
HAL Id: hal-02906434
https://hal.science/hal-02906434

Submitted on 26 May 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Implicit Discrete Element Analysis of a Masonry Cupola
Under Seismic Loads

Ali Rafiee, Marc Vinches

To cite this version:
Ali Rafiee, Marc Vinches. Implicit Discrete Element Analysis of a Masonry Cupola Under Seismic
Loads. International Journal of Civil Engineering, 2016, 14 (6A), pp.357-367. �10.1007/s40999-016-
0035-0�. �hal-02906434�

https://hal.science/hal-02906434
https://hal.archives-ouvertes.fr


Implicit Discrete Element Analysis of a Masonry Cupola Under
Seismic Loads

Ali Rafiee1 • Marc Vinches2

Abstract In the current study, the dynamic mechanical

behaviour of a masonry cupola composed of non-convex

discrete elements is investigated. This cupola is designed in

innovative and modern ways and was recently constructed

with stone blocks in the south of France. The necessity of

applying an accurate numerical modelling method being

able to take into account the real geometry of each non-

convex block is also presented and discussed. The stability

state of this masonry structure, by considering the different

levels of seismic loads is studied. In addition, the effects of

changes in the contact condition between blocks, or the

blocks and the structure foundation, are comprehensively

investigated.

Keywords Numerical model �Masonry structure � Seismic

loads � Discrete elements � Non-smooth contact dynamics

1 Introduction

The development of numerical tools in the field of structural

analysis, over the last few years, has enabled researchers to

establish diverse approaches for the numerical modelling of

masonry structures. Nevertheless, the analysis of the

mechanical behaviour of masonry structures remains chal-

lenging due to the influence of numerous factors such as

taking into account their discontinuous nature. The

limitations of experimental and analytical modelling when

considering representative buildings increase the necessity

of numerical modelling tools dedicated to masonry struc-

tures. Discrete element methods are inherently able to

capture the discontinuous nature of masonry structures and

allow either static or fully dynamic analyses with large

displacements. Several modelling approaches of masonry

structures (based on continuous or discontinuous mod-

elling) are currently under development by several research

teams (Rafiee and Vinches [1] and Idris et al. [2]). The

discrete element modelling is widely used in particular for

assessing the mechanical behaviour of historical masonry

structures, or after the determination of their vulnerability to

utilise reinforcement and restoration techniques.

In the present paper, our objective is to study the sta-

bility and collapse mechanisms of a new stone masonry

construction subjected to static and seismic loadings. A

masonry cupola is investigated with the discrete element

method using the open platform LMGC90 [3], which is

mainly based on the non-smooth contact dynamics (NSCD)

method. This software allows to model divided materials,

made of rigid or deformable bodies, with complex

mechanical behaviour (elasto-plastic, damaged materials)

or interactions (frictional and cohesive contacts).

The NSCD method proposed by Moreau [4–6], Jean

[7–10], Jean and Moreau [11] is used in the current study;

therefore, major part of the introduction is dedicated to

introduce briefly this method. This method is a discrete ele-

ment method (DEM) dedicated to the simulation of divided

materials [12]. It emerged from the mathematical framework

of non-smooth dynamics and subsequent algorithmic devel-

opments. The ‘‘nonsmoothness’’ arises from various aspects

such at velocity jumps due to contact and friction.

The NSCD method has shown its efficiency particularly

in the simulation of granular media [13]. The method has
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also been applied to the mechanical analysis of masonry

structures [1, 14–16]. Cundall was the first to propose a

numerical tool, in granular media where large collections

of bodies are encountered, considering particles as rigid

bodies with contacts governed by a compliant model [17].

The contacts between the particles in a model are assumed

to obey a viscoelastic behaviour in which the local strain

variables are the relative particle displacements and

velocities [18]. It relies on an explicit time integration

scheme of the equations of motion which implies to deal

with the small time and space scales involved in contact

interactions [12].

Considering the NSCD method, such small scales are

taken into account in contact laws (possibly stiff) which

necessitate a non-smooth formulation of particle dynamics

[12]. In other words, the NSCD method is distinguishable

from customary DEM methods using an implicit time

integration scheme and non-regularized interaction law

[15]. For example, the contact laws are expressed as

‘‘complementarity’’ relations between the contact force and

the relative velocity without introducing artificial penal-

ization parameters or damping. Friction is modelled through

Coulomb’s law. NSCD method does not involve small

interpenetrations between particles as with a customary

DEM method, and whatever the time step the method is

unconditionally stable due to the implicit time integration

scheme [19]. A more detailed discussion on the NSCD

method and the mathematical formulation used in this

method can be found in [4–6, 8, 9, 11]. A brief explanation

of the basic formulation of the NSCD method can be

obtained in [15]. The LMGC90 software is mainly based on

the NSCD method [3]. All the results presented thereafter

were obtained using this code. The valuable feature of

LMGC90 is its large range of contact laws already imple-

mented and its ability to manage various object shapes [19].

All above mentioned studies and also previous scientific

works of the authors can show the capacities of the NSCD

method and also the LMGC90 code for modelling complex

masonry structures. The current study tries to present the

obtained results for a recently constructed masonry struc-

ture and to highlight the importance of the input geometry

in the final conclusion. The validity comparison of using the

NSCD method for masonry structure is previously per-

formed for large number of basic and academic masonry

structures by the well-known researchers in this field and

also by the authors of this study.

2 The Cupola of Junas

The structure was designed by the French association of

‘‘Compagnons Passants Tailleurs de Pierre’’. This building

was designed in the framework of the meeting of stone

masons from France and Europe in Junas, a village from

the Gard department, in southern France. This association,

with this cultural project aims at a revival of the relation-

ship between architects, engineers and stone craftsmen.

The structure is a 8 m diameter half-sphere of stone,

opened at its top with a 1 m diameter hole, and at its base,

resting only five pillars 2 m high, 0.7 m wide and 0.4 m

thick (Fig. 1). These structures aims to symbolise knowl-

edge sharing (different professions contribute to this

experience) and universality (the half-sphere represents the

Earth and the five pillars the five continents) (Fig. 1a).

The stones used in this structure are limestones and

sandstones from different quarries in the south of France

(Fig. 1b). For the sake of simplicity, only one type of stone

with its specific weight and contact properties is considered

in the following numerical study.

Before the construction of this cupola, its mechanical

behaviour was investigated in two phases using the discrete

element method. It should be also noted that the small-

scale structure was tested by this association, and that

structure was mechanically stable without any reinforce-

ment system. It can be said that the main objective of this

study is to present the results and conclusions that can be

yielded from the effect of geometrical simplification in

numerical modelling for this type of masonry structure. In

a first step, this masonry structure was studied without

considering its real geometry and the effect of this deter-

minative parameter was neglected. Because of restrictions

that existed 10 years ago in many discrete element codes to

take into account the masonry blocks with non-convex

boundaries, this structure was studied by simplifying the

non-convex blocks into convex ones. This type of simpli-

fication for masonry structure modelling did lead to erro-

neous results. In this study, the results obtained for this

structure are presented separately and compared for both

the geometrically simplified and the non-simplified models.

3 Preliminary Study Using a Simplified Geometry
of the Cupola

Stability studies of this stone structure were carried out by

Chetouane [20] and Perales [21]. In both studies, the results

show that the investigated structure is not stable. Figure 2

shows the geometry of cupola used in their studies [21].

Chetouane studied this structure with the dry friction law of

Coulomb without cohesion [20]. Figure 3a shows a result

obtained considering a dry friction coefficient of 0.7

between the blocks, 0.9 between the blocks and the struc-

ture foundation, and a stone block density of 2000 kg/m3

after 0.5 s of simulation. As can be observed, the simula-

tions were made using a coarse geometrical description

considering convex blocks, which converts the face–face



Fig. 1 The cupola of Junas. a Final geometry of the cupola, b view from inside the structure, showing different types of stone used in its

construction

Fig. 2 a Geometry of the cupola used in previous studies [21], b close-up view of the structure

Fig. 3 Cupola with simplified geometry at 0.5th second, a dry contact condition with friction coefficient of 0.7 between blocks and 0.9 between

blocks and the ground, b state of cupola with cohesive contact (normal cohesion 1 kPa and tangential one considered 0.7 kPa)



contacts between blocks into point-face or edge-face con-

tacts. Figure 2b shows a close-up image of the simplified

model. This must be clearly stated that the current study

does not in any way intended to undermine the previous

studies and aims to present the necessary geometrical

reforms that could be taken into account in numerical

modelling to obtain more realistic results.

The behaviour of this coarse model was also investi-

gated considering cohesive frictional contact between the

blocks. The joint is cohesive until the stress vector reaches

a Mohr–Coulomb fracture surface. Once broken the pre-

vious frictional contact law describes the joint behaviour.

The normal and tangential cohesion thresholds for these

models are, respectively, cohn = 1 MPa and

coht = 0.7 MPa, and the Mohr–Coulomb’s cone has an

opening angle u so that tan (u) = coht/cohn. Once a

cohesive contact is broken, the contact will behave as a dry

friction contact with two static and dynamic friction

coefficients (respectively, in this model 0.7 and 0.6). Fig-

ure 3b presents the result obtained with a cohesive contact

condition at 0.5 s of calculation. As can be seen in this

figure, even with a cohesive law, the structure cannot

remain stable under its own weight. Falsified conditions of

contacts between blocks give an inappropriate distribution

of the weight distribution over the structure, resulting in a

high concentration of forces in the central parts of the five

arches. Consequently, the failure of the cupola begins from

the arch central blocks where the load concentration caused

by the upper blocks pushes these blocks towards the out-

side of the structure (Fig. 3). Please remember that in all

the models presented in this paper, the stone blocks are

considered as rigid elements.

4 Study Using a more Realistic Geometry
of the Cupola

During a second phase of our study, the non-convex shape

of blocks is approximated using a set of convex sub-blocks.

Figure 4a shows the geometry used for the geometrical

discretisation of the cupola, for a given colour a block

subdivision is represented. This trick, despite the fact that
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Fig. 4 Cupola of Junas with improved geometry, a geometry of the

dome created on Auto CAD, b the magnitude of the overall velocity

(m/s) for the coefficient of friction 0.7 between blocks and 0.9

between blocks and ground at 40th second, c vertical displacements

(in metre) for the same conditions, d Vertical displacement evolution

(in millimetre) during first 40 s of the calculation observed for the

67th block indicated in Fig. 4c



is a very time consuming process, enables to take into

account a complex shape block considering it as a set of

convex blocks.

The cupola with this improved geometry is then inves-

tigated under static and dynamic loads. In a first step, the

mechanical behaviour of the structure is studied, consid-

ering only dry friction (equal to 0.7 between the blocks and

0.9 between the blocks and the ground). It should be

mentioned that between blocks in the cupola structure,

there is no cohesive mortar and to avoid any stress con-

centration the stone powder is used as filling material. In

this way, the contacts between the blocks become almost

planar contact and the load distribution is homogenous

inside the cupola structure. The results are illustrated in

Fig. 4b, c. observing the magnitude of the velocity

(Fig. 4b), under gravity alone, one sees that the structure is

completely stable for these friction coefficients. Figure 4c,

observing the vertical displacement of the structure (in

metre) one sees that it reaches a maximum of approxi-

mately 8.5 mm. This vertical displacement is largely due to

the distance previously considered between the blocks to

prevent likely interpenetration between blocks in the model

itself. The vertical displacement happens before the model

reaches its primary stability. Figure 4d shows the evolution

of the vertical displacement (in millimetre) for the block

indicated in Fig. 4c. From this graph, it can be inferred that

this block, after about 5 mm of vertical displacement

during the stabilization phase, remains stable.

To investigate possible failure mechanisms, three sets of

friction coefficient were investigated. For the first model,

the friction coefficient is considered to be 0.3 between the

blocks and 0.7 between the blocks and the foundation. As

can be observed in Fig. 5a (at 0.5 s), the failure begins in

all five openings with the same symmetrical mechanism. A

second model consists in considering a friction coefficient

of 0.3 between the blocks and the foundation. At 0.5 s, the

failure mechanism is the same (Fig. 5b), but in this model

the vertical displacements are bigger than it was the case

for the model shown in Fig. 5a. The first displacements

occur at the level of the contact points between the five

basic blocks and the ground: a sliding phenomenon appears

at the level of the foundations.

Fig. 5 Failure mechanism for the cupola of Junas for three different

contact conditions, vertical displacement in metre at 0.5 s, a model

with friction coefficient of 0.3 between blocks and 0.7 between blocks

and the foundation, b friction coefficient of 0.3 at all contact points,

c friction coefficient of 0.1 at all contact points



In the third model, the contact condition is considered to

be deteriorated with a value of 0.1 for the friction coeffi-

cient for all the structure (Fig. 5c). As can be expected, the

structure collapse occurs more quickly, since in this con-

dition the sliding at the level of the foundation and the

inner structure weakness act simultaneously. It should be

mentioned that these deteriorated conditions should never

happen during the cupola life.

5 Earthquake Excitation of the Cupola
with a Realistic Geometry

Over the past 100 years, at least 38 earthquakes have

caused significant damage to buildings within metropolitan

France, the most hazardous areas being the Pyrenees, the

Alps, Provence and the region bordering the Rhine valley

[22]. Figure 6 shows the distribution of earthquakes in

France from 1900 until 2010 with a magnitude greater than

2 on the Richter scale. The location of Junas is also indi-

cated on this map (‘‘Bureau Central Sismologique Fran-

çais’’ [23]).

Therefore, the dynamical behaviour of this structure is

investigated, considering the seismicity of the construction

area in the south-east of France. For this purpose, the

accelerogram of a real earthquake with a maximum abso-

lute value of horizontal acceleration of 0.17 g is applied.

This earthquake happened in the Umbria and Marche

regions in the centre of Italy. The seismic data used in this

study were recorded at the Nocera Umbra station, located

10 km from the epicentre of the earthquake that occurred

on April 5, 1998. This earthquake has an adequate intensity

for the southern region of France. The graphs in Fig. 7

illustrate the recorded accelerations in the three directions;

these graphs are used to shake the supporting element of

the model simultaneously in the three directions. The

Fig. 6 Distribution of

earthquakes happened in France

from 1900 until 2010 with

magnitude greater than 2 on the

Richter scale, http://www.

seisme.prd.fr/ (BCSF)

http://www.seisme.prd.fr/
http://www.seisme.prd.fr/


earthquake data is recorded for 31.44 s, and after this

interval, the velocity of the supporting element in all

directions is considered equal to zero.

The results obtained for the model after the seismic

excitation in three directions during 40 s are shown in

Fig. 8. The Fig. 8a illustrates the state of the cupola after

the seismic excitation by showing the distribution of the

magnitude of the overall velocity. As can be observed in

this figure, the structure has enough strength to resist

against this moderate earthquake. It can be concluded that

the cupola remains in a stable condition during and after

this seismic excitation. These results are obtained for the

dry friction contact condition with a friction coefficient of

0.7 between the blocks, and of 0.9 for the contacts between

the blocks and the ground. The other graphs in Fig. 8

illustrate the velocity changes for the supporting element of

the model which are recorded during the calculation. It can

be observed from these two graphs recorded for X and Z

direction that the velocity at the end of the seismic exci-

tation becomes zero in all directions. The maximum of

velocity for the supporting element are, respectively, 4 cm/

s. The horizontal velocity generated by this seism is about

twice the vertical velocity. The practical data such as the

velocity change can be recorded during the calculation for

all bodies in the model. Because of the dry contact con-

dition there are block displacements inside the structure

during the dynamic excitation, so block separations can be

observed. This block movement during the seismic exci-

tation is governed by the dry friction contact condition

(once the seismic excitation has ended, the structure

regains its stable state).

During the second phase of the dynamic loading, the

structure is subjected to the seism with several times the

accelerations of the seism presented in Fig. 7. The contact

condition considered for these models is the same dry

friction contact condition for the model subjected to the

real earthquake (Fig. 8). The results obtained for the seism

having an intensity of 2.5 and 5 times the real seism

intensity are illustrated in Fig. 9. These images show the

vertical displacement caused by this ‘‘stronger’’ earthquake

over the cupola structure. As can be observed, the structure

does not completely collapse, but obvious openings can be

seen inside the structure.

In the next and final step, the structure is subjected to

the seism with 7.5 times the acceleration shown in the

Fig. 7. The results obtained for this condition can be

observed in Fig. 10. These snapshots show the possible

state of the structure during a really strong earthquake. As

can be seen, after 15 s of the excitation the structure is

completely ruined (Fig. 10c). The destruction of the

cupola begins from the middle of the opening arches and

then spreads over the inner part of the structure (Fig. 10a,

b). Figure 10d shows the evolution of the kinetic energy

(in kilo Joule) generated during the seismic excitation. As

can be seen, between 12 and 15 s of the earthquake

excitation, high fluctuations of the kinetic energy are

generated inside the structure. These changes correspond

to high values of the seismic acceleration during this

period (see in Fig. 7). The kinetic energy evolutions are

negligible, before the instability condition and after of the

complete collapse.

Changes in the number of active contacts during the

period of calculation within the model are used to detect

instability caused by the seismic excitation. Figure 11a

shows the comparative graph for the number of contacts for

two models subjected to the real seism and the artificial

seism with 7.5 times the acceleration of the real earth-

quake. As can be seen, the number of the contacts during

the real seism excitation remains between 4000 and 4500

points and there are not intense changes. This shows a

relative stability inside this model, while for the model

subjected to the excitation with 7.5 times the real seism

acceleration, sudden changes can be observed, especially
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Fig. 7 Accelerogram a, b, and c ground acceleration in (g) respec-

tively for the X (N–S), Y (E–W) and vertical directions, recorded at

the Nocera Umbra station, located 10 km from the epicentre of the

earthquake in the Umbria and Marche regions, in the centre of Italy,

that occurred on April 5, 1998



around 12 s during which the model loses around half of its

active contacts. The vertical displacement changes of the

block 67 (indicated Fig. 10a) caused by two seismic

excitations with 5 and 7.5 times the real seism acceleration

are illustrated in Fig. 11b. The vertical displacement of this

block as a control block is also compared with the dis-

placement of the foundation element during the seismic

excitation with 7.5 times the real earthquake acceleration.

This block is chosen due to its important role as a trigger of

the instability of the cupola, in other words this block is a

key block. In the case of the seism with 5 times the real

seism acceleration, the block shows nearly 24 cm of ver-

tical displacement, but it is not detached from the cupola

roof as can be seen in Fig. 9b. In other words, the move-

ment of adjacent blocks has an accumulative displacement

effect on this block, and therefore, it becomes the first

detached block. It should be mentioned that this issue can

be observed for all five parts of the cupola.
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Fig. 8 a Distribution of the magnitude of the overall velocity (m/s)

over the cupola structure after 40 s of the seismic excitation by the

real accelerograms shown in Fig. 7, b, c the velocity changes (cm/s),

respectively, in the directions of X and Z for the supporting element of

the model obtained by the data recorded during the calculation

Fig. 9 Distribution of the vertical displacement (m) of the cupola structure at 40 s, respectively, the seismic excitations are 2.5 (a) and 5 times

(b) the real accelerations shown in Fig. 7



The stability state of the cupola is also investigated by

considering cohesive contact condition under seismic

loading. The cohesive condition can be assumed in the

presence of mortar between blocks. The Mohr–Coulomb

cohesive contact law is applied in which the normal and

tangential cohesion thresholds for this model are, respec-

tively, 0.1 and 0.07 MPa (ten times lower than in Sect. 4)

with a Mohr–Coulomb cone equal to the cone defined in

Sect. 4. The cupola with this contact condition is then

subjected to the intense seismic excitation with 7.5 times

the real seism acceleration. The results obtained for this

condition are shown in Fig. 12. As can be seen, the stability

state of the model is very similar to the cupola state with

dry contact condition but subjected to the seism with 5

times the real seism acceleration. Improving the contact

condition at this level can strengthen the structure to resist

against very intense earthquakes. In fact, the parameters

used for this model were adjusted to have approximately

similar results obtained for one of the model with the dry

friction contact condition. Figure 12c shows the

cumulative dissipated energy (in Joule). The dissipated

energies include the consumed energy at the block contacts

by the friction, shock and breaking of cohesive contacts. As

can be observed, the dissipated energy is high during the

strong seismic excitation and once the vibration is losing

intensity, the cumulative dissipated energy becomes vir-

tually unchanged.

6 Conclusion

Several different methods are used to analyse masonry

structures, such as the studies referred above and also the

works presented in [24–26]. This study presents a detailed

investigation of the stability state of a masonry cupola

under static and dynamic loads using the non-smooth

contact dynamics numerical method. The NSCD method is

incorporated in the LMGC90 software which was used for

the current study. A series of numerical analyses was car-

ried out by considering the effect of a simplified and a
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realistic geometry on the mechanical behaviour of the

masonry cupola under different loading conditions. The

critical impact of a realistic geometry on the correct dis-

tribution of the weight load over the structure stability was

investigated. It was shown that a simplified geometry can

concentrate, in erroneous ways, the structure own weight

forces at key points, and that the structure becomes insta-

ble even when considering strong cohesive contact condi-

tions. Taking into account the non-convex shape of a block

as a set of convex blocks helps to overcome stability

problems generated by the geometrical simplification. It

should be noted that, for greater safety caution, pre-stressed

cables are used inside the constructed dome.

In a second phase of the study, the stability state of the

geometrically well modelled cupola was checked with

different contact conditions to show realistic results

obtained by the numerical modelling and to examine dif-

ferent collapse mechanisms caused by the change of con-

tact parameters.

Finally, the real 3D geometry of the Junas cupola is

studied by numerical modelling under seismic loads with

different levels of intensity. To demonstrate the computing

capability of the NSCD method, on which the free

LMGC90 software is based. It should be added that various

contact laws with different parameters in dynamic loading

condition were also used.
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Fig. 12 Cupola with cohesive contact condition subjected to the

seismic acceleration of 7.5 times of the accelerogram shown in Fig. 7,

a distribution of the vertical displacement (in metre) over the cupola

structure (40th second), b distribution of the magnitude of the overall

velocity (m/s) (40th second), c evolution of the cumulative dissipated

energy (in Joule) during computation time
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