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We propose a statistical model for homogeneous turbulence undergoing distortions, which
improves and extends the MCS model by Mons et al. (2016). The spectral tensor of
two-point second-order velocity correlations is predicted in the presence of arbitrary
mean-velocity gradients and in a rotating frame. For this, we numerically solve coupled
equations for the angle-dependent energy spectrum E(k, t), that includes directional
anisotropy, and for the deviatoric pseudo-scalar Z(k, t), that underlies polarization
anisotropy. These equations include two parts: (i) exact linear terms representing the
viscous spectral linear theory (SLT) when considered alone; (ii) generalized transfer terms
mediated by two-point third-order correlations. In contrast with MCS, our model retains
the complete angular dependence of the linear terms, whereas the nonlinear transfer terms
are closed by a reduced anisotropic Eddy Damped Quasi-Normal Markovian (EDQNM)
technique similar to MCS, based on truncated angular harmonics expansions. And in
contrast with most spectral approaches based on characteristic methods to represent
mean velocity gradient terms, we use high-order finite-difference schemes (FDSs). The
resulting model is applied to homogeneous rotating turbulent shear flow with several
Coriolis parameters and constant mean shear rate. First, we assess the validity of the
model in the linear limit. We observe satisfactory agreement with existing numerical
SLT results and with theoretical results for flows without rotation. Second, fully non-
linear results are obtained, which compare well to existing Direct Numerical Simulation
(DNS) results. In both regimes, the new model improves significantly the MCS model
predictions. However, in the non rotating shear case, the expected exponential growth of
turbulent kinetic energy is found only with a hybrid model for nonlinear terms combining
the anisotropic EDQNM closure and Weinstock’s return-to-isotropy model.

Key words:

1. Introduction

Turbulence and stability in rotating shear flows is essential in many contexts ranging
from engineering—as in e.g. turbomachinery or hydroelectric power generation—to geo-
physics and astrophysics. Among various combinations of mean flow gradients and system
rotation, the case with mean plane shear rotating in the spanwise direction (figure 1)
has widespread applications. Stabilization and destabilization of turbulence are found in
these flows depending on cyclonic or anticyclonic asymmetries of mean shear vorticity
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Figure 1: Coordinate system for a flow with pure plane mean shear and rotating in the
spanwise direction.

(a) Sketch for SSA (b) Rotating channel flow

Figure 2: Schematic of the geometrical simplification of complex flows leading to local
homogeneous anisotropic turbulence modelling: (a) accretion disc in astrophysics; (b)
rotating channel flow.

and system vorticity, for instance in the experimental study of rotating plane channel
flow by Johnston et al. (1972). Similar effects are also exhibited in rotating Couette flows
(Hiwatashi et al. 2007) and rotating wakes (Dong et al. 2007; Perret et al. 2006) with
the interaction of mean shear and Coriolis force.

A simple model for spatially uniform turbulent shear flow is used in astrophysics for the
study of turbulent accretion discs, which can be seen as Taylor-Couette flow (figure 2a).
According to the shearing sheet approximation (SSA) by Balbus & Hawley (1998)—also
called the local shearing box—the rotation rate Ω is approximately uniform and the shear
rate S can be represented by differential rotation at a specific radial position r0, namely
Ω ∼ Ω(r0) and S = r dΩdr |r0 . The simple model of homogeneous turbulent rotating shear
flow is also useful in engineering for interblades flow in turbomachinery, and in geophysical
flows. Figure 2b illustrates how the context of homogeneous anisotropic turbulence (HAT)
can be locally relevant for rotating channel flow, e.g. in the center region where constant
mean shear rate S and uniform spanwise rotation Ω apply. Although inhomogeneity is
discarded, these flows are still difficult to describe with single-point statistics because
the dynamics of anisotropic turbulence depends on the relevant length scale. Considering
single-point closures, while the basic two-equations K-ε model altogether ignores the
effect of rotation in the rotating shear case, others take it into account to some extent.
This is the case of the Reynolds stress models (RSM, e.g. Launder et al. 1975), or
of the more sophisticated structure-based models (Kassinos et al. 2001). Alternately,
spectral theory with a two-point statistical approach is very popular for the study of
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HAT, in which the distorting mean flow is represented by uniform mean-velocity and
density gradients, and by body forces as the Coriolis force (Sagaut & Cambon 2018).

The two-point spectral description starts with the spectral tensor R̂(k, t), which is the
Fourier transform of the two-point second-order velocity correlation tensor Rij(r, t) =
〈ui(x, t)uj(x+ r, t)〉 in physical space. Closed nonlinear equations for the evolution of

R̂(k, t) can be obtained and permit the study of statistical properties of anisotropic flows,
such as scale-by-scale anisotropy or turbulent cascade.

In turbulent shear flows, the interplay between linear and nonlinear mechanisms can
be very complex and subtle. For linear terms, SLT is very efficient for solving linear
operators of homogeneous turbulence. It was originally introduced as ‘Rapid Distortion
Theory’ (RDT) for irrotational mean flows by Batchelor & Proudman (1954), and applied
to the shear flow case by Moffatt (1967). SLT was then extended to rotating shear flows
by Salhi & Cambon (1997) and to stratified shear flows by Hanazaki & Hunt (2004)
using a refined analytical approach. Salhi & Cambon (2010) unified this approach for
the case of rotating stratified shear flows. All these studies show the global relevance of
the Bradshaw number B (Bradshaw 1969) for characterizing the stability of the flow:
B = R(R + 1), in which R = 2Ω

−S is the ratio of system vorticity 2Ω to shear-induced-
vorticity −S. Cases with B < 0 or −1 < R < 0 correspond to exponential growth of
turbulent kinetic energy, and B > 0 to exponential decay. Neutral cases are found for both
R = 0 (no background rotation) and R = −1 (zero absolute vorticity). However, SLT is
limited in principle to short evolution times, and more specifically to the largest scales of
the turbulent flow, since its focus is the linear influence of the mean flow on fluctuations
rather than the nonlinear interaction of the fluctuating flow with itself. In addition, from
the point of view of linear dynamics, the passage from a two-point spectral description
to a single-point one implies a loss of nonlocality in the pressure/velocity relationship in
physical space. As a consequence, modeling the ‘rapid’ pressure-strain rate tensor in the
RSM equations is very difficult, as recently discussed by Mishra & Girimaji (2017) in
line with exact SLT analysis. Surprisingly, the Bradshaw criterion is globally relevant for
explaining the stability when considering production terms in the RSM equations (see
also Brethouwer 2005). This is also supported by a coarse pressure-less model (Leblanc &
Cambon 1998; Salhi et al. 1997) which also brings forward the role of R = 2Ω

−S . A criterion
similar to that of Bradshaw was also proposed in the SSA, using the epicyclic frequency
κ =

√
2Ω(2Ω + S). The stability of the flow is thus related to a Rayleigh criterion,

ignoring again the effects of fluctuating pressure. Moreover, B = κ2

S2 in the rotating
shear case is sometimes called the ‘rotational Richardson number’; it is analogous to the

Richardson number Ri = N2

S2 of the stratified shear case, where N is the Brunt-Väisälä
frequency.

Regarding nonlinear closures of homogeneous isotropic turbulence (HIT), a few models
are based on Heisenberg’s transfer model (e.g. Canuto & Dubovikov 1996a,b; Canuto
et al. 1996). Other more sophisticated and successful models employ high-order closures
using the EDQNM technique (Orszag 1969), which can be extended to shear-driven or
buoyancy-driven flows, and account for coupled fields, e.g. in magnetohydrodynamics (see
review in Cambon et al. 2017; Sagaut & Cambon 2018). In the case of HAT, different
versions of EDQNM closure can be chosen depending on the flow regimes and on the
available computational resources. These versions involve physical assumptions which
are sometimes justified only for specific flows, but their validity are in practice checked
by implementation of the model and the related numerical results. Briefly, the EDQNM
closure model can be developed in different versions depending on the retained physical
assumptions and on the chosen method of resolution.
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First, physical assumptions permit closures of the basic equations written for single-
time three-point third-order correlations, and transformed in Fourier space for solving
pressure fluctuation via the divergence-free property of velocity. In these equations, linear
terms represent the effect of mean gradients, body forces and viscous terms, whereas
fourth-order moments account for nonlinearity. These moments are expressed as the sum
of a quasi-normal contribution and a contribution from fourth-order cumulants. The
closure consists in attributing a damping effect to the contribution from cumulants to
express the departure from Gaussianity. This is the eddy-damped (ED) quasi-normal
(QN) assumption. In addition, one assumes that the time-scale of triple correlations is
much larger than that of double correlations embedded in the quasi-normal term. This
is the Markovian (M) assumption. On the basis of these assumptions, one can derive
a series of models that differ by the degree of refinement chosen for representing linear
vs nonlinear mechanisms, and for representing anisotropy. For instance, the EDQNM1
model—from which the MCS model is derived—neglects explicit anisotropic linear terms
in the equations for triple correlations. This restricts the models to turbulent flows where
linear effects induced by mean-flow gradients have no essential qualitative effects on the
dynamics of triple correlations compared with the induced production effects in the
equations for second-order correlations. It is questionable in purely rotating turbulence
in which the Coriolis force does not affect the energy balance equation directly, i.e.
induces no production. A refinement of the EDQNM1 model can use an anisotropic eddy
damping, or keep it similar to its form in HIT. Overall, EDQNM1 compares well with
DNS when linear terms are associated with energy production in double correlations
equations (e.g. unstably stratified homogeneous turbulence in Burlot et al. 2015).

Second, various formulations and resolution methods can be chosen. For instance, the
EDQNM1 approach results in a closure for two-point transfer terms using a vector of
variables (E , Z,H) that represent the complete spectral tensor of double correlations.
Moreover, the helicity spectrum H can be used in general (Bellet et al. 2006), but it
will be neglected in our case of homogeneous shear-driven turbulence, since it cannot
emerge spontaneously unless introduced explicitly in initial conditions. Accordingly, all
the information from the closure strategy will be concentrated in two generalized transfers
denoted T (E) and T (Z). At this stage, the complexity and the numerical cost of the model
remains high, even in axisymmetric flows, because of the anisotropy which renders all two-
point statistics dependent on the three-dimensional (3D) wave-vector k. In order to derive
a numerically tractable model, the description of anisotropy of the second-order spectral
tensor is simplified by using low-degree expansions in terms of angular harmonics. The
initial model in terms k-vector thus becomes a model in terms of spherically-averaged
descriptors that depend only on k—the modulus of k, e.g. the MCS model by Mons et al.
(2016) which retains the first two degrees in the spherical harmonics expansion. Although
validated for different flows, comparisons of the MCS model to SLT and DNS at long
times suggest that this low degree expansion is much less adapted to the representation
of linear terms angular variations than it is for the nonlinear terms. The purpose of
the present article is therefore to restore the full angular dependence of linear terms
in the equations for E(k, t) and Z(k, t) and to restrict to nonlinear transfer terms the
use of low degree expansion inspired from MCS. This appears as the only way to check
the validity of the nonlinear closure per se, given the subtle interplay of linear and
nonlinear terms. In addition, this also permits validation of other models which use
no assumption for modelling the linear terms, with unexpected results. The model by
Weinstock (1982, 2013) for the pure plane shear without system rotation is particularly
interesting because it relies on purely isotropic EDQNM model for the energy transfer,
with a weakly anisotropic part to force the return to isotropy. One of the most surprising
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results of our work is the fact that a hybrid model combining the nonlinear closure from
both MCS and Weinstock is relevant for the pure shear flow without system rotation.

The paper is organized as follows. In §2 we recall the decomposition of R̂(k, t) in
terms of the scalar E(k, t) and pseudo-scalar Z(k, t), their governing equations, and the
simplified anisotropic closure based on EDQNM, then we propose a hybrid nonlinear
model combining simplified anisotropic EDQNM closure and Weinstock’s model. We
present the numerical scheme and spectral space discretization in §3. In §4, the validation
of the model in the linear limit is described, and we obtain results of the complete
nonlinear models. A dedicated discussion for non-rotating shear flow case is proposed in
§5. Finally, §6 is devoted to conclusions and perspectives.

2. Background equations

Following Batchelor (1953) and Craya (1957), we consider the general case of statistical
homogeneity restricted to fluctuations. An extensional mean flow with velocity compo-
nents Ui injects energy and anisotropy into the fluctuating flow via a spatially uniform
mean-velocity gradient Aij :

Aij =
∂Ui
∂xj

= Sij +
1

2
εimjWm, (2.1)

combining contributions from strain Sij—the symmetric part—and mean vorticity W—
the antisymmetric part (εimj is the Levi-Civita pseudo-tensor). In addition, the whole
flow—mean flow plus fluctuations—is placed in a frame rotating at angular velocity Ω.
This corresponds to various possible applications, such as rotating shear or precessing
flows.

We consider the two-point correlation of fluctuating velocity Rij(r, t) and its Fourier

transform producing a spectrum of Fourier coefficients R̂ij(k, t). In the incompressible
homogeneous anisotropic flow with the mean gradients Aij of (2.1) and in the frame

rotating at Ω, R̂ij(k, t) is governed by(
∂

∂t
−Alnkl

∂

∂kn
+ 2νk2

)
R̂ij(k, t) +Min(k)R̂nj(k, t) +Mjn(k)R̂ni(k, t) = Tij(k, t),

(2.2)
with the linear operator induced by mean-velocity gradients:

Mij(k) = (δin − 2
kikn
k2

)Anj + 2Pin(α)εlnjΩl, (2.3)

and the nonlinear transfer Tij(k, t) gathers contributions for third-order two-point veloc-
ity correlations (see following §2.2), which need to be closed. Equation (2.2) is derived
by Fourier transform of the Navier-Stokes equations, in which α = k

k is the unit vector

along wave-vector k, ν is the kinematic viscosity, and Pij(α) = δij− kikj
k2 is the projection

tensor.

2.1. Equations for the state-vector (E , Z)

The two-point second-order velocity correlations tensor is given by R̂ij(k) (and also
Rij(r)), which is a priori 9-component. It contains the complete information pertaining
to second-order velocity statistics of the flow. Thanks to incompressibility and Hermitian
symmetry, it can be replaced by a basic state vector (E , Z,H) (see Cambon & Jacquin
1989; Sagaut & Cambon 2018) such that

R̂ij(k, t) = E(k, t)Pij(α) + < (Z(k, t)Ni(α)Nj(α)) + iεijnH(k, t)αn. (2.4)
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Figure 3: Polar-spherical system of coordinates for k and related Craya-Herring frame
of reference

(
e(1), e(2),α = e(3)

)
.

The first term displays the directional anisotropy, that is generated by the departure

of the 3D energy spectrum E = 1
2 R̂nn from its spherically averaged counterpart E(k,t)

4πk2 ,
where E(k, t) =

∫
Sk
E(k, t)d2k is the classical spherically-integrated energy spectrum.

The second term represents the polarization tensor (see also Cambon & Rubinstein 2006)
generated by the complex-valued pseudo-scalar Z. The last term involves the 3D helicity
spectrum kH(k, t) and is purely imaginary (i2 = −1) and antisymmetric. It is neglected
in this study. This decomposition relies on the use of the three unit vectors (N ,N∗,α)
of an orthonormal frame on which the fluctuating velocity in Fourier space û(k, t) is
projected. The helical modes N and conjugate N∗ are closely related to the Craya-
Herring frame of reference

(
e(1), e(2),α = e(3)

)
with polar axis n illustrated in figure 3

(Herring 1974; Cambon & Jacquin 1989; Waleffe 1992; Cambon et al. 1997)

N(α) = e(2)(α)− ie(1)(α), α =
k

| k |
, e(1)(α) =

α× n
| α× n |

, e(2)(α) = α× e(1).

(2.5)
The governing equations for the state vector (E , Z) are obtained from (2.2) as

˙(kE) + 2νk3E + < (kZ(k, t)SijNi(α)Nj(α)) = kT (E)(k, t), (2.6a)

˙(kZ) + 2νk3Z + kE(k, t)SijNi(−α)Nj(−α)− ikZ(k, t) ((W + 4Ω) ·α− 2ΩE) = kT (Z)(k, t).
(2.6b)

The overdot denotes the advection operator due to the presence of the mean flow,
namely ˙(...) = ∂

∂t − Amnkm
∂
∂kn

. The left-hand sides of equations (2.6) represent the
linear effects of the mean flow as in viscous SLT, with geometric coefficients that depend
on the orientation of the wave-vector α via helical modes N(±α). ΩE is the rotation
rate induced by the advection operator, and corresponds to the rotation required for
transforming the Craya-Herring frame at time t = 0 to that at subsequent time t. We
retain it here for the sake of completeness, but it can be removed from consideration
in the special applications used in this article. The right-hand sides of equations (2.6)
gather the contribution from two-point third-order correlations mediated by the quadratic
nonlinearity of basic Navier-Stokes equations and are closed in section 2.2. Equation (2.6)
is presented in a simplified form using k as an integrating factor in the products of kE
and kZ. The left-hand sides of both equations (2.6a) and (2.6b) contain viscous terms,
and similar symmetric straining terms, but the antisymmetric part of mean velocity
gradients only affects the equation for polarization through a combination of mean and
system vorticity (the ‘stropholysis’ effect coined by Kassinos et al. 2001).
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2.2. Closure of nonlinear transfer terms with simplified anisotropic EDQNM

Principles of the fully 3D EDQNM1 model were recalled in Introduction, and detailed
equations are given in Mons et al. (2016). However, the numerical resolution cost of
EDQNM1 may be large since the transfer terms involve 3D triadic integrals similar to
convolutions. A significant reduction of the complexity and of the numerical cost was
obtained by MCS which replaces the model for k-dependent spectra by a model in terms
of spherically-averaged descriptors. The method relies on expansions in terms of angular
harmonics of the form:

E(k, t) = E(2)(k, t) + E+(k, t), Z(k, t) = Z(2)(k, t) + Z+(k, t), (2.7)

in which the terms containing information of degrees no more than two are

E(2)(k, t) =
E(k, t)

4πk2

(
1− 15H(dir)

mn (k, t)αmαn

)
Z(2)(k, t) =

5

2

E(k, t)

4πk2
H(pol)
mn (k, t)N∗m(α)N∗n(α),

(2.8)

and E+(k, t) and Z+(k, t) hold for higher degree contributions. When restricted to

degree 2, the expansions use only the non-dimensional deviatoric tensors H
(dir)
mn (k, t) and

H
(pol)
mn (k, t) which are obtained by integrating the isotropic, directional and polarization

components of R̂ij(k, t) in equation (2.4) over spherical shells of radius k, such that

ϕij(k, t) =

∫
Sk

R̂ij(k, t)d
2k = 2E(k, t)

(
1

3
δij +H

(dir)
ij (k, t) +H

(pol)
ij (k, t)

)
, (2.9)

2E(k, t)H
(dir)
ij (k, t) =

∫
Sk

(
E(k, t)− E(k, t)

4πk2

)
Pij(α)d2k

2E(k, t)H
(pol)
ij (k, t) =

∫
Sk

< (Z(k, t)Ni(α)Nj(α)) d2k.

(2.10)

In the recent study by Clark et al. (2018), expansions of angular harmonics in arbitrary
degree are analytically derived, to represent inviscid SLT solutions for irrotational strain
with dependence on the orientation of k only, without need for its modulus. This is
not suitable in our study since we consider various initial data and k-spectrum, and we
include viscous terms and nonlinear source terms, in which a k-grid is needed.

Note that it is possible to extract the set of spherically-averaged descriptors

(E,H
(dir)
ij , H

(pol)
ij ) from an arbitrary anisotropic spectral tensor R̂ij . Conversely, one can

reconstruct an approximation of the full spectral tensor based on these descriptors, by
using equation (2.8). Consistently, the generalized transfer terms use the same truncated
expansions:

T (E)(k, t) = T (E)2(k, t) + T (E)+(k, t), T (Z)(k, t) = T (Z)2(k, t) + T (Z)+(k, t) (2.11)

T (E)2(k, t) =
T (k, t)

4πk2

(
1− 15S̃NL(dir)

mn (k, t)αmαn

)
T (Z)2(k, t) =

5

2

T (k, t)

4πk2
S̃NL(pol)
mn (k, t)N∗m(α)N∗n(α).

(2.12)

Note also that all anisotropic spectra and thus spectral anisotropic descriptors vanish in
isotropic turbulence.

The MCS model describes the evolution of spherical descriptors of the second-

order spectral tensor—E(k, t), H
(dir)
mn (k, t) and H

(pol)
mn (k, t)—governed by spherically-

averaged linear terms along with the nonlinear transfer terms —T (k, t), S̃
NL(dir)
ij (k, t),
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S̃
NL(pol)
ij (k, t). The final equations are presented in Appendix A and can be obtained

by spherically integrating corresponding equations in the EDQNM1 model with the
truncated expansions of equations (2.8) and (2.12). Predictions of the model were
computed by Mons et al. (2016) for flows submitted to irrotational straining or plane
shear, and for assessing the return to isotropy when an anisotropic flow is no more
submitted to mean velocity gradients.

Equations (2.4) and (2.8) imply that the set of (E, H(dir), H(pol)) can regenerate the
first two-degree spherical harmonics expansion of the tensor R̂ exactly. That means the
MCS model only pictures the anisotropy of R̂(k, t) decomposed with spherical harmonics
in degrees no higher than two, and neglects higher-degree anisotropy terms in H(dir)(k, t)
and H(pol)(k, t), both due to linear and nonlinear mechanisms. These restrictions prevent
the MCS model to describe flows in which higher-degree anisotropy is significant. To
solve this, the fully angular dependency of R̂ij(k, t) (or of E(k, t) and Z(k, t)) is restored
in our first proposed model, coined ZCG. The linear terms of ZCG are the same as those
in the left-hand side of equation (2.6), and the simplified nonlinear terms in MCS are
retained with the form in (2.12) to avoid the large computational cost in EDQNM1.

At this stage, the ZCG model contains exact linear evolution of R̂ij(k, t), but the
anisotropic nonlinear evolution higher than degree two is ignored. That means anisotropy
of R̂ij(k, t) in higher degrees—either produced by the linear mechanism or introduced
explicitly from initial field—can not decay when the strain Aij is removed. We fix
this problem of the nonlinear closure by a further modification inspired by the model
of Weinstock (1982, 2013) which includes isotropic nonlinear transfer and a return to
isotropy (RTI) term (also proposed by Rotta 1951 for one-point statistics). In terms of
equations for E and Z, Weinstock’s model amounts to

T (E)(k, t) =
T (k, t)

4πk2
− ϕ(RTI)(k, t)

(
E(k, t)− E(k, t)

4πk2

)
T (Z)(k, t) =− ϕ(RTI)(k, t)Z(k, t).

(2.13)

T (k, t) is closed by isotropic EDQNM, in terms of E, again as in MCS, but the RTI effect
is forced via a single relaxation parameter suggested by weakly anisotropic EDQNM:

ϕ(k, t)(RTI) =
1

5π

∫∫
∆k

θkpq
k3E(p, t)E(q, t)

pqE(k, t)
(1− y2)dpdq, (2.14)

in which θkpq is the EDQNM decorrelation timescale for third-order statistics (details
in Appendix A). Comparing equations (2.13) and (2.12), it appears that the anisotropic
terms T (E)2 and T (Z)2 in ZCG are replaced by explicit RTI terms in (2.13). We therefore
propose a mixed model in which the growth of angular harmonics of degree larger than
two by linear mechanisms is balanced by the damping from the RTI term. We call it the
‘hybrid’ model, which is computed as

T (E)(k, t) =T (E)2 − ϕ(RTI)(k, t)
(
E(k, t)− E(2)(k, t)

)
T (Z)(k, t) =T (Z)2 − ϕ(RTI)(k, t)

(
Z(k, t)− Z(2)(k, t)

)
,

(2.15)

in which T (E)2, T (Z)2, E(2), and Z(2) are given by equations (2.12) and (2.8) respectively.
Briefly speaking, the two proposed models in terms of equations for E and Z both

have the same exact linear operator as the left-hand side of equation (2.6) (or as those
in EDQNM1). Concerning the nonlinear closure, the ZCG model retains the simplified
EDQNM technique of MCS with equation (2.12), whereas the hybrid model brings in
further RTI effects as in equation (2.15).
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3. Numerical procedure: method and discretization

The first goal of this study is to numerically solve the system of (2.6) for various mean
flow gradients, with controlled accuracy for the linear terms and generalized transfer
terms given by equation (2.12) or (2.15).

In both ZCG and hybrid models, the nonlinear terms are EDQNM-closed integrals of

spherically-averaged descriptors T (k, t), S̃
NL(dir)
ij (k, t), S̃

NL(pol)
ij (k, t) (see Appendix A) or

ϕ(k, t)(RTI). Thanks to the simplified EDQNM technique, the 3D triadic integral for each
k point in EDQNM1 is reduced to the plane triadic integral for each 1-dimensional k
point. Hence, the computational cost and memory for nonlinear terms are much smaller
than those in the paradigmatic DNS algorithm by Rogallo (1981) which calculates ful
3D convolution with pseudo-spectral method.

The main difficulty is to solve the advection operators in (2.6). In the commonly used
approach of SLT, as well as in fully nonlinear DNS by Rogallo (1981) and Lesur &
Longaretti (2005), the scheme amounts to following the characteristic lines in terms of
k(t) which are related to the the mean Lagrangian trajectories in physical space (details in
Appendix B). Accordingly, the wave-vector is time-dependent so that the time evolution
of a statistical quantity Φ appears as

Φ̇(k(t), t) =
∂Φ

∂t
+
∂Φ

∂ki

dki
dt
, (3.1)

with k̇i = −Ajikj the eikonal equation. This method can perform very well simulations
in triple-periodic boxes without too complex numerical consideration. However, the
computational domain can be strongly distorted at large times, so that periodic remeshing
is required, as illustrated in figure 4. Therefore, the distorted grids are difficult to
couple with nonlinear models based on spherically-averaged descriptors, and the following
remeshing and interpolation have a consequence on accuracy, especially considering
spherically-averaged statistics.

A different method is chosen here. We use a finite-difference scheme for evaluating
the ∂

∂kn
-derivatives, with a discretization of the wave-vector consistent with the polar-

spherical coordinates presented in figure 3. With respect to the method of characteristics,
there is no need for interpolation or remeshing, but special attention should be paid to the
numerical convergence problem induced by the finite-difference method for the advection
operator. The orientation of the wave-vector is represented with high accuracy by using
refined grids on spheres in spectral space, and the number of spherical grid points depends
on the anisotropy of flows rather than the Reynolds number. As in EDQNM calculations
and shell-models (Plunian & Stepanov 2007), a logarithmic distribution of discretized k
is used for an accurate representation at the smallest and largest scales. This permits the
present models to simulate flows with really high Reynolds number compared to DNS.

In polar-spherical coordinates, the advection operator is

∂

∂kn
=

∂

∂k
αn +

1

k

∂

∂θ
e(2)n (α)− 1

k sin θ

∂

∂ϕ
e(1)n (α). (3.2)

Accordingly, k, θ and ϕ can be discretized independently and the local frame defined
by (2.5) and sketched in figure 3 is used. However, the governing equations for E(k, t)
and Z(k, t) become singular at the pole (along n) where the Craya frame is not uniquely
defined. We solve this by using a degenerate equation (2.2) at the pole by replacing the
Craya frame by the Cartesian frame,(

∂

∂t
+ 2νk2

)
R̂αβ(k,n, t)+(Aαγ+2εαmγΩm)R̂γβ+(Aβγ+2εβmγΩm)R̂αγ = Tαβ , (3.3)
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Figure 4: Illustration of the resolution grid when using the method of characteristics for
uniform mean shear.

Figure 5: Illustration of the interaction between the two numerical regions in the latitude
direction. In the polar region, fixed-frame equations are specifically used, and both regions
exchange information to recover the complete spectral information.

in which the spectral tensor R̂ij reduces to four non-zero components because of incom-
pressibility so that Greek indices are restricted to 1,2, ni = δi3, and the advection operator
vanishes since Amnnm = 0. We compute R̂ij(k, t) rather than the set (E(k, t), Z(k, t)) in
a neighborhood of the pole, and we exchange values with neighbor grid points to provide
the required boundary conditions (see Figure 5). Overall, the special treatment of the
pole improves the numerical accuracy obviously when the advection along θ direction is
significant.

A large number of tests have been done for the numerical implementation, e.g. various
FDSs, integration schemes for time evolution, and the convergence study in terms of
grids. The FDS we use for discretizing derivatives with respect to km in the advection
term is a sixth-order explicit centered scheme, and the classical fourth-order Runge-Kutta
scheme is employed for time marching. In practice, the strongest accuracy constraint for
computing ∂/∂km appeared to be in the small-scale range (large wavenumbers), where
mesh elements distribution is relatively sparse. We use a ‘high order FDS, low resolution
grids’ strategy for computational efficiency, which provides excellent accuracy for the
sheared turbulence case.

All details on numerical simulation method can be found in Zhu (2019).

4. Validation of the proposed models versus SLT and DNS for
rotating shear flow

We begin the validation of the ZCG model by considering different flows in both the
inviscid and viscous linear limits, and compare with SLT results, and with results of MCS,
in §4.1. In §4.2 we compare fully nonlinear results provided by: (a) the ZCG model, (b)
the MCS model, (c) the hybrid model and (d) Direct Numerical Simulations by Salhi
et al. (2014).

4.1. Validation in the linear limit

The linear limit regime is obtained by considering only the left-hand side of equations
(2.6) with zero right-hand side. This limit is very subtle and difficult to capture as
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introduced in §3. We consider a flow with mean plane shear S such that the mean velocity
gradient is Aij = Sδi1δj2. The indices 1, 2 and 3 refer to streamwise, cross-gradient, and
spanwise directions respectively (see figure 1). As in Salhi et al. (2014), we add system
vorticity 2Ω in the spanwise direction, and choose the same flow parameters and initial
spectrum: at initial time, the Taylor-scale-based Reynolds number is Re = (2K)1/2λ/ν =
56, and the shear number is SK/ε = 2, where K is the kinetic energy, ε its dissipation,
and λ the Taylor length scale. Rotation is chosen such that the Rossby number R = −5,
−1, −1/2 and 0.

The numerical linear results from Salhi et al. (2014) are denoted as ‘SLT’ in this section,
which are not obtained by merely cancelling nonlinear terms in pseudo-spectral DNS, as
sometimes done, but using an accurate resolution of the time-dependent linear equation
(B 4) recalled in Appendix B. Some predictions concerning the pure shear case without
additional system vorticity are also given by spectral linear theory denoted as ‘theo.’
These theoretical predictions correspond to the exact resolution of equation (B 6) for
R̂ij(k, t) in which an integral Green’s function (B 11) is computed analytically (details in
Appendix B). Therefore, in the comparison with models, the SLT is a reliable reference.

4.1.1. Turbulent kinetic energy

The present model’s numerical predictions of turbulent kinetic energy are shown in
figure 6, along with those of MCS and the results of SLT. Typical cases with different
combinations of strain and rotation are plotted: R = −5 or Ω = 5S/2 corresponds
to a stabilizing, anticyclonic case; R = −1 or Ω = S/2 is a neutral case with zero
absolute vorticity, as encountered in the central region of a rotating channel; R = −1/2
or Ω = S/4 is a maximum destabilization, anticyclonic case, as in the pressure side of a
rotating channel; and R = 0 with no rotation.

First of all, figure 6 shows excellent agreement between results of the ZCG model and
SLT for all the four cases, and also the agreement with the theoretical results in the case
without system rotation in figure 6(a). This is true for the inviscid runs but also, without
surprise, for the viscous ones. The figure shows that the time-evolution of kinetic energy
is accurately reproduced by our present model, thus confirming that our discretization
and choice of numerical FDS are adequate in this limit.

In contrast, the MCS model departs rapidly from SLT at St & 3, for both viscous or
inviscid cases at R = 0,−1 (figures 6a and c), and for the inviscid case at R = −5 (figure
6d). In the viscous exponentially stable R = −5 case, which is stabilizing, the damping of
energy is strong so that the relative departure of MCS from SLT is not as clear but still
noticeable. MCS is close to SLT in the maximum destabilization case R = −1/2 (figure
6b), exponentially unstable, where the kinetic energy growth is largest. Clearly, for the
R = 0 case, the algebraic growth of kinetic energy is missed by MCS and exponential
growth is predicted instead. On the contrary, our ZCG model predicts the linear growth
of kinetic energy rightly.

Note that, in the inviscid case of zero absolute vorticity R = −1, inviscid MCS gives an
evolution not far from periodic, probably close to the evolution of a one-point Reynolds-
Stress-Model (RSM), in strong contrast with the expected algebraic growth.

We have finally gathered in figure 7 the kinetic energy evolution for all the previous
inviscid cases, as well as for the intermediate case at R = −1/4 which is not documented
in Salhi et al. (2014). The figure shows that kinetic energy decays only for R = −5, and
that kinetic energy grows in all other cases, including the neutral case R = −1. Moreover,
there is very few difference between cases R = −1/2 and −1/4. This is consistent
with the criterion in terms of Rossby number R, from the stability analysis discussed
in Introduction.
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Figure 6: Time evolution of turbulent kinetic energy in inviscid and viscous linear limit,
as a function of non dimensional time St. ZCG-MCS-SLT comparisons with four typical
R ratios: (a) R = 0, in which the inviscid and viscous analytical exact solution is also
plotted; (b) R = −0.5; (c) R = −1; and (d) R = −5.

4.1.2. Kinetic energy spectra for pure shear

The time evolution of the spectrum E(k, t) is governed by(
∂

∂t
+ 2νk2

)
E(k, t) + SL(k, t)− P (k, t) = T (k, t), (4.1)

in which the spherically-averaged production spectrum is

P (k, t) = −2SE(k, t)H12(k, t) (4.2)

for shear flows, where the anisotropy tensor H(k, t) isHij(k, t) = H
(dir)
ij (k, t)+H

(pol)
ij (k, t).

Spherically averaged kinetic energy spectra obtained from ZCG, MCS and the theo-
retical SLT solution are plotted in figure 8 for R = 0 at St = 5, and in figure 9 from
ZCG only at different times.

Figure 8 shows that the ZCG model not only predicts correctly the total kinetic energy
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−5,−1,−1/2,−1/4, 0 in the linear inviscid limit by the ZCG model.
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Figure 8: Spherically averaged energy spectra for pure shear case at St = 5. MCS-
ZCG-theoretical solution comparisons in both (a) inviscid linear and (b) viscous linear
limit.

evolution but also the scale-distribution at all spectral sub-ranges when compared with
the theoretical prediction. This is the case for both the inviscid limit (figure 8a) and
the viscous one (figure 8b), so that the agreement cannot be only due to the effect of
viscosity. As expected from the above comparison on the total kinetic energy, the energy
spectra of the viscous or inviscid MCS model do not match the theoretical prediction.
The departure is observed in the small scale range and in the inertial spectral range, less
so in the viscous subrange where viscous dissipation is dominant and is solved exactly in
the models.

The time evolution of the kinetic energy spectra is shown in figure (9), where the ZCG
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Figure 10: Time evolution of (a) the deviatoric component b12 of the Reynolds stress
tensor, which is a production-related term, and its contributions from (b) directional and
(c) polarization anisotropies. MCS-ZCG-theoretical solution comparisons for pure shear
case R = 0 in the viscous linear limit.

model spectra are compared to SLT spectra up to St = 8. The agreement is excellent, and
it is particularly worth noticing that the peak of the ZCG spectra follow closely those of
the SLT solution, indicating that the large scales are well resolved. The correspondence
between the models in terms of the peak wavenumber evolution can also be observed in
the nonlinear validation in section 4.2.

4.1.3. Production for pure shear

The analysis of production in one-point statistics is obtained by spherically averaging
the E-equation (2.6a) or integrating equation (4.1) over wavenumber k. Since the mean
shear is in the (x1, x2) plane, the one-point production term is 〈u1u2〉, but we rather
compute the corresponding component b12 of the deviator of the Reynolds stress tensor
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directional and polarization anisotropies for non rotating shear case R = 0 in viscous
linear limit. MCS-ZCG-theoretical solution comparisons at (a) St = 0.5 and (b) St = 5.

(RST), namely bij = 〈uiuj〉/(2K)− δij/3, which is obtained from

bij(t) = K(t)−1
∫ ∞
0

E(k, t)Hij(k, t)dk. (4.3)

At R = 0, the time development of b12 is shown in figure 10 in the viscous linear limit. The
present model allows to correctly capture the total deviatoric part of the Reynolds stress
tensor (figure 10a), along with its directional (figure 10b) and polarization contributions
(figure 10c). The figures also show that MCS predicts quite well the development of the

directional component b
(dir)
12 , but not that of the polarization component b

(pol)
12 , so that

its prediction for b12 is not correct after St ' 1. The overestimation of the magnitude of

b
(pol)
12 by MCS, with its plateau at large St, is connected to the erroneous prediction of

the exponential growth of total kinetic energy which is given by

1

K
dK
dt

= −2Sb12 −
ε

K
. (4.4)

Predictions of the production spectrum (4.2) by the ZCG model with comparison to
the results of MCS and the theoretical ones are reported in figure 11. Figure 11a at
short time St = 0.5 shows a good agreement between both models and the theoretical
predictions, due to the fact that anisotropy development is still limited at this time.
However, figure 11b at longer time St = 5 shows that the MCS model prediction is
not correct, mainly due to the polarization spectrum whose amplitude is not adequately
captured, notwithstanding the proper prediction of the directional anisotropy production
spectrum. The ZCG model compares very well with the theoretical prediction for both
production spectra. This indicates clearly that the representation of anisotropy has to be
complete, in terms of directional accumulation of energy (in latitude in spectral space),
but importantly also in terms of the more complex polarization anisotropic contents
of the flow, which is related to its structure. This was also observed in homogeneous
turbulence, for magnetohydrodynamics, rotating, or stratified flows (Sagaut & Cambon
2018, and references therein).
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These results are confirmed when rotation is added, on figure 12. Polarization
anisotropy of the production spectrum is overestimated by MCS, except in the most
unstable case (figure 12b). The directional part is much better reproduced than the
polarization part in almost all other cases except the one in figure 12d. MCS is not good
even for the directional part of anisotropy for this case at R = −5 in contrast with figure
12b at R = −0.5.

Note finally from figure 12 that the amplitude of production spectrum peak is larger
for the case R = −1/2 and decreases with absolute value of R from −1 to −5, in which
case it is only a hundredth of that of R = −1/2.

4.2. Nonlinear dynamics for the rotating shear cases

The addition of a Coriolis force dramatically changes the linear dynamics with
respect to the pure shear case. It is expected that the most difficult term to
account for in SLT equation for second-order statistics is the stropholysis factor
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−ikZ(k, t) ((W + 4Ω) ·α− 2ΩE) in (2.6b), which reflects the direct effect of mean
vorticity, shear-vorticity as well as system vorticity. As already discussed by Leblanc
& Cambon (1998), both absolute mean vorticity W + 2Ω and tilting mean vorticity
W + 4Ω are called into play. The result in figure 6 suggests that the simplest case
without stropholysis term explains the good behaviour of MCS. Unfortunately, the
stropholysis effect includes also the ΩE term in (2.6b), which is non zero in our first
system of axes. To identify more clearly stropholysis and tilting mean vorticity, the mean
plane shear is changed to Aij = Sδi1δj3 in the following fully nonlinear cases so that ΩE
vanishes. In addition, the robustness of the present ZCG model can be tested and one
can also obtain simpler analytical linear solutions with this mean-velocity configuration.

Consequently, in this new configuration, indices 2 and 3 refer to spanwise and cross-
gradient directions, and the Coriolis force is along axis 2. Accordingly, the ratio R changes
to 2Ω/S. The relevant component for single-point anisotropy then becomes b13 instead
of b12 and the corresponding production spectrum is P (k, t) = −2SE(k, t)H13(k, t). The
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component, b13, typical of production-related term; (b) directional and (c) polarization
anisotropies by the different fully nonlinear models in the non rotating shear case R = 0.
Predictions by MCS-ZCG-Weinstock’s and hybrid models.

initial energy spectrum is the same as in the Direct Numerical Simulations (DNS) by
Salhi et al. (2014) and we use the flow parameters from the linear cases since some
computational parameters of the DNS are not document in their article.

Results for the nonlinear evolution of turbulent kinetic energy are presented in fig-
ure 13, for quantitative comparisons between DNS, MCS and the ZCG model, and with
ZCG in the viscous linear limit. First of all, figure 13d shows that all approaches agree for
the R = −5 case, showing that the flow regime is mostly viscous linear with very small
production, also echoed by the small amplitude of the production spectrum in figure 12d.
This is not the case for other flows at R = 0,−1/2 and −1 in which nonlinearity and
anisotropy are larger. Figures 13a-c for these flows show a very good agreement between
DNS and ZCG, although in the pure shear case the ZCG model saturates in terms of
kinetic energy with respect to DNS which suggests an exponential re-growth. The MCS
model predictions are not satisfactory in the most unstable case, in spite of its good
behaviour in the linear limit (figure 6b for R = −1/2). The disappointing behaviour of
the ZCG model for the case R = 0 without system rotation (figure 13) suggests to add
a term of forced Return To Isotropy in the ZCG model, in line with the proposition
of Weinstock (2013). This motivated the introduction of the hybrid model described in
section 2.2, and figure 13 will be discussed further in section 5 along with Weinstock’s
model results.

5. Discussion for pure shear cases

Going back to figure 13a, the results of both Weinstock’s and hybrid model are plotted.
Weinstock’s model misses the exponential regrowth, as does our ZCG model, but a very
satisfactory result is given by the hybrid model. The hybrid model remains satisfactory
in all cases with system rotation, and the slight underestimation of energy from DNS can
partly result from slightly dissimilar flow parameters between our simulations and DNS.
The fact that the hybrid model performs better than ZCG or Weinstock’s alone indicates
that both models have complementary features that add up correctly to produce a better
model compared to MCS for pure shear turbulence.

Still focusing on the case without system rotation, the deviatoric part of the Reynolds
stress tensor is plotted in figure 14. Unfortunately, this information is not available from
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Figure 15: Time development of spherically averaged energy spectra in the non rotating
shear case. Comparisons of the results among different fully nonlinear models, viscous
linear and DNS: (a) DNS; (b) ZCG viscous linear; (c) MCS; and (d) hybrid model.

DNS, but the hybrid model gives the clearer steady limit of b13 = −0.14 that is consistent
with the exponential re-growth of energy, with a value very close to the classically
expected one, in the range [−0.16;−0.1] (see table p. 443 in Sagaut & Cambon 2018).
This stabilization of b13 to a constant by the hybrid model explains the constant rate of
exponential growth equal to −2b13 − ε/(SK) (equation 4.4, allowing for the change of 2
and 3 reference directions). Contribution of polarization anisotropy is dominant (figure
14c), and overestimated only by MCS, as usual, with a negative sign opposite to the one
of directional contribution. The latter is correctly reproduced by MCS as well.

The spherically averaged energy spectrum E(k, t) is plotted in figure 15 at increasing
times St = 0, 3, 5, 8. Some differences between the results of various models with
respect to the DNS ones are partly due to a forced isotropic precomputation only
performed in DNS, in order to increase the Reynolds number before applying the mean
shear. Accordingly, the initial spectrum (at St = 0) is closer to the one before the
forced isotropic precomputation than the actual one in DNS. Nevertheless, qualitative
comparisons remain informative. In figure 15c, the MCS model again is not relevant,
especially at large scales up to wavenumbers of about 10, and at small scales where
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too much evolution is observed. The ZCG model in its viscous linear limit (figure 15b)
satisfactorily predicts the large scales growth, but not the decrease of the smallest scales.
The latter decrease continuously instead of being saturated, as in DNS in figure 15a.
The prediction of large scales evolution is almost unchanged with respect to the linear
behaviour in the ZCG model (not shown) and in the hybrid model (figure 15d), but
the collapse of smallest scales at increasing times is very well reproduced by the hybrid
model, slightly better than in the ZCG and Weinstock models. Because all models except
MCS reproduce correctly the linear dynamics, dominant at large scales, it is difficult to
distinguish them from this viewpoint. The scrambling of large scales in DNS, due to the
poor discretization at small wavenumber, and cumulated errors of remeshing, especially
at long times, does not permit a hierarchy of the models’ predictions quality in the
dissipation range. One can however focus on the large scales growth, or equivalently on
the decrease of the wavenumber kp at the peak of E(k). DNS does predict the expected
decrease of kp in time, from kp ' 16 at St = 0 to kp ' 4.2 at St = 8, and so do the ZCG
and hybrid models (kp ' 4.1 at St = 8 for the latter), but the decrease by the linear
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ZCG model is smaller (kp ' 5.3 at St = 8), and similarly for Weinstock’s model (not
shown).

Finally, the production spectrum P (k, t) is plotted in figure 16 for DNS, viscous linear
ZCG, MCS and hybrid models, at a significantly large non dimensional time St = 5.
Again, all models behave satisfactorily at first glance, except MCS due to the polarization
contribution to production (figure 16c), which is overestimated, as in the linear limit.
Close examination of directional terms still shows small differences between the models,
e.g. the peak production occurs at larger scales in Weinstock’s model, and the complete
ZCG model decreases both directional and polarization production slightly (not shown),
but the amplitudes and shapes of production spectra are very similar to that of DNS in
all models but MCS.

6. Conclusions and perspectives

Spectral modelling seems to be a powerful and promising approach to statistics
of two-point second-order correlations for homogeneous anisotropic turbulence, in the
presence of uniform mean gradients and body forces, using a smart combination of
SLT and EDQNM closure. This allows a scale-by-scale and angle-dependent analysis of
anisotropy, disentangling directional and polarization anisotropy. Given the complexity
and numerical cost of models in which the full angle-dependence of spectra is retained,
especially for the EDQNM part, simplified models in terms of spherically-averaged
descriptors are favored. This was illustrated by Cambon et al. (1981) and further
developed by MCS using truncated spherical harmonics expansions. Our approach and
detailed calculations in the present paper first confirm the following general tendencies:

(i) When the linear dynamics gives exponential growth, models similar to MCS (in
terms of spherically-averaged descriptors) work well. Generally, the nonlinear evolution
results in a reduction of the exponential growth rate of energy, but without saturation.
This is illustrated in figure 6, in which the maximum destabilization case (figure 6b)
merits further discussion.

(ii) On the contrary, models perform poorly when the linear dynamics yields algebraic
growth, best illustrated with the plane shear flow without rotation: any model using
a truncated expansion in terms of spherical harmonics wrongly gives an exponential
growth. In spite of satisfactory results at short time, MC —even with further introduc-
tion of fourth-degree harmonics (Briard et al. 2018)—is disqualified for a quantitative
comparison with DNS. A similar comment applies to the other ‘neutral case’ (figure
6c), although to a lower extent. This is confirmed in our paper, thanks to the accurate
calculation of exact SLT.

The second point (ii) suggested to focus on the pure shear case, in which the exponential
re-growth is mediated by nonlinear mechanisms. We thus combined exact calculation of
linear terms in the (E , Z) equations, and MCS model for reconstructing the nonlinear
transfer terms from EDQNM at the degree 2. But this was not sufficient and kinetic
energy was found to saturate, without regrowth. This disappointing result is attributed
to insufficient scale-by-scale return to isotropy. There is indeed a large consensus on
the fact that RTI is essential for redistributing the kinetic energy from the streamwise
component of the RST to the vertical (cross-gradient) one. The nonlinear feeding of this
vertical component is the key for obtaining the re-growth, even if the ‘Rotta operator’
damps all components of RST anisotropy, including the production-related one (b12 in
section 4.1, b13 in section 4.2). This suggested the recourse to Weinstock’s model, in
which the spectral RTI is prescribed, and yields two new results:

(iii) Weinstock’s model alone does not work, when implemented, with a saturation of
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kinetic energy instead of regrowth (figure 13a). This result is obtained by employing an
accurate calculation of the linear terms.

(iv) Satisfactory results were eventually obtained by an hybrid of our first ZCG model,
with a spectral RTI restricted to higher degree harmonics. This means that the nonlinear
closure needs an elaborate degree-two expansion (in MCS but absent in Weinstock’s
model), but supplemented by a spectral RTI term for clipping higher degree terms (as
in Weinstock, and ignored in ZCG).

The latter result is perhaps our best achievement. It merits more specific studies for the
pure shear, with parametric analysis and comparison with additional DNS simulations,
extrapolated to very high Reynolds number by our hybrid model. Fortunately, our hybrid
model does not require new adjustable parameters: a single isotropic eddy-damping
timescale is used in MCS and in the return-to-isotropy coefficient ϕRTI (equation 2.13)
proposed by Weinstock.

Other perspectives concern the improvement of simpler models, keeping the description
in terms of angular harmonics but with ad-hoc corrections, and a possible outcome
for the improvement of single-point closures is expected as well. Further studies on
inhomogeneous flows in physical space inspired from the current work can also be
expected. For instance, the frameworks of anisotropic spectra and anisotropic structure
functions may be bridged via the expansion in terms of spherical harmonics: the so-called
Wiener-Kinchin expansions can be used and adapted to this context. Regarding inhomo-
geneous flows in geophysics, astrophysics or wall-bounded turbulence, the feedback from
fluctuation to mean field is essential and ought to be restored, but the interaction between
fluctuation and itself is almost ignored or roughly mimicked by effective diffusivities in
such studies. Alternately, an elaborate anisotropic EDQNM model for this nonlinear
interaction can be coupled with a model for feed-back interaction; this is the case of
unstably stratified homogeneous turbulence (Burlot et al. 2015) coupled with the rapid
acceleration model by Gréa (2013).

The latter study in buoyancy-driven flows suggests similar fully coupled models in
weakly inhomogeneous shear-driven flows.
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Appendix A. EDQNM background and detailed equations for MCS

The closed system of equations from MCS (Mons et al. 2016) for (E,H
(dir)
ij , H

(pol)
ij ) is:(

∂

∂t
+ 2νk2

)
E(k, t) = SL(k, t) + T (k, t)(

∂

∂t
+ 2νk2

)
E(k, t)H

(dir)
ij (k, t) = SL(dir)(k, t) + S

NL(dir)
ij (k, t)(

∂

∂t
+ 2νk2

)
E(k, t)H

(pol)
ij (k, t) = SL(pol)(k, t) + S

NL(pol)
ij (k, t),

(A 1)

in which linear terms in the left-hand-sides of equations (2.6a) and (2.6b) give contribu-

tions SL, S
L(dir)
ij and S

L(pol)
ij , whereas nonlinear contributions yield the transfer terms T ,

S
NL(dir)
ij and S

NL(pol)
ij . A convenient way to write the model in equations (2.12) is to use

the spectra S̃
NL(dir)
ij = S

NL(dir)
ij /T and S̃

NL(pol)
ij = S

NL(pol)
ij /T .
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The linear terms in equations (A 1) are:

SL(k, t) = −2Slm
∂

∂k

(
kEH

(dir)
lm

)
− 2ESlm

(
H

(dir)
lm +H

(pol)
lm

)
, (A 2)

SL(dir)ij (k, t) =
2

15
SijE −

2

7
E

(
SjlH

(pol)
il + SilH

(pol)
jl − 2

3
SlmH

(pol)
lm δij

)
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2

7

(
Sil

∂
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(
kEH

(dir)
lj
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+ Slj
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(
kEH
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li
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3
Slm
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− 1
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(
εjmnWmH
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(A 3)

SL(pol)ij (k, t) =− 2
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12
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E
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(dir)
lm δij
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(A 4)

with E = E(k, t), H
(dir)
ij = H

(dir)
ij (k, t), H

(pol)
ij = H

(pol)
ij (k, t). In the presence of additional

system vorticity, only the contribution from polarization anisotropy is affected, with the
last term in Ω added in equation (A 4) with respect to the equation in Mons et al. (2016).

Nonlinear terms are

T (k, t) =

∫
∆k

θkpq16π2p2k2q(xy + z3)E
′′

0 (E
′

0 − E0)dpdq, (A 5)

SNL(dir)
ij (k, t) =

∫
∆k

θkpq4π
2p2k2qE

′′

0

[
(y2 − 1)(xy + z3)(E

′

0 − E0)H
(pol)′′

ij

+ z(1− z2)2E
′

0H
(pol)′

ij

]
dpdq

+

∫
∆k

θkpq8π
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′′
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(3y2 − 1)(E

′

0 − E0)H
(dir)′′

ij

+ (3z2 − 1)E
′

0H
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ij − 2E0H(dir)
ij

]
dpdq,

(A 6)
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SNL(pol)
ij (k, t) =
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∫
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Pij(k, t) =

∫
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θkpq16π2p2k2q(yz + x)E
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E
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0
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with E0 = E(k,t)
4πk2 , E ′

0 = E(p,t)
4πp2 , E ′′

0 = E(q,t)
4πq2 , H

()
ij = H

()
ij (k, t), H

()′

ij = H
()
ij (p, t) and

H
()′′

ij = H
()
ij (q, t), where H

()
ij may refer to either H

(dir)
ij or H

(pol)
ij . The integrals over p

and q are performed over the domain ∆k so that k, p and q are the lengths of the sides
of the triangle formed by k, p and q.

In addition, the characteristic decorrelation time is θkpq = (µkpq)
−1 as in the isotropic

EDQNM model, with µkpq = ν(k2 + p2 + q2) + η(k, t) + η(p, t) + η(q, t), and the eddy-

damping coefficient is η(k, t) = A
(∫ k

0
p2E(p, t)dp

)1/2
following Pouquet et al. (1975).

The only parameter of the model is set to A = 0.36 to recover the well-admitted value
of the Kolmogorov constant (André & Lesieur 1977), and is the same in all the EDQNM
models, hence is not used as a tuning parameter.

Appendix B. Elements of spectral linear theory

The equations for the fluctuating velocity in physical and spectral space are

∂ui
∂t

+Ajkxk
∂ui
∂xj

+Aijuj +
∂p

∂xi
+ 2εimnΩmun = 0, (B 1)

∂ûi(k, t)

∂t
−Alnkl

∂ûi(k, t)

∂kn
+Min(k)ûn(k, t) = 0. (B 2)

They permit the definition of characteristic lines in physical space and Fourier space:

ẋi =
dxi
dt

= Aikxk and k̇i =
dki
dt

= −Ajikj . (B 3)

The characteristic lines can be expressed by the Cauchy matrix Fij(t, t0) with xi =
Fij(t, t0)Xj and ki(t) = F−1ji (t, t0)Kj , where Xj = xj(t0) and Kj = kj(t0). For the
spectral wavenumber evolution, one gets

k̇i = −Ajikj and
dûi(k(t), t)

dt
= −Min(t)ûn(k(t), t). (B 4)

Consequently, the linear solution for ûi(k(t), t) can be obtained as

ûi(k(t), t) = Gij(k, t, t0)ûj(K, t0) with Gij(k, t0, t0) = δij −
KiKj

K2
, (B 5)
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when the Green’s function G is solved, and the general solution for the second-order
spectral tensor is therefore

R̂ij(k, t) = Gik(k, t, t0)Gjl(k, t, t0)R̂kl(K, t0). (B 6)

In this solution, viscous decay can easily be inserted as a multiplying exponential term.
For instance, for the shear case without rotation

[Aij ] =

0 S 0
0 0 0
0 0 0

 (B 7)

k1(t) = K1, k2(t) = K2 − StK1, k3(t) = K3 (B 8)
dû1(k(t), t)

dt
= (

2k21
k2
− 1)Sû2(k(t), t)

dû2(k(t), t)

dt
=

2k1k2
k2

Sû2(k(t), t)

dû1(k(t), t)

dt
= −2k1k3

k2
Sû2(k(t), t)

(B 9)

and since k̇2 = 2kik̇i = −Sk1k2, one finds that k2û2(k, t) is conservative, so thatû1(k, t)
û2(k, t)
û3(k, t)

 =

1 G12 0

0 K2

k2 0
0 G32 1

û1(K, 0)
û2(K, 0)
û3(K, 0)

 (B 10)

where the Green’s function components are

G12 = −S
∫ (

1− 2
K2

1

k2

)
K2

k2
dt, G32 = 2S

K1K3

K2

∫
K4

k4
dt . (B 11)

The analytical solution comes from the integrals of
∫ 1

k2
dt and

∫ 1

k4
dt, and we finally

obtain
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(B 12)

For the 2D modes such that K1 = 0, the simple solution is k/K = 1, G12 = −St and
G32 = 0.
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