model outperforms the PB model. In addition to the comparison of two MILP models, Table 5 shows the value of the LBs calculated based on the model presented in Eqs. (27) -(35). Comparing the best bounds achieved by the implementation of the MILP models after 3600 seconds, some better values of LBs are extracted for seven instances (the underlined values in column eight of Table 5).

Generally, the experiments show that at least a value and the estimated best bounds achieved by the MILP models are extracted for the LB of each instance.

Evaluations of the proposed solving approach

To test the performance of SADE-NMMS, three different variants of DE algorithms are considered. These variants contain the classic DE [START_REF] Storn | Differential evolution -A simple and efficient heuristic for global optimization over continuous spaces[END_REF], the DE algorithm with self-adaptive mutation strategy and control parameters (SSCPDE) (Fan and Yan, 2015a), and the hybrid Nelder-Mead simplex search and DE algorithm (NMDE) [START_REF] Wang | Parameter identification of chaotic systems by hybrid Nelder-Mead simplex search and differential evolution algorithm[END_REF]. We utilize SSCPDE and NMDE in our experiments to evaluate the effect of our approach in the hybridization of NM simplex search and self-adaptation strategy on the DE algorithm. Moreover, to have a comparison with other meta-heuristics, we use a selfadaptive Cuckoo Optimization Algorithm (SA-COA), which has recently been developed in the related literature of a flexible job-shop scheduling problem by [START_REF] Sangroudi | Solving a flexible job shop lot sizing problem with shared operations using a self-adaptive COA[END_REF]. Actually, the classic COA was first introduced by Rajabioun (2011) inspired by the immigration and egg laying behavior of Cuckoo, a special kind of bird that lives in the nature. Recently, Abdollahzadeh-Sangroudi and Ranjbar-Bourani (2019) improved it to solve a kind of a flexible job-shop scheduling problem. Because of the existing some similarities between the structures of the habitat encoding used in their problem and the introduced encoding method in this paper, we accommodate the proposed SA-COA to solve the proposed problem as well.

On the other hand, each algorithm has some parameters, which need to be accurately calibrated to guarantee the best performance. To tune the parameters of the DE and NMDE algorithms, we utilize the Taguchi method that is a practical approach for parameter tuning of meta-heuristics used in the literature [START_REF] Akbari-Jafarabadi | A three-level mathematical model for an r-interdiction hierarchical facilities location problem[END_REF][START_REF] Parvasi | A bi-level school bus routing problem with bus stops selection and possibility of demand outsourcing[END_REF][START_REF] Akbari-Jafarabadi | A tri-level r-interdiction median model for a facility location problem under imminent attack[END_REF][START_REF] Sahebjamnia | Sustainable tire closed-loop supply chain network design: Hybrid metaheuristic algorithms for largescale networks[END_REF]. The results are summarized in Table 6. Although the SADE-NMMS and SSCPDE algorithms use a self-adaptive manner to control their parameters, the number of their population (NP) should be adjusted. We test four different levels of NP including 60, 90, 120 and 150 for each algorithm. In this experiment, we consider the medium-sized instances (Subset-B) as the test problems. The analysis of variance (ANOVA) test is used to analyze the results. The means plot and least significant difference (LSD) intervals for different levels of NP are represented in Fig. 10. As can be seen,

• = 120 provides the best results for both algorithms. To determine the value of parameters in the SA-COA, Abdollahzadeh-Sangroudi and Ranjbar-Bourani (2019) proposed an initial value for each parameter, which could be controlled in a self-adaptive manner during the solving approach. Also, we utilize their proposed method in our current paper.

Moreover, we consider a stopping condition based on a CPU time fixed to maxN(∑) × (∑) , 1000O milliseconds for each instance problem when it is solved by each of the algorithms. Run time limitation is an applicable and flexible measure to show the searching strength of the algorithms within a fixed time horizon [START_REF] Roshanaei | A variable neighborhood search for job shop scheduling with set-up times to minimize makespan[END_REF]). Also, in this limit of 3600 seconds, SADE-NMMS obtained a better solution in a reasonable time (e.g., a solution of K3C7Ins05 with 234 = 1733 obtained by SADE-NMMS in 24.4 seconds while the CPLEX obtained a solution with 234 = 2016 in 3600 seconds).

In addition to the SADE-NMMS algorithm, SSCPDE also performs at an acceptable level, and it has the nearest performance to SADE-NMMS. Hence, we utilize the second data set to compare more precisely the performance of the tested algorithms. Also, the performance of the SA-COA is compared in this experiment. The ANOVA test is used to analyze the results in the experiment. As can be seen in Fig 12, the SADE-NMMS outperforms the other algorithms. Among the tested algorithms, the classic DE has the worst performance. This can be referred to the weaknesses of its mutation strategy in the exploitation phase of the searching process.

Sensitivity analysis

A significant observation in our experiments is the impact of reconfiguration ability of the machines on the scheduling decisions. This ability maybe leads to several changes in the configurations of a machine to obtain a feasible schedule. To show this ability, an example is illustrated in Fig. 13. In this Gantt chart, the best resultant schedule of the instance K7C16Ins05 with 234 = 830 obtained by the SADE-NMMS algorithm is presented. In each box, two items are noted (i.e., the job's number and the configuration's number, in which the machine should perform that job). For example, (J5, C2) on the first box of Machine-1 shows that Job-5 should be performed on the second configuration of Machine-1. Besides, Machine-1 performs the first and the second operations of Job-5 on its second configuration. Thereafter, the machine should be reconfigured from the second to the third configuration with setup time (2, 3) = 150 to perform some other operations. As can be seen, some machines need to be reconfigured one or more times in the schedule, and some others need no reconfiguration (e.g., Machine-5).

Regarding the impact of reconfiguration activities and the related setup times on the scheduling decisions, several analyses are done. For this purpose, we change the configuration-dependent setup times of several instances in a predefined range. In these experiments, we define , , }Ÿ = » × , , while » is a constant coefficient. As an example, the trend of changing in makespan and the number of machine reconfigurations are presented in Fig. 14 for 0 ≤ ω ≤ 4. As expected, makespan has a non-decreasing behavior concerning an increase in the setup times, though for the larger instances the behavior is much more non-linear. On the other hand, changing the number of machine reconfigurations is more complex. As can be seen in Fig. 14(b), the diagrams have different trends in response to the variations of the setup times. To improve the searching process, a two-phase mechanism is utilized to balance between exploitation and exploration abilities of the proposed algorithm. In this mechanism, threshold value • • is considered to change the searching policy, where • • = -× • 234 and -∈ [0, 1]. In the first phase for • ≤ • • , we utilize the DE/rand/1 mutation strategy, which is one of the most popular strategies in the literature that bears stronger exploration capabilities [START_REF] Mallipeddi | Differential evolution algorithm with ensemble of parameters and mutation strategies[END_REF]Fan and Yan, 2015a;[START_REF] Fan | Self-adaptive differential evolution algorithm with zoning evolution of control parameters and adaptive mutation strategies[END_REF]. Thereafter, a self-adaptive policy is used to automatically guide the searching process. Now, we aim to evaluate the effectiveness of the two-phase searching strategy. Hence, we design another experiment to show the performance of the SADE-NMMS algorithm with different values of parameter -. In this experiment, the algorithm is used to solve some selected instances of Subset-B for -= 0, 0.2, 0.4 and 1. It is worth noting that the algorithm with -= 0 is a full self-adaptive version. On the other hand, the algorithm with -= 1 can be considered as a classic DE with one mutation strategy. The means plot and Least Significant Difference (LSD) intervals for different levels ofare represented in Fig. 15. As can be seen, -= 0.2 provides the best results for the algorithm. Moreover, it means that the designed two-phase policy has a positive effect on the searching process of the algorithm. Also, Fig. 16 shows the trend of optimization for the proposed algorithm with different values ofon two selected instances from Subset-B.

Conclusions

Reconfigurable machine tools (RMTs) have been developed to benefit from using several different machines that share many costly and common modules while being rarely used at the same time. They could obtain different configurations to satisfy manufacturing requirements. Hence, RMTs have a high potential to obtain both cost-effectiveness and responsiveness as the main objectives of market competition. Considering the complexity of scheduling in production systems, which utilize RMTs, some specialized models and algorithms should be developed. In this paper, the scheduling decisions in a shop-floor with RMTs, named the FJSSP with configuration-dependent setup times have been studied. At first, two different mathematical models with the position-and sequence-based decision variables have been formulated to minimize the completion time of the jobs (i.e., makespan). Moreover, a mathematical formulation has also been developed to calculate the lower bound of makespan. Thereafter, we tried to optimally solve the small-and medium-sized instances using each of the two models and CPLEX solver. The experiments showed that the sequencebased model outperformed the position-based model in all 28 instance problems. However, even the sequence-based model could not to optimally solve most of the medium-size problems (it only optimally solved three instances out of 16). Hence, regarding the computational complexity of the models, we utilized a self-adaptive DE algorithm and enhanced its effectiveness by introducing a new mutation strategy based on a searching approach hired from the Nelder-Mead method. The performance of the proposed method, named SADE-NMMS, and three other variants of the DE algorithm were first validated by comparison with the results of the sequence-based model for small-and medium-sized problems. Thereafter, another data set including larger-sized problems has been utilized to compare more precisely the performance of the tested algorithms. The ANOVA test was used to analyze the results in the experiment. It turned out that the SADE-NMMS outperforms the other algorithms.

For future studies, some of the real-world considerations (e.g., the uncertainty in configuration-dependent setup times or the effect of reliability on different machine configurations) can be discussed in the model. Besides, different machine configurations in addition to the different production rate maybe have different cost or quality to perform the operations. Hence, it will be interesting to develop some multi-objective models in this area. Finally, the proposed mutation strategy based on the Nelder-Mead method has a high potential to be utilized in other variants of the DE algorithm to improve their performance.

CRediT authorship contribution statement

Fig. 1 .

 1 Fig. 1. Four possible configurations in the lathe-mill RMT designed by Aguilar et al. (2013)

 Completion time of operation 234 Maximum completion time (i.e., makespan)

Fig. 2 .Fig. 3 .

 23 Fig. 2. Procedure of the NM-based-rand/3 mutation strategy

Fig. 5 .

 5 Fig. 5. Main flow chart of SADE-NMMS

Fig. 6 .

 6 Fig. 6. Random solution (chromosome) for the example

Fig. 7 .

 7 Fig. 7. Probability matrix (• y) for machine-configuration selection

Fig. 8 .

 8 Fig. 8. Resultant schedule of the chromosome

Fig. 11 .

 11 Fig. 11. Minimum and mean RPD values of different algorithms over 20 independent runs on 28 test instance problems of the first data set.

Fig. 12 .

 12 Fig. 12. Means plot and LSD intervals (at the 95% confidence level) for the tested algorithms on 90 instance problems of the second data set.

Fig. 13 .

 13 Fig. 13. Best resultant schedule of K7C16Ins05 with 234 = 830 obtained by the SADE-NMMS algorithm.

Fig. 14 .

 14 Fig. 14. Trend of changing in makespan and the number of machine reconfigurations based on variations in the setup times

Fig. 15 .

 15 Fig. 15. Means plot and LSD intervals (at the 95% confidence level) for different values ofin algorithm SADE-NMMS.

Fig. 16 .

 16 Fig. 16. Effect of parameteron the searching process of the algorithm SADE-NMMS

Mehdi Mahmoodjanloo :

 Mahmoodjanloo Conceptualization, Writing -original draft, Software. Reza Tavakkoli-Moghaddam: Methodology, Supervision, Writing -review & editing. Armand

Table 1 .

 1 Processing times of the example

	Machine Configuration		Job 1		Job 2
	1	1	150	_	Š	140
		2		80	140	120
	2	1	200	160		80
		2		90		90

Table 4 .

 4 Comparison of the position-and sequence-based models

		Problem size		#Constraints	#Binary variables
	| | 2	∑ 5	| | 3	∑ 10	SBM 2'414	PBM 654	SBM 140	PBM 584
	2	5	3	20	10'024	2'339	480	2'374
	3	7	3	20	13'104	3'068	520	3'098
	3	7	10	51	87'170	17'773	2'907	19'795
	7	16	3	20	29'244	6'977	700	7'052
	7	16	10	51	194'729 40'221	3'366	44'317

Table 5 .

 5 Results of the position-and sequence-based models

					PB model		SB model		LB
	#Instance K2C4Ins01	| | ∑ 2 8	234 305*	Time (sec)/ opt. gap (%), Best bound 0.515	234 305*	Time (sec)/ opt. gap (%), Best bound 0.218	234 277	Time (sec) 0.14
	K2C4Ins02	2	15	620*	136.046	620*	1	537	0.047
	K2C4Ins03	3	10	532*	7.5	532*	0.578	365	0.078
	K2C4Ins04	3	20	866	11.16%, 769	860*	14.765	659	0.093
	K2C5Ins01	2	8	555*	0.562	555*	0.234	311	0.094
	K2C5Ins02	2	15	908*	681.108	908*	0.688	555	0.188
	K2C5Ins03	3	10	531*	3.812	531*	0.625	403	0.063
	K2C5Ins04	3	20	958	18.4%, 781	872*	13.578	652	0.109
	K2C6Ins01	2	8	585*	1.282	585*	0.281	392	0.032
	K2C6Ins02	2	15	1000*	160.47	1000* 0.703	530	0.062
	K2C6Ins03	3	10	496*	10.343	496*	0.672	356	0.125
	K2C6Ins04	3	20	1226	19%, 993	1155* 25.25	734	0.156
	K3C7Ins01	3	20	613	28.22%, 467	559*	15.937	436	0.078
	K3C7Ins02	4	30	1035	40.77%, 613	900	27.97%, 648	658	0.156
	K3C7Ins03	5	29	1182	59.73%, 476	762	32.92%, 511	598	0.094
	K3C7Ins04	6	47	3098	78.44%, 668	1379	49.56%, 695	994	0.214
	K3C7Ins05	7	59	5678	88.96%, 627	2016	67.61%, 653	1200 0.203
	K3C7Ins06	8	61	5821	88.56%, 666	1978	64.18%, 708	1302 0.328
	K3C7Ins07	9	71	8512	92.2%, 664	2203	68.5%, 694	1515 0.329
	K3C7Ins08	10 51	3823	85.87%, 540	1566	61.24%, 607	1115 0.203
	K7C16Ins01 3	20	436*	201.922	436*	5.109	436	0.047
	K7C16Ins02 4	30	997	38.52%, 613	613*	65.203	613	0.141
	K7C16Ins03 5	29	476*	2925.78	476*	55.954	476	0.078
	K7C16Ins04 6	47	3340	80%, 668	725	7.86%, 668	668	0.094
	K7C16Ins05 7	59	6654	90.58%, 627	933	32.8%, 627	627	0.313
	K7C16Ins06 8	61	7241	90.8%, 666	921	27.69%, 666	666	0.297
	K7C16Ins07 9	71	8603	92.28%, 664	1136	41.55%, 664	664	10.922
	K7C16Ins08 10 51	5545	91.13%, 492	711	24.05%, 540	540	0.125
	* Optimum value							

Table 7 .

 7 Computational comparison of the algorithms on small and medium instance problems of the first data set.

	#Ins. K2C4Ins01	MILP(SBM) 234 305*	Min 305	SADE-NMMS Ave. 305 0.0 St. Dev.	Min 397	DE Ave. 424.3 14.7 St. Dev.	Min 307	SSCPDE Ave. 341.7	St. Dev. 15.7	Min 338	NMDE Ave. 378.4 24.9 St. Dev.
	K2C4Ins02	620*	620	637.8	27.6	821	888.5 48.2	627	693.8	49.7	691	791.1 60.9
	K2C4Ins03	532*	532	532	0.0	695	741.6 35.2	542	588.4	26.7	595	664.4 43.2
	K2C4Ins04	860*	861	913.5	41.2	1138 1268	86.8	861	1000	65.8	987	1131	100.5
	K2C5Ins01	555*	555	555	0.0	731	764.9 25.1	572	615.7	27.1	620	693.1 49.0
	K2C5Ins02	908*	908	908	0.0	1197 1276	42.5	911	992.3	51.5	1013 1108	73.8
	K2C5Ins03	531*	531	538.5	21.7	694	745.6 37.7	537	582.6	35.1	597	680.5 51.9
	K2C5Ins04	872*	872	921.9	24.0	1205 1280	52.7	903	1020	55.8	969	1146	65.4
	K2C6Ins01	585*	585	585	0.0	762	824.5 28	589	637.7	29.5	651	734.5 57.1
	K2C6Ins02	1000*	1000 1000	0.0	1302 1388	67	1019	1130	54.9	1119 1271	77.3
	K2C6Ins03	496*	496	497.8	5.4	653	693.7 31.9	496	547	28.5	547	601.9 43.5
	K2C6Ins04	1155*	1155 1186	10.1	1513 1640	61.8	1186	1284	82.9	1317 1522	116.3
	K3C7Ins01	559*	559	605.6	25.2	777	835.8 44.4	601	664.9	38.9	669	762.9 55.5
	K3C7Ins02	900	942	985.1	36.7	1244 1378	73.3	964	1085	74.6	1066 1237	110.8
	K3C7Ins03	762	756	809.1	27.4	1003 1120	58.1	794	881.6	58.3	867	1012	88.9
	K3C7Ins04	1379	1393	1531	74.6	1964 2183	164.2	1411	1660	118.6	1720 1901	113.5
	K3C7Ins05	2016	1733 1887	88.1	2363 2773	251.6	1786 2040	152.0	1971 2355	214.0
	K3C7Ins06	1978	1808 1942	85.5	2438 2797	241	1874 2141	126.7	1996 2401	218.9
	K3C7Ins07	2203	2087 2293	123.0	2856 3415	281.1	2209	2544x 170.6	2403 2895	263.9
	K3C7Ins08	1566	1376 1533	73.8	1889 2162	129.3	1524 1684	105.9	1620 1885	191.2
	K7C16Ins01 436*	436	446	9.4	571	613.9 26.5	447	490.3	28.8	491	564.7 32.5
	K7C16Ins02 613*	622	641.6	9.5	838	903.6 37.4	647	710.4	38.7	736	805.3 45.9
	K7C16Ins03 476*	476	487.6	8.6	631	680	35.6	490	536.9	28.9	551	612.5 37.5
	K7C16Ins04 725	717	796.2	32.5	971	1133	68	786	885	57.0	832	970.9 81.3
	K7C16Ins05 933	830	895.7 26.7	1138 1262	60.6	846	972.3	47.6	978	1127	85.0
	K7C16Ins06 921	896	925.1	20.8	1199 1306	65.4	921	1013	50.7	1041 1143	73.2
	K7C16Ins07 1136	940	1021	54.1	1261 1513	134.1	1018 1136	72.4	1110 1271	119.1
	K7C16Ins08 711	645	693.5 25.7	892	975.5 44.4	646	749.4	46.9	737	863	74.4

Acknowledgments

The authors would like to thank the Editor-in-Chief, Associate Editor and anonymous reviewers for their valuable comments on this paper for the improvements.

generated based on a uniform distribution between 40 and 100, and the setup times are generated based on a uniform distribution between 75 and 150. In the second set, we considered three different levels for the number of facilities in the shop floor. Thereafter, in each level, 30 random instance problems are generated. Thus, there are 90 large instances in the second set.

Models evaluation

In this section, two proposed MILP models are compared based on computational complexities and size, as two frequently used performance measures [START_REF] Naderi | Modeling and heuristics for scheduling of distributed job shops[END_REF]. Table 4 represents the number of constraints and binary variables of different instance sizes. The position-based model needs fewer constraints than the sequence-based model, but it needs more binary variables. Both the number of constraints and binary variables are effective on the computational complexity. Hence, to compare the computational complexity of the proposed models, 28 instances, including 12 small instances (Subset-A) and 16 medium instances (Subset-B), are solved with a maximum time limit of 3600 seconds using CPLEX solver in GAMS 24.1.3 software. The results are presented in Table 5. The SB model optimally solves all 12 small instances, while the PB model solves nine of them. Indeed, the PB model cannot even optimally solve the small instances with 20 operations. Out of 16 instances with a medium size in the Subset-B, the SB and PB models optimally solve only four and two instances, respectively. Moreover, the average optimality research to compare the algorithms, we use the relative percentage deviation (RPD) as a common performance measure [START_REF] Mahmoodjanloo | A tri-level covering fortification model for facility protection against disturbance in r-interdiction median problem[END_REF][START_REF] Fathollahi-Fard | Novel modifications of social engineering optimizer to solve a truck scheduling problem in a cross-docking system[END_REF]. It can be calculated by:

where ¸!¹ is makespan of an instance obtained for a given algorithm, and is the best makespan obtained for each instance. To evaluate the general performance of the four abovementioned algorithms, we use the first data set and compare the results with the objective values obtained by the sequencebased model (SBM). In this experiment, each instance problem is solved 20 times by each of the four algorithms. The results (including the best-obtained makespan, the mean value, and the standard deviation of each instance problem) are presented in Table 7. We bold the values, which are equal or less than the values obtained by the SBM.

To better understand the performance of algorithms, the minimum and mean RPD values of the objective functions are separately represented in Fig 11 . As can be seen, SADE-NMMS performs the best among the four algorithms. Among the 16 instances, whose optimum makespan is obtained by solving the SB model, SADE-NMMS can obtain the optimum solutions in 14 instances. Moreover, in ten items out of the rest of the instances, including 12 instance problems, which the CPLEX solver cannot obtain the optimum solution in a time Baboli: Project administration, Resources, Visualization. Ali Bozorgi-Amiri: Data curation, Validation.