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Introduction

This work is mainly devoted to the approximation of a class of weakly singular kernels. These kernels are functions of the time variable t and are computed by solving an auxiliary heat equation set on some 2D-domain: K(t) = Ω V (t, x)dx where V is the solution of a heat equation. Here, weakly singular is meant in the sense of the W 1,1 norm, and more precisely means that the first derivative of the kernel is of order -1/2 ∈] -1, 0[ near t = 0. Such kernels appear in different contexts as convolution kernels in effective equations resulting from asymptotic processes. Because of the singularity at t = 0, one has to pay particular attention to the approximation of the kernels for small values of t when computing numerical solutions. So, the main purpose of the present paper is to examine this point in detail and to design accurate approximations of the kernel. This work is originally motivated by a model obtained by Panasenko and Pileckas [START_REF] Panasenko | Flows in a tube structure: equation on the graph[END_REF][START_REF] Panasenko | Asymptotic analysis of the non-steady Navier-Stokes equations in a tube structure[END_REF] as the limit of nonsteady Navier-Stokes equations in a tube structure, by letting the diameters of the tubes tend to zero, with appropriate scaling of the data. The aim in [START_REF] Panasenko | Flows in a tube structure: equation on the graph[END_REF][START_REF] Panasenko | Asymptotic analysis of the non-steady Navier-Stokes equations in a tube structure[END_REF] was notably the modeling of microfluid and flows in blood vessels. The geometry of a blood vessel network is complex, so it is essential to reduce the dimensionality. The resulting effective model is a problem set on a connected 1D-graph which consists of nonlocal in time diffusion equations on each edge, that are connected with appropriate (Kirchhoff) junctions conditions at the inner vertices. Suitable numerical schemes for this reduced model are proposed and studied in the first part [START_REF] Canon | Numerical solution of the viscous flows in a network of thin tubes: equations on the graph[END_REF] of our work. In particular, the key role of the approximation of the convolution (with respect to time) kernels is highlighted in [START_REF] Canon | Numerical solution of the viscous flows in a network of thin tubes: equations on the graph[END_REF]: the error on the kernel is the more limiting factor. In this model, one kernel is associated with each tube of the initial structure, where the corresponding heat equation is set on a normalized cross-section of the tube. So a second purpose of the present paper is to relate our results to the error estimates in [START_REF] Canon | Numerical solution of the viscous flows in a network of thin tubes: equations on the graph[END_REF]. Let us also mention that such kernels appear in other exciting contexts, for example: double porosity like models, with a convolution in the time derivative of a parabolic equation (see, for instance, [START_REF] Arbogast | Analysis of the simulation of single phase flow through a naturally fractured reservoir[END_REF][START_REF] Alboin | A comparison of methods for calculating the matrix block source term in a double porosity model for contaminant transport[END_REF][START_REF] Slodicka | Numerical solution of a parabolic equation with a weakly singular positive-type memory term[END_REF][START_REF] Peszynska | Finite element approximation of diffusion equations with convolution terms[END_REF][START_REF] Peszynska | Flow and transport when scales are not separated: Numerical analysis and simulations of micro-and macro-models[END_REF]); in the diffusion term of a parabolic equation arising in viscoelasticity or materials with memory (see, for instance, [START_REF] Mclean | Numerical solution of an evolution equation with a positivetype memory term[END_REF][START_REF] Harris | Uniform l 1 behavior of a time discretization method for a Volterra integrodifferential equation with convex kernel; stability[END_REF][START_REF] Mclean | Numerical solution via Laplace transforms of a fractional order evolution equation[END_REF]). In this paper, we investigate the properties of the kernels in two main directions. The first direction is theoretical: we prove that, at least for a C ∞ -smooth domain, the associated kernel admits an asymptotic expansion at t = 0 at any order. The paper by Gie, Jung and Temam [START_REF] Gung-Min Gie | Recent progresses in boundary layer theory[END_REF] on boundary layers theory for the heat equation (when the diffusion coefficient tends to 0) is crucial for proving this theorem. Besides, an independent computation of such an asymptotic expansion for a disk allows us, by comparison, to identify explicitly the first five terms of this expansion, only in terms of universal constants and of the geometry of the domain. This is our first main result: Theorem 1. We also give asymptotic expansions (with exponential convergence) for rectangular and triangular domains. The second direction is numerical. We propose a scheme with several variants for solving the auxiliary heat equation associated with a given kernel. Since the initial condition does not satisfy the Dirichlet boundary condition, the kernel is singular. We show convergence of the associated approximate kernels in some continuous or discrete W 1,1 norm, as needed for the convergence theorems proved in [START_REF] Canon | Numerical solution of the viscous flows in a network of thin tubes: equations on the graph[END_REF]. It is the subject of Theorem 2, 3 and 6. In particular, in Theorem 3, we use the asymptotic expansions obtained in Theorem 1 (or in Propositions 3,[START_REF] Canon | Numerical solution of the viscous flows in a network of thin tubes: equations on the graph[END_REF] to improve the kernel approximation for small times, and consequently, improve the overall approximation. Numerical experiments are provided in the last section of the paper to validate and illustrate the theoretical results. The use of a corrected scheme improves the order of W 1,1 -convergence from 1/3 to 10/9 theoretically (from Theorem 2 to Theorem 3). Numerically, we observe an improvement from 1/2 to ca. 0.7 (schemes of order 1) or ca. 1.25 (schemes of order 2), and the computational time does not change. To our knowledge, the results on the asymptotic expansions and its use in the scheme are new. However, let us mention that an explicit two terms asymptotic approximation was already used in [START_REF] Alboin | A comparison of methods for calculating the matrix block source term in a double porosity model for contaminant transport[END_REF] for a rectangle, and in [START_REF] Giusti | On infinite series concerning zeros of Bessel functions of the first kind[END_REF] for a disc. Regarding the novelty of the numerical method, the discretization of the well-known heat equation has been studied intensively since the sixties [START_REF] Thomée | Galerkin finite element methods for parabolic problems[END_REF]. As often for linear problems, the main challenge is the approximation near the boundaries, either in time or in space. In the finite element setting, the accuracy is limited by the fact that the boundary of the domain is poorly approximated by the boundary of the mesh. Here we chose to use the Nitsche method [START_REF] Nitsche | Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind[END_REF], i.e. the Dirichlet boundary condition is replaced by an accurately computed penalization term. Other solutions include mesh refinement near the boundary (see e.g. [START_REF] Zhang | A fourth-order accurate finite-volume method with structured adaptive mesh refinement for solving the advection-diffusion equation[END_REF]), isoparametric finite element [START_REF] Lenoir | Optimal isoparametric finite elements and error estimates for domains involving curved boundaries[END_REF] where the mesh is curved like the domain, adding suitable functions [START_REF] Moës | Imposing Dirichlet boundary conditions in the extended finite element method[END_REF][START_REF] Melenk | The partition of unity finite element method: Basic theory and applications[END_REF] to the finite element basis like partition units or boundary elements. Because of the incompatibility between the initial data and the boundary conditions, the solution is not smooth at initial time but the solution get smoother at later times. This smoothing effect enables to consider schemes where convergence rate is improved as the time goes on. The roughness at initial time is a limiting factor when time discretization is considered [START_REF] Luskin | On the smoothing property of the Crank-Nicolson scheme[END_REF]. Several remedies have been considered:

• time step refinement near initial time [START_REF] Becker | A second order backward difference method with variable steps for a parabolic problem[END_REF][START_REF] Mclean | Numerical solution of an evolution equation with a positivetype memory term[END_REF] • Penalization in time such as in [START_REF] Chen | Treatment of incompatible initial and boundary data for parabolic equations in higher dimension[END_REF].

• subtraction of singular terms terms to get smooth data. See for example [START_REF] Flyer | Accurate numerical resolution of transients in initialboundary value problems for the heat equation[END_REF] in the 1D case where the smooth residual is computed

Pade approximants [START_REF] Wade | On smoothing of the crank-nicolson scheme and higher order schemes for pricing barrier options[END_REF], Chebyshev polynomials [START_REF] Martín-Vaquero | Stabilized explicit Runge-Kutta methods for multi-asset American options[END_REF], Laplace transform [START_REF] Mclean | Numerical solution via Laplace transforms of a fractional order evolution equation[END_REF] have also been used.

Here we develop another approach, that is, the truncation of the numerical solution for values of time which are smaller than a suitably chosen bound, and its replacement with the asymptotic expansion.

Another novelty lies in the error estimate. For the targeted application, we need accuracy on the time derivative of the solution. Semi-discretization in space [START_REF] Thomée | Galerkin finite element methods for parabolic problems[END_REF][START_REF] Johnson | Error estimates for spatially discrete approximations of semilinear parabolic equations with nonsmooth initial data[END_REF] has been proved to yield convergence for the derivative, and to the best of our knowledge, this has not been done earlier for the fully discretized problem.

Outline This paper is organized as follows.

In Section 2, we present the first main result of this paper, Theorem 1: the existence of asymptotic expansions at any order, for infinitely smooth domains, as stated in Section 2.1. This is proven in several steps. The first step consists in proving the existence of such expansions for a primitive of a kernel. It is done using results in [START_REF] Gung-Min Gie | Recent progresses in boundary layer theory[END_REF] for well-prepared problems. As ( 2) is not well-prepared in the sense of [START_REF] Gung-Min Gie | Recent progresses in boundary layer theory[END_REF], this is done for a primitive of V which solves a well-prepared heat equation. It is done in Appendix A. In Section A.3, we prove that these expansions can be differentiated term by term. In Section A.1, we give an explicit formula for the case of a disk, form which the first terms of the asymptotic expansion can computed This is then used in Appendix A.4 to identify some universal constants and thus express the first five terms of the general asymptotic expansions in terms of the geometry of the domain and so finish the proof of Theorem 1. We end this first part with Section 2.2 by computing asymptotic expansions for rectangles and equilateral triangles, to illustrate that asymptotic expansions are of a different nature for non smooth domains. Note that in [START_REF] Gung-Min Gie | Singular perturbations and boundary layers[END_REF][START_REF] Gung-Min Gie | Recent progresses in boundary layer theory[END_REF], the authors also consider ill-prepared heat equation (that is with incompatible initial and Dirichlet boundary data). But in our proofs, we use many intermediate results and computations that are not explicitly presented in [START_REF] Gung-Min Gie | Singular perturbations and boundary layers[END_REF][START_REF] Gung-Min Gie | Recent progresses in boundary layer theory[END_REF] for the general case. For that reason, for the sake of clarity, we use their results in the case of well-prepared data. Section 3 is devoted to the design of schemes approximating the kernels, and to convergence proofs. The Dirichlet-Laplace operator is discretized with standard finite elements, with or without Nitsche conditions. In Subsection 3.3, we obtain a first set of estimates for a semi-discrete scheme. In Subsection 3.4, full discretization is considered in a quite general setting, and further a priori estimates are obtained. Error estimates are provided, with convergence rates in Subsection 3.5. In Subsection 3.6, a correction for small times is proposed which leads to a better convergence rate. Applications to the above mentioned problem on the graph are presented in Section 4. In Subsection 4.2, we relate the convergence results of Section 3 with the theorems of [START_REF] Canon | Numerical solution of the viscous flows in a network of thin tubes: equations on the graph[END_REF]. Finally, Section 5 is devoted to a summary of the algorithm and to the presentation of numerical experiments.

2 Asymptotic expansion of the kernel for small times

Main result : asymptotic expansion for smooth domains

Let Ω be a bounded domain in R 2 . We consider kernels of the form:

K(t) = Ω V (x, t)dx, (1) 
where V is the unique solution of following heat equation:

     ∂ t V -△V = 0 on Ω × R + * , V = 0 on ∂Ω × R + * , V = 1 on Ω × {0}. (2) 
Let (λ k ) k∈N be the eigenvalues of the Dirichlet-Laplace operator on Ω, and (w k ) k∈N an associated orthonormal Hilbert basis of L 2 (Ω). Let us consider the expansion of the initial condition with respect to this basis:

1 = +∞ k=0 a k w k, , a k = ⟨w k , 1⟩,
where ⟨ , ⟩ stands for the inner product in

L 2 (Ω). The solution of (2) is V (x, t) = +∞ k=0
a k e -λ k t w k (x), so that:

K(t) = +∞ k=0 a 2 k e -λ k t , a k = ⟨w k , 1⟩. (3) 
Note that:

∀ℓ ∈ N, K (ℓ) (t) = +∞ k=0 a 2 k (-λ k ) ℓ e -λ k t , (4) 
so that the following proposition holds true.

Proposition 1

The kernel K and its derivatives are monotonic, non increasing if ℓ is odd, non decreasing if not, and satisfy the following relation:

lim +∞ K (ℓ) = 0.
An important case is when the domain is a disk. Here, one can give an expression of K involving zeros of the 0 th Bessel function, which enables to give an asymptotic expansion close to zeros. More precisely, we have the following result.

Proposition 2 Assume Ω = x ∈ R 2 ; ∥x∥ 2 < 1 .

(i) For t ≥ 0, the kernel K is given by: K

(t) = 4π +∞ k=1 1 µ 2 k e -µ 2 k t
where the (µ k ) k∈N * are the zeros of the 0 th Bessel function;

(ii) For t ⩾ 0, K(t) = π -4 √ πt + πt + √ π 3 t 3/2 + π 8 t 2 + o t→0 + t 2 .
The proof is given in Appendix A.1. It uses an explicit expression of the Laplace transform.

We now state the first main result of this article, which generalizes this asymptotic expansion close to t = 0 + for smooth domains.

Theorem 1 Let Ω be a C ∞ -smooth simply connected domain and K be the kernel as defined above by [START_REF] Alboin | A comparison of methods for calculating the matrix block source term in a double porosity model for contaminant transport[END_REF]. Then, there exists (c j ) j∈ 1 2 N such that:

∀n ∈ N, ∀t ⩾ 0, K(t) = n r=0 c r/2 t r/2 + O t→0 + (t (n+1)/2 )
where

c 0 = S; c 1/2 = - 2 √ π L; c 1 = π; c 3/2 = 1 6 √ π L 0 κ(s) 2 ds; c 2 = 1 16 L 0 κ(s) 3 ds.
Here, S designates the area of Ω, L the length of ∂Ω, and κ : [0, L] → R is the curvature of ∂Ω as defined in Equation (33) page 34.

The proof of this theorem is rather long and is given in Appendix A. It is based on the boundary layer theory for the heat equation as exposed in Gie Jung Temam [START_REF] Gung-Min Gie | Singular perturbations and boundary layers[END_REF][START_REF] Gung-Min Gie | Recent progresses in boundary layer theory[END_REF], which enables to compute an asymptotic expansion of the primitive in time of V . The proof relies on a change of variable close to the boundary of the domain. Instead of standard cartesian variables, the distance to the boundary and the arclength parameter of the projection on the boundary are used. Remarks (i) In the case of a non simply connected domain, the coefficient c 1 becomes (1 -k) π, where k designates the number of holes. In the same spirit, the coefficients c 3/2 and c 2 have to be replaced by the sum of the corresponding terms for each hole. This will become clear in the proof.

(ii) The assumption of regularity for Ω is essential. In the case of non smooth domains, the situation is possibly quite different. See the examples in Section 2.2.

(iii) Note that there exist similar results for the trace of e t∆ conjectured in the seminal work "Can one hear the shape of drum" by Kac [START_REF] Kac | Can one hear the shape of a drum?[END_REF] and proved in Mac Kean Singer [START_REF] Henry P Mckean | Curvature and the eigenvalues of the Laplacian[END_REF].

Non smooth domain examples

We end this part by computing asymptotic expansions for rectangular and equilateral triangle domains, which are non smooth domains, for which the asymptotic expansions take a different form.

Case of a rectangular domain

If the open set Ω is the finite interval ]0, 1[ or any rectangle ]0, a[×]0, b[ (a, b ∈ R * + ), the eigenfunctions and eigenvalues of the Dirichlet-Laplace operator can be computed explicitly. For ω =]0, 1[, the eigenfunctions are w k : x → √ 2 sin(πkx) with associated eigenvalues π 2 k 2 , k ∈ N * . Thus,

a k = 1 0 w k (x)dx = √ 2 kπ 1 -(-1) k
so that the corresponding kernel K 1 is given by:

∀t ⩾ 0, K 1 (t) = 8 +∞ k=0 1 (2k + 1) 2 π 2 e -π 2 (2k+1) 2 t = 4 +∞ k=-∞ 1 (2k + 1) 2 π 2 e -π 2 (2k+1) 2 t ,
and that

∀t > 0, K ′ 1 (t) = -4 +∞ k=-∞ e -π 2 (2k+1) 2 t .
By applying Poisson summation formula to the function u → 2e -π 2 (2u+1) 2 t , we deduce that

∀t > 0, K ′ 1 (t) = - 2 √ πt +∞ k=-∞ exp iπk - k 2 4t = - 2 √ πt - 4 √ πt ∞ k=1 (-1) k exp - k 2 4t . (5) 
Hence, for any ε > 0,

K ′ 1 (t) = -2 √ πt + O t→0 + e -1/(4+ε)t .
By integrating, we obtain:

K 1 (t) = 1 -4 t π + O t→0 + e -1/(4+ε)t .
Remark By noting that K ′ 1 (t) = -4e -π 2 t θ (2πti, 4πti) where θ stands for the Jacobi θ-function, one could also state directly (5) by invoking the appropriate Jacobi identity. Now, for Ω =]0, a[×]0, b[, by separation of variables, one can easily deduce:

K(t) = abK 1 (a -2 t)K 1 (b -2 t). Proposition 3 ∀t ⩾ 0, ∀ε > 0, K(t) = ab - 4 (a + b) √ π √ t + 16 π t + O t→0 + e -1/(4+ε)t .

Case of an equilateral triangular domain

In this section, we consider the special case where Ω is the interior of the (equilateral) triangle with vertices (0, 0), (1, 0), 1/2, √ 3/2 . We prove the following result:

Proposition 4 (i) ∀t > 0, K ′ (t) = - 3 √ πt + 4 √ 3 - 6 √ πt +∞ k=1 exp - 3k 2 16t ; (ii) ∀t ⩾ 0, ∀ε > 0, K(t) = √ 3 4 -6 t π + 4 √ 3 t + O t→0 + exp - 3 16t + ε .
3 Accurate approximations of the kernels

The kernels K as defined above are approximated by using a discretization of ( 1)-( 2), or by combining this discretization with the asymptotics obtained in Theorem 1. In the latter case, better convergence rates are obtained and observed, as illustrated by the numerical simulations of Section 5.

All along this section, we will assume that :

(H 1 ) ∀t ∈ R + , 0 ≤ K(0) -K(t) ≤ Ct 1/2 .
We know from Theorem 1 that this assumption holds for C ∞ -smooth domains Ω, and from Propositions 3 and 4 that it also holds true for rectangular and triangular domains.

The plan of the section is as follows. We first set some notations and state facts about finite space elements and about the discretization of the initial condition. This is the aim of Subsections 3.1 and 3.2. We then present a semi-discrete version of (2), define a corresponding approximate kernel K h and prove estimates on the error for the approximation K ≃ K h in the W 1,1 (0, T )-norm for any T > 0. This is done in Subsection 3.3, Proposition 5. Subsection 3.4 is devoted to the full discretization of (2). We introduce there a general framework for the time discretization, which includes Implicit Euler method and the second order Backward Difference Formula (BDF2) that we use in the numerical simulation. Then, we define a corresponding approximate kernel K h,k and prove estimates for the error on the approximation K h ≃ K h,k in the W 1,1 -norm away from t = 0: Proposition 6. In the last two Subsections 3.5 and 3.6 using the preceding results, we prove convergence in W 1,1 (0, T ), with rates of convergence, both for schemes without corrections for small times (Theorem 2) and for schemes using the asymptotic for small times (Theorem 3). As a matter of fact, in this last case, the estimate is with some discrete W 1,1 -norm. All along this section C designates any arbitrary positive constant (which does not depend on the parameters of discretization h and k) so the value of C may change from one line to the other, although the same generic letter C is used.

Finite space elements

Let (S h ) h>0 denotes a family of spaces of discretization, (T h ) h>0 , T h : L 2 (Ω) → S h ⊂ L 2 (Ω), an associated family of approximations of -∆ -1 (the opposite of the inverse of the Dirichlet-Laplace operator). For each T h we assume that:

H 2 T h is self-adjoint, positive semidefinite on L 2 (Ω) and positive definite on S h ; H 3 there exists r ≥ 2 such that:

∀s ∈ [2, r], ∀f ∈ H s-2 (Ω), ∥(T h + ∆ -1 )f ∥ L 2 ≤ Ch s ∥f ∥ H s-2 .
Example of finite element methods satisfying these conditions are described in Thomée's book [START_REF] Thomée | Galerkin finite element methods for parabolic problems[END_REF] (most notably, P r-1 -elements over quasi-uniform triangulations, with boundary conditions dealt with Nitsche method when r > 2).

Approximation of the initial condition

In Equation ( 2), the approximation V 0 h of V 0 := 1 is defined as the L 2 -orthogonal projection of V 0 on S h . When Nitsche method is used V 0 h = V 0 = 1. When considering P k -elements on a given triangulation T h satisfying the homogeneous Dirichlet condition (S h ⊂ H 1 0 (Ω)), V 0 / ∈ S h . In that case the following error estimate holds for V 0 h :

∥V 0 -V 0 h ∥ L 2 = O(h 1/2 ). (6) 
Indeed, consider U ∈ S h such that U is affine on each triangle of T h , constant equal to 1 at the vertices inside Ω, and equal to 0 at the vertices on ∂Ω. Then:

Ω I {0≤U <1} (x) dx = O(h), so that Ω (1 -U ) 2 (x)dx = O(h), ∥1 -U ∥ L 2 = O(h 1/2 ). But as V 0 h is the best approximation of 1 in the L 2 -norm: Ω (1 -V 0 h ) 2 (x) dx ≤ Ω (1 -U ) 2 (x) dx so that, using that V h 0 and 1 -V h 0 are orthogonal: Ω 1 -V 0 h (x) dx = Ω (1 -V 0 h ) 2 (x) dx = O(h) (7) 
which is the announced result.

Space discretization

In this section we present a semi-discretization (with respect to the space variable) for ( 2), and show a priori estimates in W 1,1 (0, T ) for the associated approximate kernel K h . Let us introduce the following semi-discrete approximation of V :

V h (t) = e -tA h V 0 h , A h = T -1 h . (8) 
As V 0 ∈ L 2 (Ω), according to Theorem 3.4 p.46 in [START_REF] Thomée | Galerkin finite element methods for parabolic problems[END_REF], with the assumptions (H 2 )-(H 3 ), we have, for C ∞ -smooth Ω (weaker regularity could be enough):

∥ (V -V h ) (t) ∥ L 2 ≤ Ch r t -r 2 , ∥∂ t (V -V h ) (t) ∥ L 2 ≤ Ch r t -r 2 -1 . (9) 
Let us define K h by letting

K h (t) = Ω V h (x, t)dx. (10) 
From ( 9) we get the following estimates.

Proposition 5 Assume that assumptions (H 1 )-(H 3 ) hold. Then, for any t, T ∈ R + * , τ ∈]0, T ]:

|K -K h | (t) ≤ Ch r t -r/2 , T τ |K ′ h -K ′ |(t)dt ≤ Ch r τ -r/2 , T 0 |K ′ -K ′ h |(t)dt ≤ Ch r r+1 ,
where C does not depend on k, h and S h .

Remark With [START_REF] Gung-Min Gie | Singular perturbations and boundary layers[END_REF] and the third inequality, we have an estimate in the W 1,1 -norm:

∥K -K h ∥ W 1,1 (0,T ) .
Proof The first estimate is obtained by integrating (9) 1 over Ω. Let us prove the second one. Let λ h,1 , . . . , λ h,N h denote the eigenvalues of A h arranged in ascending order, and w h,1 , . . . , w h,N h denote the corresponding eigenfunctions, normalized with respect to the L 2 -norm. As T h is self-adjoint, we choose an orthonormal system of eigenfunctions. Let a h,j = ⟨w h,j , V 0 h ⟩ = ⟨w h,j , 1⟩ (the last equality holds because V 0 h is the orthogonal projection of 1), then:

V 0 h = N h j=1 a h,j w h,j , (11) 
V h (t) = N h j=1 a h,j e -λ h,j t w h,j , (12) 
K h (t) = N h j=1 a 2 h,j e -λ h,j t . (13) 
Let T ∈ R + * . Using the second inequality in (9) we get;

∀τ ∈]0, T ], T τ |K ′ h -K ′ |(t)dt = T τ Ω ∂ t (V h -V )(x, t)dx dt ≤ Ch r T τ t -r/2-1 dt ≤ Ch r +∞ τ t -r/2-1 dt ≤ Ch r τ -r/2 .
This is the second inequality of the proposition. As -K ′ and -K ′ h are nonnegative and decreasing, then:

∀τ ∈]0, T ], T 0 |K ′ h -K ′ |(t)dt = τ 0 |K ′ h -K ′ |(t)dt + T τ |K ′ h -K ′ |(t)dt ≤ - τ 0 (K ′ h (t) + K ′ (t)) dt + Ch r τ -r/2 ≤ K h (0) -K h (τ ) + K(0) -K(τ ) + Ch r τ -r/2 . As V 0 h is the orthogonal projection of V 0 , K h (0) = V 0 h 2 L 2 ≤ ∥V 0 ∥ 2 L 2 = K(0) (14) 
so that

K h (0) -K h (τ ) + K(0) -K(τ ) ≤ 2K(0) -2K(τ ) + K(τ ) -K h (τ ) ≤ 2 (K(0) -K(τ )) + |K -K h | (τ ).
Using assumption (H 1 ) and the first estimate, we conclude that for all τ ∈ [0, T ]:

T 0 |K ′ h (t) -K ′ (t)|dt ≤ Cτ 1/2 + Ch r τ -r/2 .
Choosing τ = h 2r r+1 , we get the announced result.

Full discretization

Let k > 0 be a time step, and let for all n ∈ N,

t n = nk, t n+1/2 = (t n + t n+1 ) /2.
In this section, we consider a family of schemes for (2), associated to semi-discretizations [START_REF] Gung-Min Gie | Recent progresses in boundary layer theory[END_REF], that may be of order 1 or 2 with respect to time. We then introduce the associated approximate kernels, and get a priori estimates relating the approximate kernels corresponding to the fully discrete schemes to the ones corresponding to the semi-discrete schemes. These estimates are used in the next section to prove convergence in the W 1,1 norm for these approximate kernels.

General setting -Schemes and approximate kernels without correction

In the numerical experiments of Section 5, we use two different time integrators: the Implicit Euler method and the second order Backward Difference Formula (BDF2). In order to propose a single proof of convergence for both as well as for other suitable schemes, we set the time integrator in an abstract framework. So we consider the full discretization:

V n h,k = G n (-kA h ) V 0 h , (15) 
with abstract functions G n : R → R such that: there exist three constants

ξ 0 > 0, ρ ∈ {1, 2}, ε ∈]0, 1[ and two continuous functions f and c : [-ξ 0 , 0] → R satisfying            ∀ξ ∈ [-ξ 0 , 0[, |G n (ξ) -c(ξ)f (ξ) n | ≤ Cε n ; ∀ξ ∈ [-ξ 0 , 0[, |f (ξ)| < 1; ∀ξ ∈] -∞, -ξ 0 ], |G n (ξ)| ≤ Cε n ; f (ξ) = e ξ + O ξ→0 (ξ ρ+1 ); c(ξ) = 1 + O ξ→0 (ξ ρ ). (16) 
The second and the third points are stability conditions, the other ones express consistency of order ρ.

Remarks The Implicit Euler method (V n+1 h,k -V n h,k = -kA h V n+1 h,k for n ≥ 0) satisfies these conditions with ξ 0 = 1, ρ = 1, ε = 1/2, f (ξ) = (1 -ξ) -1 , c = 1, G n (ξ) = (1 -ξ) -n .
The second order Backward Difference Formula (BDF2) initialized with the Implicit Euler method

V 1 h,k -V 0 h,k = -kA h V h,k ∀n ≥ 0, 3V n+2 h,k + 2kA h V n+2 h,k = 4V n h,k -V h,k (17) 
can also be put in this form (See Appendix C.1 for details).

The uncorrected approximate kernel K h,k based on such a discretization is then defined as the continuous function on R + , affine on each [t n , t n+1 ], determined by:

∀n ∈ {0, ..., N k } , K h,k (t n ) = Ω V n h,k (x)dx. ( 18 
)
As V 0 h is the orthogonal projection of 1 on S h , similarly to ( 12) and ( 13), we have:

V n h,k = N h j=1 a h,j G n (-kλ h,j )w h,j , K h,k (t n ) = N h j=1 a 2 h,j G n (-kλ h,j ). (19) 

A priori estimates for the full discrete kernel away from t = 0

We have the following estimates, relating the full discrete kernel K h,k and the semi-discrete kernel K h . The proof is given in Appendix C.2.

Proposition 6 Let T > 0 be number such that T /k is an integer and

T > 2k ln (1/ε) ln(1 + kλ h,N h ).
Under the assumptions (H 1 )-(H 3 ) and the assumptions of Section 3.4.1, for any t and t n that are larger than 2k ln (1/ε) ln(1 + kλ h,N h ), the following inequalities hold:

| K ′ h,k -K ′ h (t n+1/2 )| ≤ Ck ρ t -1-ρ n , |K h,k (t) -K h (t)| ≤ Ckt -1 , T t |K ′ h,k (τ ) -K ′ h (τ )|dτ ≤ Ckt -1 if t ≤ T,
where C does not depend on k, h and S h .

Convergence of the uncorrected scheme

This section is devoted to one step schemes only. We prove convergence in W 1,1 (0, T ), for any T > 0, of the approximate kernel K h,k , under the additional assumption on the time discretization:

∀n ∈ N, ∀ξ ≤ 0, G n (ξ) = f (ξ) n ≥ 0. ( 20 
)
This applies in particular to the Implicit Euler method. Remarks (i) With [START_REF] Melenk | The partition of unity finite element method: Basic theory and applications[END_REF] we also assume that in [START_REF] Martín-Vaquero | Stabilized explicit Runge-Kutta methods for multi-asset American options[END_REF], f is defined on all R -.

(ii) The assumption of non negativity is not a big restriction. Indeed, consider a one step scheme corresponding to G n (x) = f (x) n and satisfying hypotheses [START_REF] Martín-Vaquero | Stabilized explicit Runge-Kutta methods for multi-asset American options[END_REF], but not [START_REF] Melenk | The partition of unity finite element method: Basic theory and applications[END_REF]. Then the scheme defined by Gn (x) = G n (x/2) 2 = f (x/2) 2n satisfies both ( 16) and ( 20), since f (x) 2 ≥ 0. This corresponds to taking a one step scheme over two half-time steps:

u n+1/2 = f (-kA h /2)u n , u n+1 = f (-kA h /2)u n+1/2 = f (-kA h /2) 2 u n .
(iii) Such a procedure would not work for BDF2 since it is a multi-step scheme. Hence, the result of this paragraph does not apply, unless it is corrected for small times as done in the next section.

Now we are able to prove the following convergence theorem for the approximate kernel.

Theorem 2 Assume that assumptions (H 1 )-(H 3 ), ( 16) and ( 20) hold, then for any T > 0 and sufficiently small k such that T /k is an integer:

T 0 |K ′ h,k (t) -K ′ (t)|dt ≤ Ck µ 2 ,
where h = k γ and µ = min 2 3 , γ 2r r + 1 .

Remark Hence, for sufficiently large γ, the method is of order 1/3 in time.

Proof Assumption (20) yields that K h,k is decreasing and positive. Indeed:

∀n ∈ N, K h,k (t n ) = N h j=1 a 2 h,j f (-kλ h,j ) n ; but, from (16), 0 ⩽ f (ξ) < 1 for ξ ∈ [-ξ 0 , 0[ while for ξ ≤ -ξ 0 , 0 ⩽ f (ξ) ≤ C 1/n ε for all n; thus, as for n large enough, C 1/n ε < 1, we have that 0 ⩽ f (ξ) < 1 for all ξ ∈ R - * . This implies that the sequence (K h,k (t n )
) is decreasing and positive, and therefore that the function K h,k , too as a continuous, piecewise affine interpolation of it. Then, arguing as in the proof of Proposition 5, we get:

∀τ ∈ [0, T ], τ 0 |K ′ h,k -K ′ h |(t)dt ≤ K h,k (0) -K h,k (τ ) + K h (0) -K h (τ ) ≤ (K h,k (0) -K h (0)) + |K h (τ ) -K h,k (τ )| + 2(K h (0) -K(0)) + 2(K(0) -K(τ )) + 2(K(τ ) -K h (τ )).
The first term on the right is equal to 0 (see [START_REF] Kac | Can one hear the shape of a drum?[END_REF]); from the second inequality of Proposition 6, if

τ ≥ 2 ln 1/ε ln(1 + kλ h,N h )
, the second term is bounded by Ckτ -1 ; the third one is non positive (see [START_REF] Lenoir | Optimal isoparametric finite elements and error estimates for domains involving curved boundaries[END_REF]); from hypothesis (H 1 ) the fourth one is bounded by Cτ 1/2 ; from Proposition 5 the last term is bounded by Ch r τ -r/2 . We then get

τ 0 |K ′ h,k (t) -K ′ h (t)|dt ≤ C kτ -1 + τ 1/2 + h r τ -r/2 . Now take τ = k µ with k sufficiently small to have τ ≥ k 2 ln 1/ε ln(1 + kλ h,N h ).
Together with the third inequality of Proposition 6, and then the third one of Proposition 5 this proves the first estimate.

Convergence with correction for small times

In this section, we assume that the asymptotic expansion of K obtained in Section 2 (Theorem 1) holds. It is the case when Ω is C ∞ -smooth and simply connected. However, a weaker regularity may be enough. This expansion is used for small times in order to improve the convergence rate.

Using the first five terms of the expansion, that are known from Theorem 1, we define the corrected approximate kernel K h,k,τ by:

K h,k,τ (t) =      K h,k (t) if t ≥ τ K h,k (τ ) + S -2L s π + πs + s 3/2 6 √ π L 0 κ(s) 2 ds + s 2 16 L 0 κ(s) 3 ds t τ if t < τ , (21) 
so that:

τ 0 K ′ h,k,τ -K ′ (t)dt ≤ C τ 0 t m-1 dt ≤ Cτ m , where m = 5/2. ( 22 
)
Remark The value of m can be increased if more terms are known. Since K ′ h,k is a piecewise constant approximation of the singular function K ′ , this approximation cannot be superlinear in L 1 (0, T ). However we can prove an accurate approximation for a discrete integral on [τ, T ] for τ not too small. So the estimate in Theorem 3 differs from the estimate in Theorem 2.

Theorem 3 Assume that assumptions (H 1 )-(H 3 ) and ( 16) hold, then for any T > 0 and sufficiently small k, such that T /k is an integer, we have

τ +k 0 K ′ h,k,τ (t) -K ′ (t) dt + k τ ≤tn<T K ′ h,k,τ (t n+1/2 ) -K ′ (t n+1/2 ) ≤ Ck mµ where m = 5/2, µ = min ρ m + ρ , γ 2r 2m + r , h = k γ and τ = k k µ-1 .
Proof Summing up the first inequality in Proposition 6, for τ ≥ 2k ln 1/ε ln(1 + λ h,N h ),we get:

k τ ≤tn<T K ′ h,k -K ′ h (t n+1/2 ) ≤ k τ ≤tn<T Ck ρ t -ρ-1 n ≤ Ck ρ +∞ τ t -ρ-1 dt ≤ Ck ρ τ -ρ .
Similarly, using the second estimate of Proposition 5:

k τ ≤tn<T |K ′ h -K ′ | (t n+1/2 ) ≤ C T τ |K ′ h -K ′ | (t)dt ≤ Ch r τ -r/2 .
Then, using inequality [START_REF] Nitsche | Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind[END_REF] and τ + k ≤ 2τ , we get

τ +k 0 K ′ h,k,τ (t) -K ′ (t) dt + k τ ≤tn<T K ′ h,k,τ (t n+1/2 ) -K ′ (t n+1/2 ) ≤ C τ m + Ch r τ -r/2 + Ck ρ τ -ρ ,
and we conclude as in the proof of Theorem 2.

Remarks

(i) Hence, if γ is chosen sufficiently large, for ρ = 2, the method is of order 10/9 > 1 in time.

(ii) In particular, this theorem applies to the corrected Implicit Euler and BDF2 schemes.

(iii) Implementing the correction is straightforward and does not change the computational time. 

                 -∂ e j L (σ j ) ∂ e j P (x, t) (x, t) = F (x, t) for x ∈ e j , j = 1, . . . , M, e j ϶O i α i,j L (σ j ) ∂ e j P (x, t) = -Ψ i (t) for i = 1, . . . , N,
P is continuous on the graph,

P (O 1 , t) = 0, (23) 
where α i,j = 1 if the orientation of the segment e j starting from O i is positive, and α i,j = -1 if not.

The functions Ψ i are given in H 1 00 (0, T ) = f ∈ H 1 (0, T ); f (0) = 0 and F is a given function in H 1 00 (0, T ; L 2 (B)) (with quite obvious definition of L 2 (B), see [START_REF] Canon | Numerical solution of the viscous flows in a network of thin tubes: equations on the graph[END_REF]), that satisfy the compatibility

condition: ∀t ∈ [0, T ], N i=1 Ψ i (t) + B F (x, t)dx = 0.
In real life applications, the function F is usually equal to zero, but the possibility of a more general F was kept in order to construct test cases with known exact solution to compare with approximate solutions in numerical experiments. Last, the L (σ j ) are convolution operators L 2 (0, +∞) → H 1 0 (0, +∞) defined by:

∀t > 0, L (σ j ) q(t) = t 0 K (σ j ) (t -τ )q(τ )dτ, (24) 
where the kernels K (σ j ) are given by ( 1)-( 2) with Ω = σ j . This problem comes from Navier-Stokes equations on a network of thin tubes, after letting the diameter of the tubes tend to zero, with specific scaling of the data. The domains σ j are scaled original cross-sections of the tubes while the operators L (σ j ) relate the flux and the pressure drop in the original 3D-structure. See [START_REF] Canon | Numerical solution of the viscous flows in a network of thin tubes: equations on the graph[END_REF][START_REF] Panasenko | Asymptotic analysis of the non-steady Navier-Stokes equations in a tube structure[END_REF] for more detail and bibliography.

In [START_REF] Canon | Numerical solution of the viscous flows in a network of thin tubes: equations on the graph[END_REF], we considered schemes to solve numerically [START_REF] Panasenko | Flows in a tube structure: equation on the graph[END_REF]. We proved the two theorems cited below.

Let k > 0 be some time step such that

N k = T /k ∈ N, t n = kn, K (σ j ) = 1 k t n+1 tn K (σ j ) n (t)dt; let K(σ j ) n designate some approximation of K (σ j )
n . Let us recall the error factor associated with the approximation:

θ(k) = max 1≤j≤M |K (σ j ) 0 - K(σ j ) 0 | + N k -1 n=1 |K (σ j ) n -K (σ j ) n-1 -K(σ j ) n + K(σ j ) n-1 | . (25) 
Last, let h > 0 be some space step, and p h,k ∈ L 2 (0, T ; H 1 (B)) be the numerical solution of ( 23), piecewise constant with respect to time, P 1 with respect to space (defined properly in [START_REF] Canon | Numerical solution of the viscous flows in a network of thin tubes: equations on the graph[END_REF] by Equations (3.18)-(3.19)). The following convergence results are proven in [START_REF] Canon | Numerical solution of the viscous flows in a network of thin tubes: equations on the graph[END_REF] (Theorem 1 page 16 and Theorem 2 page 20).

Theorem 4 If θ(k) → 0 as k → 0, then p h,k → P when (h, k) → (0, 0). Furthermore, if F ∈ H 2 (0, T ; H 2 (B)), Ψ 1 , . . . , Ψ N ∈ H 2 (0, T ), if F, ∂ t F
, the Ψ ℓ and the ∂ t Ψ ℓ vanish at t = 0, there exists a positive constant C depending on F and on the Ψ ℓ such that for k small enough:

∥p h,k -P ∥ L 2 ([0,T ],H 1 (B)) ≤ C (h + k + θ (k)) .
Theorem 5 Let ph,k be the interpolant (P 1 in space, P 0 in time) of the exact solution P of ( 23): Assume that P is a C 4 function on each edge of the graph; assume that θ(k) → 0 as k → 0. Let β(k) be defined by

β(k) = k 2 if ∂ t P (., 0) is constant, β(k) = k 2 log(T /k) otherwise.
Then, there exists a positive constant C, depending on P , such that for k small enough:

∥p h,k -ph,k ∥ L 2 (0,T,H 1 (B)) ≤ C β(k) + h 2 + θ(k) .

Link with θ (k)

To make the link with Theorems 4 and 5, it is sufficient to consider the case of a single kernel. The sequence (K n ) is defined by

K n = 1 k t n+1
tn K(t)dt. Consider the approximations:

       Kn = 1 k t n+1 tn K h,k,τ ( 
t)dt for the corrected scheme,

Kn = 1 k t n+1 tn K h,k ( 
t)dt for the uncorrected scheme.

and

θ(k) = |K 0 -K0 | + 0<nk<T |K n -K n-1 -Kn + Kn-1 |.
Theorem 6 Under the assumptions of Theorem 2 or those of Theorem 3, we have:

θ(k) ≤ Ck mµ
with m = 1/2 (e.g. Implicit Euler without correction) or m = 5/2 (e.g. Implicit Euler and BDF2 with correction).

The proof, more technical than difficult, is given in Appendix D.

To end this section, we prove that the conditions on the discrete kernels for convergence and stability of the schemes in [START_REF] Canon | Numerical solution of the viscous flows in a network of thin tubes: equations on the graph[END_REF] are satisfied by the discrete kernels presented in this paper. Remark Using Proposition 2 of [START_REF] Canon | Numerical solution of the viscous flows in a network of thin tubes: equations on the graph[END_REF], this proves that the scheme presented in equations (1.8-11) and (3.26) of [START_REF] Canon | Numerical solution of the viscous flows in a network of thin tubes: equations on the graph[END_REF] with W = 1 is unconditionally stable.

Proof Define

U n = K h,k (t n ) -2K h,k (t n+1 ) + K h,k (t n+2 ) k 2 = N h j=1 a 2 j,h f (-kλ j,h ) n (f (-kλ j,h ) -1) 2 ≥ 0. Besides U n+1 -U n = N h j=1 a 2 j,h f (-kλ j,h ) n (f (-kλ j,h ) -1) 3 ≤ 0. Hence (U n ) n is nonnegative and decreasing.
Because of Theorem 2, we have for k sufficiently small,

3T /4 T /2 K ′ h,k (t + T /4) -K ′ h,k (t)dt > E := 1 2 3T /4 T /2 K ′ (t + T /4) -K ′ (T )dt.
Hence, there exists

t n+1/2 ∈ [T /2, 3T /4] such that (T /4)|K ′ h,k (t n+1/2 + T /4) -K ′ h,k (t n+1/2 )| > E. But K ′ h,k (t n+1/2 + T /4) -K ′ h,k (t n+1/2 ) = K h,k (t n+1+ T 4k ) -K h,k (t n+ T 4k ) k - K h,k (t n+1 ) -K h,k (t n ) k = k n+ T 4k -1 p=n U p . Hence, there exists t p > T /2 such that (T /4)U p ≥ |K ′ h,k (t n+1/2 + T /4) -K ′ h,k (t n+1/2 )| > 4 T E.
We conclude that, as

(U n ) is decreasing, for t n ≤ T 2 , U n ≥ 4 E T 2 and U n + U n+1 2 ≥ 4 E T 2
. This concludes the proof. For the scheme presented in [START_REF] Canon | Numerical solution of the viscous flows in a network of thin tubes: equations on the graph[END_REF], Section 3.4.2, we prove the following result.

Proposition 8 If the hypotheses of Theorem 2 are satisfied (e.g. Implicit Euler without correction), and if we take Kn = K h,k (t n ) or Kn = K h,k (t n+1 ), then the conclusions of Theorem 6 also hold.

Proof 0<tn<T |K h,k (t n ) -K h,k (t n-1 ) - t n+1 tn K h,k (t)dt + tn t n-1 K h,k (t)dt| = 0<tn<T | K h,k (t n-1 ) -2K h,k (t n ) + K h,k (t n+1 ) 2 | = 0<tn<T K h,k (t n-1 ) -2K h,k (t n ) + K h,k (t n+1 ) 2 = K h,k (0) -K h,k (k) 2 - K h,k (T -k) -K h,k (T ) 2 ≤ K h,k (0) -K h,k (k) 2 ≤ 1 2 k 0 |K ′ h,k (t) -K ′ (t)|dt + 1 2 k 0 |K ′ (t)|dt ≤ Ck µ/2 + Ck 1/2 .
Using Theorem 6, we get the announced result.

Numerics

Summary of the algorithm

Let us first recapitulate the whole algorithm.

• Choose γ a parameter linking the time step and the space step, Ω the open set for which the kernel is to be computed, m = 5/2 the degree at which the asymptotic expansion is known, ρ ∈ {1, 2} the time degree of the method, r -1 the finite element degree of the method and k

the time step. Compute µ = min ρ m + ρ , γ 2r 2m + r , h = k γ .
• Compute T h a triangulation of Ω of step h.

• Take the finite element space S h of the P r-1 -elements on T h .

• Take T h : L 2 (Ω) → S h such that (Nitsche method)

∀v h ∈ S h , Ω u h v h = Ω ⟨∇v h , ∇T h u⟩ + ∂Ω -v∂ n T h u -T h u∂ n v + C h v h T h u,
where ∂ n denotes the normal derivative and C is a sufficiently large constant.

• Let V h 0 be the orthogonal projection of 1 over S h , and

A h = (T h ) -1 |S h . • -If ρ = 1, compute V n+1 h,k -V n h,k = -kA h V n+1 h,k (Implicit Euler) for n ≥ 0 -If ρ = 2, compute V 1 h,k -V 0 h,k = -kA h V h,k 3V n+2 h,k + 2kA h V n+2 h,k = 4V n h,k -V h,k
(BDF2 initialized with implicit Euler) for n ≥ 0.

• Define K h,k the continuous function, affine on each [nk, (n + 1)k] such that K h,k (nk) = Ω V n h,k , the uncorrected kernel approximation (convergent if ρ = 1).

• Compute τ = k mµ . Define and return the corrected kernel approximation.:

K h,k,τ (t) =      K h,k (t) if t ≥ τ K h,k (τ ) + S -2L s π + πs + s 3/2 6 √ π L 0 κ(s) 2 ds + s 2 16 L 0 κ(s) 3 ds t τ if t < τ. • Return K h,k (nk) + K h,k ((n + 1)k) 2 as an approximation of 1 k (n+1)k nk K(t)dt.
If r = 1 and the domain is polygonal, one may replace S h by the finite elements which vanish on the boundary.

Results

In this section, we test the schemes designed in the previous sections. As it was predicted above, we observe convergence. We also compare the theoretically predicted convergence rate with the one obtained in numerical experiments. This experimental convergence rate is better than predicted by Theorem 6. Figure 1 presents the graph of function V for small values of time. One can observe the boundary layer: the leading term of the deviation to 1 essentially depends on the distance to the boundary of the domain, as shown theoretically for smooth domains (Equation ( 43)).

Analysing Figures 2 and3, one can observe the following three regimes of behavior of the error of approximation of the time derivative of the kernel K:

• the initialization regime for small times for the multistep BDF2 scheme, when the hypotheses of Lemma 6 are not satisfied;

• the discretization error regime, when the results of the previous section are applicable;

• the rounding error regime, when the rounding errors dominate and the error fluctuations become important.

The numerical results show that when the time discretization error dominates, the error of approximation of the time derivative of K is:

• proportional to kt -3/2 for the Implicit Euler scheme (with a factor of proportionality of about 0.37);

• proportional to k 2 t -5/2 for the BDF2 scheme (with a factor of proportionality of about ≃ 0.58).

Note that these convergence rates are better than those predicted by the estimates of Lemma 6. Similar observations can be done for the regime when the discretization in space error is dominant, although in this case the experimental convergence rate is more equivocal and closer to the theoretically predicted one. Last, we compare the numerically computed convergence rate with the one theoretically predicted by the estimate of Theorem 6. The results of this comparison are presented in the tables below. In order to test the accuracy of the schemes we run the tests for domains Ω for which the exact kernels are known, namely:

• the equilateral triangle with the length of the side equal to 2;

• square with the side of the length 1;

• the disc of radius 1.

The error is given both in L 1 -norm and Ẇ 1,1 semi-norm in the following senses:

∥f ∥ L 1 k = 0⩽tn<T k |f (t n ) + f (t n+1 )| 2 , ∥f ∥ Ẇ 1,1 k = 0⩽tn<T |f (t n+1 ) -f (t n )|.
For the uncorrected scheme we observe an error of order 1/2 in time and 1 in space (both for Implicit Euler/P 1 , BDF2/P 2 ) which is better that the theoretical 1/3 in time and 2/3 and 3/4 in space.

For the schemes with correction for small times, the observed orders in space and time are (the first one is computed for P 1 elements in space, the second one for P 2 elements):

• ≃ 0.84 and ≃ 1.23 for Implicit Euler/P 1 (theoretical 3/4, 6/5),

• ≃ 1.47 and ≃ 2.36 for BDF2/P 2 (theoretical 10/9, 15/8).

The first series of four tables uses the P 1 -elements for the space discretization and the BDF2 method for the time discretization for triangular (Tables 1 and2) and squared domain (Tables 3 and4). We give the accuracy results both with respect to the space discretization (Tables 1 and3) and with respect to the time discretization (Tables 2 and4), but focus our attention on the order in time. As mentioned above, although order 1/3 was proven, the order 1/2 is actually observed. We investigate further for the disk geometry, in Tables 5 and6.

Table 1: accuracy with respect to space discretization, case of an equilateral triangle with side 2, Nitsche, BDF2. h k L 1 k -error order Ẇ 1,1 k -error order 1e+00 5e-05 1.8175e-02 -5.8193e-01 -4e-01 5e-05 9.1221e-03 0.752 2.7825e-01 0.805 2e-01 5e-05 3.7106e-03 1.298 1.3868e-01 1.005 1e-01 5e-05 1.0619e-03 1.805 6.5145e-02 1.090 4e-02 5e-05 1.8547e-04 1.904 2.5610e-02 1.019 2e-02 5e-05 4.7558e-05 1.963 1.8005e-02 0.508 1e-02 5e-05 1.2097e-05 1.975 1.5205e-02 0.244 4e-03 5e-05 2.1411e-06 1.890 1.4530e-02 0.050 Case of the disc discretized with P 1 -elements in space and Implicit-Euler in time. ). We also present the error for the asymptotic expansion. Case of the disc discretized with P 2 -elements in space and BDF2 in time.

t = 1 200 t = 1 2
K h,k (t n+1 ) -K h,k (t n ) k - K(t n+1 ) -K(t n ) k
k = 0.1 • 2 -18
K h,k (t n+1 ) -K h,k (t n ) k - K(t n+1 ) -K(t n ) k as a function of t n+1/2
for various values of the space

step h = 2π N (top, k = 0.1 • 2 -18
) and the time step k (bottom, h = 2π 2048

). We also represent the error made for the asymptotic expansion. The next table (Table 5) presents accuracy results for the disk, with P 1 finite elements and Nitsche boundary conditions in space, and Implicit Euler method. We compare in the same table, the results without correction for small times on the left side of the table, and the results with corrections on the right side. Note that, as predicted in the previous section, the results are much better for the scheme with correction. Indeed, the results are even much better with order 1 in time with correction than with order 2 in time without correction. The last table (Table 6) shows the same comparisons for the second order schemes (P 1 plus BDF2). 2 , so that the normalized eigenvectors associated with the (µ k ) k∈N * are the (w k ) k∈N * defined by:

h,k -K∥ ∥K h,k,τ -K∥ h/π k L 1 k Ẇ 1,1 k L 1 k Ẇ 1,1 k 2 -2 0.
h,k -K∥ ∥K h,k,τ -K∥ h/π k L 1 k Ẇ 1,1 k L 1 k Ẇ 1,1 k 2 -2 0.1 • 2 -18
Ω J 0 (µ ρ)dx = 2π µ J 1 (µ) , ∥J 0 (µρ)∥ 2 2 = π J 0 (µ) 2 + J 1 (µ)
w k (x) = J 0 (µ k ρ) √ π |J 1 (µ k )| .
Hence:

a k = Ω w k dx = 2 √ π µ k . Assertion (i) is proved.
Now we remark that, using Equations (2.1)-(2.7) in [START_REF] Giusti | On infinite series concerning zeros of Bessel functions of the first kind[END_REF], the Laplace transform L(K) of K, which obviously exists for all s > 0, is given by:

L(K)(s) = π 1 s - 2 s 3/2 I 1 ( √ s) I 0 ( √ s) ,
where I ν stands for the ν-modified Bessel function of the first kind. As each function z → z 1/2 e -z I ν (z) admits (see for instance [START_REF] Watson | A treatise on the theory of Bessel functions[END_REF] page 203) an asymptotic expansion for large z at any order, one can compute:

L(K)(s) = Q(s -1/2 ) + o s→+∞ s -3 where Q(X) = πX 2 -2πX 3 + πX 4 + π 4 X 5 + π 4 X 6 . (26) 
On the other hand, we know from Corollary 1 that R 5 defined by

R 5 (t) = K(t) -P ( √ t), where P (X) = 5 r=0 c r/2 X r is a C 3 function such that R (j)
5 (0) = 0 for j ∈ {0, 1, 2}, so that, by integration by parts,

L(R 5 )(s) = 1 s 3 L R (3) 5 
(s) = O s→+∞ s -4 , and thus,

L(K)(s) = L(R 5 )(s) + L(P • √ )(s) = L(P • √ )(s) + o s→+∞ s -3 . (27) 
Comparing ( 26) and ( 27) we have that

L(P • √ )(s) = Q(s -1/2 ) + o s→+∞ s -3 .
Then, using the formula L(t r/2 )(s) = Γ (1 + r/2) s -1-r/2 , we get

L(P • √ )(s) = c 0 √ s + c 1/2 √ π 2 1 s 3/2 + c 1 1 s 2 + c 3/2 3 √ π 4 1 s 5/2 + c 2 2 s 3 = π 1 √ s -2π 1 s 3/2 + π 1 s 2 + π 4 1 s 5/2 + π 4 1 s 3 + o s→+∞ s -3 .
This proves Proposition 2.

A.2 Existence of the asymptotic expansions for a primitive of K

We consider a general simply connected smooth domain Ω as in Section 2. First note that V defined by ( 2) is not solution to a well-prepared problem in the sense of [START_REF] Gung-Min Gie | Singular perturbations and boundary layers[END_REF][START_REF] Gung-Min Gie | Recent progresses in boundary layer theory[END_REF] because the initial condition does not satisfy the boundary condition. Let us introduce W defined on Ω × R + by

W (x, t) = t 0 V (x, s)ds, so that ∀t ∈ R + , K(t) = ∂ t Ω W (x, t)dx and t 0 K(s)ds = Ω W (x, t)dx. (28) 
This W satisfies the following problem with compatible initial and boundary data:

   ∂ t W -∆W = 1 in Ω, W = 0 on ∂Ω, W = 0 at t = 0, (29) 
and in view of ( 28), asymptotic for W when t → 0 will provides asymptotic for primitives of K when t → 0.

The problem addressed in [START_REF] Gung-Min Gie | Singular perturbations and boundary layers[END_REF][START_REF] Gung-Min Gie | Recent progresses in boundary layer theory[END_REF] is the asymptotic with respect to ε for :

   ∂ t u ε -ε∆u ε = f in Ω, u ε = 0 on ∂Ω, u ε = u 0 at t = 0, (30) 
where, in the well-prepared case, u 0 = 0 on ∂Ω. We are interested here in this problem with the very simple data:

f = 1, u 0 = 0:    ∂ t u ε -ε∆u ε = 1 in Ω, u ε = 0 on ∂Ω, u ε = 0 at t = 0. (31) 
Obviously, it is equivalent to look for asymptotics for (29) when t → 0 or for [START_REF] Wade | On smoothing of the crank-nicolson scheme and higher order schemes for pricing barrier options[END_REF] when ε → 0. Indeed, let w ε (x, t) = εu ε (x, t/ε); it is easily checked that w ε solves (29). Hence,

∀ε > 0, ∀t ∈ R + , ∀x ∈ Ω, W (x, t) = w ε (x, t) = εu ε (x, t/ε).
With ε = t we get the following expression for W , from which we will deduce the asymptotic expansion for W .

Lemma 1

The solution to (29) is given by: ∀t ∈ R + , ∀x ∈ Ω, W (x, t) = tu t (x, 1), where for any ε > 0, u ε is the solution to [START_REF] Wade | On smoothing of the crank-nicolson scheme and higher order schemes for pricing barrier options[END_REF].

So, in order to get an asymptotic expansion for W when t → 0, it is sufficient to obtain an asymptotic expansion for u ε when ε → 0, and this is exactly what we are doing in the sequel : this is the first step of the proof of Theorem 1:

Proposition 9
Let Ω be a bounded C ∞ -smooth domain. Let T > 0. Then, there exists (c j ) j∈1+ 1 2 N , where c1 = |Ω| , such that:

∀n ∈ N, ∀t ∈ [0, T ], t 0 K(s)ds = 2n+3 r=2 cr/2 t r/2 + O t→0 + (t n+2 ).
Proof We prove the result when Ω is a simply connected domain of R 2 . The case of a holed domain can be dealt similarly, but the boundary Γ = ∂Ω then has as many connected components as the number of holes plus one, and it is a bit cumbersome, though not difficult, to parameterize Γ. In the case without hole, Γ can be parameterized by its arclength γ : R → Γ, s → γ(s) in such a way that:

γ ′ (s) = i(n(γ(s))) (32) 
where n : Γ → R 2 is the inward-pointing normal vector to Γ and i is the vector rotation of angle π/2. Then, the curvature κ is defined by:

κ(s)γ ′′ (s) = n • γ(s). (33) 
Remark In the case of a non simply connected domain, to maintain (32) the boundaries of the holes have to be parameterized clockwise, whereas the exterior boundary is parameterized counterclockwise.

One can also define a principal curvature coordinate system on a tubular neighborhood Ω δ of Γ:

X : R×]0, δ[→ ImX = Ω δ ⊂ Ω (s, ξ) → γ(s) -ξn(γ(s)).
For δ > 0 small enough, X is a diffeomorphism. The Jacobian matrix and its determinant are given by:

J(X)(s, ξ) = (1 -ξκ(s))γ ′ (s) -n(γ(s)) , det J(X)(s, ξ) = 1 -ξκ(s).
We look for an asymptotic expansion for u ε continuous solution of [START_REF] Arbogast | Analysis of the simulation of single phase flow through a naturally fractured reservoir[END_REF] in Ω × [0, T ]. According to [START_REF] Gung-Min Gie | Recent progresses in boundary layer theory[END_REF], u ε can be approximated at any order n ∈ N by an asymptotic expansion of the form (equations (200) in [START_REF] Gung-Min Gie | Recent progresses in boundary layer theory[END_REF]):

u ε ≃ u ε,n+1/2 = n j=0 ε j (u j + θ j ) + ε j+1/2 θ j+1/2 , ( 34 
)
where the error in the approximation is bounded as follows (Theorem 2.5 Equation (227) in [START_REF] Gung-Min Gie | Recent progresses in boundary layer theory[END_REF]):

∥u ε,n+1/2 -u ε ∥ L ∞ (0,T,L 2 (Ω)) ≤ Cε n+1 . ( 35 
)
Here u 0 is the solution to (30) 1,3 with ε = 0, that is u 0 (x, t) = t. Also, from Equation (204) in [START_REF] Gung-Min Gie | Recent progresses in boundary layer theory[END_REF], as here u 0 = 0 and f = 1 are constant, one can easily see that for j ̸ = 0, u j = 0. So for convenience, we rewrite (34) as:

u ε,n+1/2 = u 0 + 2n+1 r=0 ε r/2 θ r/2 .
The boundary layers θ r/2 are defined in [START_REF] Gung-Min Gie | Recent progresses in boundary layer theory[END_REF] from functions θr/2 that solve one dimensional heat equations on a half line : equations ( 211)-( 212)-( 210)-( 94). Note that the functions θr/2 , and thus the functions θ r/2 do depend on ε. In order to carry on our computations to prove Proposition 9, we need to make explicit every dependence with respect to ε. For that purpose, we introduce the functions θj of the variables (s, ξ, t) ∈ R × R + * × R + * , L-periodic with respect to s, where L = |Γ|, defined recursively for j ∈ 1 2 N by:

         ∂ t θj -∂ 2 ξ θj = f j in R + * × R + * , θj = θj 0 , at ξ = 0, lim ξ→+∞ θj = 0, θj = 0 at t = 0. (36) 
where θ0 0 = -u 0 , θj 0 = 0 for j ̸ = 0 and,

∀j ∈ 1 2 N, f j = 2j-2 k=0 ξ k ∂ s (k + 1)κ k ∂ s θ j-1-k 2 - 2j-1 k=0 ξ k κ k+1 ∂ ξ θ j-1 2 -k 2 . ( 37 
)
Note that the functions θ j do not depend on ε. These equations (36) and (37) are easily deduced from Equations (94), ( 210), ( 211), (212) in [START_REF] Gung-Min Gie | Recent progresses in boundary layer theory[END_REF], with the correspondence: θj (s, ξ, t) = θ j (s, ε -1/2 ξ, t) and f j (s, ξ, t) = f j (s, ε -1/2 ξ, t). With our choice of arclength parametrization above we have that g 11 = 1 and h 1 = h = 1 -κξ in the notations of [START_REF] Gung-Min Gie | Recent progresses in boundary layer theory[END_REF]. This was used to in (94) and (210) to make (37) explicit. Now, following the lines in [START_REF] Gung-Min Gie | Recent progresses in boundary layer theory[END_REF], we define the boundary layers θ j from the θ j . Let σ : R + → R be a C ∞ cut-off function such that σ = 1 on [0, δ/3[ and σ = 0 on ]δ/2, +∞[. Then we define the C ∞ -functions θ j on Ω by

θ j (x, t) = σ(ξ) θ j (s, ε -1/2 ξ, t) where (ξ, s) = X -1 (x) if x ∈ Ω δ , = 0 if x ∈ Ω \ Ω δ .
Our goal is to approximate Ω u ε dx. So, we have to compute for fixed n ∈ N:

Ω u ε,n+1/2 dx = Ω u 0 dx + 2n+1 r=0 ε r/2 Ω θ r/2 dx = |Ω| t + 2n+1 r=0 ε r/2 Ω θ r/2 dx.
For each term, we have that

Ω θ r/2 dx = δ/2 0 σ(ξ) L 0 θr/2 (s, ξ, t)(1 -κ(s)ξ)dsdξ.
From Equation (218) of Lemma 2.8 in [START_REF] Gung-Min Gie | Recent progresses in boundary layer theory[END_REF] with m = k = 0 and j + d = r/2, we see that

δ/2 δ/3 σ(ξ) L 0 θr/2 (s, ξ, t)(1 -κ(s)ξ)dsdξ = O ε→0 (exp(-Cε -1 )) (38) 
uniformly with respect to t ∈ [0, T ], where C is a positive constant depending on n, δ and T , but not on ε. Hence, using the change of variable ν = ε -1/2 ξ :

Ω θ r/2 dx = δ/3 0 L 0 θ r/2 (s, ε -1/2 ξ, t)(1 -κ(s)ξ)dsdξ + O ε→0 (exp(-Cε -1 )) = δ/3 √ ε 0 L 0 θ r/2 (s, ν, t)(1 -κ(s)νε 1/2 )ε 1/2 dsdν + O ε→0 (exp(-Cε -1 )).
Then, reasoning as for (38), we deduce that

Ω θ r/2 dx = ε 1/2 I r/2 (t) -εJ r/2 (t) + O ε→0 (exp(-Cε -1 )),
where:

I r/2 (t) = +∞ 0 L 0 θ r/2 (s, ν, t)dsdν, J r/2 (t) = +∞ 0 L 0 θ r/2 (s, ν, t)κ(s)νdsdν, (39) 
and therefore that

Ω u ε,n+1/2 dx = |Ω| t + 2n+1 r=0 ε (r+1)/2 I r/2 (t) - 2n+1 r=0 ε (r+2)/2 J r/2 (t) + O ε→0 (exp(-Cε -1 )).
Note that the functions I r/2 and J r/2 are independent of ε.

Now we are able to end the proof of Proposition 9. With (28), Lemma 1 and the error estimate (35) we get:

t 0 K(τ )dτ = t Ω u t (x, 1)dx = t Ω u t,n+1/2 (x, 1)dx + O t→0 + (t n+2 ) = t |Ω| + 2n+1 r=0 t (r+1)/2 I r/2 (1) - 2n+1 r=0 t (r+2)/2 J r/2 (1) + O t→0 + (t n+2 ) = |Ω| t + 2n r=0 t (r+3)/2 I r/2 (1) - 2n-1 r=0 t (r+4)/2 J r/2 (1) + O t→0 + (t n+2 ) = |Ω| t + I 0 (1)t 3/2 + 2n+3 r=4 t r/2 I (r-3)/2 (1) -t r/2 J (r-4)/2 (1) + O t→0 + (t n+2 ). (40) 
This is the announced result with: ). Then

c1 = |Ω| , c3/2 = I 0 (1), ∀r ⩾ 4, cr/2 = I (r-3)/2 (1) -J (r-4)/2 (1). (41) 
H ′ (t) = M -1 r=m r 2 α r t r/2-1 + O t→0 + (t M /2-1 ), where M = m + M 2 .
Proof Without loss of generality, H is assumed to be concave. Then, for any t ∈]0, T ], h > 0,

H(t + h) -H(t) h ⩽ H ′ (t) ⩽ H(t) -H(t -h) h ;
in particular for h = t n , where n = M -m 4 + 1, we get:

H(t + t n ) -H(t) t n ⩽ H ′ (t) ⩽ H(t) -H(t -t n ) t n . ( 42 
)
Proposition 11 The first coefficients in the asymptotic expansion in Corollary 1 are such that c 0 = |Ω|, and:

c 1/2 = L a 1/2 ; c 1 = a 1 L 0 κ(s)ds = 2πa 1 ; c 3/2 = a 3/2 L 0 κ(s) 2 ds; c 2 = a 2 L 0 κ(s) 3 ds.
where a 1/2 , a 1 , a 3/2 , a 2 do not depend on Ω.

Remark The second equality for c 1 holds by application of the Hopf's Umlaufsatz (see [START_REF] Tapp | Differential geometry of curves and surfaces[END_REF] pp.36-37 and 62), a particular case of Gauss-Bonnet theorem, which yields

L 0 κ(s)ds = 2π.
Proof According to [START_REF] Gung-Min Gie | Recent progresses in boundary layer theory[END_REF] Equation (134), the boundary layer θ0 can be written as:

θ0 (s, ξ, t) = - t 0 erfc ξ 2 √ τ dτ ( 43 
)
where erfc(x) = 2 √ π +∞ x e -y 2 dy (Note that we use a different definition of the erfc function introduced in equation ( 135) of [START_REF] Gung-Min Gie | Recent progresses in boundary layer theory[END_REF]). As θ0 does not depend on s, we get: According to [START_REF] Gung-Min Gie | Recent progresses in boundary layer theory[END_REF] Equations ( 137)-( 138)-(217), the next θj are given by:

I 0 ( 
θj (s, ν, t) = +∞ 0 t 0 f j (s, y, τ )N (ν, y, t, τ )dτ dy, (46) 
where the f j are defined in (37) and

N (ν, y, t, τ ) = 1 2 √ π 1 √ t -τ exp - (ν -y) 2 4(t -τ ) -exp - (ν + y) 2 4(t -τ ) .
In particular,

θ1/2 (s, ν, t) = κ(s) √ π +∞ 0 t 0 τ 0 1 √ r exp - y 2 4r N (ν, y, t, τ )drdτ dy, (47) 
so that

I 1/2 (1) = I 1/2,c L 0 κ(s)ds and J 1/2,c (1) = J 1/2,κ L 0 κ(s) 2 ds, (48) 
where

I 1/2,c = 1 √ π +∞ 0 +∞ 0 1 0 τ 0 1 √ r exp - y 2 4r N (ν, y, 1, τ )drdτ dydν, J 1/2,c = 1 √ π +∞ 0 ν +∞ 0 1 0 τ 0 1 √ r exp - y 2 4r N (ν, y, 1, τ )drdτ dydν.
The next boundary layer θ1 is given by:

θ1 (s, ν, t) = t 0 +∞ 0 κ(s)∂ ξ θ1/2 (s, y, t) + y κ(s) 2 ∂ ξ θ0 (s, y, t) N (ν, y, t, τ )dτ dy.
In view of ( 43) and (47), θ0 does not depend on s and θ1/2 is equal to κ multiplied by a function which does not depend on s. Thus, θ1 is equal to κ(s) 2 times a function that does not depend on s, so that there are two constants I 1,c and J 1,c which do not depend on Ω such that

       I 1 (1) = +∞ 0 L 0 θ 1 (s, ν, 1)dsdν = I 1,c L 0 κ(s) 2 ds, J 1 (1) = +∞ 0 L 0 θ r/2 (s, ν, 1)κ(s)νdsdν = J 1,c L 0 κ(s) 3 ds.
Then, according to (46) and (37)

θ3/2 (s, ν, t) = +∞ 0 t 0 ∂ 2 s θ 1/2 (s, y, τ ) N (ν, y, t, τ )dτ dν - +∞ 0 t 0 κ(s)∂ ξ θ 1 (s, y, τ ) + y κ(s) 2 ∂ ξ θ 1/2 (s, y, τ ) + y 2 κ(s) 3 ∂ ξ θ 0 (s, y, τ ) N (ν, y, t, τ )dτ dy.
As θ1 is equal to κ 2 multiplied by a function independent of s, θ1/2 to κ multiplied by a function independent of s and as θ 0 is independent of s, there exists some function

F 3/2 , independent of s such that θ3/2 (s, ν, t) = +∞ 0 t 0 ∂ 2 s θ 1/2 (s, y, τ )N (ν, y, t, τ )dτ dν + κ(s) 3 F 3/2 (ν, t).
As ∂ s θ1/2 is L-periodic with respect to s, the first term vanishes when integrating over s ∈ [0, L]. Therefore, there exists another constant I 3/2,c not depending on Ω, such that

I 3/2 (1) = +∞ 0 L 0 θ 3/2 (s, ν, 1)dsdν = I 3/2,c L 0 κ(s) 3 ds. so we may conclude that c 1/2 = 3 2 L I 0,c ; c 1 = 4π I 1/2,c -J 0,c L 0 κ(s)ds; c 3/2 = 5 2 I 1,c -J 1/2,c L 0 κ(s) 2 ds; c 2 = 3 I 3/2,c -J 1,c L 0 κ(s) 3 ds.
This is the announced result.

Remark The possibility to express each coefficient via a L 0 κ(s) p ds and a unique universal constant ends here: if computing J 3/2 (1), because of the term κ∂ 2 s θ 1/2 in κ θ 3/2 which depends on s via the factor κκ ′′ , we can only obtain the existence of two universal constants J 3/2,c and J ′ 3/2,c such that

J 3/2 (1) = +∞ 0 L 0 θ 3/2 (s, ν, 1)κ(s)νdsdν = J 3/2,c L 0 κ(s) 4 ds + J ′ 3/2,c L 0 κ ′ (s) 2 ds.
To prove Theorem 1, it remains to determine the coefficients a 1/2 , a 1 , a 3/2 , a 2 . It is possible, although rather technical to compute explicitly, at least the integrals I 0,c , J 0,c , J 1/2,c , J 1/2,c . However, as we are able to compute explicitly the coefficients of the expansion for a disk, we determine these four constants by comparison with the asymptotics for a disk of radius 1.

As for the disk, κ = 1, we get:

-4 √ π = 2π a 1/2 ; π = 2π a 1 ; √ π 3 = 2π a 3/2 ; π 8 = 2π a 2 .
This concludes the proof of Theorem 1.

B Triangular case : proof of Proposition 4 page 9

Let us state some notations, facts and preliminary results. For each fixed pair (m, n) ∈ Z 2 , we introduce:

σ m,n = ((m j , n j )) 1⩽j⩽6 = ((m, n) , (m, m -n) , (-n, m -n) , (-n, -m) , (n -m, -m) , (n -m, n)) ,
ε m j ,n j = (-1) j+1 which will be called the sign of (m j , n j ) with respect to (m, n),

I m,n = {(m, n) , (m, m -n) , (-n, m -n) , (-n, -m) , (n -m, -m) , (n -m, n)} , and 
λ m,n = 16π 2 27 m 2 + n 2 -mn . ( 49 
)
We have the following symmetry properties (see [START_REF] Denis | Geometrical structure of Laplacian eigenfunctions[END_REF][START_REF] Mark | The eigenvalues of an equilateral triangle[END_REF]):

Lemma 2 ∀(m, n) ∈ Z 2 , ∀j ∈ {1, . . . , 6}: (i) m j ̸ = 2n j , n j ̸ = 2m j m j ̸ = -n j , n j ̸ = m j ⇐⇒ m ̸ = 2n, n ̸ = 2m, m ̸ = -n, n ̸ = m;
(ii) λ m j ,n j = λ m,n ;

(iii) 3 divides m + n ⇒ ∀j ∈ {1, .., 6} , 3 divides m j + n j ;

(iv) I m,n = I m j ,n j . Besides, either all the pairs of this set have the same sign with respect to (m, n) and (m j , n j ), or the signs of every pair with respect to (m, n) and (m j , n j ) are opposite;

(v) m j n j (m j -n j ) = mn(m -n).

As may be found in Grebenkov-Nguyen [START_REF] Denis | Geometrical structure of Laplacian eigenfunctions[END_REF] and Pinski [START_REF] Mark | The eigenvalues of an equilateral triangle[END_REF]:

Lemma 3 The eigenvalues of the Dirichlet-Laplace operator in Ω are the numbers λ m,n defined by (49), satisfying the following additional conditions:

(i) 3 divides m + n, (ii) m ̸ = 2n, n ̸ = 2m, m ̸ = -n, n ̸ = m.
The associated complex eigenvectors u m,n are then given by

u m,n (x 1 , x 2 ) = (m ′ ,n ′ )∈Im,n ε m ′ ,n ′ exp 2iπ 3 m ′ x 1 + (2n ′ -m ′ ) x 2 √ 3 .

Remarks

(i) As a consequence of Lemma 2 (iv) for given (m, n) and j, either u m j ,n j = u m,n or u m j ,n j = -u m,n so that the six pairs ((m j , n j )) 1⩽j⩽6 define (up to the sign) the same eigenvector.

(ii) At this point, we do not yet know the normalization of these eigenvectors.

Lemma 4 Let (m, n) ∈ Z 2 satisfying Lemma 3(i)-(ii) and mn (m -n) ̸ = 0. Then Ω u m,n (x)dx = 0. Proof of Lemma 4 Let us first compute each A j := Ω exp 2iπ 3 m j x 1 + (2n j -m j ) x 2 √ 3 dx.
We easily get

A j = √ 3/2 0 1-x 2 / √ 3 x 2 / √ 3 exp 2iπ 3 (m j x 1 ) dx 1 exp 2iπ 3 m j x 1 + (2n j -m j ) x 2 √ 3 dx 2 = 9 √ 3 8π 2 1 m j n j (m j -n j ) m j -n j + n j exp 2iπ 3 m j -m j exp 2iπ 3 n j
where mn (m -n) ̸ = 0 and point (v) in Lemma 1 have been used.

Let us now introduce the notation

I(p) = exp 2iπ 3 p and let A m,n = 8π 2 9 √ 3 mn (m -n) Ω u m,n (x)dx.
We thus have

A m,n = m -n + nI(m) -mI(n) -n -mI(m) + nI(m) + mI(m -n) -m + mI(-n) -nI(-n) + nI(m -n) +n -m + mI(-n) -nI(-m) +n -mI(n -m) -nI(-m) + mI(-m) +m -nI(n -m) + nI(n) -mI(n) A m,n = (2n -m) (I (m) -I (-m)) + (n -2m) (I (n) -I (-n)) + (n + m) (I(m -n) -I(n -m)) so that A m,n = 2i (2n -m) sin 2π 3 m + (n -2m) sin 2π 3 n + (n + m) sin 2π 3 (m -n) .
Now, taking into account that 3 | (m + n), there exists k ∈ Z such that m = 3k -n. Substituting m = 3k -n in A m,n and using oddity and 2π-periodicity of sin we get then

A m,n = 2i sin 2π 3 n (3k -3n + 3n -6k + 3k) = 0.
The lemma is proved.

As shown in Pinski [START_REF] Mark | The eigenvalues of an equilateral triangle[END_REF], the case where mn (m -n) = 0 corresponds to the case of simple eigenvalues. In this case, in view of the symmetry statements of Lemma 1, we may always chose n = 0 and m = 3k, k ∈ N * . Then according to Corollary 2 in Pinski, a possible choice of associated eigenvector to λ 3k,0 is v 3k,0 defined by: v 3k,0 (x) = sin 4πkx 2 √ 3 + sin 2πk x 1 -

x 2 √ 3 + sin 2πk 1 -x 1 - x 2 √ 3 .
With easy computations, we get the following results. .

Now, we are able to prove the proposition.

Proof of Proposition 4 According to Lemmas 3, 4, 5 we get for t ⩾ 0

K(t) = 3 √ 3 2π 2 +∞ k=1 1 k 2 exp - 16π 2 3 k 2 t ,
and thus, for t > 0,

K ′ (t) = -8 √ 3 +∞ k=1 exp - 16π 2 3 k 2 t = 4 √ 3 -4 √ 3 +∞ k=-∞ exp - 16π 2 3 k 2 t .
Then, with Poisson resummation formula we get

K ′ (t) = 4 √ 3 - 3 √ πt +∞ k=-∞ exp - 3k 2 16 1 t = √ 3 4 - 3 √ πt - 6 √ πt +∞ k=1 exp - 3k 2 16 1 t .
Hence, we proved (i); we get (ii) by integrating (i).

Remark As in the case of a segment/rectangle, one could rewrite K ′ in terms of the Jacobi θfunction, by noting that K ′ (t) = 4 √ 3 (1 -θ (0, 16πti/3)).

C Proofs regarding time discretization

C.1 Conditions (16) page 13 for the second order Backward Difference Formula (BDF2)

The BDF2 scheme [START_REF] Henry P Mckean | Curvature and the eigenvalues of the Laplacian[END_REF] can be put in the abstract form by defining (G n ) n with the following linear difference difference equation of order 2:

G 0 = 1, G 1 (ξ) = (1 -ξ) -1 , ∀n ≥ 0, (3 -2ξ)G n+2 (ξ) = 4G n+1 (ξ) -G n (ξ), (50) 
For small enough ξ if may be rewritten as :

G n (ξ) = c(ξ)f (ξ) n + d(ξ)g(ξ) n ,
where

f (ξ) = 2 + √ 1 + 2ξ 3 -2ξ , g(ξ) = 2 - √ 1 + 2ξ 3 -2ξ ,
For the first term in the right-hand side of (58), with (16) 4,5 we get: and then, taking into account that the functions x → x ρ+1 e x and x → x ρ+2 e x/2 are bounded on R -, we get:

c(ξ)f (ξ) n (f (ξ) -1) -ξe (n+ 1 2 )ξ ≤ C n ρ+1 . ( 61 
)
(b) Estimate for ξ ≤ -ξ 0 . In this case, using (54) and the third assumption in [START_REF] Martín-Vaquero | Stabilized explicit Runge-Kutta methods for multi-asset American options[END_REF], we get:

G n+1 (ξ) -G n (ξ) -ξe (n+ 1 2 )ξ ≤ Cε n (1 -ξ) .
But as we assume that n ≥ 2 ln(1 + kλ h,N h ) ln 1/ε , as -ξ ≤ kλ h,N h , we have that (1 -ξ) ε n/2 ≤ 1. Using the boundedness of n ρ+1 ε n/2 , we get:

G n+1 (ξ) -G n (ξ) -ξe (n+ 1 2 )ξ ≤ Cε n/2 ≤ C n ρ+1 . ( 62 
)
(c) Conclusion. From (55), ( 57), ( 58), ( 61), (62), and n = t n /k we conclude that

∥V n+1 h,k -V n h,k -∂ t V h (t n+1/2 )∥ L 2 ≤ k ρ+1 t -ρ-1 n C N h j=1 a 2 h,j 1/2 ≤ k ρ+1 t -ρ-1 n C V 0 h L 2 . □

Proof of Proposition 6

The first assertion is a direct consequence of the definition (10) of K h , the definition (18) of K h,k and the estimate of Lemma 6.

Let us prove the second one. In view of [START_REF] Kac | Can one hear the shape of a drum?[END_REF] we have for any s > 0:

0 ≤ -K ′ h (s) ≤ K h (0) -K h (s) s ≤ K h (0) s ≤ K(0) s . (63) 
Indeed, the first inequality holds because K ′ h is non positive, the second one holds because K h is convex, the third one holds because K h is non negative, the last one follows from 14. Then, using the concavity of K ′ h , and (63) with s = t/2 we get:

∀t > 0, 0 ≤ K ′′ h (t) ≤ K ′ h (t) -K ′ h (t/2) t/2 ≤ -K ′ h (t/2) t/2 ≤ 4K(0)t -2 . ( 64 
)
Using the first inequality of the proposition with ρ = 1 for the first term, the mean value theorem and (64) for the second one, for t n ≥ 2k ln(1 + kλ h,N h )/ ln (1/ε) and t ∈ ]t n , t n+1 [ , we obtain:

K ′ h,k -K ′ h (t) = K ′ h,k (t n+1/2 ) -K ′ h (t) ≤ K ′ h,k -K ′ h (t n+1/2 ) + K ′ h (t) -K ′ h (t n+1/2 ) ≤ Ckt -2 + Ckt -2 .
(65) But with [START_REF] Kac | Can one hear the shape of a drum?[END_REF] we see that lim D Accuracy for the scheme on the graph: Proof of Theorem 6

In this section, we give the proof of Theorem 6 page 19.

Let's first deal with the corrected scheme. We evaluate the contribution to θ(k) first for t n = nk ≤ τ , then for nk > τ , and last for nk = τ . In the first case, using integration by parts with f = K -K h,k,τ :

       f n := 1 k t n+1 tn f (t)dt = t n+1 tn f ′ (t) 1 - t -t n k dt + f (t n ) , f n-1 = - tn t n-1 f ′ (t) 1 - t n -t k dt + f (t n ) , (66) 
so that

0<nk<τ |K n -K n-1 -Kn + Kn-1 | ≤ 0<nk<τ t n+1 t n-1 K ′ -K ′ h,k,τ (t) 1 - |t -t n | k dt (67) ≤ 0<nk<τ t n+1 t n-1 K ′ -K ′ h,k,τ (t)dt ≤ 2 τ 0 K ′ -K ′ h,k,τ (t)dt.
Now, let us consider the case where t n > τ . Then K h,k,τ = K h,k for all t ≥ τ , so that, using (66) with f = K h,k and then the fact that K ′ h,k is constant on each ]t n , t n+1 [ we get

Kn -Kn-1 = K ′ h,k (t -1/2 ) tn t n-1 1 - |t -t n | k dt + K ′ h,k (t n+1/2 ) t n+1 tn 1 - |t -t n | k dt = k 2 K ′ h,k (t n-1/2 ) + K ′ h,k (t n+1/2 ) .
We have

|K n -K n-1 -Kn + Kn-1 | ≤ Kn -Kn-1 -kK ′ (t n ) + |K n -K n-1 -kK ′ (t n )|. ( 68 
)
For the first term on the right hand side, using the above computation, we have:

Kn -Kn-1 -kK ′ (t n ) = k 1 2 K ′ h,k (t n-1/2 ) + K ′ h,k (t n+1/2 ) -K ′ (t n ) ≤ k 2 K ′ h,k (t n-1/2 ) + K ′ h,k (t n+1/2 ) -K ′ (t n-1/2 ) -K ′ (t n+1/2 ) + k 2 K ′ (t n-1/2 ) + K ′ (t n+1/2 ) -2K ′ (t n ) . (69) 
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  Application : numerical solution of viscous flows on a graph 4.1 Description of the problem on the graph In [4] we consider a problem set on a connected graph B in R d , where d = 2 or 3, that we briefly describe as follows. Let O 1 , . . . O N be vertices in R d , e 1 , . . . , e M closed segments (edges) connecting these vertices. The segments only intersect at vertices. The vertices belonging to a single e j are numbered from 1 to N 1 : O 1 , . . . , O N 1 , N 1 < N ; they constitute the boundary of the structure. The graph is B = M j=1 e j and is assumed to be connected. A positive orientation is defined along each edge e j = [O i j , O k j ] as the direction from O i j to O k j . Then for each edge e j we denote by ∂ e j the derivative in the normalized direction -----→ O i j , O k j . Given an arbitrary maximal time T > 0, the problem set on B×[0, T ] is:

Figure 1 :

 1 Figure 1: Solution to (2) with Dirichlet boundary equations at time t = 1/200 and t = 1/2 for three different domains. (The triangle is shown at a scale twice smaller than the square and the disc)

  Figure 3:Case of the disc discretized with P 2 -elements in space and BDF2 in time.K h,k (t n+1 ) -K h,k (t n ) k -K(t n+1 ) -K(t n ) k as a function of t n+1/2for various values of the space

A. 3

 3 Term by term differentiability -Existence of the asymptotic expansions for K Proposition 10 Let m ∈ Z, M ∈ N * , T > 0. Let H :]0, T ] → R be a C 1 convex or concave function such that: H(t) = M r=m α r t r/2 + O t→0 + (t (M +1)/2

  1) = L I 0,c where I 0,c = -

c 2 = ( 1 + 2 + 2 + 1 j=0e

 21221 (ξ) (f (ξ) -1) -ξe ξ/2 = (1 + O ξ→0 (ξ ρ )) e ξ -1 + O ξ→0 (ξ ρ+1 ) -ξe ξ/O ξ→0 (ξ ρ )) ξ + ξ 2 O ξ→0 (ξ ρ+1 ) -ξ 1 + ξ O ξ→0 (ξ 2 ) = O ξ→0 (ξ ρ+1 ), because ξ 3 = O ξ→0 (ξ ρ+1 ) (ρ ∈ {1, 2}). Thus c(ξ) (f (ξ) -1) -ξe ξ/2 e nξ ≤ C |ξ| ρ+1 e nξ . (59)Let us consider now the second term in the right hand side of (58). From (16)5 , c is bounded on [-ξ 0 , 0]. Let us estimate: f (ξ) n -e nξ . With the identity a n -b n = (a -b) n-1 j=0 a j b n-j-1 , we get f (ξ) n -e nξ = f (ξ) -e ξ n-1 j=0f (ξ) j e (n-j-1)ξ , so that, with (51), (54)f (ξ) n -e -nξ ≤ C |ξ| ρ+1 n-(n-j/2-1)ξ ≤ C |ξ| ρ+1 ne n 2 ξ ,and therefore, with (52):c(ξ) (f (ξ) -1) f (ξ) n -e nξ ≤ C |ξ| ρ+2 ne n 2 ξ .(60)Equations (59) and (60) yield:c(ξ)f (ξ) n (f (ξ) -1) -ξe (n+1 2 )ξ ≤ C |ξ| ρ+1 e nξ + |ξ| ρ+2 ne n 2 ξ = C n ρ+1 |nξ| ρ+1 e nξ + |nξ| ρ+2 e n 2 ξ ,

  t→+∞K ′ h (t) = 0. Also, since from (16)lim n→+∞ G n (ξ) = 0 for all ξ < 0, -G n ) (-kλ h;j ) = 0.Hence, by integration of (65) on [t, +∞[ we get the second estimate of the proposition. The third one is obtained by integrating (65) on [t, T ].
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  Proposition 7 If the hypotheses of Theorem 2 are satisfied (e.g. Implicit Euler without correction),

	then	k 1	t n+1

tn K h,k (t)dt n and (K h,k (t n )) n satisfy Lemma 4 of [4].

Table 2 :

 2 accuracy with respect to time discretization, case of an equilateral triangle with side 2,

	Nitsche, BDF2			
	h	k	L 1 k -error order Ẇ 1,1 k -error order
	4e-03 1e-01 3.2533e-02	-	6.7891e-01	-
	4e-03 5e-02 1.3683e-02 1.250 4.7059e-01 0.529
	4e-03 2e-02 3.8177e-03 1.393 2.9155e-01 0.523
	4e-03 1e-02 1.4100e-03 1.437 2.0521e-01 0.507
	4e-03 5e-03 5.1521e-04 1.452 1.4490e-01 0.502
	4e-03 2e-03 1.3384e-04 1.471 9.1594e-02 0.501
	4e-03 1e-03 4.7590e-05 1.492 6.4761e-02 0.500
	4e-03 5e-04 1.6955e-05 1.489 4.5794e-02 0.500
	4e-03 2e-04 5.1646e-06 1.297 2.8972e-02 0.500
	4e-03 1e-04 2.8542e-06 0.856 2.0503e-02 0.499
	4e-03 5e-05 2.1411e-06 0.415 1.4530e-02 0.497

Table 3 :

 3 accuracy with respect to space discretization, case of a square with side 1, Nitsche, BDF2.

	h	k	L 1 k -error order Ẇ 1,1 k -error order
	1e-01 1e-04 5.4807e-03	-	2.9615e-01	-
	5e-02 1e-04 1.8170e-03 1.593 1.3815e-01 1.100
	2e-02 1e-04 5.3235e-04 1.340 6.3231e-02 0.853
	1e-02 1e-04 1.5954e-04 1.738 3.0414e-02 1.056
	5e-03 1e-04 2.7544e-05 2.534 1.4971e-02 1.023
	2e-03 1e-04 6.8637e-06 1.516 1.3868e-02 0.084
	1e-03 1e-04 2.3534e-06 1.544 1.3686e-02 0.019
	5e-04 1e-04 1.1414e-06 1.044 1.3654e-02 0.003

Table 4 :

 4 accuracy with respect to time discretization, case of a square with side 1, Nitsche, BDF2.

	h	k	L 1 k -error order Ẇ 1,1 k -error order
	5e-04 1e-01 1.9611e-02	-	4.5902e-01	-
	5e-04 5e-02 9.1157e-03 1.105 3.2094e-01 0.516
	5e-04 2e-02 2.6101e-03 1.365 1.9619e-01 0.537
	5e-04 1e-02 9.5608e-04 1.449 1.3721e-01 0.516
	5e-04 5e-03 3.4703e-04 1.462 9.6689e-02 0.505
	5e-04 2e-03 9.0114e-05 1.472 6.1075e-02 0.501
	5e-04 1e-03 3.2243e-05 1.483 4.3175e-02 0.500
	5e-04 5e-04 1.1443e-05 1.494 3.0527e-02 0.500
	5e-04 2e-04 2.9076e-06 1.495 1.9307e-02 0.500
	5e-04 1e-04 1.1414e-06 1.349 1.3654e-02 0.500

Table 5 :

 5 disc, P 1 , Nitsche, Implicit Euler method. ∥K

Table 6 :

 6 disc, P 2 , Nitsche, BDF2. ∥K

	1 • 2 -18 7.7569e-03	5.1079e-01	6.8658e-03	1.2161e-02
	2 -3 0.1 • 2 -18 4.2895e-03 0.85 3.1177e-01 0.71	3.9197e-03	0.81 2.1384e-02 -0.81
	2 -4 0.1 • 2 -18 1.2743e-03 1.75 1.6544e-01 0.91	1.0254e-03	1.93 1.0026e-02 1.09
	2 -5 0.1 • 2 -18 3.4323e-04 1.89 9.0047e-02 0.88	2.5132e-04	2.03 3.9360e-03 1.35
	2 -6 0.1 • 2 -18 9.0154e-05 1.93 4.4007e-02 1.03	6.7331e-05	1.90 1.4194e-03 1.47
	2 -7 0.1 • 2 -18 2.2885e-05 1.98 2.1364e-02 1.04	1.7637e-05	1.93 4.7988e-04 1.56
	2 -8 0.1 • 2 -18 5.7614e-06 1.99 1.1607e-02 0.88	4.4413e-06	1.99 1.6490e-04 1.54
	2 -9 0.1 • 2 -18 1.2969e-06 2.15 5.6007e-03 1.05	1.0189e-06	2.12 5.3222e-05 1.63
	2 -10 0.1 • 2 -18 2.0038e-07 2.69 2.1013e-03 1.41	1.5362e-07	2.73 1.3127e-05 2.02
	2 -10 0.1 • 2 -1 2.2640e-02	2.4466e-01	3.1890e-02	6.0248e-02
	2 -10 0.1 • 2 -2 1.1223e-02 1.01 1.8981e-01 0.37	1.2882e-02	1.31 2.9966e-02 1.01
	2 -10 0.1 • 2 -3 5.7809e-03 0.96 1.4570e-01 0.38	5.9278e-03	1.12 2.1383e-02 0.49
	2 -10 0.1 • 2 -4 3.0129e-03 0.94 1.0962e-01 0.41	2.7347e-03	1.12 1.0704e-02 1.00
	2 -10 0.1 • 2 -5 1.5670e-03 0.94 8.1023e-02 0.44	1.3314e-03	1.04 5.9707e-03 0.84
	2 -10 0.1 • 2 -6 8.0942e-04 0.95 5.9083e-02 0.46	6.6861e-04	0.99 3.5482e-03 0.75
	2 -10 0.1 • 2 -7 4.1492e-04 0.96 4.2647e-02 0.47	3.4173e-04	0.97 2.2000e-03 0.69
	2 -10 0.1 • 2 -8 2.1125e-04 0.97 3.0535e-02 0.48	1.7427e-04	0.97 1.3054e-03 0.75
	2 -10 0.1 • 2 -9 1.0691e-04 0.98 2.1702e-02 0.49	8.9098e-05	0.97 7.8028e-04 0.74
	2 -10 0.1 • 2 -10 5.3800e-05 0.99 1.5300e-02 0.50	4.5376e-05	0.97 4.5670e-04 0.77
	2 -10 0.1 • 2 -11 2.6900e-05 1.00 1.0671e-02 0.52	2.2994e-05	0.98 2.6285e-04 0.80
	2 -10 0.1 • 2 -12 1.3324e-05 1.01 7.3285e-03 0.54	1.1564e-05	0.99 1.4874e-04 0.82
	2 -10 0.1 • 2 -13 6.4901e-06 1.04 4.9239e-03 0.57	5.7282e-06	1.01 8.1169e-05 0.87
	2 -10 0.1 • 2 -14 3.0571e-06 1.09 3.2245e-03 0.61	2.7538e-06	1.06 4.1283e-05 0.98
	2 -10 0.1 • 2 -15 1.3347e-06 1.20 2.0923e-03 0.62	1.2386e-06	1.15 1.7482e-05 1.24
	2 -10 0.1 • 2 -16 4.7146e-07 1.50 1.4611e-03 0.52	4.6622e-07	1.41 2.9301e-06 2.58
	2 -10 0.1 • 2 -17 1.7834e-07 1.40 1.5866e-03 -0.12	1.4477e-07	1.69 6.9816e-06 -1.25
	2 -10 0.1 • 2 -18 2.0038e-07 -0.17 2.1013e-03 -0.41	1.5362e-07	-0.09 1.3127e-05 -0.91
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A Asymptotic expansion of the kernel: proof of Theorem 1

The proof of Theorem 1 page 7 is rather long and thus is decomposed into several steps. First, in section A.1, we consider the case where Ω is a disk of radius 1 and obtain the explicit asymptotic expansion of Proposition 2 page 7. Subsection A.2 is devoted to obtaining the asymptotic expansions for a primitive of K: Proposition 9. As already mentioned, here we use computations and results in [START_REF] Gung-Min Gie | Singular perturbations and boundary layers[END_REF][START_REF] Gung-Min Gie | Recent progresses in boundary layer theory[END_REF] for well-prepared data. Along the proof, all the needed results and equations are explicitly mentioned with the numbering of [START_REF] Gung-Min Gie | Recent progresses in boundary layer theory[END_REF]. Subsection A.3 is devoted to the justification of the term by term differentiation of the obtained expansion: Proposition 10. The first five coefficients of the expansions are then characterized in terms of geometric data of the domain (area, length, curvature) and of several universal constants: see Subsection A.4, Proposition 11. From this, we deduce by comparison the universal constants for the first five terms of the general asymptotic expansion and thereby conclude the proof of Theorem 1.

A.1 Kernel in the case of a disk -Proof of Proposition 2

Let us prove Proposition 2 page 7. Proof Let J j denote the j-th Bessel function of the first kind, j ∈ N; the eigenvalues λ of the Laplace-operator are known to be the square of the zeros of all these Bessel functions, with associated eigenvectors of the form:

where (ρ, θ) are the polar coordinates of x.

It is easily seen that Ω w j,λ dx = 0 for j ̸ = 0 so that only the eigenvalues of the 0-th Bessel function J 0 remains in the series expansion (3):

Let us consider non normalized eigenvectors associated with the (µ k ) k∈N * : (J 0 (µ k ρ)) k∈N * . One can Now, let us compute:

Likewise:

Then, using (42), we conclude that H ′ admits the same asymptotic expansion. Now, we are able to prove the first part of Theorem 1. Applying Proposition 10 to

which is a concave function (see Proposition 1) with m = 2 and M = 2n+5, in view of Proposition 9, the following holds true.

Corollary 1

Let Ω be a smooth domain and K the kernel defined by [START_REF] Alboin | A comparison of methods for calculating the matrix block source term in a double porosity model for contaminant transport[END_REF]. Then:

where, the coefficients c r/2 are defined by c r/2 = (r/2 + 1) cr/2+1 , the cr/2+1 being defined in (41).

The next step in proving Theorem 1 is to express the coefficients c r/2 for r = 1...4 in terms of the geometry of Ω, namely in terms of powers of the curvature κ, and of some universal constants, that do not depend on Ω. This is done in the next subsection.

A.4 Characterization of the first five coefficients of Theorem 1

We already know that c 0 = |Ω| . To get c 1/2 , c 1 , c 3/2 , c 2 we need to compute in some way I 0 (1), J 0 (1), I 1/2 (1) J 1/2 (1), I 1 (1), J 1 (1), I 3/2 (1) defined by (39).

Then, with ξ 0 = 2/5, ρ = 2 and ε = 2/3, it is not too difficult to see that

and that

so that all conditions in ( 16) are satisfied, except for

Let us check this condition in detail.

We have

where

One can check directly that the spectral radius ρ(ξ) of A(ξ) is bounded by

. Now, if we take a submultiplicative norm:

Hence (ξ → ∥A(ξ) 2 n ∥ 2 -n ) n is a sequence of continuous functions decreasing and converging to ρ(ξ) on [-∞, -ξ 0 ]. By Dini theorem, this sequence converges uniformly. Hence, there exists m > 0, such that: ∥A(ξ) 2 m ∥ 2 -m ≤ ε, and therefore ∥A(ξ)

C.2 Proof of Proposition 6 page 14

In this section, we give a proof of Proposition 6. We first refomulate hypotheses ( 16) and (51).

Then we prove an estimate relating the time derivatives for the fully discrete scheme and for the semi-discrete scheme for (2), following the lines of Thomée [START_REF] Thomée | Galerkin finite element methods for parabolic problems[END_REF], Chapter 7. Assume that ( 16) and 51 are true. Let us show that without loss of generality, we can further assume that ξ 0 , ε are such that:

There is no loss of generality. Indeed, let ξ0 , ε as in [START_REF] Martín-Vaquero | Stabilized explicit Runge-Kutta methods for multi-asset American options[END_REF]; one can choose ξ 0 > 0 small enough to have 

Then all the conditions in ( 16) hold for these new definitions of ξ 0 and ε. The first two points because

Lemma 6 Under the same assumptions as in Proposition 6, the following inequality hold:

where C does not depend on k, h and S h .

Proof With ( 19) and ( 13):

We discuss above the contribution of each term in this sum, according to whether ξ := -kλ h,j ∈ [-ξ 0 , 0] or not.

(a) Estimate for ξ ∈ [-ξ 0 , 0] . We have:

where

As n ρ+1 ε n n∈N is bounded, this may also be rewritten as:

For the remaining part in (56), let us decompose it as follows

As,

|K (3) | and as from Proposition 10 we have |K (3) (t)| ≤ Ct -5/2 , for the third term in (69), we get:

and therefore

With ( 68), ( 70), (71), noting that

we get.

Last, let us consider the case t n = τ . We have:

Indeed, the first equality holds because

. Hence, we get

Now with (67), ( 72), (73), we get that

With Theorem 3, therefore 0<nk<T

|K n -K n-1 -Kn + Kn-1 | ≤ Ck mµ .

For an uncorrected scheme. We have, in the same way:

Now, we need to bound |K 0 -K0 |. We have

so that is sufficient to estimate K N k -1 -KN k -1 . But from the error estimate of the trapezoid formula error:

Hence, ( 9) and (18) yields:

All these terms are bounded by Ck mµ . This completes the proof of the theorem. □