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Spectral energy scaling in precessing turbulence
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CNRS, ECL, UCBL, INSA, Ecully, France

® (Received 16 January 2018; published 25 July 2018)

We study precessing turbulence, which appears in several geophysical and astrophysical systems, by direct
numerical simulations of homogeneous turbulence where precessional instability is triggered due to the imposed
background flow. We show that the time development of kinetic energy & occurs in two main phases associated with
different flow topologies: (i) an exponential growth characterizing three-dimensional turbulence dynamics and (ii)
nonlinear saturation during which K remains almost time independent, the flow becoming quasi-two-dimensional.
The latter stage, wherein the development of K remains insensitive to the initial state, shares an important common
feature with other quasi-two-dimensional rotating flows such as rotating Rayleigh-Bénard convection, or the large
atmospheric scales: in the plane k; = 0, i.e., the plane associated to an infinite wavelength in the direction parallel
to the principal rotation axis, the kinetic energy spectrum scales as kf, We show that this power law is observed
for wave numbers ranging between the Zeman “precessional” and “rotational” scales, kS_1 and k{zl , respectively,
at which the associated background shear or inertial timescales are equal to the eddy turnover time. In addition,
an inverse cascade develops for (k; ,k) < ks, and the spherically averaged kinetic energy spectrum exhibits a k=2

inertial scaling for kg < k < kgq.

DOI: 10.1103/PhysRevE.98.011102

Introduction. Rotating flows are omnipresent in several geo-
physical and astrophysical systems. Inertial waves occurring
in these flows are generally affected by external boundary
conditions and/or by external forces or torques, leading to
the apparition of local inertial instabilities. A more complex
situation is that of precession where there is a continuous
change of the orientation of the rotation axis of the system.
In a precessing container, the flow is therefore the result of the
complex interplay between inertial waves, Ekman boundary
layers, and the base flow [1]. It can eventually become unstable
and create space-filling turbulence [2]. In the geophysical
context, the turbulent flow driven by precession in the Earth’s
outer core is able to feed huge amounts of energy (orders of
magnitude can be estimated between 10'' and 10?! W) and
therefore possibly sustain the geomagnetic field [2,3]. In the
astrophysical context, precession may trigger instabilities lead-
ing to the formation of vortex tangles and generate turbulence
in superfluid neutron star interiors [4].

The generic feature of precessional flows appears to be the
shearing of streamlines as shown in the independent studies by
Kerswell [5] and by Mahalov [6]. Kerswell considers the so-
called Poincaré solution [7] characterizing the response of an
inviscid fluid within a precessing, oblate spheroid. Mahalov’s
uses a different approach, by considering an infinite cylinder
in which a tilted (sheared) streamline solution can exist under
precession. In both systems, the parametric precessional insta-
bility [5,6] arises through a subharmonic resonance between
inertial modes and the basic state, with a mechanism similar
to that of the elliptical instability [8,9].

The nonlinear evolution of precessional instabilities has
been addressed in several experimental, numerica, and the-
oretical studies exhibiting very rich dynamics, ranging from
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laminar flows to fully developed turbulence for both cylindrical
geometries [1,10-12] and spherical or spheroidal ones [13,14].
An alternative geometry is used by Mason and Kerswell [15]
who consider a viscous and incompressible fluid in a plane
layer (with rigid stress-free top and bottom boundaries) that
spins about its normal which itself precesses about an axis
fixed in space. They showed that the flow solution switches
chaotically between different nonlinear states over long times
and concluded that this phenomenon, which is seemingly
unrelated to the fast precessional frequency, is important for the
precessing Earth. Recently, in the astrophysical context, Barker
[16] considered the simple model by Mason and Kerswell [15]
in an unbounded domain and showed that nonlinear interac-
tions which saturate the precessional instability generate turbu-
lence with columnar vortices. This is also found in turbulence
subjected to rapid rotation [17]. In rapidly rotating turbulence,
the emergence of large-scale vortices characterizes a quasi-
two-dimensional (2D) state perpendicular to the fixed rotation
axis [18], and, atincreasing rotation rate, energy accumulates in
the vicinity of the so-called “spectral buffer layer” around kj >~
0 [17,19] (k; is the wave-vector component along the rotation
axis). Atk = 0, inertial waves vanish altogether because their
dispersion relation vanishes as well. The separation between
the dynamics of velocity modes with nonzero and zero inertial
wave frequencies, or equivalently, with kj # 0 (wave modes)
and kj = 0 (vortex modes) was discussed and observed in
previous studies of rotating flows [20-23]. When the system
rotation is coupled with another linear effect, such as buoyancy
in rotating Rayleigh-Bénard convection [24,25], the original
version of the Taylor-Proudman theorem, linear and steady, is
sufficient to explain the two-dimensionalization. Otherwise,
the fact that the 2D motion is dominant in the nonlinear
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dynamics of purely rotating turbulence is controversial in the
sense that inertial wave turbulence theory predicts only partial
two-dimensionalization without inverse energy cascade, since
the 2D mode is seen as an integrable singularity in an infinite
three-dimensional (3D) spatial domain. Confinement, either
explicit due to solid boundaries [26], or implicit, due to box
periodicity in direct numerical simulations (DNS), can indeed
trigger a large-scale inverse cascade.

Our objective here is to provide answers to the following
questions, through the analysis of the time evolution of second-
order velocity correlations and the development of energy
spectra: (i) How does the precessional instability operate in
an initially isotropic homogeneous turbulence? (ii) How does
the resulting precessing turbulence compare with turbulence
driven by precessional instability [16], or with rapidly rotating
turbulence, or with rotating turbulence under a “precession-
like” perturbation [27]?

Model and equations. In order to address quantitatively
these questions important for modeling geophysical and as-
trophysical flow dynamics, we perform direct numerical sim-
ulations of initially isotropic turbulence subjected to the mean
flow with mean velocity U, viewed in the precessing frame
rotating uniformly at &, = ¢Qe;. With

0 -1 0
Ux)=Mx M=Q]| 1 0 0]. (D
0 -2 O

and x = (x;,x2,x3)7 the physical coordinate. Equation (1)
shows that the mean flow is the superposition of a solid body
rotation with a vorticity vector 2€2e3 and a linear shear with a
vorticity vector —2eQe; that balances the gyroscopic torque
created by the misalignment of £ and £, (see schematic
on Fig. 2) [29]. This ensures consistency with statistical
homogeneity. The Poincaré number ¢ > 0 controls the degree
of nonlinearity of the precessing flow [28]. The mean flow (1)
is obtained by transforming the so-called Mahalov’s solution
[6,30] into Cartesian coordinates. It expresses the generic
precessional response of a fluid, and is realized in the interior
of precessing containers where boundary layers typically set
the boundary conditions [5].

The Navier-Stokes equations for the fluctuating velocity
field u(x,t) in the precessing frame are

u+ U-Vu+ u-Viu+M-u+22, xu
= -V p+vViu, )

where u(x,t) is divergence free, V-u = 0, v is the kinematic
viscosity, and p is the fluctuating pressure divided by the fluid
density. Under the assumption that the turbulence is statisti-
cally homogeneous, the resulting equation for the turbulent
kinetic energy per unit mass K = %(u,-ui), where (-) denotes
ensemble (statistical) averaging, takes the form K=P- D,
where P = 2eQ(uyu3) is the turbulent energy production due
to the mean shear (rotation produces no energy), and D =
v(dy;u;0x;u;) is the turbulent dissipation rate per unit mass.
An important parameter is the microscale Rossby number [19]
Ro, = /D/v/(2R2) which is interpreted as the ratio of the
convective to the Coriolis acceleration at the Taylor scale. We
represent the fluctuating fields as the superposition of plane

waves using Fourier transforms
e, = [ Ttk plen]expilk(yxld*k
R3

where k(t) is the time-dependent wave vector. In order to
remove the explicit dependence on x in the resulting equations
for the spectral velocity component &(k,?), one has to ensure
that k(z) varies in time according to k = — M -k. This amounts
to following characteristic lines of the mean flows, although
expressed in spectral variables (details in Ref. [29]). The
spectral equation becomes

i+ Mot 429, x it +ipPk + vi’a = —P-(@xu), (3)

with k-it = 0 for the solenoidal velocity field. p© is the
spectral counterpart of the linear part of pressure fluctuations,
0=V x u is the vorticity, P;; = k=%k;k; — &;; is the pro-
jection operator where k = | k|| is the wave-vector modulus,
and §;; is the Kronecker tensor. Accordingly, the wave-vector
components evolve as

ki(t) + 2ek3(t) =(k1o + 2¢eksg) cos(2t) — kyg sin(Q2t), (4)
ka(t) =(kio + 2¢ek30) sin(€21) + kag cos(€21), (%)

k3(t) =k = kao, (6)

where ko = (k10,k20,k30)" is the initial wave vector. Therefore,
the wave-vector trajectories are circles with sheared centers, as
their counterparts in physical space, since k-x = kg-x¢ [5,15].

Linear solution. In the inviscid linear limit, the stability
problem is governed by a two-dimensional linear Floquet
system or, equivalently, by Hill’s equation which, at ¢ =0,
reduces to the inertial waves equation with dispersion relation
wrp = £2R-koy/ ko = £2Qk;/ko. At e < 1, we apply the per-
turbation theory [31] to analyze the stability of Hill’s equation
and we show that the subharmonic resonant modes are those for
which 2wp = €2, so that kj/ kg = £1/4, and at order e!, the
maximal growth rate of the precessional shearing instability
is 0, /e = 5v/15/32 ~ 0.605 [5,29]. At k; = 0, the inviscid
linear solution indicates that there is no linear instability:
the inertial frequency wg is zero and the vertical mode i3
remains identical to its initial value, as it is in the pure rotating
case (¢ =0), while the horizontal mode i, = —(k1/ k)it
undergoes a precessing motion with period €2 induced by the
vertical mode.

2D nonlinear coupling. Obviously, at kj = 0, the nonlinear
interactions can generate a coupling between vertical and
horizontal modes as shown by the equation for the horizontal
and vertical spectral densities of energy, e, = 1 (|fi;]* + |12]?)

114
and e, = 5(|i3|),

SCP) 4 202 0P = D), ™
é;lZD) i 2vkie§12D) — @) 4 T;.(ZD)’ (8)

in which the superscript (2D) refers to the kj = 0 mode. For
instance, e*P)(k 1) = e, (k,t)8(k — k1) where 8(k — k) is
the Dirac function, in agreement with the decomposition into
two disjoint sets for the wave vector by [32]. 7 = 26 QN (f1,4%)
denotes the spectral density of production due to mean shear
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FIG. 1. Time evolution of the kinetic energy growth rate ox =
(SK)™'K = (SK)~'(P — D) for several values of the couple (£2,¢).
At the saturation stage, o slightly fluctuates about zero reflecting a
balance between P and D. The inset shows the independence of the
saturated kinetic energy to the initial Reynolds number Re.

and T,,T,, and T = T, + T, are transferlike terms which
involve triple velocity correlations such that fR3 Tdk = 0.Our
present DNS results indicate that [, T2 (k . ,t)dk,dk, is not
zero, as in the pure rotating case (¢ = 0).

Direct numerical simulations. We solve the fully nonlinear
equations of motion (3) by DNS using a modified version
of the Fourier spectral code Snoopy developed by [33]. The
simulations start from isotropic conditions obtained by a pre-
liminary simulation started with a random initial velocity field
with energy spectrum E (ko) o kg exp(—kj/k?), where k' is a
specified length scale. The initial total kinetic energy is £(0) =
fooo E(ko)dky. The isotropic precomputation is done before
applying the mean flow (1) at + = 0. During this initial stage
only, alarge-scale forcing (at 1 < ko < 4)is applied until a sta-
tistical steady state of classical isotropic turbulence is reached,
giving a Taylor-microscale-based Reynolds number Re; =~
40. Additional simulations starting from decaying isotropic
turbulence with low Reynolds number Rey = IC% /(wDy) or
from a solenoidal random noise for the initial velocity [16]
were also performed in order to assess the effects of the initial
conditions on the saturation stage of the precessing turbulence
(see below). We also limit the effects of Lo-periodic boundary
conditions, by computing all integral scales

1 oo
L = /0 W, x + re)dr ()

in the x, (¢ = 1,2,3) directions, and imposing that max L%.) <
0.25Ly (no sum over subscript j). By this, we control nu-
merical confinement, even if one integral length scale grows
faster due to precessional instability. Hence, the final dimen-
sionless time St = 2¢Q2t appears to be St =40 for all the
runs. Aliasing errors are removed using the 2/3 dealiasing
rule and the minimum and maximum wave numbers are
kmin = 1 and kpax = N /3. Our DNS resolution is N = 256
or N =512 in each Cartesian coordinate direction. The
runs were performed for six values of the pair (2,e) =
(5,0.1), (5,0.15), (5,0.17), (10,0.1), (20,0.1), (20,0.17).
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FIG. 2. Left: Schematic of the mean flow. Right: Horizontal cut
of vertical vorticity w, in the case (2 = 5,& = 0.17) with resolution
5123. In the exponential growth stage (top snapshot at St = 10 and
Ro,, = 0.25) one observes large-scale filaments together with intense
localized dominant vortices (with highest value of 10), while at the
saturation stage (bottom snapshot at St = 40,Ro,, = 0.45), which
corresponds to a quasi-2D flow, there are two large columnar vortices
(with highest value of 20) emerging from the background of 3D
turbulent fluctuations.

Results of DNS. Our simulations show that there are two
important stages characterizing the behavior of the mean
turbulent kinetic energy: (i) An initial exponential growth of
K(t) followed by (ii) a saturation stage at St > 20, during
which K(7) remains almost constant. This is also clear when
observing the evolution of the growth rate ox = (SK)™'K =
(SK)~'(P — D) which slightly fluctuates about zero during the
saturation stage (see Fig. 1). At the exponential growth stage,
both the mean dissipation rate D and the production term P also
exhibit an exponential evolution, while at the saturation stage,
they decay with time and become slowly balanced such that
‘P ~ D. Due to the decay of the dissipation rate, the microscale
Rossby number Ro,, also decays during the saturation stage. Its
final value (at St = 40) ranges between 0.12 and 1.0 depending
on the parameters (£2,¢). Note that rotating turbulent dynamics
with Rossby number O(1) is typical of geophysical flows [17].

In the following, we analyze the dynamics of the saturation
stage and comment about the exponential growth stage when
relevant. The kinetic energy level at saturation increases as
e or Q increases (not plotted), but, at a fixed value of the
pair (£2,¢e), it remains insensitive to the initial Reynolds
number [Rey = IC(% /(vDyp) < 250], independently of the initial
conditions (precomputed initial isotropic or solenoidal random
noise) (see the inset of Fig. 1). At the saturation stage, the major
contribution to kinetic energy K comes from the horizontal
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FIG. 3. Energy spectrum E®P(k;.k; =0) 2D modes and
E®D(k,) of 3D modes k; = 1,2 at the saturation stage for (Q =
20,6 = 0.17), with resolution 5123. (The tiny peak at k = 85 is a
remnant of the precomputation at coarser resolution 256%; it does
not affect our current conclusions.) Solid lines for spectra averaged
over St € [20,40]. One observes that the averaged (E®™(k,)), and
ECD(k ,t) at St = 30 (dashed line) and St = 40 (dots) are almost
the same, exhibiting a k> scaling in the range ks ~ 5 <k, <
kg ~ 30. At large horizontal scales (k;, < kg), the energy is mainly
concentrated around the plane k; = 0, and transferred via an inverse
cascade that creates a strong anisotropy, as shown by the top inset
displaying the energy ratio E\">'/ E@™ (dashed) and E\"” /E®P for
ky = 1,2. The bottom inset shows the flux spectrum indicative of
backscatter at large scale.

energy K, as shown by the right inset of Fig. 4 displaying
the evolution of the ratio /C; //C, for (2 = 5,6 = 0.17). This
attests to the importance of large-scale anisotropy. Note that
the dominance of the horizontal motion over the vertical one
is more pronounced in the dynamics of the k; = 0 mode than
in that of modes with k; # 0. This is shown by the evolution
of the ratio L' /L® which grows faster than K, /K, (see the
right inset of Fig. 4), and by noticing that
LY = (uju;)~'2m /R (u§PuFPNdkdky. (10)
At the saturation stage, K, and LY decay with time while
their horizontal counterparts, 1, and Lf) remain almost con-
stant (not shown). Note that (u;u;) and (u,u,) (respectively,
L(131) and L(ZSZ)) exhibit similar behaviors but are not identical,
while in the pure rotating case at ¢ =0, (uju;) = (uus)
and L(131) = L(232) due to axisymmetry. The dominance of the
horizontal motion in the saturation stage is indicative of
a quasi-2D state of turbulence that is characterized by the
presence of columnar structures along the solid body rotation,
as also proven in visualizations of the vertical vorticity field
(see Fig. 2). This quasi-two-dimensional three-component
(2D-3C) behavior of the flow at the saturation stage can also
be characterized by examining energy spectra (see below). In
contrast, in the exponential growth stage, the horizontal motion
does not dominate the vertical one. This trend is indicative of
a 3D state of the turbulence at this stage.
In Fig. 3 we show the development of the 2D energy
spectrum E®P (k1) =k, fozn e (k| ,t)dp (where tan ¢ =

1
10 ‘
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FIG. 4. Average over St € [20,40] of the radial spectrum E(k,t)
normalized by rotation scaling for (€2,¢) = (20,0.17), (20,0.10), and
(5,0.17) with resolutions 5123, 256, and 5123. Dashed horizontal
lines at Co = 1.22 and Cq = 1.87 for reference [see Eq. (11)].
The left inset shows the nonlinear transfer flux normalized by the
dissipation rate for the three precessing turbulence cases. Inverse
cascade of energy develops atk < kg. The rightinset displays the time
evolution of the ratio of horizontal energy (respectively, integral length
scale associated to k; = 0 mode) to vertical energy (respectively,
integral length scale) for (2 = 5,6 =0.17)

ko /ky), at St = 30,40 and its average ( E@P), (k) over the time
window St € [20,40] corresponding to the saturation stage
(see Fig. 1). The figure shows that there are no noticeable
differences between EP)(k, ,t) and its average (E®),(k,)
that follows a kf scaling for kg < k; < kg, i.e., for wave
numbers very weakly affected by rotation since they are
larger than the Zeman scale kg = ($23/D)'/* ~ 30, but more
significantly by shear since they are larger than the Corrsin
scale ks = [(2e2)*/D]'/? ~ 5[34,35]. Fork, < kg, the major
contribution to the 2D total energy E®P)(k;) comes from
the horizontal part E}(ZZD), whereas for k; > kg, there is no
significant dominance of horizontal or vertical energy, as
shown by the top inset of Fig. 3. Even if the dynamics of the
spectral buffer layer around k = 0 [17] may not be completely
captured by simulations due to discretization between the
planes k; = Oand k| = 1, similarities between the dynamics of
this spectral buffer layer and the dynamics of its near-neighbor
3D modes can be drawn. Thus, as shown by Fig. 3, the
spectrum ECP (k) =k, fozn e(k,t)dy over the planes kj = 1
and kj = 2, that characterizes the dynamics of the 3D modes
also exhibits the spectral scaling kf. When moving from the
plane kj = 0 to the plane k = 1 (as well as from the plane
ky = 1to the plane k = 2), the large horizontal scales become
less energetic and the k; range over which the kf scaling
occurs is reduced. In the steeper kf slope, 3D modes release
a significant amount of energy to 2D modes [36—-38]. We note
that in the exponential growth stage, with respect to spectra in
the saturation phase, the spectrum E®?P)(k,) is shallower for
k1 < kg but is steeper than kj for k;, > kg (not shown).
Comparing the saturation stage of precessing turbulence
with other quasi-2D flows, the spectrum kf has been observed
in “isotropically” forced rotating turbulence [23,36,39—41]
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and in rapidly rotating Rayleigh-Bénard convection [24,42].
The observed spectrum is associated with an inverse energy
cascade, as also observed in the present simulations for the
saturation stage (see bottom inset of Fig. 3 and right inset of
Fig. 4). For the atmosphere, which is viewed as a quasi-2D
flow at large scales as the recent analysis of data with modern
velocimetry techniques shows [25], both inertial scalings k>
and k~/3 are observed in measured kinetic energy spectra
[43]. However, these spectra give no indication of whether the
turbulent flux IT(k,7) = f koo T (k")dk' within their associated
range of scales is a direct (3D) or inverse (2D) energy flux in the
atmosphere which would display a two-directional split energy
cascade: part of the energy goes toward small scales (as in 3D)
and part to large scales (as in pure 2D flows) [44,45]. Thus,
results by [43] can be interpreted in terms of latitude-dependent
scaling using the model by [38].

The similarity between the saturation stage dynamics and
flows with strong rotation is also apparent from the develop-
ment of the total energy spectrum E (k) = fSk e(k,t)dSy, i.e.,
the integral of the spectral energy density e(k,t) over a 3D

sphere of radius k. Theoretical arguments for forced rapidly
rotating flows suggest that for the intermediate wave numbers
kr < k < kg, where k; denotes the forcing wave number,
E (k) behaves like [17,46,47]

E(k) = Co(QD) 2k 2, (11)

with Cq = 1.22-1.87 [46]. This scaling is also observed in
a DNS study of a rotating turbulence under precessionlike
perturbation generated by a change of the rotation axis at
a fixed time instant [27]. In our present DNS as well, the
saturation stage spectrum E (k) exhibits a k=2 behavior with
an intermediate range plateau (kg < k < kg) of Cq = 1.87
(see Fig. 4) and the behavior of the saturation stage turbulent
flux (I1(k)), clearly indicates an inverse cascade of energy for
k < kg and direct cascade for ks < k < kg (see left inset of
Fig. 4).

This study identifies, through a careful analysis of energy
spectra, the common features of the saturation stage resulting
from the effects of nonlinear interaction on the precessional
instability with other quasi-2D rotating flows.
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