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Magnetic Archimedes Coriolis (MAC) waves are omnipresent in several geophysical and astrophysical flows
such as the solar tachocline. In the present study, we use linear spectral theory (LST) and investigate the
energy partition, scale by scale, in MAC weak wave turbulence for a Boussinesq fluid. At the scale k−1, the
maximal frequencies of magnetic (Alfvén) waves, gravity (Archimedes) waves, and inertial (Coriolis) waves
are, respectively, VAk, N , and f. By using the induction potential scalar, which is a Lagrangian invariant for a
diffusionless Boussinesq fluid [Salhi et al., Phys. Rev. E 85, 026301 (2012)], we derive a dispersion relation for
the three-dimensional MAC waves, generalizing previous ones including that of f -plane MHD “shallow water”
waves [Schecter et al., Astrophys. J. 551, L185 (2001)]. A solution for the Fourier amplitude of perturbation
fields (velocity, magnetic field, and density) is derived analytically considering a diffusive fluid for which both the
magnetic and thermal Prandtl numbers are one. The radial spectrum of kinetic, Sκ (k,t), magnetic, Sm(k,t), and
potential, Sp(k,t), energies is determined considering initial isotropic conditions. For magnetic Coriolis (MC)
weak wave turbulence, it is shown that, at large scales such that VAk/f � 1, the Alfvén ratio Sκ (k,t)/Sm(k,t)
behaves like k−2 if the rotation axis is aligned with the magnetic field, in agreement with previous direct numerical
simulations [Favier et al., Geophys. Astrophys. Fluid Dyn. (2012)] and like k−1 if the rotation axis is perpendicular
to the magnetic field. At small scales, such that VAk/f � 1, there is an equipartition of energy between magnetic
and kinetic components. For magnetic Archimedes weak wave turbulence, it is demonstrated that, at large scales,
such that (VAk/N � 1), there is an equipartition of energy between magnetic and potential components, while at
small scales (VAk/N � 1), the ratio Sp(k,t)/Sκ (k,t) behaves like k−1 and Sκ (k,t)/Sm(k,t) = 1. Also, for MAC
weak wave turbulence, it is shown that, at small scales (VAk/

√
N 2 + f 2 � 1), the ratio Sp(k,t)/Sκ (t) behaves

like k−1 and Sκ (k,t)/Sm(k,t) = 1.

DOI: 10.1103/PhysRevE.95.023112

I. INTRODUCTION

Magnetic Archimedes Coriolis (MAC) waves can occur
in an electrically conducting fluid submitted to the Lorentz,
buoyancy, and Coriolis forces. They are ubiquitously present in
several geophysical and astrophysical systems (like the Earth’s
core, Sun’s interior, solar corona, astrophysical accretion
disks). These hydromagnetic waves are used to explain the
secular variation of the Earth’s magnetic field over the course
of hundreds of years [1] and the redistribution of angular
momentum in the Sun [2]. They also play an important role in
the dynamo theory (see, e.g., Refs. [3–5]).

The interaction of magnetic (Alfvén) waves and inertial
(Coriolis) waves in rapidly rotating fluid, which can generate
slow and fast magnetic Coriolis (MC) waves, has been
studied in some previous studies [5]. In the recent laboratory
experiment of a magnetized turbulent Taylor-Couette flow of
liquid metal by Nornberg et al. [6], the combined fast and
slow magnetocoriolis waves were clearly identified where
the observed slow MC wave is damped. These authors have
identified a relationship between the slow MC wave and the
magnetorotational instability (MRI) and proposed a method
of determining the threshold for this instability through
observation of driven MC waves. Note that the interaction of a
background shear, which can be due to the differential rotation
as in astrophysical accretion disks, with the MC (or MAC)
waves can generate the MRI [7–10]. Salhi et al. [10] have found
that the so-called “induction potential scalar,” i.e., the inner

product of the magnetic field by the gradient of the flow density,
is a Lagrangian invariant for a diffusionless magnetized
Boussinesq fluid, while its counterpart, i.e., the potential
vorticity [11] is not a Lagrangian invariant for a magnetized
fluid. With the help of that induction potential scalar, we
derive a dispersion relation for three-dimensional MAC waves
generalizing previous ones. For instance, Soward and Dormy
[12], who follow Braginsky [13] in using a formulation in terms
of the displacement vector of the wave perturbations, derived
a dispersion relation for the MAC waves. Their formulation
clearly shows that the MAC waves are associated with elliptical
motion of particle. By ignoring the inertial term (∂u/∂t,

where u is the velocity perturbation field) in the linearized
Boussinesq MHD equations for a diffusionless fluid, one
can alternatively derive the Soward and Dormy’s dispersion
relation [5]. As noted by Finlay [5], ignoring the inertial
term would have resulted in only the slow MAC mode being
obtained, while the fast MAC mode [see Eq. (13)] is filtered
out. We will show that the fast (respectively, slow) MAC mode
propagates faster (respectively, slower) than the fast (slow)
MC mode. Also, we briefly examine the similarity between
the dispersion relation for the three-dimensional MAC waves
and that of f -plane magnetohydrodynamic (MHD) “shallow
water” waves [14–18]. The model has been applied to the
solar tachocline [14]: a shear layer located inside the Sun at
around 0.7R�, where R� is the solar radius, which contains a
stably stratified sublayer (the radiative sublayer) that is around
0.02 R� deep [19].
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The second aspect of the present study is to obtain analytical
or semianalytical solutions of the linear equations in order
to clarify the essential mechanisms governing the partition of
energy, at each scale k−1 (or wave number k), between kinetic,
magnetic, and potential components in MAC wave turbulence.

The case of MC weak wave turbulence is addressed
in regards to the recent study by Favier et al. [20], who
presented data from DNS of homogeneous incompressible
turbulence submitted to both Coriolis and Lorentz forces
(that are parallel) with large magnetic Reynolds number,
moderate interaction parameter, and small Rossby number
regime (context illustrated in Ref. [21]). In that study, it is
found that the equipartition between kinetic and magnetic
energy due to Alfvén waves (see Kraicknan [22]) is broken by
inertial waves. This point is addressed in detail in the present
study considering both cases where the uniform magnetic field
and the system rotation axis are either parallel (axisymmetric
case) or perpendicular (asymmetric case). The latter case
being the most plausible configuration inside the Earth’s core
[23,24]. We show that the linear spectral theory (LST) results
for the Alfvén energy ratio (kinetic and magnetic, e.g., see,
Matthaeus and Goldstein [25]) are in agreement with the
DNS ones. At large scales such that VAk/f � 1, where VA

is the Alfvén velocity, the Alfvén ratio behaves like k−2 in
the axisymmetric case and like k−1 in the asymmetric case.
At small scales (VAk/f � 1), LST predicts an equipartition
of energy between kinetic and magnetic components in
both the cases with or without rotation. Such a behavior at
small scales would rather characterize the so-called weak
MHD turbulence since nonrotating strong MHD turbulence
submitted to uniform magnetic field is characterized by an
Alfvén ratio slightly smaller than one, indicating the presence
of non-Alfvénic fluctuations [25–27].

In a similar manner, we analyze the effects of linear
processes on the energy partition, scale by scale, between
kinetic, magnetic, and potential components in the MAC
weak wave turbulence. We show that stratification affects the
energy partition only at large scales (VAk/

√
f 2 + N2 � 1).

At small scales (VAk/
√

f 2 + N2 � 1), stratification does
not affect the equipartition of energy between magnetic and
kinetic components, and the energy ratio potential/kinetic (or
potential/magnetic) behaves like k−1.

The paper is organized as follows. Governing Boussinesq
MHD equations, as well as the equation for the induction
potential scalar are presented in Sec. II. The linear differential
system for the Fourier amplitudes is also derived and presented
in Sec. II. The analysis of the dispersion relation for the MAC
waves in the case of diffusionless fluid is given in Sec. III.
Section IV deals with the analysis of the behavior, scale
by scale, of the Alfvén ratio (kinetic/magnetic) in the case
of MC weak wave turbulence. Similar analysis in the case
of MAC wave weak turbulence is presented in Sec. V. Our
concluding remarks are presented in Sec. VI. Some analytical
developments are reported in Appendix.

II. GOVERNING EQUATIONS

A. The Boussinesq-MHD equations

We consider rotating homogeneous turbulence of an in-
compressible and conducting fluid submitted to a magnetic

field and a vertical density stratification with uniform strength
(d�/dx3). The system rotation � = 1

2f e3, where f = 2�

is the Coriolis parameter, is aligned with the vertical axis
(x3), while the magnetic field is either vertical B = Be3 or
horizontal B = Be1. The temporal and spatial variations of
the imposed field may be neglected so that, at least locally, we
may assume that it is uniform and steady [28].

The fluctuating parts of the velocity, magnetic, and density
fields are denote by u = (u1,u2,u3)T , b = (b1,b2,b3)T , and ρ,

respectively.
We start from the usual Boussinesq MHD equations [21],

∂t u + (u·∇)u = − 1

�0
∇p − 2� × u − g

�0
ρe3

+ 1

�0μ0
(∇ × b) × (B + b) + ν∇2u,

∂t b + (u·∇)b = ((B + b)·∇)u + η∇2b,

∂tρ + (u·∇)ρ = − d�

dx3
u3 + κ∇2ρ (1)

where both u and b are solenoidal, so that ∇·u = 0 and ∇·b =
0. Here, ν, η, and κ denote the kinematic viscosity, magnetic
diffusivity, and thermal diffusivity, respectively, and μ0 is the
vacuum permeability, while p denotes the pressure fluctuation,
and � is the background density and �0 is a reference density.
Herein after, the tildes refer to instantaneous (total) quantities,
e.g., b̃ = B + b.

It should be noticed that the so called induction potential
scalar,

	̃m = b̃·∇�̃ = (B + b)·(∇� + ∇ρ)

= B·∇�︸ ︷︷ ︸
	

(m)
m

+ (B·∇ρ + b·∇�)︸ ︷︷ ︸
	

(
)
m

+ b·∇ρ︸ ︷︷ ︸
	

(n
)
m

, (2)

is a relevant parameter when considering a magnetized
Boussinesq fluid (see Salhi et al. [10]). Here, 	 (m)

m represents
the mean part of the total induction potential 	̃ , while the
last two terms, 	 (
)

m and 	 (n
)
m , characterize the interaction

between the mean and the fluctuating parts and the nonlinear
interaction. The equation for 	̃m, which is deduced from the
Boussinesq MHD equations, reads

(∂t + (ũ·∇))	̃m = η(∇�̃)·∇2 b̃ + κ b̃·∇2(∇�̃). (3)

Therefore, in the inviscid and nondiffusive limit, 	̃m is a
Lagrangian invariant, while its counterpart, i.e., the potential
vorticity [11], 	̃κ = (∇ × ũ + 2�)·∇�̃, is not a Lagrangian
invariant for a magnetized fluid [10]. Obviously, fluids in
the tachocline or elsewhere are not perfectly inviscid, nor
perfectly conducting but in some astrophysical flows as the
solar tachocline, the high values of magnetic and hydrody-
namic Reynolds numbers indicate that the effects of viscosity
and magnetic diffusion are very low [19]. Accordingly, for
mathematical simplicity, in the present study, we consider
either a diffusionless fluid or a diffusive fluid for which the
magnetic and thermal Prandtl numbers are unity (ν = η = κ).
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B. Spectral decompositions

We linearize Eqs. (1) and introduce the following spectral
decompositions [29,30]:(

u,
p

�0
,

b√
�0μ0

, − g

�0
ρ

)
=
∑
k

(û,p̂,b̂,ρ̂)(k,t)eix·k, (4)

where k = (k1,k2,k3)T is the wave vector. We obtain a set of
ordinary differential equations (spectral linear theory (SLT)
equations, also called rapid distortion theory (RDT) equations
[29,31]):

˙̂u + νk2û = −iP̂ k − 2� × û + ρ̂e3 + i(V a·k)b̂,

˙̂b + ηk2 b̂ = i(V a·k)û,

˙̂ρ + κk2ρ̂ = −N2û3,

(5)

with k·û = 0 and k·b̂ = 0 for solenoidal fields, where V a =
(1

√
ρμ0)B is the Alfvén velocity vector, P̂ = (p̂ + (V a·b̂))

and N, such that N2 = −(g/�0)(d�/dx3) is the Brunt-Väisälä
frequency assumed to be a positive constant (stable stratifica-
tion) in the present study.

The equation of the spectral counterpart of the linear part of
the induction potential scalar, 	̂ (
)

m = i(V a·k)ρ̂ + N2b̂3, can
be deduced either from Eq. (3) or from system Eq. (5),

˙̂	 (
)
m = −ηk2	̂ (
)

m − (κ − η)k2i(V a·k)ρ̂, (6)

where k = ‖k‖ is the modulus of the wave vector. For a
diffusionless fluid, 	̂ (
)

m is time-independent and constitutes
a constant of motion, as indicated previously. In the case
where η = κ, Eq. (6) becomes autonomous with solution
	̂ (
)

m (t) = 	̂ (
)
m (0) exp(−ηk2t).

Since u and b are solenoidal, the seventh-differential system
Eq. (3) can be reduced to a fifth-dimensional one. In the present
study, we transform the system Eq. (3) in a local frame, referred
to as Craya-Herring in hydroturbulence [32], in which both the
constraints k·û = 0 and k·b̂ = 0 are satisfied by construction.
Velocity and magnetic modes are constructed in a similar way
as

u(1) = k−1
h (k2û1 − k1û2), u(2) = −k−1

h kû3,

u(3) = ik−1
h (k2b̂1 − k1b̂2), u(4) = −ik−1

h kb̂3,
(7)

(u(1) and u(3)) correspond to toroidal modes in physical space,
and (u(2) and u(4)) correspond to poloidal modes in physical
space [33], where kh =

√
k2

1 + k2
2 denotes the horizontal wave

number. In addition, the buoyancy mode is rescaled as a
velocity, u(5) = N−1ρ̂. Therefore, 	̂ (
)

m can be rewritten in
terms of u(4) and u(5) as

−iN−1	̂ (
)
m = ωGu(4) + ωAu(5), (8)

in which

ωG = khk
−1N, ωA = V a·k, (9)

are, respectively, the frequencies of gravity (Archimedes) and
magnetic (Alfvén) waves.

With the help of the induction potential scalar 	̂ (
)
m , which

constitutes a constant of motion for a diffusionless fluid,
as already indicated, the fifth-dimensional linear differential

system for the toroidal, poloidal, and buoyancy modes can be
transformed into a fourth-dimensional inhomogeneous one,⎛

⎜⎜⎝
u̇(1)

u̇(2)

u̇(3)

u̇(4)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0 ωR ωA 0

−ωR 0 0 −ω2
AG

ωA−ωA 0 0 0
0 ωA 0 0

⎞
⎟⎟⎠·

⎛
⎜⎜⎝

u(1)

u(2)

u(3)

u(4)

⎞
⎟⎟⎠

+

⎛
⎜⎝

0
π (0)

0
0

⎞
⎟⎠. (10)

The solution of system Eq. (10) that characterizes an inviscid
fluid (ν = η = κ = 0) is reported in Appendix A for the sake of
clarity [see Eqs. (A2), (A7), (A8)]. By multiplying the solution
derived in the inviscid case by the damping term e−νk2t , we
obtain the solution for a diffusive fluid with Prm = ν/η = 1
and Prt = ν/κ = 1.

The frequencies,

ωR = f
k3

k
, ωAG =

√
ω2

A + ω2
G, (11)

appearing in system Eq. (10) are, respectively, the frequencies
of Coriolis waves and magnetic Archimedes waves, and

π (0) = −i
ωG

NωA

	̂ (
)
m = ωG

ωA

(ωGu(4)(k,0) + ωAu(5)(k,0))

(12)

is a constant depending only on the initial energy distribution.
Note that both ωR and ωG depend on the orientation of the wave
vector and not on its modulus, i.e., there is no dependence on
the wavelength, λ = 2π/k, while the Alfvén frequency does
depend on λ.

III. DISPERSION RELATIONS FOR A
DIFFUSIONLESS FLUID

In order to focus on the essential physics involving the
Lorentz (magnetic), buoyancy (Archimedes), and Coriolis
forces, we ignore viscous, magnetic, and thermal diffusion
and derive a dispersion relation for three-dimensional MAC
waves.

We determine the eigenvalues of the above coefficient
matrix that are the solutions of the following algebraic firth-
order equation:(

ω2 − ω2
A

)(
ω2 − ω2

A − ω2
G

)− ω2ω2
R = 0. (13)

Equation (13) provides the dispersion relation for the MAC
waves in a diffusionless fluid. For a diffusive fluid with ν =
η = κ, the dispersion relation of the MAC waves is obtained
by replacing ω in Eq. (13) by (ω − ν). We can gain insight
into the basic waves for this dispersion relation by examining
some limiting cases.

In the absence of stratification, Eq. (13) reduces to(
ω2 − ωRω − ω2

A

)(
ω2 + ωRω − ω2

A

) = 0, (14)

which describes both fast and slow magnetic Coriolis waves
for a diffusionless fluid [5]. For these waves, the Lorentz and
Coriolis forces may act together, stiffening the system and
producing the higher-frequency fast wave, or the two forces
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may oppose one another to produce the lower-frequency slow
wave [6],

ωf = 1
2

(√
ω2

R + 4ω2
A + ωR

)
,

ωs = 1
2

(√
ω2

R + 4ω2
A − ωR

)
,

(15)

using subscripts s and f for “slow” and “fast,” respectively.
We remark that fast and slow magnetic Coriolis waves for a
diffusionless fluid are associated to the following modes:

�f = (
ω2

f − ω2
s

)−1
[
ωAωRu(1) − i

ωA

ωf

(
ω2

A + ω2
R − ω2

s

)
u(2)

− i
ωR

ωf

ω2
Au(3) + (

ω2
A − ω2

s

)
u(4)

]
,

(16)

�s = (
ω2

s − ω2
f

)−1
[
ωAωRu(1) − i

ωA

ωs

(
ω2

A + ω2
R − ω2

f

)
u(2)

− i
ωR

ωs

ω2
Au(3) + (

ω2
A − ω2

s

)
u(4)

]
,

for which the dynamical system Eq. (10) with ωG = 0 is
transformed to a simple decoupled system,

�̇f = iωf �f , �̇s = iωs�s. (17)

From the later equation, one easily verifies that the total
(kinetic+magnetic) energy, Et = |�f |2 + |�s |2, is conserved
(in the inviscid linear limit). Note that, scale by scale, the
relative importance of rotation and magnetic tension can be
estimated from the ratio ωA/ωR = VAk/f.

In the absence of rotation, the dispersion relation Eq. (13)
reduces to (

ω2 − ω2
A

)(
ω2 − ω2

A − ω2
G

) = 0, (18)

which indicates that the toroidal modes u(1) and u(3) propagate
with the Alfvén frequency ωA, while the poloidal and buoyancy
modes u(2), u(4), and u(5) propagate with the frequency ωAG �
ωA. Accordingly, for the motion of the poloidal and buoyancy
modes, both the gravity and the magnetic tension contribute to
the restoring force on a displaced fluid element, so the wave is a
mixture of gravity and Alfvén waves [34]. The ratio ωA/ωG =
VAk/N characterizes, scale by scale, the importance of the
magnetic tension with respect to the gravity force. In the
solar tachocline, the lowest value of the ratio VAk/N would
be VAk/N ∼ 10−2 for k−1 ∼ (0.02 × R�),VA = 13 m.s−1 and
N = 8 × 10−5 s−1 (see Ref. [19]).

In the case of small Alfvén speed (VA � NL0 with L0 a
characteristic length scale), as in the interiors of solar-like
stars [16] or at vanishing magnetic field, the dispersion
relation Eq. (13) reduces to ω =

√
ω2

G + ω2
R, which describes

Archimedes Coriolis (AC) waves. Let λR = NL0/f be the
Rossby-deformation radius [35]. The rotational effects become
important at wavelengths of λ ≡ k−1 � λR [17]. Note that the
case of stratified rotating homogeneous turbulence involving
AC waves has been addressed in previous studies [21,33,36].

When rotation, stratification, and magnetic fields are
simultaneously present, the solution of the dispersion re-
lation Eq. (13) characterizes fast and slow waves with

frequency,

ω2
F = 1

2

[
2ω2

A + ω2
G + ω2

R +
√(

ω2
R + ω2

G

)2 + 4ω2
Aω2

R

]
,

ω2
S = 1

2

[
2ω2

A + ω2
G + ω2

R −
√(

ω2
R + ω2

G

)2 + 4ω2
Aω2

R

]
.

(19)

It appears that the fast (respectively, slow) magnetic
Archimedes Coriolis wave propagates faster (respectively,
slower) than the fast (slow) magnetic Coriolis wave.

In some previous studies, the inertial term ∂t u, as well as
viscous, magnetic and thermal diffusion have been ignored in
order to focus on the essential physics involving the Lorentz
(magnetic), buoyancy (Archimedes), and Coriolis forces (see
Refs [5,12]). In that case, one deduces from system Eq. (10)
the following dispersion relation:

ω2
Rω2 − ω4

A − ω2
Gω2

A = 0, (20)

which is the same as Eq. (5.14) in Ref. [5]. We note that
the formulation in terms of the displacement vector of the
wave perturbations used by Soward and Dormy [12] [to derive
the dispersion relation (20)] clearly shows how magnetic
Archimedes Coriolis waves are associated with elliptical
motion of fluid particles. Additional properties of the MAC
waves can be drawn from the analysis of the phase and group
velocities V φ = ω(k)k−2k and V g = ∇kω(k).

We now briefly examine the similarity between the dis-
persion relation Eq. (19) and that of f -plane magnetohy-
drodynamics. Schecter et al. [15] analyzed the dynamics of
MAC waves in the solar tachocline by using the shallow water
magnetohydrodynamics model with the constraint [14],

∇h·(h̃B̃) = 0, (21)

where ∇h = (∂x1 ,∂x2 ) is the horizontal gradient operator and
h̃(x1,x2,t) is the instantaneous height of the fluid domain
having a horizontally infinite expanse. The latter constraint
results from the boundary condition that B̃ is tangent to the
free upper surface. They derived a dispersion relation giving
the frequencies of unidirectional (along x1 axis) slow and fast
linear MAC modes [see their Eq. (3)], which can be described
by Eq. (19), provided

ωR = f, ωG = k1

√
gH, ωA = (B·e1)√

�μ0
k1, (22)

where H is the equilibrium thickness of the sublayer of the
solar tachocline with average density �. Using the β-plane
approximation, Zaqarashvili et al. [16] derived a dispersion
relation for two-dimensional magnetic Rossby waves in
Cartesian coordinates [see their Eq. (14)], such that, for β = 0,

it transforms into Eq. (19) with

ωR = f, ωG = kh

√
gH, ωA = (B·e1)√

�μ0
k1, (23)

where the background magnetic field is along the x1 direction.
Heng and Spitkovsky [17] presented a linear analysis of
inviscid, incompressible, MHD shallow water waves in both
Cartesian and spherical geometries. In the case of Cartesian
coordinates, they considered a vertical basic uniform magnetic
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field and derived a dispersion relation [see their Eq. (12)],
which can also be described by Eq. (19) with

ωR = f, ωG = kh

√
gH, ωA = (B·e3)

H
√

�μ0
. (24)

The derivation of the MHD shallow water equations [14,15,37]
by taking into account the equation for the induction potential
scalar 	̃ [described by Eq. (3)] would allow us to analyze
in more detail the similarity between the dispersion relation
Eq. (19) and that of f -plane magnetohydrodynamics. Note
that in the shallow water equations the potential vorticity is
defined as the absolute vorticity divided by the layer thickness
[38].

IV. MAGNETIC CORIOLIS WEAK WAVE TURBULENCE

In this section, we examine the linear processes in initially
homogeneous isotropic developed turbulence submitted to
both background rotation and a uniform steady magnetic field.
From the solution for the poloidal and toroidal kinetic and
magnetic modes, we determine the radial spectrum of the
kinetic and magnetic energies Sκ (k,t) and Sm(k,t). We show
that, in the axisymmetric case (i.e., B ‖ �), the Alfvén ratio
Sκ (k,t)/Sm(k,t) behaves like k−2 at large scales, in agreement
with the recent DNS data by Favier et al. [20]. In contrast,
in the nonaxisymmetric case (i.e., B ⊥ �), the Alfvén ratio
Sκ (k,t)/Sm(k,t) behaves like k−1. The analysis of the time
development of kinetic and magnetic energies is reported in
Appendix B, for the sake of clarity.

Conditions for validity of the linear theory were discussed
as follows [36,39,40]. Let 
0 and u0(
0) be the eddy size
and its characteristic velocity where 
0/u0 represents the
eddy overturning time. Assuming that ‖u‖ ∼ √

ρ0μ0‖b‖.
The nonlinear terms ‖(u·∇)u‖, (ρ0μ0)−

1
2 ‖(u·∇)b‖ and

(ρ0μ0)−1‖(∇ × b) × b‖ in Eq. (1) are of order O(u2
0/
0),

while the Coriolis term 2� × u is of order O(f u0). The
nonlinear terms involved in the induction equation are
(ρ0μ0)−

1
2 ‖(u·∇)B‖ and (ρ0μ0)−1‖(∇ × b) × B‖, and are

of order O(u0VA/
0). Therefore, in the case of nonrotat-
ing MHD homogeneous turbulence submitted to a uniform
magnetic field (i.e., f = 0, VA �= 0), the nonlinear terms
remain small compared to the Alfvén terms if u0 � VA.

This condition characterizes the so-called wave turbulence
regime [26]. Obviously, in the so-called strong turbulence limit
for which VA ≈ u0, nonlinear interactions play an important
role in the turbulence dynamics. For example, the presence
of non-Alfvénic fluctuations, which are characterized by
an Alfvén ratio of energy (kinetic/magnetic, Eκ (t)/Em(t))
slightly smaller than one [20,25–27], is mainly due to nonlinear
interactions and cannot be captured by SLT.

Regarding the validity of the LST in rotating MHD
turbulence submitted to a uniform magnetic field (i.e., f �=
0, VA �= 0), both conditions u0 � VA and Ro = u0/(f 
0) �
1 must be satisfied. The latter reflects the fact that nonlinear
terms in Eq. (1) are small compared to the Coriolis term
2� × u, while the former (u0 � VA) implies that Ro � Lh

where Ro = u0/f 
0 denotes the Rossby number defined as
the ratio of the eddy turnover time to the Coriolis parameter
and Lh = VA/(f 
0) denotes the Lehnert number defined as

TABLE I. Initial values of the parameters for DNS computations
used by Favier et al. [20].

ν = η 
0 u0 VA f Ro = u0
f 
0

Lh = VA

f 
0
� = VA

f η

0.0025 0.62 0.78 0.2 32 0.04 0.01 0.5
0.0025 0.62 0.78 0.2 8 0.15 0.04 2.0
0.0025 0.62 0.78 0.2 2 0.60 0.16 8.0

the ratio of the magnetic frequency to the Coriolis one [21,41].
We note that in the DNS study by Favier et al. [20]) the Rossby
number Ro remains greater than the Lehnert number Lh (see
Table I), while some other LST results are in agreement with
DNS data.

A. Spectral density of energy

Radial spectra, such as Sκ (k), which gives kinetic energy
per unit mass, Eκ (t) = ∫∞

0 Sκ (k,t)dk, are calculated using

Sκ (k,t) = k2
∫ 2π

0

∫ π

0
Eκ (k,t) sin θdθdϕ, (25)

where (k,θ,ϕ) is a spherical coordinate in k space,

k1 = k cos ϕ sin θ, k2 = k sin ϕ sin θ, k3 = k cos θ, (26)

and Eκ (k,t) is the spectral density of kinetic energy,

Eκ (k,t) = E (1)
κ (k,t) + E (2)

κ (k,t),

E (1)
κ (k,t) = 1

2 〈|u(1)|2〉, E (2)
κ (k,t) = 1

2 〈|u(2)|2〉, (27)

where E (1)
κ and E (2)

κ are the toroidal and poloidal spectral
densities of kinetic energy, respectively, and 〈 · 〉 denotes
ensemble (statistical) averaging. The spectral density of
vertical kinetic energy is related to E (2)

κ as

E (v)
κ (k,t) = 1

2 〈|û3|2〉 = sin2 θ E (2)
κ (k,t), (28)

while

E (h)
κ (k,t) = 1

4 (〈|û1|2〉 + 〈|û2|2〉)
= 1

2

(
Eκ (k,t) − E (v)

κ (k,t)
)

(29)

represents the spectral density of horizontal kinetic energy.
Likewise, we define the spectral density of magnetic energy
(per unit mass) components,

Em = E (1)
m + E (2)

m = E (v)
m + 2E (h)

m .

Recall that, in the linear inviscid limit, the total (ki-
netic+magnetic) energy is conserved, so that

Eκ (k,t) + Em(k,t) = Eκ (k,0) + Em(k,0), (30)

and energy exchange between magnetic and kinetic compo-
nents is ensured by the cross-correlation between the velocity
and the magnetic field fluctuations,

Ėκ = −Fκm, Ėm = Fκm, (31)

where

Fκm = −ωA〈�(iûj b̂
∗
j )〉 = ωA〈�(u(1)u(3)∗ + u(2)u(4)∗)〉

is the spectral density of the cross-correlation, and the
superscript ∗ denotes complex conjugate.
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Since the turbulence is initially nearly isotropic in usual
laboratory experiments on grid turbulence (see, e.g., Ref. [42])
and in DNS, we consider, in this study, initially isotropic
turbulence with vanishing initial magnetic energy, so that〈

u
(1)
0 u

(1)∗
0

〉 = 〈
u

(2)
0 u

(2)∗
0

〉 = S(k,0)

4πk2
,〈

Re
(
u

(1)
0 u

(2)∗
0

)〉 = 〈
Re
(
u

(3)
0 u

(4)∗
0

)〉 = 0,〈
u

(3)
0 u

(3)∗
0

〉 = 〈
u

(4)
0 u

(4)∗
0

〉 = 0,

(32)

where Sκ (k,0) is the initial energy spectrum. We further assume
that the cross-correlation is initially zero: 〈Re(u(α)

0 u
(β)∗
0 )〉 = 0

with α = 1,2 and β = 3,4.

From the solution of system Eq. (10) reported in Ap-
pendix A 1, we determine the spectral density of kinetic and
magnetic energies, and the cross-correlation (for a diffusion-
less fluid),

E (1)
κ = E (2)

κ = S(k,0)

8πk2

[(
ω2

R + 2ω2
A

)(
ω2

R + 4ω2
A

)
+ 2ω2

A(
ω2

R + 4ω2
A

) cos
(
t

√
ω2

R + 4ω2
A

)]
,

(33)

E (1)
m = E (2)

m = S(k,0)

8πk2

[
2ω2

A(
ω2

R + 4ω2
A

)
− 2ω2

A(
ω2

R + 4ω2
A

) cos
(
t

√
ω2

R + 4ω2
A

)]
,

Fκm = ∂Em

∂t
= −∂Eκ

∂t

= S(k,0)

4πk2

⎡
⎣ 2ω2

A√(
ω2

R + 4ω2
A

) sin
(
t

√
ω2

R + 4ω2
A

)⎤⎦. (34)

As expected, there is equipartition of energy between poloidal
and toroidal components, but not between horizontal and
vertical components,(

E (v)
κ ,E (v)

m

) = sin2 θ
(
E (2)

κ ,E (2)
m

)
,(

E (h)
κ ,E (h)

m

) = 1
2 (2 − sin2 θ )

(
E (2)

κ ,E (2)
m

)
,

(35)

and the unsteady part of the spectral densities exhibit
an oscillatory behavior with period T = 2π/(ωf + ωs) =
2π/(

√
ω2

R + 4ω2
A). Recall that ωA = V a·k = Vak3 and ωR =

f k3/k.

As indicated previously, in the case of nonzero viscosity and
diffusion, the solutions generally become much more compli-
cated because of oscillations due to differential diffusion, but
if ν = η, the solution takes a much simpler form, so that one
needs to multiply the spectral density of energies obtained in
the inviscid case by the factor e−2νk2t .

B. Spectra

When the magnetic field aligns with the rotation axis (B ‖
�), the Alfvén and Coriolis frequencies do not depend on the
azimuthal angle ϕ (axisymmetric case),

ωA = Vak cos θ, ωR = f cos θ.

We substitute these forms into Eq. (33) and integrate with
respect to the polar angle θ , we then obtain the radial spectrum
of kinetic and magnetic energies, and the cross-correlation for
a diffusive fluid with Prm = Prt = 1,

Sκ (k,t) = Sκ (k,0)

[
D1

D0
+ D2

D0

sin(t
√

D0)

t
√

D0

]
e−2νk2t ,

Sm(k,t) = Sκ (k,0)

[
1 − D1

D0
− D2

D0

sin(t
√

D0)

t
√

D0

]
e−2νk2t , (36)

Fκm(k,t) = Ṡm(k,t) + 2νk2Sm(k,t)

= Sκ (k,0)

t

D2

D0

[
sin(t

√
D0)

t
√

D0
− cos(t

√
D0)

]
e−2νk2t ,

where

D0(k) = f 2 + 4(VAk)2,

D1(k) = f 2 + 2(VAk)2,

D2(k) = 2(VAk)2.

(37)

Theoretical insight can be gained in understanding effects
of linear processes on the energy partition, scale by scale,
by analyzing the behavior of the spectral Alfvén ratio
Sκ (k,t)/Sm(k,t), which becomes exactly identical to the
inviscid ratio,

Sκ (k,t)

Sm(k,t)
=

D1
D0

+ D2
D0

sin (t
√

D0)
t
√

D0

1 − D1
D0

− D2
D0

sin (t
√

D0)
t
√

D0

.

At sufficiently short times such as t
√

D0 � 1, the Alfvén ratio
Sκ (k,t)/Sm(k,t) behaves like (VAk)−2t−2. At large dimension-
less time f t � 1, the contribution of the unsteady part of
the spectrum becomes negligible and the ratio Sκ (k,t)/Sm(k,t)
approaches the limit,

lim
f t→∞

Sκ (k,t)

Sm(k,t)
= D1

D0 − D1
= 1 + 2L2

k

2L2
k

, (38)

in whichLk denotes the scale-dependent Lehnert number [41],

Lk = Vak

f
. (39)

Therefore, at large scales (Vak/f � 1), the local Alfvén ratio
Sκ/Sm behaves like (f 2/V 2

A)k−2, whereas at small scales
(k
0 � 1) it approaches unity, showing equipartition of energy
between kinetic and magnetic components. We note that, in
absence of rotation f = 0, the long-time limit of the ratio
Sκ (k,t)/Sm(k,t) is unity for all scales. Therefore, we may
conclude that, at large scales, rotation prevents the occurrence
of equipartition between kinetic and magnetic energies as
illustrated by Fig. 1 displaying the variation of the Alfvén ratio
Sκ (k,t)/Sm(k,t) in function of Lk = VAk/f. We also report in
Fig. 1 the DNS data collected from Fig. 9 in Favier et al.
[20], displaying the radial spectrum of kinetic and magnetic
energies at the dimensionless time t+ = (u0/
0)t = 5 and
several values of the Elsasser number � = VA/(f η) (see
Table I). In these numerical simulations, the initial Taylor
microscale Reynolds number is about Reλ = 72.

As can be expected, at VAk/f < 1, there is agreement
between LST results and DNS data. This signifies that the
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FIG. 1. Variation of the Alfvén ratio, Sκ (k,t)/Sm(k,t), in function
of the scale-dependent Lehnert number Lk = VAk/f in a rotating
homogeneous turbulence submitted to a uniform magnetic field
aligning with the rotation axis (axisymmetric case). The figure
compares the LST results given by Eq. (38) and the DNS data
collected from Fig. 9 in Ref. [20] displaying the radial spectrum of
kinetic and magnetic energies obtained at t+ = (u0/
0)t = Ro(f t) =
5 and three values of the Elsasser number � = 0.5, 2.0, 8.0 (see
Table I). The figure shows that, at VAk/f < 1, LST is in agreement
with DNS. At VAk/f > 1, LST predicts an equipartition of energy
between magnetic and kinetic components while DNS data indicate
that the Alfvén ratio is smaller than one characterizing a non-Alfvénic
regime.

transfer of energy from the kinetic fluctuations to the magnetic
ones, which occurs at large scales, is mainly due to linear
processes. Recall that the initial magnetic energy is assumed
to be zero (as in the DNS study by Ref. [20]). For VAk/f > 1,

DNS data show that the Alfvén ratio is smaller than one
characterizing a non-Alfvénic regime induced by the nonlinear
interactions. This behavior cannot be captured by LST, which
predicts an equipartition of energy between magnetic and
kinetic components.

We note that, when the initial magnetic energy is not zero,
the long-time limit of the local Alfvén ratio takes the form

lim
f t→∞

Sκ (k,t)

Sm(k,t)
= 1 + 2[1 + ξ (k)]L2

k

ξ (k) + 2[1 + ξ (k)]L2
k

, (40)

where ξ (k) = Sm(k,0)/Sκ (k,0). According to the recent study
of nonhelical inverse transfer of a decaying turbulent magnetic
field by Brandenburg et al. [43], there is a k2 subinertial range
spectrum of kinetic energy forcing the magnetic field with a
k4 subinertial range to attain larger-scale coherence, so that
ξ (k) ∝ k2 at these large scales. The substitution of this form
into Eq. (40) yields Sκ (k,t)/Sm(k,t) ∝ k−2 (at large scales).

Also, the analysis of the one-dimensional spectrum in
the vertical (x3) direction, which is parallel to the uniform
magnetic field B,

Sκ (k3,t) =
∫∫ +∞

−∞
Eκ (k,t)dk1dk2,

 0.01
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FIG. 2. Variation of the Alfvén ratio, Sκ (k3,t)/Sm(k3,t), in
function of the vertical scale-dependent Lehnert number VAk3/f

at f t = 100 in a rotating homogeneous turbulence submitted to a
uniform magnetic field aligning with the rotation axis (axisymmetric
case). The green curve represents the numerical results for the ratio
Sκ (k3,t)/Sm(k3,t). These one-dimensional spectra in the vertical
direction have been determined numerically by integrating the
spectral density of energy for a diffusive fluid with Prm = ν/η = 1
and Prt = ν/κ = 1 using the initial spectrum Sκ (k,0) ∝ k2e−k−2

0 k2

[see Eq. (61)]. As expected, the numerical results fluctuate around
the black curve [1 + (2V 2

Ak2
3f

−2)
−1

] (details on the derivation of the
above expression are reported in Appendix C). It is clear that, at large
vertical scales (VAk3/f � 1), the Alfvén ratio behaves like k−2

3 and,
at small scales (VAk3/f � 1), there is an equipartition of energy.

shows that at large vertical scales (VAk3/f � 1) the ratio
Sκ (k3,t)/Sm(k3,t) behaves like [1 + (2V 2

Ak2
3/f

2)
−1

] for long
times (see Appendix C) as illustrated by Fig. 2. Therefore,
at large scales (VAk3/f � 1) it behaves like k−2

3 ≡ k−2
‖ ,

and at small scales (VAk3/f � 1) there is equipartition of
energy.

To end this section, we briefly address the case where the
magnetic field is perpendicular to rotation axis (i.e., asym-
metric case), it being the most plausible configuration inside
the Earth’s core [23,24]. In that case, the competition between
Alfvén and inertial waves is more complex, depending not
only on the scale and on the polar angle θ between k and �

but also on the azimuthal angle ϕ between k and V A,

ωA = VAk1 = VAk sin θ cos ϕ, ωR = f cos θ.

We show that the unsteady part of Sκ (k,t) and Sm(k,t)
approaches zero for long times and the local Alfvén
ratio Sκ (k,t)/Sm(k,t) approaches its long-time limit (see
Appendix D),

lim
t→∞

Sκ (k,t)

Sm(k,t)
= f + 2(VAk)

2(VAk)
= 1 + 2Lk

2Lk

. (41)

The latter equation indicates that at large scales (i.e., VAk/f �
1) the Alfvén ratio behaves like k−1, whereas at small scales
(i.e., VAk/f � 1) there is equipartition of energy between
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FIG. 3. Variation of the Alfvén ratio, Sκ (k,t)/Sm(k,t), in function
of the scale-dependent Lehnert number Lk = VAk/f in a rotating
homogeneous turbulence submitted to a uniform magnetic field which
is either parallel (axisymmetric case) or perpendicular (asymmetric
case) to the rotation axis. The figure illustrates the fact that, in the
axisymmetric case, the inertial waves affect more the dynamics of
large scales (induced by the Alfvén waves in the absence of rotation)
than in the asymmetric case, but in both cases the equipartition of
energy is broken.

kinetic and magnetic components as in the axisymmetric case
(see Fig. 3 as an illustration).

C. Comments about dissipation and horizontal
and vertical anisotropy

In homogeneous turbulence, the kinetic dissipation rate εκ

and the magnetic dissipation rate εm per unit mass can be
defined as [44]

εκ = ν〈‖∇ × u‖2〉 = 2ν

∫ ∞

0
k2Sκ (k,t)dk,

εm = η

ρ0μ0
〈‖∇ × b‖2〉 = 2η

∫ ∞

0
k2Sm(k,t)dk.

(42)

Therefore, scale by scale, the ratio of the kinetic dissipation
rate to the magnetic dissipation rate behaves like the Alfvén
ratio Sκ (k,t)/Sm(k,t). At large scales, it behaves like k−2 and
remains greater than one, while at small scales, viscous and
Joule dissipations are equal.

Although SLT reproduces correctly the distribution of en-
ergy between magnetic and kinetic components, it incorrectly
predicts the anisotropy of magnetic and velocity fluctuations
as we briefly discuss now. The radial spectrum of the vertical
kinetic and magnetic energies can be determined in a similar
manner,

S(v)
κ (k,t) = Sκ (k,0)

3

⎡
⎣D1

D0

− D2

D0

⎛
⎝cos(t

√
D0)

t2D0
− sin(t

√
D0)

t3D
3
2
0

⎞
⎠
⎤
⎦e−2νk2t ,

S(v)
m (k,t) = Sκ (k,0)

3

⎡
⎣1 − D1

D0

+ D2

D0

⎛
⎝cos(t

√
D0)

t2D0
− sin(t

√
D0)

t3D
3
2
0

⎞
⎠
⎤
⎦e−2νk2t ,

(43)

while the radial spectrum of the horizontal components can be
obtained using

S(h)
κ (k,t) = 1

2

(
Sκ (k,t) − S(v)

κ (k,t)
)
,

S(h)
m (k,t) = 1

2

(
Sm(k,t) − S(v)

m (k,t)
)
.

(44)

Therefore, the ratios S(h)
κ /S(v)

κ and S(h)
m /S(v)

m characterizing the
anisotropy of the velocity and magnetic fluctuations approach
unity at all scales for long times. The recent DNS data by
Favier et al. [20] show that, in the nonrotating MHD case
(i.e., f = 0, VA �= 0), these two ratios are about unity at all
scales. In counterpart, in rotating homogeneous turbulence
submitted to a magnetic field (i.e., f �= 0, VA �= 0), vertical
kinetic energy is dominant (S(h)

κ /S(v)
κ < 1), whereas horizontal

magnetic energy is dominant (S(h)
m /S(v)

m > 1; see Fig. 12 in
Ref. [20]). The inability of SLT to capture this anisotropy is
due to the fact that for initial isotropic conditions the diagonal
component in the vertical direction π33 of the linear pressure-
strain correlation is zero and hence vertical kinetic energy is not
affected by rotation since there is no redistribution of energy
between the vertical and horizontal motions [40], which occurs
only from nonlinear interactions for this flow configuration.

V. MAGNETIC ARCHIMEDES CORIOLIS
WEAK WAVE TURBULENCE

In this section, we consider rotating stably stratified
homogeneous turbulence submitted to a uniform magnetic
field that aligns with the rotation axis and the background
density gradient. As in Sec. IV, we consider initial isotropic
conditions [see Eq. (32)], assuming that initial magnetic
and potential energies are zero. We also assume that the
cross-correlation between velocity and magnetic (or density)
field fluctuations are initially zero. For the sake of simplicity,
we only address the case where ν = η = κ, and we focus on
the energy partition, scale by scale, between magnetic, kinetic,
and potential components.

We begin our analysis by considering the case without
rotation (i.e., MA wave turbulence). In that case, the spectral
density of kinetic (Eκ ), magnetic (Em), and potential (Ep)
modes deduced from Eqs. (A6) and (A7) are found as

Eκ (k,t) = Sκ (k,0)

8πk2
[cos2(ωAt) + cos2(ωAGt)]e−2νk2t ,

Em(k,t) = Sκ (k,0)

8πk2

[
sin2(ωAt) + ω2

A

ω2
AG

sin2(ωAGt)

]
e−2νk2t ,

(45)

Ep(k,t) = Sκ (k,0)

8πk2

[
ω2

G

ω2
AG

sin2(ωAGt)

]
e−2νk2t ,
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where the frequencies ωA, ωG, and ωAG given by Eqs. (9) and
(11) are recalled:

ωA = VAk cos θ, ωG = N sin θ,

ωAG =
√

V 2
Ak2 cos2 θ + N2 sin2 θ.

(46)

Because the mean density gradient aligns with the uniform
magnetic field (axisymmetric case), the frequencies are inde-
pendent of the azimuthal angle ϕ. For a diffusionless fluid, the
spectral density of total (kinetic+magnetic+potential) energy
is time-independent,

Eκ (k,t) + Em(k,t) + Ep(k,t) = Sκ (k,0)

4πk2
,

while for a diffusive fluid with ν = η = κ, it decays with time
in an exponential manner due to the diffusion coefficient,

Eκ (k,t) + Em(k,t) + Ep(k,t) = Sκ (k,0)

4πk2
e−2νk2t .

The integration over the polar angle 0 � θ � π of the spectral
density of energy yields the expression of the radial spectrum,
for instance,

Sκ (k,t)

Sκ (k,0)
=
{

1

2
+ 1

8
[I1(k) + I2(k)]

}
e−2νk2t ,

I1(k) =
∫ π

0
cos (2tVAk cos θ ) sin θ dθ, (47)

I2(k) =
∫ π

0
cos

(
2t

√
V 2

Ak2 cos2 θ + N2 sin2 θ
)

sin θ dθ.

Except at VAk = N, it is not simple to compute analytically
the integral I2(k). For this, we use the method of stationary
phase (or equivalently, the method of steepest descent [45]) to
evaluate it (see below).

When VAk = N, the dispersion relation for the magnetic
gravity wave reduces to ωAG = VAk = N with a nonzero
value for the group velocity of the wave, V g(k = N/VA) =
VAe3. It is interesting to note that in the case of inertia-
gravity waves, the dispersion relation is of the form ωIG =√

f 2 cos2 θ + N2 sin2 θ, and when f = N, it reduces to ωIG =
f = N with a zero value for the group velocity signifying that
the wave energy does not propagate [36].

In the case where VAk = N, the radial spectrum takes the
form

Sκ (k,t)

Sκ (k,0)
=
{

1

2
+ 1

4

[
cos(2Nt) + sin(2Nt)

2Nt

]}
e−2νk2t ,

Sm(k,t)

Sκ (k,0)
=
{

1

3
− 1

4

[
1

3
cos(2Nt) + sin(2Nt)

2Nt

]}
e−2νk2t ,

Sp(k,t)

Sκ (k,0)
= 1

6
[1 − cos (2Nt)]e−2νk2t . (48)

Therefore, at large dimensionless time Nt � 1, the con-
tribution of the term sin(2Nt)/(2Nt) is not signifi-
cant and the ratio Sp(N/VA,t)/Sκ (N/VA,t) (respectively,
Sp(N/VA,t)/Sm(N/VA,t)) oscillates between 0 and 4/3
(respectively, 0 and 4/5).

When VAk �= N and

max
(
tνk2,t

√
V 2

Ak2 + N2
) � 1,

we determine the short-time approximations of the radial
spectrum,

Sκ (k,t)

Sκ (k,0)
=1 − 2νk2t − 1

3

(
V 2

Ak2 + N2
)
t2 + . . . ,

Sm(k,t)

Sκ (k,0)
=1

3
V 2

Ak2t2 + . . . ,

Sp(k,t)

Sκ (k,0)
=1

3
N2t2 + . . . ,

(49)

where . . . indicate high-order terms. It appears that, at large
scales (VAk/N � 1) and to order O[(Nt)3], the potential
energy is independent of the radial wave number k and remains
more important than the magnetic energy, while the dominant
corrective term in the development of the kinetic energy is due
to viscosity.

To derive the long-time approximations of the radial
spectrum when VAk �= N, we use the method of stationary
phase to estimate the integral I2(k), as already indicated. In
fact, the components that satisfy ∂ωAG/∂θ = 0 are the most
slowly oscillating components with θ in the integrand and
contribute most to the integral. Note that this method has been
applied for stratified and rotating homogeneous turbulence
[36,46] and gives good approximations even when the time
is not very large [45]. Because the stationary phase θ0 = π/2
satisfies cos θ0 = 0, so that ωAG(θ0) = N, the Lorentz force
effects (through the Alfvén frequency) in the integrand cannot
contribute significantly to the integral in the long-time limit.
The result is

Sκ (k,t)

Sκ (k,0)
=
{

1

2
+ 1

4

[
sin(2LgNt)

2LgNt
+
√

π

|L2
g − 1|

cos
(
2Nt ± π

4

)
2
√

Nt

]}
e−2νk2t ,

Sm(k,t)

Sκ (k,0)
=
(

1

2
− 1

4

{
h(Lg) + sin(2LgNt)

2LgNt
+
√

π∣∣L2
g − 1

∣∣
[

cos
(
2Nt ± π

4

)
2
√

Nt
− sin

(
2Nt ± π

4

)
√

Nt

]})
e−2νk2t , (50)

Sp(k,t)

Sκ (k,0)
= 1

4

[
h(Lg) −

√
π∣∣L2

g − 1
∣∣ sin

(
2Nt ± π

4

)
√

Nt

]
e−2νk2t ,
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where Lg = Vak/N denotes the ratio of the maximal Alfvén frequency to the maximal gravity frequency and

h(Lg) = L2
g(

L2
g − 1

) 3
2

tan−1
(√

L2
g − 1

)− 1

L2
g − 1

if Lg > 1,

(51)

h(Lg) = L2
g(

1 − L2
g

) 3
2

log

⎛
⎝1 −

√
1 − L2

g

1 +
√

1 − L2
g

⎞
⎠+ 1

1 − L2
g

if Lg < 1.

Accordingly, one can deduce the long-time limit of the ratios

lim
Nt→∞

Sp(k,t)

Sκ (k,t)
= h(Lg)

2
, lim

Nt→∞
Sp(k,t)

Sm(k,t)
= h(Lg)

2 − h(Lg)
. (52)

At large scales (Lg = VAk/N � 1), one has h(Lg) ∼ 1, and
hence the ratio Sp(k,t)/Sm(k,t) approaches one signifying that
there is equipartition of energy between magnetic and potential
components independently of the form of the initial spectrum
Sκ (k,0), while the Alfvén ratio Sκ (k,t)/Sm(k,t) approaches 2,
for long times.

At small scales, Lg = VAk/N � 1, the function h(Lg)
behaves like L−1

g . Therefore, the Alfvén ratio Sκ (k,t)/Sm(k,t)

 0.001

 0.01

 0.1

 1

 0.01  0.1  1  10  100  1000
VAk/N

Sp/Sm

Sp/Sκ

(a)

k-1

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6

 0.01  0.1  1  10  100  1000
VAk/N

Sκ
Sm
Sp

(b)

FIG. 4. Case of magnetic Archimedes wave weak turbulence.
Panel (a) shows, scale by scale, the long-time behavior of the energy
ratios potential/kinetic and potential/magnetic. It indicates that, at
large scales (VAk/N � 1), these ratio exhibit a k0 form and there is an
equipartition of energy between magnetic and potential components.
At small scales (VAk/N � 1), these energy ratios potential/kinetic
and potential/magnetic behave like k−1. At small scales, the gravity
waves do not alter the equipartition of energy between kinetic
and magnetic components induced by the linear dynamic of the
Alfvén waves. Panel (b) displays the long-time behavior of the radial
spectrum of kinetic, magnetic, and potential energies normalized by
the initial spectrum Sκ (k,0) for a diffusionless fluid. It indicates that,
at small scales, the potential energy approaches zero, while both the
kinetic and magnetic components approach 1

2 Sκ (k,0). The kinetic
energy is the same (= 1

2 Sκ (k,0)) at all scales.

approaches one indicating an equipartition of energy between
the magnetic and kinetic components, as in the case of MC
weak wave turbulence, whereas the ratios Sp(k,t)/Sκ (k,t) and
Sp(k,t)/Sm(k,t) behave like k−1 (see the top panel in Fig. 4 as
an illustration).

It should be noted that, in the case of a diffusionless
fluid, the kinetic energy approaches 1

2Sκ (k,0) at all scales
(see the bottom panel in Fig. 4). In counterpart, the potential
energy approaches 1

4S0(k,0) at large scales and zero at small
scales. Recall that the energy ratio, scale by scale, is the same

 0.001

 0.01

 0.1

 1

 0.01  0.1  1  10  100  1000
VAk/[N2+f2]1/2

Sp/Sm
Sp/Sκ

k-1

(a)

 0

(b)

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

 0.01  0.1  1  10  100  1000
VAk/[N2+f2]1/2

SκSmSp

FIG. 5. Case of magnetic Archimedes Coriolis wave turbulence.
Panel (a) shows, scale by scale, the long-time behavior of the energy
ratios potential/kinetic and potential/magnetic. It indicates that, at
large scales (VAk/

√
f 2 + N 2 � 1), these ratio exhibit a k0 form,

while at small scales (VAk/
√

f 2 + N 2 � 1), they behave like k−1 as
in the magnetic Archimedes weak wave turbulence. At small scales,
neither the gravity waves nor the inertial waves alter the equipartition
of energy between kinetic and magnetic components induced by
the linear dynamic of the Alfvén waves. Panel (b) displays the the
long-time behavior of the radial spectrum normalized by the initial
spectrum Sκ (k,0) at large times for a diffusionless fluid. It indicates
that, at small scales, the potential energy approaches zero, while both
the kinetic and magnetic components approach 1

2 Sκ (k,0).
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considering either a diffusionless fluid or a diffusive fluid with
ν = η = κ and remains independent of the form of the initial
spectrum S(k,0).

In the case of magnetic-inertia gravity waves, there are
slow and fast waves with frequency ωS and ωF described by
Eq. (19), as indicated previously Sec. III. In that case, radial
spectra are computed numerically by integrating the spectral
density of energy deduced from the analytical solution for the
Fourier modes [see Eq. (A8)]. Our findings, in this case, can
be summarized as follows.

At small scales (VAk/
√

f 2 + N2 � 1), there is equiparti-
tion of energy between kinetic and magnetic components (see
Fig. 5), as for the cases of MC weak wave turbulence and
MA wave turbulence. At these small scales, the energy ratios
Sp(k,t)/Sm(k,t) and Sp(k,t)/Sκ (k,t) behave like k−1 for long
times as in the case of MA weak wave turbulence.

A consequence of rotation acting at large scales
(VAk/

√
f 2 + N2 � 1) is that the long-time limit of

Sp(k,t)/Sm(k,t) is 3
2 , while in the case of MA weak wave

turbulence it is unity. More details on rotation effects can be
drawn by considering a diffusionless fluid. In that case, the
bottom panel in Fig. 5 reveals that, at large scales, both kinetic
and potential energies increase, with respect to the case without
rotation, so that the magnetic energy decreases since the total
(kinetic+potential+magnetic) energy is conserved in the linear
inviscid limit. The long-time limit of Sp(k,t), Sκ (k,t), and
Sm(k,t) is 1

5Sκ (k,0), 2
3Sκ (k,0), and 2

15Sκ (k,0), respectively. At
intermediate scales, the kinetic and potential energies decrease,
whereas the magnetic energy increases (see the bottom panel
in Fig. 5).

VI. CONCLUDING REMARKS

We have analyzed in detail the effects of linear processes
on the energy partition, scale by scale, between kinetic,
magnetic, and potential components in magnetic Archimedes
Coriolis weak wave turbulence. Therefore, the results obtained
in the present study are expected to be valid when the
velocity amplitudes are weak in the sense that u0 � VA and
u0 � 
0

√
f 2 + N2. Recall that the ratio u0/
0 represents the

eddy overturning time, VA is the Alfvén speed, and f and N

are the Coriolis parameter and the Brunt-Väisälä frequency,
respectively.

With the aid of the potential induction scalar, which is a
Lagrangian invariant for a diffusionless fluid, we have derived
a dispersion relation [see Eq. (13)], characterizing both fast
and slow MAC waves and generalizing previous studies. With
respect to the case of magnetic Coriolis waves for which
there are fast and slow modes (stable), stratification in the
case of MAC waves acts to further reduce the propagation of
slow modes and to further accelerate the propagation of fast
modes. Similarities between our dispersion relation and that of
f -plane magnetohydrodynamic shallow water waves have
been drawn and briefly discussed invoking in particular the
case of the solar tachocline. The derivation of the MHD
shallow water equations by taking into account the equation
for the induction potential scalar [see Eq. (3)] would allow one
to analyze in more detail these similarities. It might be worth

mentioning here that the analysis in this paper focuses on f

planes so there are no Rossby modes in these wave spectra.
Based on additional analytical developments, we have

analyzed in detail the effects of linear processes on the
energy partition between the kinetic, magnetic, and potential
components in the case of MAC wave turbulence considering
either a diffusionless fluid or a diffusive fluid for which both
magnetic and thermal Prandtl numbers are unity, for the sake
of simplicity. Note that in some astrophysical flows, as the
solar tachocline, high values of magnetic and hydrodynamic
Reynolds numbers indicate that the effects of viscosity and
magnetic diffusion are very low. In addition, at scale k−1,
where k is the radial (spherically average), the energy ratio
such as kinetic/magnetic (called the Alfvén ratio) is the same
considering either a diffusionless fluid or a diffusive fluid with
ν = η = κ.

In the case of magnetic Coriolis weak wave turbulence, it is
found that, at large scales (Vak/f � 1), the inertial waves
affect the equipartition of energy between the kinetic and
magnetic energy occurring in the nonrotating MHD turbulence
submitted to a uniform magnetic field. The equipartition
of energy is more affected by the inertial waves when the
uniform magnetic field is parallel to the rotation axis (B ‖ �,

axisymmetric case). In fact, it has been demonstrated that the
Alfvén ratio behaves like k−2 when B ‖ �, in agreement with
DNS data by Favier et al. [20], and as k−1 when B ⊥ �

(asymmetric case). Also, the analysis of the one-dimensional
spectrum in the vertical (x3) direction in the axisymmetric
case shows that, at large vertical scales (VAk3/f � 1), the
Alfvén ratio behaves like k−2

3 . At small scales (VAk/f � 1),
the inertial waves do not affect the equipartition of energy
between the magnetic and kinetic components occurring in the
nonrotating MHD wave turbulence. The non-Alfvénic regime,
which is due the nonlinear interactions and characterized by
the fact that the Alfvén ratio is slightly smaller than one, cannot
be captured by linear theory. According to linear theory, the
inertial waves alter the dynamics of Alfvén waves at length
scales 
 such that 
 � VA/f.

In the case of magnetic Archimedes weak wave turbulence,
it is shown that, at large scales (VAk/N � 1), there is
an equipartition of energy between the magnetic and the
potential components, and the energy ratio (potential/kinetic)
exhibits a k0 form and remains less than one. At small scales
(VAk/N � 1), gravity waves do not alter the equipartition
of energy between magnetic and kinetic components induced
by the linear dynamics of Alfvén waves and the energy ratio
(potential/kinetic or potential/magnetic) behaves like k−1. The
effects of gravity waves, at small scales, appear to be very
weak (see the bottom panel in Fig. 4).

When the Alfvén waves, inertial waves, and gravity waves
are simultaneously present, the energy partition does not
strongly differ from the case where the inertial waves are
absent. In fact, at large scales VAk/

√
N2 + f 2 � 1, the energy

ratios potential/magnetic and potential/kinetic exhibit a k0

form, but there is no equipartition of energy between magnetic
and potential components. At large scales, the effects of
inertial waves are indicated by an increase of the kinetic
energy and a decrease of potential and magnetic energies
(see Figs. 4 and 5). At small scales, VAk/

√
N2 + f 2 � 1, the
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simultaneous presence of gravity and inertial waves does not
alter the equipartition of energy between magnetic and kinetic
energy induced by the linear dynamic of the Alfvén waves,
as already indicated. As in the case of magnetic Archimedes
weak wave turbulence, at small scales, the potential energy is
less important than the kinetic (or magnetic) energy and the
energy ratio potential/kinetic behaves like k−1.

We think that this work, which will be completed by
performing direct numerical simulations and some analyti-
cal developments to characterize both weakly and strongly
nonlinear interactions, would be useful for astrophysical
applications especially for the solar tachocline, which supports
huge-wavelength waves (up to 20% the diameter of the Sun),
which oscillate once every couple of days [37].

APPENDIX A: A LINEAR SOLUTION FOR
THE FOURIER MODES

1. Case of weak magnetic Coriolis wave turbulence

In nonstratified diffusionless electrically conducting fluid,
the linear differential system Eq. (10) for the poloidal and
toroidal modes of fluctuating velocity and magnetic fields
reduces to⎛

⎜⎜⎝
u̇(1)

u̇(2)

u̇(3)

u̇(4)

⎞
⎟⎟⎠

︸ ︷︷ ︸
v̇

=

⎛
⎜⎝

0 ωR ωA 0
−ωR 0 0 −ωA

−ωA 0 0 0
0 ωA 0 0

⎞
⎟⎠

︸ ︷︷ ︸
MR

·

⎛
⎜⎜⎝

u(1)

u(2)

u(3)

u(4)

⎞
⎟⎟⎠

︸ ︷︷ ︸
v

,

(A1)

where ωR = f k3/k and ωA = VAk3 are the inertial and Alfvén
frequencies, respectively. Equivalently, one can introduce the
Green matrix g(t) such that g(t = 0) is the 4 × 4 unit matrix
and v(t) = g(t)·v(0), so that ġ = MR·g. As indicated in
Sec. III, the positive eigenvalues of the matrix MR correspond
to the frequencies ωf and ωs of fast and slow magnetic inertial
waves described by Eq. (15).

The solution for gij (t) (i,j = 1,2,3,4) takes the form

g11 = g22 = ωf cos(ωf t) + ωs cos(ωst)

(ωf + ωs)
,

g33 = g44 = ωs cos(ωf t) + ωf cos(ωst)

(ωf + ωs)
,

g12 = −g21 = ωf sin(ωf t) − ωs sin(ωst)

(ωf + ωs)
,

g34 = −g43 = ωs sin(ωf t) − ωf sin(ωst)

(ωf + ωs)
,

g13 = g31 = g24 = g42 = (cos(ωf t) − cos(ωst))
√

ωf ωs

(ωf + ωs)
,

g32 = −g23 = g41 = −g14 = (sin(ωf t) − sin(ωst))
√

ωf ωs

(ωf + ωs)
.

(A2)

We note that when considering isotropic initial conditions,
with a zero value for the cross-correlation between velocity
and magnetic field fluctuations, the expression of the spectral
density of kinetic and magnetic energies in terms of the

elements gij can be expressed as

Eκ (k,t) = Sκ (k,0)

8πk2
(|gαβ |2 + ξm(k)|gαγ |2),

Em(k,t) = Sκ (k,0)

8πk2
(|gγα|2 + ξm(k)|gγη|2),

(A3)

where (α,β = 1,2) and (γ,η = 3,4) and ξm(k) =
Sm(k,0)/Sκ (k,0). Recall that for a diffusive fluid with a
unit value for the Prandtl magnetic number, the spectral
density of energy is obtained by multiplying the one obtained
for a diffusionless fluid by the factor e−2νk2t .

2. Case of magnetic Archimedes weak wave turbulence

Without rotation, the differential linear system Eq. (10)
reduces to⎛

⎜⎜⎝
u̇(1)

u̇(2)

u̇(3)

u̇(4)

⎞
⎟⎟⎠

︸ ︷︷ ︸
v̇

=

⎛
⎜⎜⎝

0 0 ωA 0

0 0 0 −ω2
AG

ωA−ωA 0 0 0
0 ωA 0 0

⎞
⎟⎟⎠

︸ ︷︷ ︸
MG

·

⎛
⎜⎜⎝

u(1)

u(2)

u(3)

u(4)

⎞
⎟⎟⎠

︸ ︷︷ ︸
v

+

⎛
⎜⎝

0
π (0)

0
0

⎞
⎟⎠. (A4)

As indicated previously, the toroidal modes u(1) and u(3) prop-
agate with the Alfvén frequency, ωA, while the poloidal modes
u(2) and u(4) propagate with frequency ωAG =

√
ω2

A + ω2
G

characterizing the Alfvén gravity waves with ωG = Nkh/k.

The buoyancy mode u(5) also propagates with frequency ωAG

and satisfies the relation

ωGu(4)(k,t) + ωAu(5)(k,t)

= (ωA/ωG)π (0) = ωGu(4)(k,0) + ωAu(5)(k,0), (A5)

resulting from the fact that the induction potential scalar is a
Lagrangian invariant for a diffusionless fluid [see Eq. (12)].

The positive eigenvalues of the matrix MG are ωA and ωAG

and the solution of the differential system of the Green matrix,

ġij = Mingnj + �ij (i = 1,2,3,4) (j = 1, . . . ,5),

where the nonzero components of the matrix � are ψ24 =
ω2

G/ωA and ψ25 = ωG, with the initial condition gij (0) = δij

is found as

g11 = g33 = cos(ωAt), g12 = g14 = g15 = 0,

g13 =−g31 = sin(ωAt), g32 = g34 = g35 = 0,

g22 = cos(ωAGt), g21 = g23 = 0, g25 = ωG

ωAG

sin(ωAGt),

g24 = −g42 = − ωA

ωAG

sin(ωAGt), g41 = g43 = 0,

g44 = ω2
G

ω2
AG

+ ω2
A

ω2
AG

cos(ωAGt),

g45 = ωAωG

ω2
AG

[1 − cos(ωAGt)],

g5j = δ5j + ωG

ωA

(δ4j − g4j ) (j = 1,2, . . . ,5). (A6)
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For isotropic initial conditions with zero initial cross-
correlation between velocity and magnetic (or density) field
fluctuations, the expression of the spectral density of (kinetic,
magnetic, or potential) energy (for a diffusionless fluid) is

Eκ (k,t) = Sκ (k,0)

8πk2
(|gαβ |2 + ξm(k)|gαγ |2 + ξp(k)|g5α|2),

Em(k,t) = Sκ (k,0)

8πk2
(|gγα|2 + ξm(k)|gγη|2 + ξp(k)|g5η|2),

(A7)

Ep(k,t) = Sκ (k,0)

8πk2
(|g5α|2 + ξm(k)|g5η|2 + ξp(k)|g55|2),

where ξp(k) = Sp(k,0)/Sκ (k,0). As already indicated, for a
diffusive fluid with a unit value for the magnetic Prandtl num-
ber, the spectral density of energy is obtained by multiplying
the one obtained for a diffusionless fluid by the factor e−2νk2t .

3. Case of magnetic Archimedes Coriolis weak wave turbulence

For a diffusionless fluid, the differential system Eq. (10)
characterizes the linear dynamics of magnetic-inertia-gravity
weak wave turbulence. Because in the present study we have
considered initial isotropic conditions with a zero value for the
initial magnetic and potential energies and also for the initial
cross-correlation between velocity and magnetic (or density)
field fluctuations, we report here only the solution for the
components gαη(α = 1,2, . . . ,5) and (η = 1,2),

g11 =
(
ω2

F − ω2
AG

)(
ω2

F − ω2
S

) cos(ωF t) −
(
ω2

S − ω2
AG

)(
ω2

F − ω2
S

) cos(ωSt),

g12 = −g21 = ωR(
ω2

F − ω2
S

) [ωF sin(ωF t) − ωS sin(ωSt)],

g22 =
(
ω2

AG + ω2
R − ω2

S

)(
ω2

F − ω2
S

) cos(ωF t)

−
(
ω2

AG + ω2
R − ω2

F

)(
ω2

F − ω2
S

) cos(ωSt),

g31 = −
(
ω2

F − ω2
AG

)(
ω2

F − ω2
S

) ωA

ωF

sin(ωF t)

+
(
ω2

S − ω2
AG

)(
ω2

F − ω2
S

) ωA

ωS

sin(ωSt), (A8)

g32 = −
(
ω2

S − ω2
AG − ω2

R

)(
ω2

F − ω2
S

) (
ω2

F − ω2
AG − ω2

R

)
ωRωA

cos(ωF t)

+
(
ω2

F − ω2
AG − ω2

R

)(
ω2

F − ω2
S

) (
ω2

S − ω2
AG − ω2

R

)
ωRωA

cos(ωSt),

g41 = ωAωR(
ω2

F − ω2
S

) [cos(ωF t) − cos(ωSt)],

g42 = −
(
ω2

S − ω2
AG − ω2

R

)(
ω2

F − ω2
S

) ωA

ωF

sin(ωF t)

+
(
ω2

F − ω2
AG − ω2

R

)(
ω2

F − ω2
S

) ωA

ωS

sin(ωSt),

where the fast and slow frequencies ωF and ωS are described
by Eq. (19).

APPENDIX B: TIME DEVELOPMENT OF KINETIC AND
MAGNETIC ENERGIES IN (AXISYMMETRIC) MAGNETIC

CORIOLIS WEAK WAVE TURBULENCE

To determine the kinetic and magnetic energies per unit
mass, Eκ (t) = ∫∞

0 Sκ (k,t)dk and Em(t) = ∫∞
0 Sm(k,t)dk, we

use the following form for the initial radial spectrum Sκ (k,0):

Sκ (k,0) = 4Eκ (0)π− 1
2 k−3

0 k2e−k−2
c k2

, (B1)

with k0 the peak wave number, consistent with the observed
spectrum in most experiments or DNS [46]. The time develop-
ment of kinetic and magnetic energies in the case of MC weak
wave turbulence are determined by integrating numerically the
spectrum Eq. (36) over the radial wave number. In addition,
we compute analytically the short-time and the long-time
approximations of these energies.

Short-time approximations of energies can be derived by
using the series representation of the function sin (t

√
D0) in

Eq. (36) at f t
√

1 + 4L2
k � 1. The result is

Eκ (t)

Eκ (0)
= 1 − 3νk2

c t − 1

2
V 2

Ak2
0 t

2 + 5

2
νk4

0V
2
At3

+ 1

4

[
1

10
f 2(VAk0)2 + V 4

Ak4
c

]
t4 − . . . ,

Em(t)

Eκ (0)
= 1

2
V 2

Ak2
0 t

2 − 5

2
νk4

0V
2
At3

− 1

4

[
1

10
f 2(VAk0)2 + V 4

Ak4
c

]
t4 − . . . .

(B2)

Regarding the development of the kinetic energy, the above
short-time approximations indicate that the most dominant
corrective term is of order O(t) and is due to viscosity effects,
while for the magnetic energy, which is zero at t = 0, the
dominant term is of order O(t2) and is due to the imposed
Alfvén speed. Therefore, the Alfvén ratio Eκ (t)/Em(t) behaves
like t−2. Note that the rotation effects represented by f appear
only in higher-order corrections of O(t4). Figure 6 shows
the time-history, 0 � t+ = (u0
0)t � 5, of Eκ (t+)/Eκ (0) and
Em(t+)/Eκ (0) with the Elsasser number, � = VA/(f η), as the
variable parameter, while Fig. 7 shows the time-history of the
Alfvén ratio Eκ (t+)/Em(t+).

The LST results with k0 = 3 (case where (f �= 0,VA �=
0)) or k = 6.8 (case where (f = 0,VA �= 0)) are displayed in
top panels, whereas the DNS results are displayed in bottom
panels. As expected, there is a quantitative agreement between
the DNS results and LST ones, in the sense that both results
show that the magnetic fluctuations are damped by rotation as
� increases.

Without rotation (� → ∞), the magnetic energy grows
with time (like V 2

At2, as already indicated) during an initial
phase, reaches a maximum value and after decays, as time
elapses. As for the kinetic energy, it decays with time.
According to LST, the decay of the magnetic energy is
accompanied by an equipartition of energy (between the
magnetic and kinetic components), so that the Alfvén ratio
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FIG. 6. Time history of kinetic and magnetic energies normalized
by the initial kinetic energy in a rotating homogeneous turbulence
submitted to a uniform magnetic field aligning with the rotation axis
(axisymmetric case) for several values of the Elsasser number, � =
0.5, 2.0, 8.0, ∞ (nonrotating case). Top panel: LST results. Bottom
panel: DNS results by Favier et al. [20].

is unity,

Eκ (t) = Em(t) ∼ Eκ (0)

2
(
2ηk2

0 t
) 3

2

, ηk2
0 t � 1.

This behavior rather characterizes a wave turbulence regime
for which VA � u0, where u0 is the characteristic velocity of
eddy, as indicated at the beginning of Sec. IV. In counterpart,
for a strong MHD turbulence regime (VA ∼ u0), the Alfvén
ratio is slightly smaller than one, indicating the presence of
non-Alfvénic fluctuations which cannot be captured by LST
[20,25–27].

In the presence of rotation (f �= 0,VA �= 0), the inertial
waves modify the dynamics of Alfvén waves especially at large
scales as discussed in Sec. IV. This is signaled by the fact that,
with respect to the case where f = 0, the initial phase during
which the magnetic energy grows is reduced (more and more
as rotation rate increases) and the kinetic energy decay rate
is also reduced. A consequence of the inertial wave effects
on the dynamic of Alfvèn waves is that the equipartition of
energy (between magnetic and kinetic components) is broken,
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FIG. 7. Time history of the Alfvén ratio Eκ (t+)/Em(t+) in a
rotating homogeneous turbulence submitted to a uniform magnetic
field aligning with the rotation axis (axisymmetric case) for several
values of the Elsasser number, � = 0.5, 2.0, 8.0, ∞ (nonrotating
case). Top panel: LST results. Bottom panel: DNS results by Favier
et al. [20].

as it can be deduced from the following relations giving the
long-time behavior of energies for both a diffusionless fluid
(ν = 0 and η = 0),

Eκ (t)

Eκ (0)
=
[

1 − 3

(
VAk0

f

)2

+ . . .

]
,

(B3)
Em(t)

Eκ (0)
=
[

3

(
VAk0

f

)2

− . . .

]
,

and a diffusive fluid with ν = η,

Eκ (t)

Eκ (0)
= (

2ηk2
0 t
)− 3

2 − 3

(
VAk0

f

)2(
2ηk2

0 t
)− 5

2 + . . . ,

Em(t)

Eκ (0)
= 3

(
VAk0

f

)2(
2ηk2

0 t
)− 5

2 − . . . . (B4)

Note that the above long-time approximations have been
derived assuming that, at large time, the important contribution
to the spectrum Eq. (36) comes from the part (D1/D0)e−2νk2t ,
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and hence the contribution of the damped oscillating part
[D2 sin(t

√
D0)/(D0t

√
D0)]e−2νk2t is omitted.

APPENDIX C: DEVELOPMENT OF THE ALFVÉN RATIO
IN FUNCTION OF THE VERTICAL WAVE NUMBER IN

(AXISYMMETRIC) MAGNETIC CORIOLIS WAVE
TURBULENCE

The one-dimensional spectrum in the vertical (x3) direction
of kinetic energy in the case of the (axisymmetric) magnetic
Coriolis weak wave turbulence can be written as

Sκ (k3,t) =
∫∫ +∞

−∞
Eκ (k,t)dk1dk3 = π

∫ ∞

0
Eκ (k,t)dk2

h,

(C1)

where Eκ (k,t) is described by Eq. (33). Equation (B1) is used
for the initial spectrum Sκ (k,0), and the integral with respect
to the horizontal wave number, 0 < kh < ∞, is performed
numerically. It is found that, at large dimensionless time
f t, the Alfvén ratio exhibits an oscillatory behavior around
[1 + (2V 2

Ak2
3/f

2)
−1

] (see Fig. 2). In this appendix, we propose
to determine this limit.

We ignore the oscillating part in the expression of the
spectral density of kinetic energy, so that

Eκ (k3,kh,t) = Sκ (k,0)

4πk2
3(1 + α2)

[
1 + 2L2

k‖ (1 + α2)

1 + 4L2
k‖ (1 + α2)

]

× exp
[−2νk2

3 t(1 + α2)
]
, (C2)

in which Lk‖ = VAk3/f and α = kh/k3. Accordingly, the
substitution of this form into Eq. (C1) gives

Sκ (k3,t) = C(k3)
∫ ∞

0

(
1 + 2L2

k‖

)+ 2L2
k‖y(

1 + 4L2
k‖

)+ 4L2
k‖y

e−βydy,

where β = (k2
3/k2

0 + 2νk2
3 t) and C(k3) is a function of the

vertical wave number that is not necessary to specify it here.
The latter integral can be determined analytically,

Sκ (k3,t) = C(k3)

2

[
1

β
+ (χ − 1)Ei(−βχ )eβχ

]
, (C3)

where

χ =
1 + 4L2

k‖

4L2
k‖

,

and Ei(−βχ ) is the exponential integral function [47]. By
using the asymptotic representations of Ei(−βχ ), we obtain

Sκ (k3,t) = C(k3)

2

{
1

β
+ (χ − 1)

[
n∑

m=1

(−1)m
(m − 1)!

(βχ )m
+ Rn

]}
,

(C4)

where |Rn| < n!
(βχ )n+1 [47]. The expression of Sm(k3,t) is

deduced from the relation

Sκ (k3,t) + Sm(k3,t) = C(k3)β−1,

so that

lim
f t→∞

Sκ (k3,t)

Sm(k3,t)
= 1 + 1

2L2
k‖

= 1 + f 2

2V 2
Ak2

3

. (C5)

APPENDIX D: DEVELOPMENT, SCALE BY SCALE, OF
THE ALFVÉN RATIO IN (ASYMMETRIC) MAGNETIC

CORIOLIS WAVES TURBULENCE

In this appendix, we report the detail of calculations leading
to the relation Eq. (41) that gives the long-time limit of
the Alfvén ratio Sκ (k,t)/Sm(k,t) in the case of asymmetric
magnetic-inertial weak wave turbulence (i.e., case where the
uniform magnetic field is perpendicular to the system rotation
axis). In that case, the frequencies ωR and ωA are

ωR = 2� cos θ, ωA = VA sin θ cos ϕ,

where θ and ϕ are, respectively, the polar and azimuthal angles
in the spherical coordinates system for the wave vector k, as
indicated in Sec. III.

At large dimensionless time 2�t � 1, the dominant contri-
bution to the radial spectrum of kinetic and magnetic energies
comes from the steady part,

Sκ (k,t)

Sκ (k,0)
� 1

4π

∫ π

0

[∫ 2π

0

ω2
R + 2ω2

A

ω2
R + 4ω2

A

dϕ

]
︸ ︷︷ ︸

J (k,θ)

sin θdθ. (D1)

We set ωAh = VA sin θ, so that

J (k,θ ) = π + ω2
R

2
(
ω2

R + 2ω2
Ah

) ∫ 2π

0

dα

1 + 2ω2
Ah

ω2
R+2ω2

Ah

cos α

= π

⎡
⎣1 + ωR√

ω2
R + 4ω2

Ah

⎤
⎦, (D2)

and hence∫ π

0
J (k,θ ) sin θdθ = 2π

[
1 +

(
f

2VAk

)∫ 1

0

βy√
y2 + β2

dy

]

= 2π

[
1 + f

f + 4VAk

]
, (D3)

where β2 = 4(VAk)2/[f 2 − 4(VAk)2]. Therefore, the long-
time limit of the radial spectrum takes the form

lim
f t→∞

Sκ (k,t)

Sκ (k,0)
= 1

2

[
1 + f

f + 4VAk

]
,

lim
f t→∞

Sm(k,t)

Sκ (k,0)
= 1

2

[
1 − f

f + 4VAk

]
,

(D4)

and thus the Alfvén ratio behaves like

lim
f t→∞

Sκ (k,t)

Sm(k,t)
= 1 + 2

f

4(VAk)
= 1 + 1

2Lk

. (D5)

Therefore, at large scales (VAk/f � 1), the Alfvén ratio
behaves like k−1, while at small scales (VAk/f � 1), there
is an equipartition of energy between kinetic and magnetic
components.
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