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Asymptotics and discretization of a weakly singular kernel:

application to viscous �ows in a network of thin tubes

Éric Canon1, Frédéric Chardard1, Grigory Panasenko1,2, Olga �tikonien
e2

Abstract

Kernels obtained from the heat equation arise in several modelling contexts, like some double
porosity models, or viscous �ows in networks of thin tubes. These kernels are weakly singular
at initial time. An accurate approximation must therefore take this singularity into account. In
this paper we obtain an asymptotic expansion for small times, which we use to build a numerical
scheme for approximating the kernels. Convergence of the scheme and relevance of a correction
through the asymptotics are proven both analytically and numerically. Finally, we show that
this approximation applies to the model on the graph studied by the authors in �Numerical
solution of the viscous �ows in a network of thin tubes: equations on the graph�, Journal of
Computational Physics, 435:110262, 2021 http://dx.doi.org/10.1016/j.jcp.2021.110262.
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1 Introduction

This work is mainly devoted to the approximation of a class of weakly singular kernels. These kernels
are functions of the time variable t and are computed by solving an auxiliary heat equation set on

some 2D-domain: K(t) =

∫
Ω

V (t, x)dx where V is the solution of a heat equation. Here, weakly

singular is meant in the sense of the W 1,1 norm, and more precisely means that the �rst derivative of
the kernel is of order−1/2 ∈]−1, 0[ near t = 0. Such kernels appear in di�erent contexts in asymptotic
analysis as convolution kernels in e�ective equations resulting from asymptotic processes. Because
of the singularity at t = 0, one has to pay particular attention to the approximation of the kernels
for small values of t when computing numerical solutions. So, the main purpose of the present paper
is to examine this point in detail and to design accurate approximations of the kernel.
This work is originally motivated by a model obtained by Panasenko and Pileckas [14, 15] as the
limit of nonsteady Navier-Stokes equations in a tube structure, by letting the diameters of the tubes
tend to zero, with appropriate scaling of the data. The aim in [14, 15] was notably the modeling of
micro�uid and �ows in blood vessels. The geometry of a blood vessel network is complex, so it is
essential to reduce the dimensionality. The resulting e�ective model is a problem set on a connected
1D-graph which consists of nonlocal in time di�usion equations on each edge, that are connected with
appropriate (Kirchho�) junctions conditions at the inner vertices. Suitable numerical schemes for
this reduced model are proposed and studied in the �rst part [3] of our work. In particular, the key
role of the approximation of the convolution (with respect to time) kernels is highlighted in [3]: the
error on the kernel is the more limiting factor. In this model, one kernel is associated with each tube
of the initial structure, where the corresponding heat equation is set on a normalized cross-section
of the tube. So a second purpose of the present paper is to relate our results to the error estimates
in [3].
Let us also mention that such kernels appear in other exciting contexts, for example: double porosity
like models, with a convolution in the time derivative of a parabolic equation (see, for instance,
[2, 1, 21, 16, 17]); in the di�usion term of a parabolic equation arising in viscoelasticity or materials
with memory (see, for instance, [13]).
In this paper, we investigate the properties of the kernels in two main directions.
The �rst direction is theoretical: we prove that, at least for a C∞-smooth domain, the associated
kernel admits an asymptotic expansion at t = 0 at any order. The paper by Gie, Jung and Temam [7]
on boundary layers theory for the heat equation (when the di�usion coe�cient tends to 0) is crucial
for proving this theorem. Besides, an independent computation of such an asymptotic expansion
for a disk allows us, by comparison, to identify explicitly the �rst �ve terms of this expansion,
only in terms of universal constants and of the geometry of the domain. This is our �rst main
result: Theorem 1. Additional properties of the kernels are also given: invertibility and coercivity
of the convolution operator, following the lines in [11]. We also give asymptotic expansions (with
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exponential convergence) for rectangular and triangular domains.
The second direction is numeric. We propose a scheme with several variants for solving the auxiliary
heat equation associated with a given kernel, which is singular because the initial condition does not
satisfy the Dirichlet boundary condition. We show convergence of the associated approximate kernels
in some continuous or discrete W 1,1 norm, as needed for the convergence theorems proved in [3]. It
is the subject of Theorems 2, 3 and 6. In particular, in Theorem 3, we use the asymptotic expansion
obtained in Theorem 1 (or Propositions 6, 7) to improve the kernel approximation for small times,
and consequently, improve the overall approximation. Numerical experiments are provided in the
last section of the paper to validate and illustrate the theoretical results. The use of a corrected
scheme improves the order of W 1,1-convergence from 1/3 to 10/9 theoretically (from Theorem 2 to
Theorem 3). Numerically, we observe an improvement from 1/2 to ca. 0.7 (schemes of order 1) or
ca. 1.25 (schemes of order 2), and the computational time does not change.
Note that for 1D parabolic equation, Flyberg and Fornberg [5] �rst compute analytically the singular
part of the solution, and then use a spectral method to get the smooth residual. In the 2D case,
the singular part is more complex to plug in numerical computations and to be integrated over the
domain. In [4], Chen, Qin and Temam use penalization instead of an explicit expression of the
singular part.
To our knowledge, the results on the asymptotic expansions are new. However, let us mention that
an explicit two terms asymptotic approximation was already used in [1] for a rectangular domain.

Outline This paper is organized as follows.
In Section 2, we prove the �rst main result of this paper, Theorem 1: the existence of asymptotic
expansions at any order, for in�nitely smooth domains, as stated in Section 2.1. This is proven in
several steps. The �rst step consists in proving the existence of such expansions for a primitive of
a kernel. It is done using results in [7] for well-prepared problems. As (2) is not well-prepared in
the sense of [7], this is done for a primitive of V which solves a well-prepared heat equation. It is
done in Section 2.2. In Section 2.2.2, we prove that these expansions can be di�erentiated term by
term. In Section 2.2.4, we compute the �rst terms of the asymptotic expansion for a disk. This is
then used in Section 2.2.3 to identify some universal constants and thus express the �rst �ve terms
of the general asymptotic expansions in terms of the geometry of the domain and so �nish the proof
of Theorem 1. We end this �rst part with Section 2.3 by computing asymptotic expansions for
rectangles and equilateral triangles, to illustrate that asymptotic expansions are of a di�erent nature
for non smooth domains.
Note that in [6, 7], the authors also consider ill-prepared heat equation (that is with incompatible
initial and Dirichlet boundary data). But in our proofs, we use many intermediate results and
computations that are not explicitly presented in [6, 7] for the general case. For that reason, for the
sake of clarity, we use their results in the case of well-prepared data.
Section 3 is devoted to the design of schemes approximating the kernels, and to convergence proofs.
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The Dirichlet-Laplace operator is discretized with standard �nite elements, with or without Nitsche
conditions. In Subsection 3.3, we obtain a �rst set of estimates for a semi-discrete scheme. In Subsec-
tion 3.4, full discretization is considered in a quite general setting, and further a priori estimates are
obtained. Error estimates are provided, with convergence rates in Subsection 3.5. In Subsection 3.6,
a correction for small times is proposed which leads to a better convergence rate.
Applications to the above mentioned problem on the graph are presented in Section 4. In Subsec-
tion 4.2, we relate the convergence results of Section 3 with the theorems of [3]. We end this section
by proposing an alternative proof for continuity, invertibility and coercivity of the convolutions op-
erators, to those for smooth domains given in [18, 19].
Finally, Section 5 is devoted to the presentation of numerical experiments.

2 Asymptotic expansion for small times

2.1 Main result : asymptotic expansion for smooth domains

Let Ω be a bounded domain in R2. We consider kernels of the form:

K(t) =

∫
Ω

V (x, t)dx, (1)

where V is the unique solution of following heat equation:
∂tV −4V = 0 on Ω× R+∗,

V = 0 on ∂Ω× R+∗,

V = 1 on Ω× {0}.
(2)

Let (λk)k∈N be the eigenvalues of Dirichlet-Laplace operator, and (wk)i∈N an associated orthonormal
Hilbert basis of L2(Ω). Let us consider the expansion of the initial condition with respect to this
basis:

1 =
+∞∑
k=0

akwk,, ak = 〈wk, 1〉,

where 〈 , 〉 stands for the inner product in L2(Ω). The solution of (2) is V (x, t) =
+∞∑
k=0

ake
−λktwk(x),

so that:

K(t) =
+∞∑
k=0

a2
ke
−λkt, ak = 〈wk, 1〉 (3)
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Note that:

∀` ∈ N, K(`)(t) =
+∞∑
k=0

a2
k(−λk)`e−λkt, (4)

so that the following proposition holds true.

Proposition 1 The kernel K and its derivatives are monotonic, non increasing if ` is odd, non
decreasing if not, and satisfy the following relation: lim

+∞
K(`) = 0.

The aim of this section is to prove the following result.

Theorem 1 Let Ω be a C∞-smooth simply connected domain and K be the kernel as de�ned above
by (1). Then, there exists (cj)j∈ 1

2
N such that:

∀n ∈ N, ∀t > 0, K(t) =
n∑
r=0

cr/2t
r/2 +Ot→0+(t(n+1)/2)

where

c0 = S; c1/2 = − 2√
π
L; c1 = π; c3/2 =

1

6
√
π

∫ L

0

κ(s)2ds; c2 =
1

16

∫ L

0

κ(s)3ds.

Here, S designates the area of Ω, L the length of ∂Ω, and κ : [0, L] → R is the curvature of ∂Ω as
de�ned below in Equation (10).

Remarks

(i) In the case of a non simply connected domain, the coe�cient c1 becomes (1− k) π, where k
designates the number of holes. In the same spirit, the coe�cients c3/2 and c2 have to be
replaced by the sum of the corresponding terms for each hole in Ω. This will become clear in
the proof below.

(ii) The assumption of regularity for Ω is essential. In the case of non smooth domains, the situation
is possibly quite di�erent. See the examples in Section 2.3 below.

(iii) Note that there exist similar results for the trace of et∆ conjectured in the seminal work �Can
one hear the shape of drum� by Kac [10] and proved in Mac Kean Singer [12].

(iv) The proof is based on the boundary layer theory for the heat equation as exposed in Gie Jung
Temam [6, 7]. As mentioned above, we use their results for the heat equation with well-prepared
data. It enables us to obtain an asymptotic expansion for small times for a primitive function
of K only. Consequently, we have to prove in addition that the obtained expansion can be
di�erentiated term by term.
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The proof of Theorem 1 is rather long and thus is decomposed into several steps. Subsection 2.2.1
is devoted to obtaining the asymptotic expansions for a primitive of K: Proposition 2. As already
mentioned, here we use computations and results in [6, 7] for well-prepared data. Along the proof, all
the needed results and equations are explicitly mentioned with the numbering of [7]. Subsection 2.2.2
is devoted to the justi�cation of the term by term di�erentiation of the obtained expansion: Propo-
sition 3. The �rst �ve coe�cients of the expansions are then characterized in terms of geometric
data of the domain (area, length, curvature) and of several universal constants : see Subsection 2.2.3,
Proposition 4. Last, in section 2.2.4, we consider the case where Ω is a disk of radius 1. We then
obtain an explicit asymptotic expansion: Proposition 5. From this, we deduce by comparison the
universal constants for the �rst �ve terms of the general asymptotic expansion and thereby conclude
the proof of Theorem 1. We end this part with Subsection 2.3 by computing asymptotic expan-
sions for rectangular and equilateral triangle domains, which are non smooth domains, for which the
asymptotic expansions take a di�erent form.

2.2 Proof of Theorem 1

2.2.1 Existence of the asymptotic expansions for a primitive of K

First note that V de�ned by (2) is not solution to a well-prepared problem in the sense of [6, 7]
because the initial condition does not satisfy the boundary condition.
Let us introduce W de�ned on Ω× R+ by

W (x, t) =

∫ t

0

V (x, s)ds,

so that

∀t ∈ R+, K(t) = ∂t

∫
Ω

W (x, t)dx and
∫ t

0

K(s)ds =

∫
Ω

W (x, t)dx. (5)

This W satis�es the following problem with compatible initial and boundary data:
∂tW −∆W = 1 in Ω,
W = 0 on ∂Ω,
W = 0 at t = 0,

(6)

and in view of (5), asymptotic for W when t→ 0 will provides asymptotic for primitives of K when
t→ 0.
The problem addressed in [6, 7] is the asymptotic with respect to ε for :

∂tu
ε − ε∆uε = f in Ω,

uε = 0 on ∂Ω,
uε = u0 at t = 0,

(7)
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where, in the well-prepared case, u0 = 0 on ∂Ω. We are interested here in this problem with the very
simple data: f = 1, u0 = 0: 

∂tu
ε − ε∆uε = 1 in Ω,

uε = 0 on ∂Ω,
uε = 0 at t = 0.

(8)

Obviously, it is equivalent to look for asymptotics for (6) when t→ 0 or for (8) when ε→ 0. Indeed,
let wε(x, t) = εuε(x, t/ε); it is easily checked that wε solves (6). Hence,

∀ε > 0,∀t ∈ R+,∀x ∈ Ω, W (x, t) = wε(x, t) = εuε(x, t/ε).

With ε = t we get the following expression for W , from which we will deduce the asymptotic
expansion for W .

Lemma 1 The solution to (6) is given by: ∀t ∈ R+, ∀x ∈ Ω, W (x, t) = tut(x, 1), where for any
ε > 0, uε is the solution to (8).

So, in order to get an asymptotic expansion forW when t→ 0, it is su�cient to obtain an asymptotic
expansion for uε when ε → 0, and this is exactly what we are doing in the sequel : this is the �rst
step of the proof of Theorem 1:

Proposition 2 Let Ω be a bounded C∞−smooth domain. Let T > 0. Then, there exists (c̄j)j∈1+ 1
2
N,

where c̄1 = |Ω| , such that:

∀n ∈ N, ∀t ∈ [0, T ],

∫ t

0

K(s)ds =
2n+3∑
r=2

c̄r/2t
r/2 +Ot→0+(tn+2).

Proof We prove the result when Ω is a simply connected domain of R2. The case of a holed domain
can be dealt similarly, but the boundary Γ = ∂Ω then has as many connected components as the
number of holes plus one, and it is a bit cumbersome, though not di�cult, to parameterize Γ.
In the case without hole, Γ can be parameterized by its arclength γ : R→ Γ, s 7→ γ(s) in such a way
that:

γ′(s) = i(n(γ(s))) (9)

where n : Γ → R2 is the inward-pointing normal vector to Γ and i is the vector rotation of angle
π/2. Then, the curvature κ is de�ned by:

κ(s)γ′′(s) = n ◦ γ(s). (10)

Remark In the case of a non simply connected domain, to maintain (9) the boundaries of the
holes have to be parameterized clockwise, whereas the exterior boundary is parameterized counter-
clockwise.
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One can also de�ne a principal curvature coordinate system on a tubular neighborhood Ωδ of Γ:

X :

{
R×]0, δ[→ ImX = Ωδ ⊂ Ω

(s, ξ)→ γ(s)− ξn(γ(s)).

For δ > 0 small enough, X is a di�eomorphism. The Jacobian matrix and its determinant are given
by:

J(X)(s, ξ) =
(
(1− ξκ(s))γ′(s) −n(γ(s))

)
, det J(X)(s, ξ) = 1− ξκ(s).

We look for an asymptotic expansion for uε continuous solution of (2) in Ω × [0, T ]. According to
[7], uε can be approximated at any order n ∈ N by an asymptotic expansion of the form (equations
(200) in [7]):

uε ' uε,n+1/2 =
n∑
j=0

(
εj(uj + θj) + εj+1/2θj+1/2

)
, (11)

where the error in the approximation is bounded as follows (Theorem 2.5 Equation (227) in [7]):

‖uε,n+1/2 − uε‖L∞(0,T,L2(Ω)) ≤ Cεn+1. (12)

Here u0 is the solution to (7)1,3 with ε = 0, that is u0(x, t) = t. Also, from Equation (204) in [7], as
here u0 = 0 and f = 1 are constant, one can easily see that for j 6= 0, uj = 0. So for convenience, we
rewrite (11) as:

uε,n+1/2 = u0 +
2n+1∑
r=0

εr/2θr/2.

The boundary layers θr/2 are de�ned in [7] from functions θ̄r/2 that solve one dimensional heat
equations on a half line : equations (211)-(212)-(210)-(94). Note that the functions θ̄r/2, and thus
the functions θr/2 do depend on ε. In order to carry on our computations to prove Proposition 2,
we need to make explicit every dependence with respect to ε. For that purpose, we introduce the
functions θ̃j of the variables (s, ξ, t) ∈ R× R+∗ × R+∗, L-periodic with respect to s, where L = |Γ|,
de�ned recursively for j ∈ 1

2
N by:

∂tθ̃
j − ∂ 2

ξ θ̃
j = f̃ j in R+∗ × R+∗,

θ̃j = θ̃j0, at ξ = 0,

lim
ξ→+∞

θ̃j = 0,

θ̃j = 0 at t = 0.

(13)

where θ̃0
0 = −u0, θ̃j0 = 0 for j 6= 0 and,

∀j ∈ 1

2
N, f̃ j =

2j−2∑
k=0

ξk∂s

(
(k + 1)κk∂sθ̃

j−1− k
2

)
−

2j−1∑
k=0

ξkκk+1∂ξθ̃
j− 1

2
− k

2 . (14)
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Note that the functions θ̃j do not depend on ε.
These equations (13) and (14) are easily deduced from Equations (94), (210), (211), (212) in [7], with
the correspondence: θ̄j(s, ξ, t) = θ̃j(s, ε−1/2ξ, t) and f̄ j(s, ξ, t) = f̃ j(s, ε−1/2ξ, t). With our choice of
arclength parametrization above we have that g11 = 1 and h1 = h = 1 − κξ in the notations of [7].
This was used to in (94) and (210) to make (14) explicit.
Now, following the lines in [7], we de�ne the boundary layers θj from the θ̃j.
Let σ : R+ → R be a C∞ cut-o� function such that σ = 1 on [0, δ/3[ and σ = 0 on ]δ/2,+∞[. Then
we de�ne the C∞−functions θj on Ω by

θj(x, t) = σ(ξ)θ̃j(s, ε−1/2ξ, t) where (ξ, s) = X−1(x) if x ∈ Ωδ,

= 0 if x ∈ Ω \ Ωδ.

Our goal is to approximate
∫

Ω

uεdx. So, we have to compute for �xed n ∈ N:

∫
Ω

uε,n+1/2dx =

∫
Ω

u0dx+
2n+1∑
r=0

εr/2
∫

Ω

θr/2dx

= |Ω| t+
2n+1∑
r=0

εr/2
∫

Ω

θr/2dx.

For each term, we have that∫
Ω

θr/2dx =

∫ δ/2

0

σ(ξ)

∫ L

0

θ̄r/2(s, ξ, t)(1− κ(s)ξ)dsdξ.

From Equation (218) of Lemma 2.8 in [7] with m = k = 0 and j + d = r/2, we see that∫ δ/2

δ/3

σ(ξ)

∫ L

0

θ̄r/2(s, ξ, t)(1− κ(s)ξ)dsdξ = Oε→0(exp(−Cε−1)) (15)

uniformly with respect to t ∈ [0, T ], where C is a positive constant depending on n, δ and T , but
not on ε. Hence, using the change of variable ν = ε−1/2ξ :∫

Ω

θr/2dx =

∫ δ/3

0

∫ L

0

θ̃r/2(s, ε−1/2ξ, t)(1− κ(s)ξ)dsdξ +Oε→0(exp(−Cε−1))

=

∫ δ/3
√
ε

0

∫ L

0

θ̃r/2(s, ν, t)(1− κ(s)νε1/2)ε1/2dsdν +Oε→0(exp(−Cε−1)).
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Then, reasoning as for (15), we deduce that∫
Ω

θr/2dx = ε1/2Ir/2(t)− εJr/2(t) +Oε→0(exp(−Cε−1)),

where:

Ir/2(t) =

∫ +∞

0

∫ L

0

θ̃r/2(s, ν, t)dsdν, Jr/2(t) =

∫ +∞

0

∫ L

0

θ̃r/2(s, ν, t)κ(s)νdsdν, (16)

and therefore that∫
Ω

uε,n+1/2dx = |Ω| t+
2n+1∑
r=0

ε(r+1)/2Ir/2(t)−
2n+1∑
r=0

ε(r+2)/2Jr/2(t) +Oε→0(exp(−Cε−1)).

Note that the functions Ir/2 and Jr/2 are independent of ε.

Now we are able to end the proof of Proposition 2. With (5), Lemma 1 and the error estimate (12)
we get:∫ t

0

K(τ)dτ = t

∫
Ω

ut(x, 1)dx = t

∫
Ω

ut,n+1/2(x, 1)dx+Ot→0+(tn+2)

= t

(
|Ω|+

2n+1∑
r=0

t(r+1)/2Ir/2(1)−
2n+1∑
r=0

t(r+2)/2Jr/2(1)

)
+Ot→0+(tn+2)

= |Ω| t+
2n∑
r=0

t(r+3)/2Ir/2(1)−
2n−1∑
r=0

t(r+4)/2Jr/2(1) +Ot→0+(tn+2)

= |Ω| t+ I0(1)t3/2 +
2n+3∑
r=4

(
tr/2I(r−3)/2(1)− tr/2J(r−4)/2(1)

)
+Ot→0+(tn+2).

(17)

This is the announced result with:

c̄1 = |Ω| , c̄3/2 = I0(1),
∀r > 4, c̄r/2 = I(r−3)/2(1)− J(r−4)/2(1). (18)

2.2.2 Term by term di�erentiability - Existence of the asymptotic expansions for K

Proposition 3 Let m ∈ Z, M ∈ N∗, T > 0. Let H :]0, T ]→ R be a C1 convex or concave function

such that: H(t) =
∑M

r=m
αrt

r/2 +Ot→0+(t(M+1)/2). Then

H ′(t) =
M̃−1∑
r=m

r

2
αrt

r/2−1 +Ot→0+(tM̃/2−1), where M̃ =

⌊
m+M

2

⌋
.
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Proof Without loss of generality, H is assumed to be concave. Then, for any t ∈]0, T ], h > 0,

H(t+ h)−H(t)

h
6 H ′(t) 6

H(t)−H(t− h)

h
;

in particular for h = tn, where n =
M −m

4
+ 1, we get:

H(t+ tn)−H(t)

tn
6 H ′(t) 6

H(t)−H(t− tn)

tn
. (19)

Now, let us compute:

H(t+ tn)−H(t)

tn
=

M∑
r=m

αrt
r
2
−1 (1 + tn−1)

r
2 − 1

tn−1
+Ot→0+(t

M+1
2
−n)

=
M∑
r=m

αrt
r
2
−1
(r

2
+Ot→0+(tn−1)

)
+Ot→0+(t

M+1
2
−n)

=
M∑
r=m

r

2
αrt

r
2
−1 +Ot→0+(t

m
2
−1+n−1) +Ot→0+(t

M+1
2
−n)

=
M∑
r=m

αr
r

2
t
r
2
−1 +Ot→0+(t

M̃
2
−1) =

M̃−1∑
r=m

αr
r

2
t
r
2
−1 +Ot→0+(t

M̃
2
−1).

Likewise:
H(t)−H(t− tn)

tn
=

M̃−1∑
r=m

ar
r

2
t
r
2
−1 +Ot→0+(t

M̃
2
−1).

Then, using (19), we conclude that H ′ admits the same asymptotic expansion.

Now, we are able to prove the �rst part of Theorem 1. Applying Proposition 3 to H(t) =

∫ t

0

K(τ)dτ

which is a concave function (see Proposition 1) with m = 2 andM = 2n+5, in view of Proposition 2,
the following holds true.

Corollary 1 Let Ω be a smooth domain and K the kernel de�ned by (1). Then:

∀n ∈ N∗, ∀t > 0, K(t) =
n∑
r=0

cr/2t
r/2 +Ot→0+(t(n+1)/2).

where, the coe�cients cr/2 are de�ned by cr/2 = (r/2 + 1) c̄r/2+1, the c̄r/2+1 being de�ned in (18).

The next step in proving Theorem 1 is to express the coe�cients cr/2 for r = 1...4 in terms of the
geometry of Ω, namely in terms of powers of the curvature κ, and of some universal constants, that
do not depend on Ω. This is done in the next subsection.
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2.2.3 Characterization of the �rst �ve coe�cients of Theorem 1

We already know that c0 = |Ω| . To get c1/2, c1, c3/2, c2 we need to compute in some way I0(1),
J0(1), I1/2(1) J1/2(1), I1(1), J1(1), I3/2(1) de�ned by (16).

Proposition 4 The �rst coe�cients in the asymptotic expansion in Corollary 1 are such that c0 =
|Ω|, and:

c1/2 = L a1/2; c1 = a1

∫ L

0

κ(s)ds = 2πa1;

c3/2 = a3/2

∫ L

0

κ(s)2ds; c2 = a2

∫ L

0

κ(s)3ds.

where a1/2, a1, a3/2, a2 do not depend on Ω.

Remark The second equality for c1 holds by application of the Hopf's Umlaufsatz (see [22] pp.36-37

and 62), a particular case of Gauss-Bonnet theorem, which yields
∫ L

0

κ(s)ds = 2π.

Proof According to [7] Equation (134), the boundary layer θ̃0 can be written as:

θ̃0(s, ξ, t) = −
∫ t

0

erfc

(
ξ

2
√
τ

)
dτ (20)

where erfc(x) =
2√
π

∫ +∞

x

e−y
2

dy (Note that we use a di�erent de�nition of the erfc function intro-

duced in equation (135) of [7]).
As θ̃0 does not depend on s, we get:

I0(1) = L I0,c where I0,c = −
∫ +∞

0

∫ 1

0

erfc

(
v

2
√
τ

)
dτdv, (21)

J0(1) = J0,c

∫ L

0

κ(s)ds where J0,c =

∫ +∞

0

∫ 1

0

erfc

(
v

2
√
τ

)
νdτdv. (22)

According to [7] Equations (137)-(138)-(217), the next θ̃j are given by:

θ̃j(s, ν, t) =

∫ +∞

0

∫ t

0

f̃ j(s, y, τ)N(ν, y, t, τ)dτdy, (23)

where the f̃ j are de�ned in (14) and

N(ν, y, t, τ) =
1

2
√
π

1√
t− τ

(
exp

(
−(ν − y)2

4(t− τ)

)
− exp

(
−(ν + y)2

4(t− τ)

))
.
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In particular,

θ̃1/2(s, ν, t) =
κ(s)√
π

∫ +∞

0

∫ t

0

∫ τ

0

1√
r

exp

(
−y

2

4r

)
N(ν, y, t, τ)drdτdy, (24)

so that

I1/2(1) = I1/2,c

∫ L

0

κ(s)ds and J1/2,c(1) = J1/2,κ

∫ L

0

κ(s)2ds, (25)

where

I1/2,c =
1√
π

∫ +∞

0

∫ +∞

0

∫ 1

0

∫ τ

0

1√
r

exp

(
−y

2

4r

)
N(ν, y, 1, τ)drdτdydν,

J1/2,c =
1√
π

∫ +∞

0

ν

∫ +∞

0

∫ 1

0

∫ τ

0

1√
r

exp

(
−y

2

4r

)
N(ν, y, 1, τ)drdτdydν.

The next boundary layer θ̃1 is given by:

θ̃1(s, ν, t) =

∫ t

0

∫ +∞

0

(
κ(s)∂ξθ̃

1/2(s, y, t) + y κ(s)2∂ξθ̃
0(s, y, t)

)
N(ν, y, t, τ)dτdy.

In view of (20) and (24), θ̃0 does not depend on s and θ̃1/2 is equal to κ multiplied by a function
which does not depend on s. Thus, θ̃1 is equal to κ(s)2 times a function that does not depend on s,
so that there are two constants I1,c and J1,c which do not depend on Ω such that

I1(1) =

∫ +∞

0

∫ L

0

θ̃1(s, ν, 1)dsdν = I1,c

∫ L

0

κ(s)2ds,

J1(1) =

∫ +∞

0

∫ L

0

θ̃r/2(s, ν, 1)κ(s)νdsdν = J1,c

∫ L

0

κ(s)3ds.

Then, according to (23) and (14)

θ̃3/2(s, ν, t) =

∫ +∞

0

∫ t

0

(
∂ 2
s θ̃

1/2(s, y, τ)
)
N(ν, y, t, τ)dτdν

−
∫ +∞

0

∫ t

0

(
κ(s)∂ξθ̃

1(s, y, τ) + y κ(s)2∂ξθ̃
1/2(s, y, τ) + y2 κ(s)3∂ξθ̃

0(s, y, τ)
)
N(ν, y, t, τ)dτdy.

As θ̃1 is equal to κ2 multiplied by a function independent of s, θ̃1/2 to κ multiplied by a function
independent of s and as θ̃0 is independent of s, there exists some function F3/2, independent of s
such that

θ̃3/2(s, ν, t) =

∫ +∞

0

∫ t

0

∂2
s θ̃

1/2(s, y, τ)N(ν, y, t, τ)dτdν + κ(s)3F3/2(ν, t).
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As ∂sθ̃1/2 is L-periodic with respect to s, the �rst term vanishes when integrating over s ∈ [0, L].
Therefore, there exists another constant I3/2,c not depending on Ω, such that

I3/2(1) =

∫ +∞

0

∫ L

0

θ̃3/2(s, ν, 1)dsdν = I3/2,c

∫ L

0

κ(s)3ds.

so we may conclude that

c1/2 =
3

2
L I0,c; c1 = 4π

(
I1/2,c − J0,c

) ∫ L

0

κ(s)ds;

c3/2 =
5

2

(
I1,c − J1/2,c

) ∫ L

0

κ(s)2ds; c2 = 3
(
I3/2,c − J1,c

) ∫ L

0

κ(s)3ds.

This is the announced result.

Remark The possibility to express each coe�cient via a
∫ L

0

κ(s)pds and a unique universal constant

ends here: if computing J3/2(1), because of the term κ∂ 2
s θ̃

1/2 in κθ̃3/2 which depends on s via the
factor κκ′′, we can only obtain the existence of two universal constants J3/2,c and J ′3/2,c such that

J3/2(1) =

∫ +∞

0

∫ L

0

θ̃3/2(s, ν, 1)κ(s)νdsdν

= J3/2,c

∫ L

0

κ(s)4ds+ J ′3/2,c

∫ L

0

κ′(s)2ds.

To prove Theorem 1, it remains to determine the coe�cients a1/2, a1, a3/2, a2. It is possible, although
rather technical to compute explicitly, at least the integrals I0,c, J0,c, J1/2,c, J1/2,c. However, as we
are able to compute explicitly the coe�cients of the expansion for a disk, we determine these four
constants by comparison with the asymptotics for a disk of radius 1.

2.2.4 Case of a disk - End of the proof of Theorem 1

In this section, we consider the case when Ω =
{
x ∈ R2; ‖x‖2 < 1

}
.

Proposition 5 (i) The kernel K is given by: K(t) = 4π
+∞∑
k=1

1

µ 2
k

e−µ
2
k t where the (µk)k∈N∗ are the

zeros of the 0-th Bessel function;

(ii) For t > 0, K(t) = π − 4
√
πt+ πt+

√
π

3
t3/2 +

π

8
t2 + ot→0+

(
t2
)
.
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Proof Let Jj denote the j-th Bessel function of the �rst kind, j ∈ N; the eigenvalues λ of the
Laplace-operator are known to be the square of the zeros of all these Bessel functions, with associated
eigenvectors of the form:

wj,λ(x) = (Aj cos jθ +Bj sin jθ) Jj(
√
λρ)

where (ρ, θ) are the polar coordinates of x.

It is easily seen that
∫

Ω

wj,λdx = 0 for j 6= 0 so that only the eigenvalues of the 0-th Bessel function

J0 remains in the series expansion (3):

K(t) =
+∞∑
k=1

a 2
k e
−µ 2

k t.

Let us consider non normalized eigenvectors associated with the (µk)k∈N∗ : (J0(µkρ))k∈N∗ . One can
compute for µ > 0 : ∫

Ω

J0(µ ρ)dx =
2π

µ
J1 (µ) ,

‖J0(µρ)‖ 2
2 = π

(
J0 (µ)2 + J1 (µ)2) ,

so that the normalized eigenvectors associated with the (µk)k∈N∗ are the (wk)k∈N∗ de�ned by:

wk(x) =
J0(µkρ)√
π |J1 (µk)|

.

Hence: ak =

∫
Ω

wkdx =
2
√
π

µk
. Assertion (i) is proved.

Now we remark that, using Equations (2.1)-(2.7) in [8], the Laplace transform L(K) of K, which
obviously exists for all s > 0, is given by:

L(K)(s) = π

(
1

s
− 2

s3/2

I1 (
√
s)

I0 (
√
s)

)
,

where Iν stands for the ν-modi�ed Bessel function of the �rst kind. As each function z → z1/2e−zIν(z)
admits (see for instance [24] page 203) an asymptotic expansion for large z at any order, one can
compute:

L(K)(s) = Q(s−1/2) + os→+∞
(
s−3
)

where Q(X) = πX2 − 2πX3 + πX4 +
π

4
X5 +

π

4
X6. (26)

On the other hand, we know from Corollary 1 that R5 de�ned by

R5(t) = K(t)− P (
√
t), where P (X) =

∑5

r=0
cr/2X

r
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is a C3 function such that R(j)
5 (0) = 0 for j ∈ {0, 1, 2}, so that, by integration by parts,

L(R5)(s) =
1

s3
L
(
R

(3)
5

)
(s) = Os→+∞

(
s−4
)
,

and thus,
L(K)(s) = L(R5)(s) + L(P ◦ √)(s) = L(P ◦ √)(s) + os→+∞

(
s−3
)
. (27)

Comparing (26) and (27) we have that

L(P ◦ √)(s) = Q(s−1/2) + os→+∞
(
s−3
)
.

Then, using the formula L(tr/2)(s) = Γ (1 + r/2) s−1−r/2, we get

L(P ◦ √)(s) =
c0√
s

+ c1/2

√
π

2

1

s3/2
+ c1

1

s2
+ c3/2

3
√
π

4

1

s5/2
+ c2

2

s3

= π
1√
s
− 2π

1

s3/2
+ π

1

s2
+
π

4

1

s5/2
+
π

4

1

s3
+ os→+∞

(
s−3
)
.

This proves Proposition 5.
As for the disk, κ = 1, by comparison with the formula in Proposition 4 this also ends the proof of
Theorem 1.

2.3 Non smooth domain examples

2.3.1 Case of a rectangular domain

If the open set Ω is the �nite interval ]0, 1[ or any rectangle ]0, a[×]0, b[ (a, b ∈ R∗+), the eigenfunctions
and eigenvalues of the Dirichlet-Laplace operator can be computed explicitly. For ω =]0, 1[, the
eigenfunctions are wk : x 7→

√
2 sin(πkx) with associated eigenvalues π2k2, k ∈ N∗. Thus,

ak =

∫ 1

0

wk(x)dx =

√
2

kπ

(
1− (−1)k

)
so that the corresponding kernel K1 is given by:

∀t > 0, K1(t) = 8
+∞∑
k=0

1

(2k + 1)2π2
e−π

2(2k+1)2t = 4
+∞∑

k=−∞

1

(2k + 1)2π2
e−π

2(2k+1)2t,

and that

∀t > 0, K ′1(t) = −4
+∞∑

k=−∞

e−π
2(2k+1)2t.
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By applying Poisson summation formula to the function u 7→ 2e−π
2(2u+1)2t, we deduce that

∀t > 0, K ′1(t) = − 2√
πt

+∞∑
k=−∞

exp

(
iπk − k2

4t

)
= − 2√

πt
− 4√

πt

∞∑
k=1

(−1)k exp

(
−k

2

4t

)
. (28)

Hence, for any ε > 0,

K ′1(t) =
−2√
πt

+Ot→0+
(
e−1/(4+ε)t

)
.

By integrating, we obtain:

K1(t) = 1− 4

√
t

π
+Ot→0+

(
e−1/(4+ε)t

)
.

Remark By noting that K ′1(t) = −4e−π
2t θ (2πti, 4πti) where θ stands for the Jacobi θ-function,

one could also state directly (28) by invoking the appropriate Jacobi identity.
Now, for Ω =]0, a[×]0, b[, by separation of variables, one can easily deduce:

K(t) = abK1(a−2t)K1(b−2t).

Proposition 6 ∀t > 0, ∀ε > 0, K(t) = ab− 4 (a+ b)√
π

√
t+

16

π
t+Ot→0+

(
e−1/(4+ε)t

)
.

2.3.2 Case of an equilateral triangular domain

In this section, we consider the special case where Ω is the interior of the (equilateral) triangle with
vertices (0, 0), (1, 0),

(
1/2,
√

3/2
)
. We prove the following result:

Proposition 7 (i) ∀t > 0, K ′(t) = − 3√
πt

+ 4
√

3− 6√
πt

+∞∑
k=1

exp

(
−3k2

16t

)
;

(ii) ∀t > 0, ∀ε > 0, K(t) =

√
3

4
− 6

√
t

π
+ 4
√

3 t+Ot→0+

(
exp

(
− 3

16t+ ε

))
.

Let us state some notations, facts and preliminary results. For each �xed pair (m,n) ∈ Z2, we
introduce

σm,n = ((mj, nj))16j66 = ((m,n) , (m,m− n) , (−n,m− n) , (−n,−m) , (n−m,−m) , (n−m,n)) ,

εmj ,nj = (−1)j+1 which will be called the sign of (mj, nj) with respect to (m,n),
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Im,n = {(m,n) , (m,m− n) , (−n,m− n) , (−n,−m) , (n−m,−m) , (n−m,n)} ,

and

λm,n =
16π2

27

(
m2 + n2 −mn

)
. (29)

We have the following symmetry properties (see [9, 20]):

Lemma 2 ∀(m,n) ∈ Z2,∀j ∈ {1, . . . , 6}:

(i) mj 6= 2nj, nj 6= 2mj mj 6= −nj, nj 6= mj ⇐⇒ m 6= 2n, n 6= 2m, m 6= −n, n 6= m;

(ii) λmj ,nj = λm,n;

(iii) 3 divides m+ n ⇒ ∀j ∈ {1, .., 6} , 3 divides mj + nj;

(iv) Im,n = Imj ,nj . Besides, either all the pairs of this set have the same sign with respect to (m,n)
and (mj, nj), or the signs of every pair with respect to (m,n) and (mj, nj) are opposite;

(v) mjnj (mj − nj) = mn(m− n).

As may be found in Grebenkov-Nguyen [9] and Pinski [20]:

Lemma 3 The eigenvalues of the Dirichlet-Laplace operator in Ω are the numbers λm,n de�ned
by (29), satisfying the following additional conditions:

(i) 3 divides m+ n,
(ii) m 6= 2n, n 6= 2m, m 6= −n, n 6= m.

The associated complex eigenvectors um,n are then given by

um,n(x1, x2) =
∑

(m′,n′)∈Im,n

εm′,n′ exp

(
2iπ

3

(
m′x1 + (2n′ −m′) x2√

3

))
.

Remarks

(i) As a consequence of Lemma 2 (iv) for given (m,n) and j, either umj ,nj = um,n or umj ,nj = −um,n
so that the six pairs ((mj, nj))16j66 de�ne (up to the sign) the same eigenvector.

(ii) At this point, we do not yet know the normalization of these eigenvectors.

Lemma 4 Let (m,n) ∈ Z2 satisfying Lemma 3(i)-(ii) and mn (m− n) 6= 0. Then

∫
Ω

um,n(x)dx = 0.
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Proof of Lemma 4 Let us �rst compute each Aj :=

∫
Ω

exp

(
2iπ

3

(
mjx1 + (2nj −mj)

x2√
3

))
dx.

We easily get

Aj =

∫ √3/2

0

(∫ 1−x2/
√

3

x2/
√

3

exp

(
2iπ

3
(mjx1)

)
dx1

)
exp

(
2iπ

3

(
mjx1 + (2nj −mj)

x2√
3

))
dx2

=
9
√

3

8π2

1

mjnj (mj − nj)

(
mj − nj + nj exp

(
2iπ

3
mj

)
−mj exp

(
2iπ

3
nj

))
where mn (m− n) 6= 0 and point (v) in Lemma 1 have been used.

Let us now introduce the notation I(p) = exp

(
2iπ

3
p

)
and let Am,n =

8π2

9
√

3
mn (m− n)

∫
Ω

um,n(x)dx.

We thus have
Am,n = m− n+ nI(m)−mI(n)

−n−mI(m) + nI(m) +mI(m− n)
−m+mI(−n)− nI(−n) + nI(m− n)
+n−m+mI(−n)− nI(−m)
+n−mI(n−m)− nI(−m) +mI(−m)
+m− nI(n−m) + nI(n)−mI(n)

Am,n = (2n−m) (I (m)− I (−m))
+ (n− 2m) (I (n)− I (−n))
+ (n+m) (I(m− n)− I(n−m))

so that

Am,n = 2i

(
(2n−m) sin

(
2π

3
m

)
+ (n− 2m) sin

(
2π

3
n

)
+ (n+m) sin

(
2π

3
(m− n)

))
.

Now, taking into account that 3 | (m+ n), there exists k ∈ Z such that m = 3k − n. Substituting
m = 3k − n in Am,n and using oddity and 2π−periodicity of sin we get then

Am,n = 2i sin

(
2π

3
n

)
(3k − 3n+ 3n− 6k + 3k) = 0.

The lemma is proved.

As shown in Pinski [20], the case wheremn (m− n) = 0 corresponds to the case of simple eigenvalues.
In this case, in view of the symmetry statements of Lemma 1, we may always chose n = 0 andm = 3k,
k ∈ N∗. Then according to Corollary 2 in Pinski, a possible choice of associated eigenvector to λ3k,0

is v3k,0 de�ned by:

v3k,0(x) = sin

(
4πkx2√

3

)
+ sin

(
2πk

(
x1 −

x2√
3

))
+ sin

(
2πk

(
1− x1 −

x2√
3

))
.
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With easy computations, we get the following results.

Lemma 5 ∀k ∈ N∗,
∫

Ω

v3k,0(x)dx =
3
√

3

4πk
,

∫
Ω

v3k,0(x)2dx =
3
√

3

8
.

Now, we are able to prove the proposition.

Proof of Proposition 7 According to Lemmas 3, 4, 5 we get for t > 0

K(t) =
3
√

3

2π2

+∞∑
k=1

1

k2
exp

(
−16π2

3
k2t

)
,

and thus, for t > 0,

K ′(t) = −8
√

3
+∞∑
k=1

exp

(
−16π2

3
k2t

)
= 4
√

3− 4
√

3
+∞∑

k=−∞

exp

(
−16π2

3
k2t

)
.

Then, with Poisson resummation formula we get

K ′(t) = 4
√

3− 3√
πt

+∞∑
k=−∞

exp

(
−3k2

16

1

t

)
=

√
3

4
− 3√

πt
− 6√

πt

+∞∑
k=1

exp

(
−3k2

16

1

t

)
.

Hence, we proved (i); we get (ii) by integrating (i).

Remark As in the case of a segment/rectangle, one could rewrite K ′ in terms of the Jacobi θ-
function, by noting that K ′(t) = 4

√
3 (1− θ (0, 16πti/3)).

3 Accurate approximations of the kernels

The kernelsK as de�ned below are approximated by using a discretization of (1)-(2), or by combining
this discretization with the asymptotics obtained in Theorem 1. In the latter case, better convergence
rates are obtained and observed, and this is illustrated by the numerical simulation of Section 5.
All along this section, we will assume that :

(H1) ∀t ∈ R+, 0 ≤ K(0)−K(t) ≤ Ct1/2.

We know from Theorem 1 that this assumption holds for C∞-smooth domains Ω, and from Propo-
sitions 6 and 7 that it also holds true for rectangular and triangular domains.
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The plan of the section is as follows. We �rst set some notations and state facts about �nite space
elements and about the discretization of the initial condition. This is the aim of Subsections 3.1 and
3.2. We then present a semi-discrete version of (2), de�ne a corresponding approximate kernelKh and
prove estimates on the error for the approximation K ' Kh in the W 1,1 (0, T )-norm for any T > 0.
This is done in Subsection 3.3, Proposition 8. Subsection 3.4 is devoted to the full discretization
of (2). We introduce there a general framework for the space discretization, which includes Implicit
Euler method as well as the second order Backward Di�erence Formula (BDF2) that we use in the
numerical simulation, de�ne a corresponding approximate kernel Kh,k. We prove estimates for the
error on the approximation Kh ' Kh,k in the W 1,1-norm away from t = 0: Proposition 9. In the
last two Subsections 3.5 and 3.6 using the preceding results, we prove convergence in W 1,1 (0, T ),
with rates of convergence, both for schemes without corrections for small times (Theorem 2) and for
schemes using the asymptotic for small times (Theorem 3). As a matter of fact, in this last case, the
estimate is with some discrete W 1,1-norm.
All along this section C designates any arbitrary positive constant (which does not depend on the
parameters of discretization h and k) so the value of C may change from one line to the other,
although the same generic letter C is used.

3.1 Finite space elements

Let (Sh)h>0 denotes a family of spaces of discretization, (Th)h>0, Th : L2(Ω)→ Sh ⊂ L2(Ω), an asso-
ciated family of approximations of −∆−1 (the opposite of the inverse of Dirichlet-Laplace operator).
For each Th we assume that:

H2 Th is self-adjoint, positive semide�nite on L2(Ω) and positive de�nite on Sh;

H3 there exists r ≥ 2 such that:

∀s ∈ [2, r], ∀f ∈ Hs−2(Ω), ‖(Th + ∆−1)f‖L2 ≤ Chs‖f‖Hs−2 .

Example of �nite element methods satisfying these conditions are described in Thomée's book [23]
(most notably, Pr−1-elements over quasi-uniform triangulations, with boundary conditions dealt with
Nitsche method when r > 2).

3.2 Approximation of the initial condition

The approximation V 0
h of the initial condition V 0 := 1 in (2) is de�ned as the L2-orthogonal projection

of V 0 on Sh . When Nitsche method is used V 0
h = V 0 = 1. When considering Pk-elements on a given

triangulation Th satisfying the homogeneous Dirichlet condition (Sh ⊂ H1
0 (Ω)), V 0 /∈ Sh. In that

case the following error estimate holds for V 0
h , L

2-orthogonal projection on Sh of V 0:

‖V 0 − V 0
h ‖L2 = O(h1/2). (30)
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Indeed, consider U ∈ Sh such that U is a�ne on each triangle of Th, constant equal to 1 at the

vertices inside Ω, and equal to 0 at the vertices on ∂Ω. Then:
∫

Ω

I{0≤U<1} (x) dx = O(h), so that∫
Ω

(1 − U)2 (x)dx = O(h), ‖1 − U‖L2 = O(h1/2). But as V 0
h is the best approximation of 1 in the

L2-norm: ∫
Ω

(1− V 0
h )2 (x) dx ≤

∫
Ω

(1− U)2 (x) dx

so that, using that V h
0 and 1− V h

0 are orthogonal:∫
Ω

(
1− V 0

h

)
(x) dx =

∫
Ω

(1− V 0
h )2 (x) dx = O(h) (31)

which is the announced result.

3.3 Space discretization

In this section we present a semi-discretization (with respect to the space variable) for (2), and show
a priori estimates in W 1,1 (0, T ) for the associated approximate kernel Kh. Let us introduce the
following semi-discrete approximation of V :

Vh(t) = e−tAhV 0
h , Ah = T−1

h . (32)

As V 0 ∈ L2 (Ω), according to Theorem 3.4 p.46 in [23], with the assumptions (H2)-(H3), we have, for
C∞-smooth Ω (weaker regularity could be enough):

‖ (V − Vh) (t) ‖L2 ≤ Chrt−
r
2 , ‖∂t (V − Vh) (t) ‖L2 ≤ Chrt−

r
2
−1. (33)

Let us de�ne Kh by letting

Kh(t) =

∫
Ω

Vh(x, t)dx. (34)

From (33) we get the following estimates.

Proposition 8 Assume that assumptions (H1)-(H3) hold. Then, for any t, T ∈ R+∗, τ ∈]0, T ]

|K −Kh| (t) ≤ Chrt−r/2,∫ T

τ

|K ′h −K ′|(t)dt ≤ Chrτ−r/2,∫ T

0

|K ′(t)−K ′h(t)|dt ≤ Ch
r
r+1 ,

where C does not depend on k, h and Sh.
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Remark With (31) and the third inequality, we have an estimate in theW 1,1-norm: ‖K −Kh‖W 1,1(0,T ).
Proof The �rst estimate is obtained by integrating (33)1 over Ω. Let us prove the second one. Let
λh,1, . . . , λh,Nh denote the eigenvalues of Ah arranged in ascending order, and wh,1, . . . , wh,Nh denote
the corresponding eigenfunctions, normalized with respect to the L2-norm. As Th is self-adjoint, we
choose an orthonormal system of eigenfunctions. Let ah,j = 〈wh,j, V 0

h 〉 = 〈wh,j, 1〉 (the last equality
holds because V 0

h is the orthogonal projection of 1), then:

V 0
h =

Nh∑
j=1

ah,jwh,j, (35)

Vh(t) =

Nh∑
j=1

ah,je
−λh,jtwh,j, (36)

Kh(t) =

Nh∑
j=1

a2
h,je

−λh,jt. (37)

Let T ∈ R+∗. Using the second inequality in (33) we get;

∀τ ∈]0, T ],
∫ T

τ

|K ′h −K ′|(t)dt =

∫ T

τ

∣∣∣∣∫
Ω

∂t(Vh − V )(x, t)dx
∣∣∣∣ dt

≤ Chr
∫ T

τ

t−r/2−1dt ≤ Chr
∫ +∞

τ

t−r/2−1dt ≤ Chrτ−r/2.

This is the second inequality of the proposition. As −K ′ and −K ′h are nonnegative and decreasing,
then:

∀τ ∈]0, T ],
∫ T

0

|K ′h −K ′|(t)dt =

∫ τ

0

|K ′h −K ′|(t)dt+

∫ T

τ

|K ′h −K ′|(t)dt

≤ −
∫ τ

0

(K ′h(t) +K ′(t)) dt+ Chrτ−r/2

≤ Kh(0)−Kh(τ) +K(0)−K(τ) + Chrτ−r/2.

As V 0
h is the orthogonal projection of V 0,

Kh(0) =
∥∥V 0

h

∥∥ 2

L2 ≤ ‖V0‖ 2
L2 = K(0) (38)

so that

Kh(0)−Kh(τ) +K(0)−K(τ) ≤ 2K(0)− 2K(τ) +K(τ)−Kh(τ) ≤ 2 (K(0)−K(τ)) + |K −Kh| (τ).
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Using assumption (H1) and the �rst estimate, we conclude that for all τ ∈ [0, T ]:∫ T

0

|K ′h(t)−K ′(t)|dt ≤ Cτ 1/2 + Chrτ−r/2.

Choosing τ = h
2r
r+1 , we get the announced result.

3.4 Full discretization

Let k > 0 be a time step, and let for all n ∈ N, tn = nk, tn+1/2 = (tn + tn+1) /2.
In this section, we consider a family of schemes for (2), associated to semi-discretizations (32), that
may be of order 1 or 2 with respect to time. We then introduce the associated approximate kernels,
and get a priori estimates relating the approximate kernels corresponding to the fully discrete schemes
to the ones corresponding to the semi-discrete schemes. These estimates are used in the next section
to prove convergence in the W 1,1 norm for these approximate kernels.

3.4.1 General setting - Schemes and approximate kernels without correction

In the numerical experiments of Section 5, we use two di�erent time integrators: the Implicit Euler
method and the second order Backward Di�erence Formula (BDF2). In order to propose a single
proof of convergence for both as well as for other suitable schemes, we set the time integrator in an
abstract framework. So we consider the full discretization:

V n
h,k = Gn(−kAh) V 0

h , (39)

with abstract functions Gn : R→ R such that: there exist three constants ξ0 > 0, ρ ∈ {1, 2}, ε ∈]0, 1[
and two continuous functions f and c : [−ξ0, 0]→ R satisfying

∀ξ ∈ [−ξ0, 0[, |Gn(ξ)− c(ξ)f(ξ)n| ≤ Cεn;
∀ξ ∈ [−ξ0, 0[, |f(ξ)| < 1;
∀ξ ∈]−∞,−ξ0], |Gn(ξ)| ≤ Cεn;
f(ξ) = eξ +Oξ→0(ξρ+1);
c(ξ) = 1 +Oξ→0(ξρ).

(40)

The second and the third points are stability conditions, the other ones express consistency of order ρ.

Remarks

(i) The Implicit Euler method (V n+1
h,k −V

n
h,k = −kAhV n+1

h,k for n ≥ 0) satis�es these conditions with
ξ0 = 1, ρ = 1, ε = 1/2, f(ξ) = (1− ξ)−1, c = 1, Gn(ξ) = (1− ξ)−n.
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The second order Backward Di�erence Formula (BDF2) initialized with the Implicit Euler
method {

V 1
h,k − V 0

h,k = −kAhVh,k
∀n ≥ 0, 3V n+2

h,k + 2kAhV
n+2
h,k = 4V n

h,k − Vh,k
(41)

can also be put in this form (See Appendix for details).

(ii) In the sequel, we will further assume that ξ0, ε are such that:

∀ξ ∈ [−ξ0, 0], |eξ − f(ξ)| ≤ C|ξ|ρ+1, (42)

∀ξ ∈ [−ξ0, 0], |f(ξ)− 1| ≤ C |ξ| , (43)

∀ξ ∈ [−ξ0, 0], |f(ξ)| ≤ eξ/2, (44)

∀ξ ∈]−∞,−ξ0], eξ ≤ ε < 1. (45)

There is no loss of generality. Indeed, let ξ̃0, ε̃ as in (40); one can choose ξ0 > 0 small enough

to have (42), ξ0 ≤ min

{
1

20C
, 1, ξ̃0

}
and f ≥ 0 on [−ξ0, 0].

Then (43) follows from |eξ− 1|+ |f(ξ)− eξ| ≤ |eξ− 1|+C|ξ|ρ+1 ≤ |ξ|+ |ξ| for [−ξ0, 0], and (44)

from f(ξ)− eξ + eξ − eξ/2 ≤ C|ξ|ρ+1 − 1

20
|ξ| ≤ 0 if ξ ∈ [ξ0, 0].

Last (45) holds with ε = max
{
ε̃, e−ξ0 ,max

{
|f(ξ)| ; ξ ∈ [−ξ̃0,−ξ0]

}}
.

Then all the conditions in (40) hold for these new de�nitions of ξ0 and ε. The �rst two points
because ξ0 ≤ ξ̃0 and ε ≥ ε̃, the third one because ε ≥ max

{
|f(ξ)| ; ξ ∈ [−ξ̃0,−ξ0]

}
.

The uncorrected approximate kernel Kh,k based on such a discretization is then de�ned as the con-
tinuous function on R+, a�ne on each [tn, tn+1], determined by:

∀n ∈ {0, ..., Nk} , Kh,k(tn) =

∫
Ω

V n
h,k(x)dx. (46)

As V 0
h is the orthogonal projection of 1 on Sh, similarly to (36) and (37), we have:

V n
h,k =

Nh∑
j=1

ah,jGn(−kλh,j)wh,j, Kh,k(tn) =

Nh∑
j=1

a2
h,jGn(−kλh,j). (47)
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3.4.2 A priori estimates for the full discrete kernel away from t = 0

The aim of this section is to prove the following estimates, relating the full discrete kernel Kh,k and
the semi-discrete kernel Kh.

Proposition 9 Let T > 0 be number such that T/k is an integer and T >
2k

ln (1/ε)
ln(1 + kλh,Nh).

Under the assumptions (H1)-(H3) and the assumptions of Section 3.4.1, for any t and tn that are

larger than
2k

ln (1/ε)
ln(1 + kλh,Nh), the following inequalities hold:

|
(
K ′h,k −K ′h

)
(tn+1/2)| ≤ Ckρt−1−ρ

n ,

|Kh,k(t)−Kh(t)| ≤ Ckt−1,∫ T

t

|K ′h,k(τ)−K ′h(τ)|dτ ≤ Ckt−1 if t ≤ T,

where C does not depend on k, h and Sh.

We �rst prove an estimate relating the time derivatives for the fully discrete scheme and for the
semi-discrete scheme for (2), following the lines of Thomée [23], Chapter 7.

Lemma 6 Under the same assumptions as in Proposition 9, the following inequality hold:∥∥V n+1
h,k − V

n
h,k − k∂tVh(tn+1/2)

∥∥
L2
≤ Ckρ+1t−ρ−1

n ,

where C does not depend on k, h and Sh.

Remark For quasi-uniform triangulations, λh,Nh = O(h−2). Hence, the time interval where the
bound is not valid is small.

Proof With (47) and (37):

V n+1
h,k − V

n
h,k − k∂tVh(tn+1/2) =

Nh∑
j=1

ah,j

(
(Gn+1 −Gn) (−kλh,j) + kλh,je

−(n+ 1
2

)kλh,j
)
wh,j. (48)

We discuss above the contribution of each term in this sum, according to whether ξ := −kλh,j ∈
[−ξ0, 0] or not.
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(a) Estimate for ξ ∈ [−ξ0, 0] . We have:

(Gn+1 −Gn) (ξ)− ξe(n+ 1
2

)ξ = c(ξ)f(ξ)n (f(ξ)− 1)− ξe(n+ 1
2

)ξ +Rn +Rn+1 (49)

where Rn = Gn(ξ)− c(ξ)f(ξ)n. From (40)1: |Rn| ≤ Cεn. As
(
nρ+1εn

)
n∈N is bounded, this may also

be rewritten as:
|Rn| ≤

C

nρ+1
, |Rn +Rn+1| ≤

2C

nρ+1
(50)

For the remaining part in (49), let us decompose it as follows

c(ξ)f(ξ)n (f(ξ)− 1)− ξe(n+ 1
2

)ξ =
(
c(ξ) (f(ξ)− 1)− ξeξ/2

)
enξ + c(ξ) (f(ξ)− 1)

(
f(ξ)n − enξ

)
. (51)

For the �rst term in the right-hand side of (51), with (40)4,5 we get:

c(ξ) (f(ξ)− 1)− ξeξ/2 = (1 +Oξ→0(ξρ))
(
eξ − 1 +Oξ→0(ξρ+1)

)
− ξeξ/2

= (1 +Oξ→0(ξρ))

(
ξ +

ξ2

2
+Oξ→0(ξρ+1)

)
− ξ

(
1 +

ξ

2
+Oξ→0(ξ2)

)
= Oξ→0(ξρ+1),

because ξ3 = Oξ→0(ξρ+1) (ρ ∈ {1, 2}). Thus∣∣(c(ξ) (f(ξ)− 1)− ξeξ/2
)
enξ
∣∣ ≤ C |ξ|ρ+1 enξ. (52)

Let us consider now the second term in the right hand side of (51). From (40)5, c is bounded

on [−ξ0, 0]. Let us estimate: f(ξ)n− enξ. With the identity an− bn = (a− b)
∑n−1

j=0
ajbn−j−1, we get

f(ξ)n − enξ =
(
f(ξ)− eξ

) n−1∑
j=0

f(ξ)je(n−j−1)ξ,

so that, with (42), (45)∣∣f(ξ)n − e−nξ
∣∣ ≤ C |ξ|ρ+1

n−1∑
j=0

e(n−j/2−1)ξ ≤ C |ξ|ρ+1 ne
n
2
ξ,

and therefore, with (43): ∣∣c(ξ) (f(ξ)− 1)
(
f(ξ)n − enξ

)∣∣ ≤ C |ξ|ρ+2 ne
n
2
ξ. (53)

Equations (52) and (53) yield:∣∣∣c(ξ)f(ξ)n (f(ξ)− 1)− ξe(n+ 1
2

)ξ
∣∣∣ ≤ C

(
|ξ|ρ+1 enξ + |ξ|ρ+2 ne

n
2
ξ
)

=
C

nρ+1

(
|nξ|ρ+1 enξ + |nξ|ρ+2 e

n
2
ξ
)
,

and then, taking into account that the functions x 7→ xρ+1ex and x 7→ xρ+2ex/2 are bounded on R−,
we get: ∣∣∣c(ξ)f(ξ)n (f(ξ)− 1)− ξe(n+ 1

2
)ξ
∣∣∣ ≤ C

nρ+1
. (54)
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(b) Estimate for ξ ≤ −ξ0. In this case, using (45) and the third assumption in (40), we get:∣∣∣Gn+1(ξ)−Gn(ξ)− ξe(n+ 1
2

)ξ
∣∣∣ ≤ Cεn (1− ξ) .

But as we assume that n ≥ 2
ln(1 + kλh,Nh)

ln 1/ε
, as −ξ ≤ kλh,Nh , we have that (1− ξ) εn/2 ≤ 1. Using

the boundedness of
(
nρ+1εn/2

)
, we get:∣∣∣Gn+1(ξ)−Gn(ξ)− ξe(n+ 1

2
)ξ
∣∣∣ ≤ Cεn/2 ≤ C

nρ+1
. (55)

(c) Conclusion. From (48), (50), (51), (54), (55), and n = tn/k we conclude that

‖V n+1
h,k − V

n
h,k − ∂tVh(tn+1/2)‖L2 ≤ kρ+1t−ρ−1

n C

(
Nh∑
j=1

a 2
h,j

)1/2

≤ kρ+1t−ρ−1
n C

∥∥V 0
h

∥∥
L2 . �

Proof of Proposition 9 The �rst assertion is a direct consequence of the de�nition (34) of Kh,
the de�nition (46) of Kh,k and the estimate of Lemma 6.
Let us prove the second one. In view of (37) we have for any s > 0:

0 ≤ −K ′h(s) ≤
Kh(0)−Kh(s)

s
≤ Kh(0)

s
≤ K(0)

s
. (56)

Indeed, the �rst inequality holds because K ′h is non positive, the second one holds because Kh is
convex, the third one holds because Kh is non negative, the last one follows from 38. Then, using
the concavity of K ′h, and (56) with s = t/2 we get:

∀t > 0, 0 ≤ K ′′h(t) ≤ K ′h(t)−K ′h(t/2)

t/2
≤ −K

′
h(t/2)

t/2
≤ 4K(0)t−2. (57)

Using the �rst inequality of the proposition with ρ = 1 for the �rst term, the mean value theorem
and (57) for the second one, for tn ≥ 2k ln(1 + kλh,Nh)/ ln (1/ε) and t ∈ ]tn, tn+1[ , we obtain:

∣∣(K ′h,k −K ′h) (t)
∣∣ =

∣∣K ′h,k(tn+1/2)−K ′h(t)
∣∣ ≤ ∣∣(K ′h,k −K ′h) (tn+1/2)

∣∣+
∣∣K ′h(t)−K ′h(tn+1/2)

∣∣
≤ Ckt−2 + Ckt−2.

(58)

But with (37) we see that lim
t→+∞

K ′h(t) = 0. Also, since from (40) lim
n→+∞

Gn(ξ) = 0 for all ξ < 0, we

have that lim
n→∞

K ′h,k(tn+1/2) =
1

k

∑Nh

j=1
ah,j lim

n→+∞
(Gn+1 −Gn) (−kλh;j) = 0. Hence, by integration

of (58) on [t,+∞[ we get the second estimate of the proposition. The third one is obtained by
integrating (58) on [t, T ].
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3.5 Convergence of the uncorrected scheme

This section is devoted to one step schemes only. We prove convergence in W 1,1(0, T ), for any T > 0,
of the approximate kernel, when suitable �rst or second order in time one step schemes, such as the
Implicit Euler method, are used to solve numerically problem (2), under the additional assumption
on the time discretization:

∀n ∈ N, ∀ξ ≤ 0, Gn(ξ) = f(ξ)n ≥ 0. (59)

Remarks

(i) With (59) we also assume that f is de�ned on all R−, which was not the case in (40).

(ii) The assumption of non negativity is not a big restriction. Indeed, consider a one step scheme
corresponding to Gn(x) = f(x)n and satisfying hypotheses (40), but not (59). Then the scheme
de�ned by G̃n(x) = Gn(x/2)2 = f(x/2)2n satis�es both (40) and (59), since f(x)2 ≥ 0. This
corresponds to taking a one step scheme over two half-time steps: un+1/2 = f(−kAh/2)un,
un+1 = f(−kAh/2)un+1/2 = f(−kAh/2)2un.

(iii) Such a procedure would not work for BDF2 since it is a multi-step scheme. Hence, the result of
this paragraph does not apply, unless it is corrected for small times as done in the next section.

Now we are able to prove the following convergence theorem for the approximate kernel.

Theorem 2 Assume that assumptions (H1)-(H3), (40) and (59) hold, then for any T > 0 and
su�ciently small k such that T/k is an integer:∫ T

0

|K ′h,k(t)−K ′(t)|dt ≤ Ck
µ
2 ,

where h = kγ and µ = min

{
2

3
, γ

2r

r + 1

}
.

Remark Hence, for su�ciently large γ, the method is of order 1/3 in time.

Proof Assumption (59) yields that Kh,k is decreasing and positive. Indeed:

∀n ∈ N, Kh,k(tn) =

Nh∑
j=1

a2
h,jf(−kλh,j)n;

but, from (40), 0 6 f(ξ) < 1 for ξ ∈ [−ξ0, 0[ while for ξ ≤ −ξ0, 0 6 f(ξ) ≤ C1/nε for all n; thus,
as for n large enough, C1/nε < 1, we have that 0 6 f(ξ) < 1 for all ξ ∈ R−∗. This implies that
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the sequence (Kh,k(tn)) is decreasing and positive, and therefore that the function Kh,k, too as a
continuous, piecewise a�ne interpolation of it.
Then, arguing as in the proof of Proposition 8, we get:

∀τ ∈ [0, T ],

∫ τ

0

|K ′h,k −K ′h|(t)dt ≤ Kh,k(0)−Kh,k(τ) +Kh(0)−Kh(τ)

≤ (Kh,k(0)−Kh(0)) + |Kh(τ)−Kh,k(τ)|
+ 2(Kh(0)−K(0)) + 2(K(0)−K(τ)) + 2(K(τ)−Kh(τ)).

The �rst term on the right is equal to 0 (see (37)); from the second inequality of Proposition 9, if

τ ≥ 2

ln 1/ε
ln(1 + kλh,Nh), the second term is bounded by Ckτ−1; the third one is non positive (see

(38)); from hypothesis (H1) the fourth one is bounded by Cτ 1/2; from Proposition 8 the last term is
bounded by Chrτ−r/2. We then get∫ τ

0

|K ′h,k(t)−K ′h(t)|dt ≤ C
(
kτ−1 + τ 1/2 + hrτ−r/2

)
.

Now take τ = kµ with k su�ciently small to have τ ≥ k
2

ln 1/ε
ln(1+kλh,Nh). Together with the third

inequality of Proposition 9, and then the third one of Proposition 8 this proves the �rst estimate.

3.6 Convergence with correction for small times

In this section, we assume that the asymptotic expansion of K obtained in Section 2 (Theorem 1)
holds. It is the case when Ω is C∞-smooth and simply connected. However, a weaker regularity may
be enough. This expansion is used for small times in order to improve the convergence rate.
Using the �rst �ve terms of the expansion, that are known from Theorem 1, we de�ne the corrected
approximate kernel Kh,k,τ by:

Kh,k,τ (t) =


Kh,k(t) if t ≥ τ

Kh,k(τ) +

[
S − 2L

√
s

π
+ πs+

s3/2

6
√
π

∫ L

0

κ(s)2ds+
s2

16

∫ L

0

κ(s)3ds
]t
τ

if t < τ
, (60)

so that: ∫ τ

0

∣∣K ′h,k,τ −K ′∣∣ (t)dt ≤ C

∫ τ

0

tm−1dt ≤ Cτm, where m = 5/2. (61)

Remark The value of m can be increased if more terms are known. Since K ′h,k is a piecewise
constant approximation of the singular function K ′, this approximation cannot be superlinear in
L1(0, T ). However we can prove an accurate approximation for a discrete integral on [τ, T ] for τ not
too small. So the estimate in Theorem 3 di�ers from the estimate in Theorem 2.
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Theorem 3 Assume that assumptions (H1)-(H3) and (40) hold, then for any T > 0 and su�ciently
small k, such that T/k is an integer, we have∫ τ+k

0

∣∣K ′h,k,τ (t)−K ′(t)∣∣ dt+ k
∑

τ≤tn<T

∣∣K ′h,k,τ (tn+1/2)−K ′(tn+1/2)
∣∣ ≤ Ckmµ

where m = 5/2, µ = min

{
ρ

m+ ρ
, γ

2r

2m+ r

}
, h = kγ and τ = k

⌊
kµ−1

⌋
.

Proof Summing up the �rst inequality in Proposition 9, for τ ≥ 2k

ln 1/ε
ln(1 + λh,Nh),we get:

k
∑

τ≤tn<T

∣∣K ′h,k −K ′h∣∣ (tn+1/2) ≤ k
∑

τ≤tn<T

Ckρt−ρ−1
n ≤ Ckρ

∫ +∞

τ

t−ρ−1dt ≤ Ckρτ−ρ.

Similarly, using the second estimate of Proposition 8:

k
∑

τ≤tn<T

|K ′h −K ′| (tn+1/2) ≤ C

∫ T

τ

|K ′h −K ′| (t)dt ≤ Chrτ−r/2.

Then, using inequality (61) and τ + k ≤ 2τ , we get∫ τ+k

0

∣∣K ′h,k,τ (t)−K ′(t)∣∣ dt+ k
∑

τ≤tn<T

∣∣K ′h,k,τ (tn+1/2)−K ′(tn+1/2)
∣∣ ≤ C

(
τm + Chrτ−r/2 + Ckρτ−ρ

)
,

and we conclude as in the proof of Theorem 2.

Remarks

(i) Hence, if γ is chosen su�ciently large, for ρ = 2, the method is of order 10/9 > 1 in time.

(ii) In particular, this theorem applies to the corrected Implicit Euler and BDF2 schemes.

(iii) Implementing the correction is straightforward and does not change the computational time.

4 Application : numerical solution of viscous �ows on a graph

4.1 Description of the problem on the graph

In [3] we consider a problem set on a connected graph B in Rd, where d = 2 or 3, that we brie�y
describe as follows.
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Let O1, . . . ON be vertices in Rd, e1, . . . , eM closed segments (edges) connecting these vertices. The
segments only intersect at vertices. The vertices belonging to a single ej are numbered from 1 to N1:

O1, . . . , ON1 , N1 < N ; they constitute the boundary of the structure. The graph is B =
M⋃
j=1

ej and

is assumed to be connected. A positive orientation is de�ned along each edge ej = [Oij , Okj ] as the
direction from Oij to Okj . Then for each edge ej we denote by ∂ej the derivative in the normalized
direction

−−−−−→
Oij , Okj . Given an arbitrary maximal time T > 0, the problem set on B×[0, T ] is:

−∂ej
(
L(σj)∂ejP (x, t)

)
(x, t) = F (x, t) for x ∈ ej, j = 1, . . . ,M,∑

ej�Oi

αi,jL(σj)∂ejP (x, t) = −Ψi(t) for i = 1, . . . , N,

P is continuous on the graph,

P (O1, t) = 0,

(62)

where αi,j = 1 if the orientation of the segment ej starting from Oi is positive, and αi,j = −1 if not.
The functions Ψi are given in H1

00(0, T ) =
{
f ∈ H1(0, T ); f(0) = 0

}
and F is a given function

in H1
00(0, T ;L2(B)) (with quite obvious de�nition of L2(B), see [3]), that satisfy the compatibility

condition: ∀t ∈ [0, T ],
N∑
i=1

Ψi(t)+

∫
B
F (x, t)dx = 0. In real life applications, the function F is usually

equal to zero, but the possibility of a more general F was kept in order to construct test cases with
known exact solution to compare with approximate solutions in numerical experiments.
Last, the L(σj) are convolution operators L2(0,+∞)→ H1

0 (0,+∞) de�ned by:

∀t > 0, L(σj)q(t) =

∫ t

0

K(σj)(t− τ)q(τ)dτ, (63)

where the kernels K(σj) are given by (1)-(2) with Ω = σj.
This problem comes from Navier-Stokes equations on a network of thin tubes, after letting the
diameter of the tubes tend to zero, with speci�c scaling of the data. The domains σj are scaled
original cross-sections of the tubes while the operators L(σj) relate the �ux and the pressure drop in
the original 3D-structure. See [3, 15] for more detail and bibliography.
In [3], we considered schemes to solve numerically (62). We proved the two theorems cited below.

Let k > 0 be some time step such that Nk = T/k ∈ N, tn = kn, K(σj) =
1

k

∫ tn+1

tn

K(σj)
n (t)dt;

let K̃(σj)
n designate some approximation of K(σj)

n . Let us recall the error factor associated with the
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approximation:

θ(k) = max
1≤j≤M

{
|K(σj)

0 − K̃(σj)
0 |+

Nk−1∑
n=1

|K(σj)
n −K(σj)

n−1 − K̃(σj)
n + K̃

(σj)
n−1|

}
. (64)

Last, let h > 0 be some space step, and ph,k ∈ L2(0, T ;H1(B)) be the numerical solution of (62),
piecewise constant with respect to time, P1 with respect to space (de�ned properly in [3] by Equations
(3.18)-(3.19)). The following convergence results are proven in [3] (Theorem 1 page 16 and Theorem 2
page 20).

Theorem 4 If θ(k)→ 0 as k → 0, then ph,k → P when (h, k)→ (0, 0).
Furthermore, if F ∈ H2(0, T ;H2(B)), Ψ1, . . . ,ΨN ∈ H2(0, T ), if F, ∂tF, the Ψ` and the ∂tΨ` vanish
at t = 0, there exists a positive constant C depending on F and on the Ψ` such that for k small
enough:

‖ph,k − P‖L2([0,T ],H1(B)) ≤ C (h+ k + θ (k)) .

Theorem 5 Let p̃h,k be the interpolant (P1 in space, P0 in time) of the exact solution P of (62):
Assume that P is a C4 function on each edge of the graph; assume that θ(k)→ 0 as k → 0. Let β(k)

be de�ned by β(k) = k2 if ∂tP (., 0) is constant, β(k) = k2
√

log(T/k) otherwise.
Then, there exists a positive constant C, depending on P , such that for k small enough:

‖ph,k − p̃h,k‖L2(0,T,H1(B)) ≤ C
(
β(k) + h2 + θ(k)

)
.

4.2 Link with θ (k)

To make the link with Theorems 4 and 5, it is su�cient to consider the case of a single kernel. The

sequence (Kn) is de�ned by Kn =
1

k

∫ tn+1

tn

K(t)dt. Consider the approximations:


K̃n =

1

k

∫ tn+1

tn

Kh,k,τ (t)dt for the corrected scheme,

K̃n =
1

k

∫ tn+1

tn

Kh,k(t)dt for the uncorrected scheme.

and
θ(k) = |K0 − K̃0|+

∑
0<nk<T

|Kn −Kn−1 − K̃n + K̃n−1|.
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Theorem 6 Under the assumptions of Theorem 2 or those of Theorem 3, we have:

θ(k) ≤ Ckmµ

with m = 1/2 (e.g. Implicit Euler without correction) or m = 5/2 (e.g. Implicit Euler and BDF2
with correction).

Proof Let's �rst deal with the corrected scheme. We evaluate the contribution to θ(k) �rst for
tn = nk ≤ τ , then for nk > τ , and last for nk = τ . In the �rst case, using integration by parts with
f = K −Kh,k,τ : 

fn :=
1

k

∫ tn+1

tn

f(t)dt =

∫ tn+1

tn

f ′(t)

(
1− t− tn

k

)
dt+ f (tn) ,

fn−1 = −
∫ tn

tn−1

f ′(t)

(
1− tn − t

k

)
dt+ f (tn) ,

(65)

so that ∑
0<nk<τ

|Kn −Kn−1 − K̃n + K̃n−1| ≤
∑

0<nk<τ

∫ tn+1

tn−1

∣∣K ′ −K ′h,k,τ ∣∣ (t)(1− |t− tn|
k

)
dt (66)

≤
∑

0<nk<τ

∫ tn+1

tn−1

∣∣K ′ −K ′h,k,τ ∣∣ (t)dt
≤ 2

∫ τ

0

∣∣K ′ −K ′h,k,τ ∣∣ (t)dt.
Now, let us consider the case where tn > τ . Then Kh,k,τ = Kh,k for all t ≥ τ , so that, using (65) with
f = Kh,k and then the fact that K ′h,k is constant on each ]tn, tn+1[ we get

K̃n − K̃n−1 = K ′h,k(t−1/2)

∫ tn

tn−1

(
1− |t− tn|

k

)
dt+K ′h,k(tn+1/2)

∫ tn+1

tn

(
1− |t− tn|

k

)
dt

=
k

2

(
K ′h,k(tn−1/2) +K ′h,k(tn+1/2)

)
.

We have

|Kn −Kn−1 − K̃n + K̃n−1| ≤
∣∣∣K̃n − K̃n−1 − kK ′(tn)

∣∣∣+ |Kn −Kn−1 − kK ′(tn)|. (67)
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For the �rst term on the right hand side, using the above computation, we have:∣∣∣K̃n − K̃n−1 − kK ′(tn)
∣∣∣ = k

∣∣∣∣12 (K ′h,k(tn−1/2) +K ′h,k(tn+1/2)
)
−K ′(tn)

∣∣∣∣
≤ k

2

∣∣K ′h,k(tn−1/2) +K ′h,k(tn+1/2)−K ′(tn−1/2)−K ′(tn+1/2)
∣∣

+
k

2

∣∣K ′(tn−1/2) +K ′(tn+1/2)− 2K ′(tn)
∣∣ .

(68)

As, ∣∣∣∣12 (K ′(tn−1/2) +K ′(tn+1/2)
)
−K ′(tn)

∣∣∣∣ ≤ k2 sup
[(n−1)k,(n+1)k]

|K(3)|

and as from Proposition 3 we have |K(3)(t)| ≤ Ct−5/2, for the third term in (68), we get:

k

2

∣∣K ′(tn−1/2) +K ′(tn+1/2)− 2K ′(tn)
∣∣ ≤ Ck3t−5/2

n ,

and therefore∣∣∣K̃n − K̃n−1 − kK ′(tn)
∣∣∣ ≤ 1

2

∣∣K ′h,k(tn−1/2)−K ′(tn−1/2)
∣∣+

1

2

∣∣K ′h,k(tn+1/2)−K ′(tn+1/2)
∣∣+ Ck3t−5/2

n .

(69)
Similarly:

|Kn −Kn−1 − kK ′(tn)| ≤ Ck3tn
−5/2. (70)

With (67), (69), (70), noting that

∑
τ<nk<T

k3tn
−5/2 ≤ k3

+∞∑
n=τ/k

(nk) −5/2 = k1/2

+∞∑
n=τ/k

n−5/2 ∼ 2

3
k1/2

(
k

τ

)3/2

we get.∑
τ<nk<T

|Kn −Kn−1 − K̃n + K̃n−1|

≤
∑

τ<nk<T

∣∣∣K̃n − K̃n−1 − kK ′(tn)
∣∣∣+
∑

τ<nk<T
|Kn −Kn−1 − kK ′(tn)|

≤ k

2

∑
τ<nk<T

(∣∣K ′h,k,τ −K ′∣∣ (tn−1/2) +
∣∣K ′h,k,τ −K ′∣∣ (tn+1/2)

)
+ Ck2τ−3/2

(71)

Last, let us consider the case tn = τ . We have:∫ τ+k

τ

∣∣(K ′h,k,τ −K ′) (t)
∣∣ dt =

∫ τ+k

τ

∣∣K ′h,k,τ (tn+1/2)−K ′(t)
∣∣ dt

≤
∫ τ+k

τ

∣∣(K ′h,k,τ −K ′) (tn+1/2)
∣∣ dt+

∫ τ+k

τ

∣∣K ′(tn+1/2)−K ′(t)
∣∣ dt.
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Indeed, the �rst equality holds because K ′h,k,τ = K ′h,k is constant on [tn, tn+1].
But

∣∣K ′(tn+1/2)−K ′(t)
∣∣ ≤ ∣∣t− tn+1/2

∣∣ sup
[(τ,τ+k]

|K ′′ | 6
∣∣t− tn+1/2

∣∣Ct−3/2
n . Hence, we get

∫ τ+k

τ

∣∣(K ′h,k,τ −K ′) (t)
∣∣ dt ≤ ∫ τ+k

τ

∣∣(K ′h,k,τ −K ′) (tn+1/2)
∣∣ dt+ Ck2τ−3/2. (72)

Now with (66), (71), (72), we get that

∑
0<nk<T

|Kn−Kn−1−K̃n+K̃n−1| ≤ 2

∫ τ+k

0

|K ′h,k,τ−K ′|(t)dt+2
∑

τ≤nk<T

∣∣K ′h,k,τ −K ′∣∣ (tn+1/2)+Ck2τ−3/2.

With Theorem 3, therefore ∑
0<nk<T

|Kn −Kn−1 − K̃n + K̃n−1| ≤ Ckmµ.

For an uncorrected scheme. We have, in the same way:∑
0<nk<T

|Kn −Kn−1 − K̃n − K̃n−1| ≤ 2

∫ T

0

∣∣K ′h,k(t)−K ′(t)∣∣ dt ≤ Ckmµ.

Now, we need to bound |K0 − K̃0|. We have

|K0 − K̃0| ≤ |KNk−1 − K̃Nk−1|+
∑

0<nk<T

|Kn −Kn−1 − K̃n − K̃n−1|, where Nk = T/k

so that is su�cient to estimate
∣∣∣KNk−1 − K̃Nk−1

∣∣∣. But from the error estimate of the trapezoid
formula error:∣∣∣KNk−1 − K̃Nk−1

∣∣∣ ≤ k2 sup
[T/2,T ]

|K ′′|+ 1

2
|Kh,k(T − k)−K(T − k)|+ 1

2
|Kh,k(T )−K(T )|

Hence, (33) and (46) yields:∣∣∣KNk−1 − K̃Nk−1

∣∣∣ ≤ Ck2 + CT−ρkρ + CT−ρ/2hr.

All these terms are bounded by Ckmµ. This completes the proof of the theorem. �

To end this section, we prove that the conditions on the discrete kernels for convergence and stability
of the schemes in [3] are satis�ed by the discrete kernels presented in this paper.
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Proposition 10 If the hypotheses of Theorem 2 are satis�ed (e.g. Implicit Euler without correction),

then

(
1

k

∫ tn+1

tn

Kh,k(t)dt

)
n

and (Kh,k(tn))n satisfy Lemma 4 of [3].

Remark Using Proposition 2 of [3], this proves that the scheme presented in equations (1.8-11) and
(3.26) of [3] with W = 1 is unconditionally stable.

Proof De�ne

Un =
Kh,k(tn)− 2Kh,k(tn+1) +Kh,k(tn+2)

k2
=

Nh∑
j=1

a2
j,hf(−kλj,h)n(f(−kλj,h)− 1)2 ≥ 0.

Besides Un+1 − Un =

Nh∑
j=1

a2
j,hf(−kλj,h)n(f(−kλj,h) − 1)3 ≤ 0. Hence (Un)n is nonnegative and

decreasing.
Because of Theorem 2, we have for k su�ciently small,∫ 3T/4

T/2

K ′h,k(t+ T/4)−K ′h,k(t)dt > E :=
1

2

∫ 3T/4

T/2

K ′(t+ T/4)−K ′(T )dt.

Hence, there exists tn+1/2 ∈ [T/2, 3T/4] such that (T/4)|K ′h,k(tn+1/2 + T/4) − K ′h,k(tn+1/2)| > E.

But K ′h,k(tn+1/2 + T/4) − K ′h,k(tn+1/2) =
Kh,k(tn+1+ T

4k
)−Kh,k(tn+ T

4k
)

k
− Kh,k(tn+1)−Kh,k(tn)

k
=

k

n+ T
4k
−1∑

p=n

Up. Hence, there exists tp > T/2 such that (T/4)Up ≥ |K ′h,k(tn+1/2 + T/4)−K ′h,k(tn+1/2)| >

4

T
E.

We conclude that, as (Un) is decreasing, for tn ≤
T

2
, Un ≥ 4

E

T 2
and

Un + Un+1

2
≥ 4

E

T 2
. This

concludes the proof.
For the scheme presented in [3], Section 3.4.2, we prove the following result.

Proposition 11 If the hypotheses of Theorem 2 are satis�ed (e.g. Implicit Euler without correction),
and if we take K̃n = Kh,k(tn) or K̃n = Kh,k(tn+1), then the conclusions of Theorem 6 also hold.

Proof ∑
0<tn<T

|Kh,k(tn)−Kh,k(tn−1)−
∫ tn+1

tn

Kh,k(t)dt+

∫ tn

tn−1

Kh,k(t)dt|

=
∑

0<tn<T

|Kh,k(tn−1)− 2Kh,k(tn) +Kh,k(tn+1)

2
|
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=
∑

0<tn<T

Kh,k(tn−1)− 2Kh,k(tn) +Kh,k(tn+1)

2

=
Kh,k(0)−Kh,k(k)

2
− Kh,k(T − k)−Kh,k(T )

2

≤ Kh,k(0)−Kh,k(k)

2
≤ 1

2

∫ k

0

|K ′h,k(t)−K ′(t)|dt+
1

2

∫ k

0

|K ′(t)|dt

≤ Ckµ/2 + Ck1/2.

Using Theorem 6, we get the announced result.

4.3 Coercivity

In this section, we consider a kernel K : R+ → R+ satisfying the following hypotheses.

Hypothesis 1

� K(0) > 0, K is a decreasing function;

� K ∈ L1(0,+∞);

� K is continuous on R+, piecewise C1 on R+∗.

Hypothesis 2

� t→ t3K(t) is bounded.

Remark It is easily checked that all the kernels considered in the present paper satisfy these hy-
potheses.
Consider L : L2(0,+∞)→ H1

0 (0,∞) de�ned by

∀f ∈ L2(0,+∞), ∀t ∈ R+, L(f)(t) =

∫ t

0

f(τ)K(t− τ)dτ,

and for T > 0, A : L2(0, T )× L2(0, T )→ R de�ned by

∀u, v ∈ L2(0, T ), A(u, v) 7→
∫ T

0

(Lu)′vdt.

The aim of the section is to prove that A is continuous and coercive. A discrete version of this proof
was given in [3]. Continuity and invertibility of L were already proven for C2 domains Ω with another
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approach, in [18] (Theorem 4.3) and [19] (Theorem 2.11); coercivity was also proven with another
approach in [14], along the proof of Theorem 6.1. These results allow to prove the well-posedness of
the continuous model of [14]. In this section, we prove two results about the operator L de�ned by
(63), using only the properties of the kernel K and of its Fourier transform. The proof follows the
lines of [11].

Lemma 7 Under Hypothesis 1, L is bounded, invertible with a bounded inverse.

Proof First note that Hypothesis 1 implies that K ∈ W 1,1(0,+∞) and that lim
+∞

K = 0. Then, as

for f ∈ L2(0,+∞), ‖Lf‖L2 ≤ ‖K‖L1‖f‖L2 and as for smooth functions f with compact support in

]0,+∞[, (Lf)′(t) = K(0)f(t) +

∫ t

0

K ′(t− τ)f(τ)dτ, we have that

‖(Lf)′‖L2 ≤ K(0)‖f‖L2 + ‖K ′‖L1‖f‖L2 ≤ 2K(0)‖f‖L2 .

This proves that L is continuous.
Now, let g ∈ H1

0 (0,∞). By Paley-Wiener theorem, the Fourier transform ĝ of g satis�es:

η = sup
{
‖ĝ‖L2(R−iα) + ‖ĝ′‖L2(R−iα); α ≥ 0

}
< +∞.

Let us denote, for =ξ ≤ 0, ξ 6= 0:

f̂(ξ) =
2πiξ ĝ(ξ)

K(0) + K̂ ′(ξ)
.

Since K(0) + K̂ ′(ξ) =

∫ +∞

0

K ′(t)(e−2πξit − 1)dt, the real part of the denominator is positive when

ξ 6= 0,=ξ ≤ 0. At this point f̂ is just a notation: our goal is to prove that f̂ is indeed the Fourier
transform of some f ∈ L2(0 +∞).
Now, on one hand, as K̂ ′ is a continuous function which tends to zero when |ξ| → +∞, there exists
m∞ > 0 such that, for |ξ| > 1, |K(0) + K̂ ′(ξ)| > m∞.
On the other hand (note that Hypothesis 1 implies that lim

t→+∞
tK(t) = 0),

lim
ξ→0

K(0) + K̂ ′(ξ)

2πiξ
= lim

ξ→0

∫ +∞

0

K ′(t)
e−2πiξt − 1

2πiξ
dt = −

∫ +∞

0

tK ′(t)dt =

∫ +∞

0

K(t)dt > 0.

As a consequence, there exists m0 > 0 such that, for |ξ| ≤ 1,
∣∣∣K(0) + K̂ ′(ξ)

∣∣∣ ≥ m0 |2πiξ|.
Therefore, we have, for α ≥ 0,

‖f̂‖L2(R−iα) ≤
1

m0

‖ĝ‖L2(R−iα) +
1

m∞
‖ĝ′‖L2(R−iα) ≤

η

min {m0,m∞}
. (73)
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Hence, f is a well-de�ned function of L2(R). According to Paley-Wiener theorem the support of f
is a subset of [0,+∞[. Hence, f ∈ L2(0,∞) and ĝ′(ξ) = f̂(ξ)

(
K(0) + K̂ ′(ξ)

)
. As a consequence:

g′(t) = K(0)f(t) +

∫ t

0

f(τ)K ′(t− τ)dτ.

As g(0) = 0, we can conclude that g = Lf . As (73) also implies the continuity of L−1, this concludes
the proof of the lemma.

Proposition 12 Assume that Hypotheses 1 and 2 hold. Then, A is continuous coercive.

Proof The continuity of A is a direct consequence of continuity of L and Cauchy-Schwarz inequality.
Let us prove the coercivity.
Let u ∈ L2(0, T ). We extend u by zero outside [0, T ]. By Cauchy-Schwarz inequality: ‖û‖∞ ≤

√
T‖u‖L2 .

Therefore: ∫ +1/4T

−1/4T

|û|2dτ ≤ 1

2
‖u‖2

L2 ,

so that, letting RT = R \ [−1/4T, 1/4T ], we get∫
RT
|û|2dτ ≥ 1

2
‖u‖2

L2 ≥
∫ +1/4T

−1/4T

|û|2dτ.

Then

A(u, u) = 〈(Lu)′, u〉L2([0,T ]) = 〈(Lu)′, u〉L2(R) = 〈K(0)u+K ′ ∗ u, u〉L2(R)

=

∫
R
|û|2(K(0) + K̂ ′)dτ =

∫
R
|û|2<(K(0) + K̂ ′)dτ

≥
∫
RT
|û|2<(K(0) + K̂ ′)dτ ≥ inf

RT
<(K(0) + K̂ ′)

∫
RT
|û|2dτ

≥ 1

2
‖u‖2

L2 inf
RT
<(K(0) + K̂ ′)

As
∫ M

0

t2K ′(t)dt =
[
t2K(t)

]M
0
− 2

∫ M

0

tK(t)dt, we conclude that t 7→ t2K ′(t) belongs to L1(0,∞).

Now, as in the proof of the preceding lemma,

K(0) + K̂ ′(ξ) = −2πiξ

∫ +∞

0

tK ′(t)dt− 2π2ξ2

∫ +∞

0

t2K ′(t)dt+ o(ξ2)

As consequence: inf
RT
<(K(0) + K̂ ′) ≥ C min

{
1, T−2

}
> 0. Hence, we have proved the coercivity.
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5 Numerical results

In this section, we test the schemes designed in the previous sections. As it was predicted above
theoretically, we observe convergence. We also compare the theoretically predicted convergence rate
with the one obtained in numerical experiments. This experimental convergence rate is better than
predicted by Theorem 6.
Figure 1 presents the graph of function V for small values of time. One can observe the boundary
layer: the leading term of the deviation to 1 essentially depends on the distance to the boundary of
the domain, as shown theoretically for smooth domains (Equation (20)).
Analysing Figures 2 and 3, one can observe the following three regimes of behavior of the error of
approximation of the time derivative of the kernel K:

� the initialization regime for small times for the multistep BDF2 scheme, when the hypotheses
of Lemma 6 are not satis�ed;

� the discretization error regime, when the results of the previous section are applicable;

� the rounding error regime, when the rounding errors dominate and the error �uctuations become
important.

The numerical results show that when the time discretization error dominates then the error of
approximation of the time derivative of K is:

� proportional to kt−3/2 for the Implicit Euler scheme (with a factor of proportionality of about
0.37);

� proportional to k2t−5/2 for the BDF2 scheme (with a factor of proportionality of about ' 0.58).

Note that these convergence rates are better than those predicted by the estimates of Lemma 6.
Similar observations can be done for the regime when the discretization in space error is domi-
nant, although in this case the experimental convergence rate is more equivocal and closer to the
theoretically predicted one.
Last, we compare the numerically computed convergence rate with the one theoretically predicted
by the estimate of Theorem 6. The results of this comparison are presented in the tables below. In
order to test the accuracy of the schemes we run the tests for domains Ω for which the exact kernels
are known, namely:

� the equilateral triangle with the length of the side equal to 2;

� square with the side of the length 1;
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� the disc of radius 1.

The error is given both in L1-norm and Ẇ 1,1 semi-norm in the following senses:

‖f‖L1
k

=
∑

06tn<T

k
|f(tn) + f(tn+1)|

2
, ‖f‖Ẇ 1,1

k
=

∑
06tn<T

|f(tn+1)− f(tn)|.

For the uncorrected scheme we observe an error of order 1/2 in time and 1 in space (both for Implicit
Euler/P1, BDF2/P2) which is better that the theoretical 1/3 in time and 2/3 and 3/4 in space.
For the schemes with correction for small times, the observed orders in space and time are (the �rst
one is computed for P1 elements in space, the second one for P2 elements):

� ' 0.84 and ' 1.23 for Implicit Euler/P1 (theoretical 3/4, 6/5),

� ' 1.47 and ' 2.36 for BDF2/P2 (theoretical 10/9, 15/8).

The �rst series of four tables uses the P1-elements for the space discretization and the BDF2 method
for the time discretization for triangular and squared domain. We give the accuracy results both with
respect to the space discretization (�rst tables) and with respect to the time discretization (second
tables), but focus our attention on the order in time. As mentioned above, although order 1/3 was
proven, the order 1/2 is actually observed. We investigate further for the disk geometry, in Tables 5
and 6.

Table 1: accuracy with respect to space discretization, case of an equilateral triangle with side 2,
Nitsche, BDF2.

h k L1
k-error order Ẇ 1,1

k -error order
1e+00 5e-05 1.8175e-02 - 5.8193e-01 -
4e-01 5e-05 9.1221e-03 0.752 2.7825e-01 0.805
2e-01 5e-05 3.7106e-03 1.298 1.3868e-01 1.005
1e-01 5e-05 1.0619e-03 1.805 6.5145e-02 1.090
4e-02 5e-05 1.8547e-04 1.904 2.5610e-02 1.019
2e-02 5e-05 4.7558e-05 1.963 1.8005e-02 0.508
1e-02 5e-05 1.2097e-05 1.975 1.5205e-02 0.244
4e-03 5e-05 2.1411e-06 1.890 1.4530e-02 0.050
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Table 2: accuracy with respect to time discretization, case of an equilateral triangle with side 2,
Nitsche, BDF2

h k L1
k-error order Ẇ 1,1

k -error order
4e-03 1e-01 3.2533e-02 - 6.7891e-01 -
4e-03 5e-02 1.3683e-02 1.250 4.7059e-01 0.529
4e-03 2e-02 3.8177e-03 1.393 2.9155e-01 0.523
4e-03 1e-02 1.4100e-03 1.437 2.0521e-01 0.507
4e-03 5e-03 5.1521e-04 1.452 1.4490e-01 0.502
4e-03 2e-03 1.3384e-04 1.471 9.1594e-02 0.501
4e-03 1e-03 4.7590e-05 1.492 6.4761e-02 0.500
4e-03 5e-04 1.6955e-05 1.489 4.5794e-02 0.500
4e-03 2e-04 5.1646e-06 1.297 2.8972e-02 0.500
4e-03 1e-04 2.8542e-06 0.856 2.0503e-02 0.499
4e-03 5e-05 2.1411e-06 0.415 1.4530e-02 0.497

Table 3: accuracy with respect to space discretization, case of a square with side 1, Nitsche, BDF2.
h k L1

k-error order Ẇ 1,1
k -error order

1e-01 1e-04 5.4807e-03 - 2.9615e-01 -
5e-02 1e-04 1.8170e-03 1.593 1.3815e-01 1.100
2e-02 1e-04 5.3235e-04 1.340 6.3231e-02 0.853
1e-02 1e-04 1.5954e-04 1.738 3.0414e-02 1.056
5e-03 1e-04 2.7544e-05 2.534 1.4971e-02 1.023
2e-03 1e-04 6.8637e-06 1.516 1.3868e-02 0.084
1e-03 1e-04 2.3534e-06 1.544 1.3686e-02 0.019
5e-04 1e-04 1.1414e-06 1.044 1.3654e-02 0.003
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Table 4: accuracy with respect to time discretization, case of a square with side 1, Nitsche, BDF2.
h k L1

k-error order Ẇ 1,1
k -error order

5e-04 1e-01 1.9611e-02 - 4.5902e-01 -
5e-04 5e-02 9.1157e-03 1.105 3.2094e-01 0.516
5e-04 2e-02 2.6101e-03 1.365 1.9619e-01 0.537
5e-04 1e-02 9.5608e-04 1.449 1.3721e-01 0.516
5e-04 5e-03 3.4703e-04 1.462 9.6689e-02 0.505
5e-04 2e-03 9.0114e-05 1.472 6.1075e-02 0.501
5e-04 1e-03 3.2243e-05 1.483 4.3175e-02 0.500
5e-04 5e-04 1.1443e-05 1.494 3.0527e-02 0.500
5e-04 2e-04 2.9076e-06 1.495 1.9307e-02 0.500
5e-04 1e-04 1.1414e-06 1.349 1.3654e-02 0.500

The next table (Table 5) presents accuracy results for the disk, with P1 �nite elements and Nitsche
boundary conditions in space, and Implicit Euler method. We compare in the same table, the results
without correction for small times on the left side of the table, and the results with corrections on
the right side. Note that, as predicted in the previous section, the results are much better for the
scheme with correction. Indeed, the results are even much better with order 1 in time with correction
than with order 2 in time without correction. The last table (Table 6) shows the same comparisons
for the second order schemes (P1 plus BDF2).
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Table 5: disc, P1, Nitsche, Implicit Euler method.
‖Kh,k −K‖ ‖Kh,k,τ −K‖

h/π k L1
k Ẇ 1,1

k L1
k Ẇ 1,1

k

2−2 0.1 · 2−18 7.7569e-03 5.1079e-01 6.8658e-03 1.2161e-02
2−3 0.1 · 2−18 4.2895e-03 0.85 3.1177e-01 0.71 3.9197e-03 0.81 2.1384e-02 -0.81
2−4 0.1 · 2−18 1.2743e-03 1.75 1.6544e-01 0.91 1.0254e-03 1.93 1.0026e-02 1.09
2−5 0.1 · 2−18 3.4323e-04 1.89 9.0047e-02 0.88 2.5132e-04 2.03 3.9360e-03 1.35
2−6 0.1 · 2−18 9.0154e-05 1.93 4.4007e-02 1.03 6.7331e-05 1.90 1.4194e-03 1.47
2−7 0.1 · 2−18 2.2885e-05 1.98 2.1364e-02 1.04 1.7637e-05 1.93 4.7988e-04 1.56
2−8 0.1 · 2−18 5.7614e-06 1.99 1.1607e-02 0.88 4.4413e-06 1.99 1.6490e-04 1.54
2−9 0.1 · 2−18 1.2969e-06 2.15 5.6007e-03 1.05 1.0189e-06 2.12 5.3222e-05 1.63
2−10 0.1 · 2−18 2.0038e-07 2.69 2.1013e-03 1.41 1.5362e-07 2.73 1.3127e-05 2.02
2−10 0.1 · 2−1 2.2640e-02 2.4466e-01 3.1890e-02 6.0248e-02
2−10 0.1 · 2−2 1.1223e-02 1.01 1.8981e-01 0.37 1.2882e-02 1.31 2.9966e-02 1.01
2−10 0.1 · 2−3 5.7809e-03 0.96 1.4570e-01 0.38 5.9278e-03 1.12 2.1383e-02 0.49
2−10 0.1 · 2−4 3.0129e-03 0.94 1.0962e-01 0.41 2.7347e-03 1.12 1.0704e-02 1.00
2−10 0.1 · 2−5 1.5670e-03 0.94 8.1023e-02 0.44 1.3314e-03 1.04 5.9707e-03 0.84
2−10 0.1 · 2−6 8.0942e-04 0.95 5.9083e-02 0.46 6.6861e-04 0.99 3.5482e-03 0.75
2−10 0.1 · 2−7 4.1492e-04 0.96 4.2647e-02 0.47 3.4173e-04 0.97 2.2000e-03 0.69
2−10 0.1 · 2−8 2.1125e-04 0.97 3.0535e-02 0.48 1.7427e-04 0.97 1.3054e-03 0.75
2−10 0.1 · 2−9 1.0691e-04 0.98 2.1702e-02 0.49 8.9098e-05 0.97 7.8028e-04 0.74
2−10 0.1 · 2−10 5.3800e-05 0.99 1.5300e-02 0.50 4.5376e-05 0.97 4.5670e-04 0.77
2−10 0.1 · 2−11 2.6900e-05 1.00 1.0671e-02 0.52 2.2994e-05 0.98 2.6285e-04 0.80
2−10 0.1 · 2−12 1.3324e-05 1.01 7.3285e-03 0.54 1.1564e-05 0.99 1.4874e-04 0.82
2−10 0.1 · 2−13 6.4901e-06 1.04 4.9239e-03 0.57 5.7282e-06 1.01 8.1169e-05 0.87
2−10 0.1 · 2−14 3.0571e-06 1.09 3.2245e-03 0.61 2.7538e-06 1.06 4.1283e-05 0.98
2−10 0.1 · 2−15 1.3347e-06 1.20 2.0923e-03 0.62 1.2386e-06 1.15 1.7482e-05 1.24
2−10 0.1 · 2−16 4.7146e-07 1.50 1.4611e-03 0.52 4.6622e-07 1.41 2.9301e-06 2.58
2−10 0.1 · 2−17 1.7834e-07 1.40 1.5866e-03 -0.12 1.4477e-07 1.69 6.9816e-06 -1.25
2−10 0.1 · 2−18 2.0038e-07 -0.17 2.1013e-03 -0.41 1.5362e-07 -0.09 1.3127e-05 -0.91

46



Table 6: disc, P2, Nitsche, BDF2.
‖Kh,k −K‖ ‖Kh,k,τ −K‖

h/π k L1
k Ẇ 1,1

k L1
k Ẇ 1,1

k

2−2 0.1 · 2−18 5.0127e-03 4.4303e-01 9.2845e-05 6.4401e-03
2−3 0.1 · 2−18 8.9903e-04 2.48 2.3810e-01 0.90 3.9114e-04 -2.07 8.4831e-03 -0.40
2−4 0.1 · 2−18 1.3434e-04 2.74 1.2124e-01 0.97 1.9698e-05 4.31 6.9236e-04 3.61
2−5 0.1 · 2−18 1.8159e-05 2.89 6.0173e-02 1.01 9.5696e-07 4.36 4.8201e-05 3.84
2−6 0.1 · 2−18 2.3337e-06 2.96 3.0067e-02 1.00 1.6260e-07 2.56 5.9797e-06 3.01
2−7 0.1 · 2−18 2.7912e-07 3.06 1.5179e-02 0.99 1.4163e-08 3.52 1.5222e-06 1.97
2−8 0.1 · 2−18 4.5899e-08 2.60 7.6611e-03 0.99 1.3268e-08 0.09 3.4836e-07 2.13
2−9 0.1 · 2−18 1.3353e-08 1.78 4.1620e-03 0.88 9.1745e-09 0.53 1.2214e-07 1.51
2−10 0.1 · 2−18 4.1871e-09 1.67 1.9915e-03 1.06 3.5450e-09 1.37 5.4059e-08 1.18
2−10 0.1 · 2−1 1.4334e-02 3.3695e-01 1.4334e-02 3.3695e-01
2−10 0.1 · 2−2 5.3433e-03 1.42 2.4956e-01 0.43 8.5621e-03 0.74 1.2090e-01 1.48
2−10 0.1 · 2−3 1.9827e-03 1.43 1.7890e-01 0.48 1.6564e-03 2.37 3.0048e-02 2.01
2−10 0.1 · 2−4 7.3156e-04 1.44 1.2717e-01 0.49 2.5419e-04 2.70 4.2445e-03 2.82
2−10 0.1 · 2−5 2.6748e-04 1.45 9.0104e-02 0.50 6.9242e-05 1.88 1.4501e-03 1.55
2−10 0.1 · 2−6 9.6946e-05 1.46 6.3756e-02 0.50 2.0807e-05 1.73 5.8135e-04 1.32
2−10 0.1 · 2−7 3.4894e-05 1.47 4.5091e-02 0.50 6.1545e-06 1.76 2.2248e-04 1.39
2−10 0.1 · 2−8 1.2496e-05 1.48 3.1885e-02 0.50 1.8497e-06 1.73 8.8581e-05 1.33
2−10 0.1 · 2−9 4.4598e-06 1.49 2.2546e-02 0.50 5.5914e-07 1.73 3.5762e-05 1.31
2−10 0.1 · 2−10 1.5890e-06 1.49 1.5942e-02 0.50 1.6937e-07 1.72 1.4267e-05 1.33
2−10 0.1 · 2−11 5.6655e-07 1.49 1.1273e-02 0.50 5.2919e-08 1.68 5.7136e-06 1.32
2−10 0.1 · 2−12 2.0320e-07 1.48 7.9714e-03 0.50 1.8155e-08 1.54 2.2811e-06 1.32
2−10 0.1 · 2−13 7.4262e-08 1.45 5.6404e-03 0.50 7.8791e-09 1.20 9.3660e-07 1.28
2−10 0.1 · 2−14 2.8545e-08 1.38 4.0048e-03 0.49 4.8191e-09 0.71 3.9281e-07 1.25
2−10 0.1 · 2−15 1.2337e-08 1.21 2.8858e-03 0.47 3.9132e-09 0.30 1.7526e-07 1.16
2−10 0.1 · 2−16 6.5853e-09 0.91 2.1831e-03 0.40 3.6361e-09 0.11 7.6785e-08 1.19
2−10 0.1 · 2−17 4.6041e-09 0.52 1.9025e-03 0.20 3.5638e-09 0.03 5.1164e-08 0.59
2−10 0.1 · 2−18 4.1871e-09 0.14 1.9915e-03 -0.07 3.5450e-09 0.01 5.4059e-08 -0.08
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t =
1

200

t =
1

2

Figure 1: Solution to (2) with Dirichlet boundary equations at time t = 1/200 and t = 1/2 for three
di�erent domains. (The triangle is shown at a scale twice smaller than the square and the disc)
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Figure 2: Case of the disc discretized with P1-elements in space and Implicit-Euler in time.∣∣∣∣Kh,k(tn+1)−Kh,k(tn)

k
− K(tn+1)−K(tn)

k

∣∣∣∣ as a function of tn+1/2 for various values of the space

step h =
2π

N
(top, k = 0.1 · 2−18) and the time step k (bottom, h =

2π

2048
). We also present the error

for the asymptotic expansion.
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Figure 3: Case of the disc discretized with P2-elements in space and BDF2 in time.∣∣∣∣Kh,k(tn+1)−Kh,k(tn)

k
− K(tn+1)−K(tn)

k

∣∣∣∣ as a function of tn+1/2 for various values of the space

step h =
2π

N
(top, k = 0.1 · 2−18) and the time step k (bottom, h =

2π

2048
). We also represent the

error made for the asymptotic expansion.
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Conditions (40) for the second order Backward Di�erence For-

mula (BDF2)

The BDF2 scheme (41) can be put in the abstract form by de�ning (Gn)n with the following linear
di�erence di�erence equation of order 2:{

G0 = 1, G1(ξ) = (1− ξ)−1,
∀n ≥ 0, (3− 2ξ)Gn+2(ξ) = 4Gn+1(ξ)−Gn(ξ), (74)

For small enough ξ if may be rewritten as :

Gn(ξ) = c(ξ)f(ξ)n + d(ξ)g(ξ)n,

where

f(ξ) =
2 +
√

1 + 2ξ

3− 2ξ
, g(ξ) =

2−
√

1 + 2ξ

3− 2ξ
,

c(ξ) =
G1(ξ)− g(ξ)G0(ξ)

f(ξ)− g(ξ)
, d(ξ) =

G1(ξ)− f(ξ)G0(ξ)

g(ξ)− f(ξ)
.

Then, with ξ0 = 2/5, ρ = 2 and ε = 2/3, it is not too di�cult to see that

∀ξ ∈]− ξ0, 0], |d(ξ)g(ξ)n| ≤ C

(
2

3

)n
, |f(ξ)| ≤ 1,

and that
c(ξ) = 1 +

3

4
ξ2 +Oξ→0(ξ3), f(ξ) = 1 + ξ +

1

2
ξ2 +

1

2
ξ3 +Oξ→0(ξ4),

so that all conditions in (40) are satis�ed, except for Gn(ξ) = On→+∞(εn) uniformly in ]−∞,−ξ0].
Let us check this condition in detail.

We have
(
Gn+1(ξ)
Gn+2(ξ)

)
= A(ξ)

(
Gn(ξ)
Gn+1(ξ)

)
where A(ξ) =

 0 1
−1

3− 2ξ

4

3− 2ξ

. Let us also denote

A(−∞) =

(
0 1
0 0

)
.
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One can check directly that the spectral radius ρ(ξ) of A(ξ) is bounded by
10 +

√
5

19
≈ 0.644 < 2/3 = ε

on [−∞,−ξ0]. Besides, lim
n→+∞

‖A(ξ)n‖1/n = ρ(ξ). Now, if we take a submultiplicative norm:

‖(A(ξ))2n+1‖2−n−1 ≤
(
‖A(ξ)2n‖2

)2−n−1

≤ ‖A(ξ)2n‖2−n .

Hence (ξ 7→ ‖A(ξ)2n‖2−n)n is a sequence of continuous functions decreasing and converging to ρ(ξ)
on [−∞,−ξ0]. By Dini theorem, this sequence converges uniformly. Hence, there exists m > 0,
such that: ‖A(ξ)2m‖2−m ≤ ε, and therefore ‖A(ξ)2m‖ ≤ ε2m , uniformly in [−∞,−ξ0]. It yields
A(ξ)n = O(εn) and then Gn(ξ) = O(εn) uniformly with respect to ξ.
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