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Abstract

We propose several constructions for the original multiplication al-

gorithm of D.V. and G.V. Chudnovsky in order to improve its scalar

complexity. We highlight the set of generic strategies who underlay the

optimization of the scalar complexity, according to parameterizable cri-

teria. As an example, we apply this analysis to the construction of type

elliptic Chudnovsky2 multiplication algorithms for small extensions. As

a case study, we significantly improve the Baum-Shokrollahi construction

for multiplication in F256/F4.

1 Introduction

1.1 Context

The construction of efficient arithmetic operation algorithms is still a problem
of topicality. These algorithms are indeed heavily used in many domains of
computer sciences or information theory. It is important to conceive and de-
velop efficient arithmetic algorithms combined with an optimal implementation
method. In this work, our interest lies in multiplication algorithms in any ex-
tension of finite field introduced in 1987 by D.V. and G.V Chudnovsky [8] and
based upon interpolation on some algebraic curves defined over finite fields.
Our goal is to improve this method so that its complexity in terms of number
of operations is optimized.

More precisely, the complexity of a multiplication algorithm in Fqn depends
on the number of multiplications and additions in Fq. But here, we are partic-
ularly interested by the multiplicative complexity of multiplication in a finite
field Fqn , i.e. by the number of multiplications in Fq required to multiply in the
Fq-vector space Fqn of dimension n. There exist two types of multiplications
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in Fq: the scalar multiplication and the bilinear one. The scalar multiplication
is the multiplication by a non-trivial constant (i.e. not equal to 0 or 1) in Fq,
which does not depend on the elements of Fqn that are multiplied. The bilinear
multiplication is a multiplication that depends on the elements of Fqn that are
multiplied. The bilinear complexity is independent of the chosen representation
of the finite field.

Let q be a prime power, Fq the finite field with q elements and Fqn the
degree n extension of Fq. If B = {e1, ..., en} is a basis of Fqn over Fq then for
x =

∑n

i=1 xiei and y =
∑n

j=1 yjej , we have the product

z = xy =
n
∑

h=1

zheh =
n
∑

h=1

( n
∑

i,j=1

tijhxiyj

)

eh, (1)

where eiej =
∑n

h=1 tijheh, tijh ∈ Fq being some constants.

Then, we see that the direct calculation of z = (z1, ..., zn) using (1) a priori
requires n2 non-scalar multiplications xiyj , n

3 scalar multiplications and n3−n
additions.

Definition 1.1. The total number of scalar multiplications in Fq used in an
algorithm Uq,n of multiplication in Fqn is called scalar complexity of Uq,n and
denoted µs(Uq,n).

Moreover, the multiplication of two elements of Fqn is an Fq-bilinear map
from Fqn × Fqn onto Fqn . Then, it can be considered as an Fq-linear map from
the tensor product Fqn ⊗Fq

Fqnonto Fqn . Therefore, it can also be considered as
an element T of (Fqn)

⋆ ⊗Fq
(Fqn)

⋆ ⊗Fq
Fqn , where F

⋆
qn denotes the dual of Fqn .

Set

T =

r
∑

i=1

x⋆
i ⊗ y⋆i ⊗ ci,

where x⋆
i ∈ F

⋆
qn , y

⋆
i ∈ F

⋆
qn and ci ∈ Fqn . The following holds for any x, y ∈ Fqn :

x · y = T (x⊗ y) =

r
∑

i=1

x⋆
i (x)y

⋆
i (y)ci.

Definition 1.2. A multiplication algorithm Uq,n in Fqn is an expression

x · y =

r
∑

i=1

x⋆
i (x)y

⋆
i (y)ci,

where x⋆
i , y

⋆
i ∈ (Fqn)

⋆, and ci ∈ Fqn .
The number r of summands in this expression is called the bilinear complexity

of the algorithm Uq,n and is denoted by µb(Uq,n). The multiplicative complexity
of Uq,n is µm(Uq,n) = µb(Uq,n) + µs(Uq,n).
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Definition 1.3. The minimal number of summands in a decomposition of the
tensor T of the multiplication in Fqn is called the bilinear complexity of the
multiplication in Fqn and is denoted by µb(q, n):

µb(q, n) = min
U

µb(U)

where U is running over all bilinear multiplication algorithms in Fqn over Fq.

1.2 Some known results

Let us recall some known results useful for this study. In their seminal papers,
Winograd [13] and De Groote [9] have shown that µb(q, n) ≥ 2n − 1, with
equality holding if and only if n ≤ 1

2q + 1. Winograd has also proved [13] that
optimal multiplication algorithms realizing the lower bound belong to the class
of interpolation algorithms. Later, generalizing interpolation algorithms on the
projective line over Fq to algebraic curves of higher genus over Fq, D.V. and
G.V. Chudnovsky provided a method [8] which enabled to prove the linearity
[2] of the bilinear complexity of multiplication in finite extensions of a finite
field. This is the so-called Chudnovsky2 multiplication algorithm (or CCMA).
Applying CCMA with fitted elliptic curves, Shokrollahi in [11] (for the upper
strict inequality) and Chaumine in [7] have shown that if

1

2
q + 1 < n ≤ 1

2
(q + 1+ ǫ(q)) (2)

where ǫ is the function defined by:

ǫ(q) =

{

the greatest integer ≤ 2
√
q prime to q, if q is not a perfect square

2
√
q, if q is a perfect square,

then the bilinear complexity µb(q, n) of the multiplication in the finite extension
Fqn of the finite field Fq is equal to 2n.

Then, many studies focused on the qualitative improvement of CCMA with
respect to the bilinear complexity (cf. [5]). But the problem of the optimization
of its scalar complexity has never been studied, although it was first raised in
2015 by Atighehchi, Ballet, Bonnecaze and Rolland [1] and so far it remained
an open problem (cf. [5, Open problem 10.2]). More explicitly, the structure of
the involved matrices in CCMA should be examined more closely but unfortu-
nately, there are no theoretical means or criteria today to build the best matri-
ces because they depend on the geometry of the curves, the field of definition of
these curves, as well as the involved Riemann-Roch spaces. The remaining open
question is how to choose the geometrical objects, the associated Riemann-Roch
vector-spaces as well as the suitable representation of those in order to minimise
the number of zeros and 1 in the matrices of the evaluation maps involved in
CCMA.
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1.3 New results and organization

This article is the complete and generalized study of a preliminary introduction
on the subject of scalar complexity, initiated in [4]. Its main goal is to identify
the set of fundamental generic strategies underlying the scalar complexity opti-
mization (known as scalar optimization) of CCMA and the relevant quantities
related to it. To do so, after having recalled in detail the CCMA method (cf.
Section 2.1) as well as the contextual framework (initial configuration) in which
we are going to stand, we perform a detailed analysis (cf. Section 2.2) of the
scalar complexity (µs) and the underlying relevant related quantities (µs,0 and
µs,1).

Then, in Section 3.1.1, which is the core of the paper, we present the gen-
eral results allowing to identify the main lever (degree of freedom) of CCMA
scalar optimization for a given CCMA algorithm. Then, from these results, we
give two main generic strategies (Propositions 3.2 and 3.3), whose optimiza-
tion criteria can be parameterized (Remark 3.3), which are the cornerstone of
the complete strategy (see Section 3.1.2). At this level (cf. Section 3.1.1), we
give in particular the explicit presentation of the various corresponding opti-
mization setup algorithms and lower bounds of the quantities µs,0(UA

D,Q,P) and

µs,0(UF,n
D,Q,P). In the complete strategy, we then show that the scalar complexity

of the CCMA algorithm is independent of the order of the rational places to be
evaluated, for a given set of rational places. Finally, as an example, we special-
ize our study to elliptic CCMA algorithms, illustrated by two new designs of
the Baum-Shokrollahi construction for multiplication in F256/F4 based on the
elliptic Fermat curve x3 + y3 = 1. These two new constructions, obtained by
applying strategies guided by the optimization criterion of the number of zeros
in the matrices involved, have scalar complexities significantly better than that
of Baum-Shokrollahi.

2 The Chudnovsky2 multiplication algorithm

2.1 Description and construction of CCMA

Let F/Fq be an algebraic function field over the finite field Fq of genus g(F ).
We denote by Nk(F/Fq) the number of places of degree k of F over Fq. If D is
a divisor, L(D) denotes the Riemann-Roch space associated to D. We denote
by OQ the valuation ring of the place Q and by FQ its residue class field OQ/Q
which is isomorphic to Fqdeg Q where degQ is the degree of the place Q. The
order of a divisor D =

∑

P aPP in the place P is the number aP , denoted
ordP (D). The support of a divisor D is the set supp D of the places P such
that ordP (D) 6= 0. The divisor D is called effective if ordP (D) ≥ 0 for any P .
Let us define the classical Hadamard product ⊙ in F

N
q , where N is a positive

integer, by (u1, . . . , uN) ⊙ (v1, . . . , vN ) = (u1v1, . . . , uNvN ) for any ui, vi in Fq.
The following theorem describes the original multiplication algorithm of D.V.
and G.V. Chudnovsky [8].
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Theorem 2.1. Let

• n be a positive integer,

• F/Fq be an algebraic function field,

• Q be a degree n place of F/Fq,

• D be a divisor of F/Fq,

• P = {P1, . . . , PN} be an ordered set of places of degree one of F/Fq.

We suppose that supp D ∩ {Q,P1, ..., PN} = ∅ and that

(i) The evaluation map

EvQ : L(D) → FQ

f 7→ f(Q)

is surjective

(ii) The evaluation map

EvP : L(2D) → F
N
q

f 7→
(

f (P1) , . . . , f (PN )
)

is injective

Then

(1) For any two elements x, y in Fqn , we have a multiplication algorithm Uq,n:

xy = EQ ◦ EvP |ImEvP
−1

(

EP ◦ Ev−1
Q (x) ⊙ EP ◦ Ev−1

Q (y)
)

, (3)

where EQ denotes the canonical projection from the valuation ring OQ

of the place Q in its residue class field FQ, EP the extension of EvP on

the valuation ring OQ of the place Q, EvP |ImEvP
−1

the restriction of the
inverse map of EvP on its image, and ◦ the standard composition map.

(2) We have:
µb(Uq,n) ≤ N,

with equality if N = dim L(2D).

Since Q is a place of degree n, the residue class field FQ of place Q is an
extension of degree n of Fq and it therefore can be identified to Fqn . Moreover,
the evaluation map EvQ being onto, one can associate the elements x, y ∈ Fqn

with elements of Fq-vector space L(D), denoted respectively f and g. We define
h := fg by

(h(P1), ..., h(PN )) = EP (f)⊙ EP (g) = (f(P1)g(P1), ..., f(PN )g(PN )) . (4)
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We know that such an element h belongs to L(2D) since the functions f, g lie in
L(D). Moreover, thanks to injectivity of EvP , the function h is in L(2D) and
is uniquely determined by (4). We have

xy = EvQ(f)EvQ(g) = EQ(h)

where EQ is the canonical projection from the valuation ring OQ of the place
Q in its residue class field FQ, EvQ is the restriction of EQ over the vector space
L(D).

In order to make the study and the construction of this algorithm easier, we
proceed in the following way. We choose a place Q of degree n and a divisor
D of degree n+ g − 1, such that EvQ and EvP are isomorphisms. In this aim
in [2], S. Ballet introduces simple numerical conditions on algebraic curves of
an arbitrary genus g giving a sufficient condition for the application of CCMA
(existence of places of certain degree, of non-special divisors of degree g − 1)
generalizing the result of A. Shokrollahi [11] for the elliptic curves. Let us recall
this result:

Theorem 2.2. Let q be a prime power and let n be an integer > 1. If there
exists an algebraic function field F/Fq of genus g satisfying the conditions

1. Nn > 0 (which is always the case if 2g + 1 ≤ q
n−1
2 (q

1
2 − 1)),

2. N1 > 2n+ 2g − 2,

then there exists a divisor D of degree n+ g − 1 and a place Q such that:

(i) The evaluation map

EvQ : L(D) → OQ

Q

f 7→ f(Q)

is an isomorphism of vector spaces over Fq.

(ii) There exist places P1,...,PN such that the evaluation map

EvP : L(2D) → F
N
q

f 7→
(

f (P1) , . . . , f (PN )
)

is an isomorphism of vector spaces over Fq with N = 2n+ g − 1.

Remark 2.1. First, note that in the elliptic case, the condition (2) is a large
inequality thanks to a result due to Chaumine [7]. Secondly, note also that the
divisor D is not necessarily effective.

By this last remark, it is important to add the property of effectivity for the
divisor D in a perspective of implemention. Indeed, it is easier to construct the
algorithm CCMA with this assumption because in this case L(D) ⊆ L(2D) and
we can directly apply the evaluation map EvP instead of EP in the algorithm
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(3), by means of a suitable representation of L(2D). Moreover, in this case we
need to consider simultaneously the assumption that the support of the divisor
D does not contain the rational places and the place Q of degree n and the
assumption of effectivity of the divisor D. Indeed, it is known that the support
moving technic (cf. [10, Lemma 1.1.4.11]), which is a direct consequence of
Strong Approximation Theorem (cf. [12, Proof of Theorem I.6.4]), applied on
an effective divisor generates the loss of effectivity of the initial divisor (cf. also
[1, Remark 2.2]). So, let us suppose these two last assumptions.

Remark 2.2. As in [3], in practice, we take as a divisor D one place of degree
n+ g− 1. It has the advantage to solve the problem of the support of divisor D
(cf. also [1, Remark 2.2]) as well as the problem of the effectivity of the divisor
D. However, it is not required to be considered in the theoretical study, but, as
we will see, it will have some importance in the strategy of optimization.

We can therefore consider the basis BQ of the residue class field FQ over Fq

as the image of a basis of L(D) by EvQ or equivalently (which is sometimes
useful following the considered situation) the basis of L(D) as the reciprocal
image of a basis of the residue class field FQ over Fq by Ev−1

Q . Let

BD := {f1, ..., fn} (5)

be a basis of L(D) and let us denote the basis of the supplementary space
M of L(D) in L(2D) by

Bc
D := {fn+1, ..., fN} (6)

where N := dimL(2D) = 2n+ g − 1. Then, we choose

B2D := BD ∪ Bc
D (7)

as the basis of L(2D).
We denote by T2D the matrix of the isomorphism EvP : L(2D) → F

N
q in

the basis B2D of L(2D) (the basis of FN
q will always be the canonical basis).

Then, we denote by TD the matrix of the first n columns of the matrix T2D.
Therefore, TD is the matrix of the restriction of the evaluation map EvP on the
Riemann-Roch vector space L(D), which is an injective morphism.

Note that the canonical surjection EQ is the extension of the isomorphism
EvQ since, as Q /∈ supp(D), we have L(D) ⊆ OQ. Moreover, as supp(2D) =
supp(D), we also have L(2D) ⊆ OQ. We can therefore consider the images of
elements of the basis B2D by EQ and obtain a system of N linear equations as
follows:

EQ(fr) =

n
∑

m=1

cmr EvQ(fm), r = 1, ..., N

where EQ denotes the canonical projection from the valuation ring OQ of the
place Q in its residue class field FQ, EvQ is the restriction of EQ over the vector
space L(D) and cmr ∈ Fq for r = 1, ..., N . Let C be the matrix of the restriction
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of the map EQ on the Riemann-Roch vector space L(2D), from the basis B2D

in the basis BQ. We obtain the product z := xy of two elements x, y ∈ Fqn by
the algorithm (3) in Theorem 2.1, where M t denotes the transposed matrix of
the matrix M :

Algorithm 1 Chudnovsky2 Multiplication algorithm (CCMA) in Fqn

INPUT: x =
n
∑

i=1

xiEvQ(fi), and y =
n
∑

i=1

yiEvQ(fi).

OUTPUT: z = xy =
n
∑

i=1

ziEvQ(fi).

1. X := (X1, ..., XN ) = (x1, ..., xn)T
t
D = EvP(x).

Y := (Y1, ..., YN ) = (y1, ..., yn)T
t
D = EvP(y).

2. Z := X ⊙ Y = (Z1, ..., ZN ) = (X1Y1, . . . , XNYN ).

3. (z1, . . . , zn) = (Z1, ..., ZN )(T t
2D)−1Ct = EQ ◦ Ev−1

P
(Z).

Now, we present an initial setup algorithm which is only done once.

Algorithm 2 Setup algorithm of CCMA in Fqn

INPUT: F/Fq, Q,D, P = {P1, . . . , P2n+g−1}.
OUTPUT: B2D, T2D and CT−1

2D .

1. Check the function field F/Fq, the place Q, the divisors D are such that
Conditions (i) and (ii) in Theorem 2.2 can be satisfied.

2. Represent Fqn as the residue class field of the place Q.

3. Construct a basis B2D := {f1, . . . , fn, fn+1, . . . , f2n+g−1} of L(2D),
where BD := {f1, . . . , fn} is a basis of L(D), and Bc

D :=
{fn+1, ..., f2n+g−1} a basis of the supplementary space M of L(D) in
L(2D).

4. Compute the matrices T2D, C and CT−1
2D .

2.2 Complexity analysis

Recall that the bilinear complexity of Chudnovsky2 algorithms of type (3) in
Theorem 2.1 satisfying assumptions of Theorem 2.2 is optimized. Therefore, we
only focus on optimizing the scalar complexity of the algorithm. From Algo-
rithm 1 we observe that the number of scalar multiplications depends directly on
the number of zeros and of coefficients equal to 1 in the matrices TD and C.T−1

2D .
Indeed, all the involved matrices being constructed once, the multiplication by
a coefficient zero or 1 in a matrix has not to be taken into account. Let us give
an algorithm Uq,n of type Algorithm 1 with a setup of type Algorithm 2. We
can analyze the multiplicative complexity µm(Uq,n) of the algorithm Uq,n, i.e.
in terms of the total number of multiplications in Fq, in the following way. We
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call µs,0(Uq,n) (resp. µs,1(Uq,n)) the scalar complexity of the algorithm Uq,n,
taking into account uniquely the number of zeros Nz(TD) (resp. the number of
ones N1(TD)) and Nz(C.T

−1
2D ) (resp. N1(C.T

−1
2D )) respectively in the matrices

TD and CT−1
2D . Consequently, we clearly have

µs(Uq,n) ≤ µs,0(Uq,n) (8)

µs(Uq,n) ≤ µs,1(Uq,n) (9)

and so

µm(Uq,n) ≤ µs,0(Uq,n) + µb(Uq,n) (10)

µm(Uq,n) ≤ µs,1(Uq,n) + µb(Uq,n) (11)

by Definition 1.2.

The multiplicative complexity of the algorithm Uq,n is equal to

µm(Uq,n) = (3n+ 1)(2n+ g − 1),

including
µs(Uq,n) = 3n(2n+ g − 1)

scalar multiplications in the least case. More precisely, we get the formula to
compute the number of scalar multiplications of this algorithm with respect to
the number of zeros and 1 of the involved matrices as follows:

µs(Uq,n) = 2

(

n(2n+ g − 1)−Nz(TD)−N1(TD)

)

+

(

n(2n+ g− 1)−Nz(C.T
−1
2D )−N1(C.T

−1
2D )

)

= 3n(2n+ g− 1)−Nz −N1, (12)

where
Nz = 2Nz(TD) +Nz(C.T

−1
2D ) (13)

and

N1 = 2N1(TD) +N1(C.T
−1
2D ). (14)

Moreover, we see in Algorithm 1 that all the scalar multiplications come from
steps 1 and 3. Thus, for the analysis of the scalar complexity of any algorithm
Uq,n, we will distinguish the scalar complexities of steps 1 and 3 (resp. denoted
UA and UR) by respectively µs(UA) and µs(UR) which are by Formula (12):

µs(UA) = 2

(

n(2n+ g − 1)−Nz(TD)−N1(TD)

)

(15)

9



and

µs(UR) =

(

n(2n+ g − 1)−Nz(C.T
−1
2D )−N1(C.T

−1
2D )

)

. (16)

We also will distinguish the scalar complexity of these steps of the algorithm,
taking only into account the number of zeros (resp. the number of 1). Note
that if we take into account the number of zeros (resp. the number of 1) in the
step UA, then we take into account the number of zeros (resp. the number of
1) in the step UR. Thus, we call µs,0(UA) (resp. µs,1(UA)) and µs,0(UR) (resp.
µs,1(UR)) the quantities:

µs,0(UA) = µs(UA) with N1(TD) = 0 (17)

µs,1(UA) = µs(UA) with Nz(TD) = 0 (18)

and

µs,0(UR) = µs(UR) with N1(C.T
−1
2D ) = 0, (19)

µs,1(UR) = µs(UR) with Nz(C.T
−1
2D ) = 0. (20)

Thus, we have:

µs,0(Uq,n) = µs,0(UA) + µs,0(UR) = 3n(2n+ g − 1)−Nz, (21)

and
µs,1(Uq,n) = µs,1(UA) + µs,1(UR) = 3n(2n+ g − 1)−N1. (22)

Remark 2.3. For the scalar complexity (i.e. the number of scalar multiplica-
tions), the coefficients 1 and 0 play a symmetrical role. However, if we are look-
ing at the additions, this role is no longer symmetrical because the coefficients
1 present in the matrices increase the number of additions in the multiplication
algorithm. Thus, from this point of view, it is in every interest to favor the
maximization of the number of zeros. It is for this reason in particular that this
article will give priority to the study of µs,0(Uq,n).

3 Optimization of the scalar complexity

In this paper, we mainly focus on the optimization of the quantity µs,0(Uq,n) in-
troduced in Section 2.2. In this sense, reducing the number of operations means
finding an algebraic function field F/Fq having a genus g as small as possible and
a suitable set of divisor and places (D,Q,P) with a good representation of the
associated Riemann-Roch spaces, namely such that the matrices TD and C.T−1

2D

are as hollow as possible (i.e. with a maximal number of zeros). Therefore, for
a place Q and a suitable divisor D, we seek the best possible representations of
Riemann-Roch spaces L(D) and L(2D) to maximize mainly both parameters
Nz(TD) and Nz(C.T

−1
2D ).

10



3.1 Different types of generic strategy

3.1.1 With fixed divisor and places

In this section, we consider the optimization of any algorithm Uq,n for a fixed
suitable set of divisor and places (D,Q,P) for a given algebraic function field
F/Fq of genus g. Hence, according to Section 2.2, we will denote here more
precisely the algorithm Uq,n as well as the associated quantities UA and UR

thanks to the following definition:

Definition 3.1. We call UF,n
D,Q,P := (UA

D,Q,P ,UR
D,Q,P) a Chudnovsky2 multi-

plication algorithm of type (3) where UA
D,Q,P := EP ◦ Ev−1

Q and UR
D,Q,P :=

EQ◦EvP |ImEvP
−1

, satisfying the assumptions of Theorem 2.1. We will say that

two algorithms are equal, and we will note: UF,n
D,Q,P = UF,n

D′,Q′,P′ , if UA
D,Q,P =

UA
D′,Q′,P′ and UR

D,Q,P = UR
D′,Q′,P′ .

Note that in this case, this definition makes sense only if the bases of implied
vector-spaces are fixed. So, we denote respectively by BQ, BD, and B2D the
basis of the residue class field FQ, and of Riemann-Roch vector-spaces L(D),

and L(2D) associated to UF,n
D,Q,P . Note that the basis of the Fq-vector space F

N
q

is the canonical basis, up to permutation. Then, we obtain the following result:

Proposition 3.1. Let us consider an algorithm UF,n
D,Q,P such that the divisor

D is an effective divisor, D − Q a non-special divisor of degree g − 1, and
such that the cardinal of the set P is equal to the dimension of the Riemann-
Roch space L(2D). Then we can choose the basis B2D as (7) and for any σ in
GLFq

(2n+ g − 1), where GLFq
(2n+ g − 1) denotes the linear group, we have

UF,n

σ(D),Q,P
= UF,n

D,Q,P

where σ(D) denotes the action of σ on the basis B2D of L(2D) in UF,n
D,Q,P , with

a fixed basis BQ of the residue class field of the place Q and Bc the canonical
basis of F2n+g−1

q . In particular, the quantities Nz(C.T
−1
2D ) and N1(C.T

−1
2D ) are

constant under this action.

Proof. Let E, F and H be three vector spaces of finite dimension on a field
Krespectively equipped with the basis BE , BF and BH . Consider two morphisms
f and h respectively defined from E into F and from F into H and consider
respectively their associated matrix Mf(BE ,BF ) and Mh(BF ,BH). Then it is
obvious that the matrix Mh◦f (BE ,BH) of the morphism h ◦ f is independant
from the choice of the basis BF of F . As the divisor D is effective, we have
L(D) ⊂ L(2D) and then UA

D,Q,P := EP ◦ Ev−1
Q = EvP ◦ Ev−1

Q and as D − Q
a non-special divisor of degree g − 1, EvQ is an isomorphism from L(D) into
FQ and we have UA

D,Q,P = EvP |L(D) ◦ Ev−1
Q . Moreover, as the cardinal of the

set P is equal to the dimension of the Riemann-Roch space L(2D), EvP is an
isomorphism from L(2D) into F

2n+g−1
q equipped with the canonical basis Bc.

Thus, UR
D,Q,P := EQ ◦ Ev−1

P
|ImEvP = EQ|L(2D) ◦ Ev−1

P
. Then, the matrix of
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UA
D,Q,P (resp. UR

D,Q,P) is invariant under the action of σ in GLFq
(n) (resp. in

GLFq
(2n+g−1)) on the basis BD (resp. B2D) since the set (E,F,H) is equal to

(FQ,L(D),F2n+g−1
q ) (resp. (F2n+g−1

q ,L(2D), FQ)) for h◦f := EvP |L(D) ◦Ev−1
Q

(resp. EQ|L(2D) ◦ Ev−1
P

).

Apart from the fact that this result provides a generic construction strategy
of Chudnovsky’s algorithm leading to significantly improve (and even optimize)
the scalar complexity of this algorithm, this result also highlights a preferen-
tial configuration. Indeed, since the quantities Nz(C.T

−1
2D ) and N1(C.T

−1
2D ) are

constant under the action of the linear group, one has the choice, without con-
sequence upon the scalar complexity, of the basis of the supplement L(D) in
L(2D). Also, we favor a kernel-type configuration which not only has the par-
ticularity of having no negative impact on the global scalar complexity of the
algorithm U = (UA,UR) but also to simplify the scalar optimization process of
these algorithms as well as their use in the return phase UR, the latter item hav-
ing already been noticed in the context of the exponentiation in [1]. Therefore,
we need the following definition:

Definition 3.2. Let UF,n
D,Q,P := (UA

D,Q,P ,UR
D,Q,P) be a Chudnovsky2 multipli-

cation algorithm in a finite field Fqn , satisfying the assumptions of Proposition

3.1. Then the algorithm UF,n
D,Q,P is said kernel-type if the basis B2D of L(2D)

used in the evaluation map UR
D,Q,P := EQ ◦ Ev−1

P
is such that

B2D = BD ∪ Bc
D,

where BD is a basis of L(D) used in the evaluation map UA
D,Q,P := EP |L(2D) ◦

Ev−1
Q and Bc

D is a basis of the supplementary space M := KerEQ|L(2D) of L(D)

in L(2D). Any construction of a kernel-type algorithm UF,n
D,Q,P will be called a

kernel-type construction.

Proposition 3.2. Let UF,n
D,Q,P = (UA

D,Q,P ,UR
D,Q,P) be a kernel-type Chudnovsky2

multiplication algorithm in a finite field Fqn . The optimal scalar complexity

µopti
s,0 (UA

D,Q,P ) of UF,n
D,Q,P is reached for the set {BD,max,BQ} such that BD,max

is a basis of L(D) satisfying

Nz(TD,max) = max
σ∈GLFq (n)

{Nz(Tσ(D))},

where σ(D) denotes the action of σ on the basis BD of L(D) in UF,n
D,Q,P , TD,max

the matrix of the restriction of the evaluation map EvP on the Riemann-Roch
vector space L(D) equipped with the bases BD,max and BQ = EvQ(BD,max).
More precisely, we have

µopti
s,0 (UA

D,Q,P ) = min
σ∈GLFq (n)

{µs,0(UA
σ(D),Q,P ) | σ(BD) is the basis of L(D)

and BQ = EvQ(BD)}

12



= 2

(

n(2n+ g − 1)−Nz(TD,max)

)

.

Then, the scalar complexity of the algorithm UF,n
D,Q,P relatively to the basis BD,max

is:

µs,0(UD,Q,P) = 3n(2n+ g − 1)−
(

2Nz(TD,max) +Nz(T
−1
2D,n)

)

,

where matrices C and T2D are defined with respect to the basis BQ = EvQ(BD,max),
and B2D = BD,max ∪ Bc

D and T−1
2D,n denotes the matrix made up of the n first

lines of the matrix T−1
2D .

Proof. The value of µopti
s,0 (UA

D,Q,P) follows directly from Proposition 3.1 and
formulae (15) and (17). Then, the quantity µs,0(UD,Q,P) obtained with the
basis BD,max follows from formulae (12) and (13). Note that since the algorithm

UF,n
D,Q,P is kernel-type then we have CT−1

2D = T−1
2D,n because Bc

D is a basis of the
kernel of EQ|L(2D).

Proposition 3.3. Let UF,n
D,Q,P be a kernel-type Chudnovsky2 multiplication al-

gorithm in a finite field Fqn such that B2D = BD ∪ Bc
D. The optimal scalar

complexity µopti
s,0 (UF,n

D,Q,P) of UF,n
D,Q,P is reached for the set {BD,max,BQ} such

that BD,max is a basis of L(D) for which 2Nz(Tσ(D))+Nz(T
−1
2σ(D),n) is maximal

under the action of σ ∈ GLFq
(n) on the basis BD of L(D) of the matrix TD

where Tσ(D) (resp. T−1
2σ(D),n) denotes the matrix TD (resp. the n first lines of

the matrix T−1
2D ) in the basis σ(BD) (resp. σ(BD)∪Bc

D) of L(D) (resp. L(2D)),
and BQ = EvQ(BD,max). In particular,

µopti
s,0 (UF,n

D,Q,P ) = min
σ∈GLFq (n)

{µs,0(UF,n

σ(D),Q,P
) | σ(BD) is the basis of L(D)

and BQ = EvQ(BD)})

= 3n(2n+ g − 1)−Nz,max,

where
Nz,max = max

σ∈GLFq (n)
{2Nz(Tσ(D)) +Nz(T

−1
2σ(D),n)},

and matrices C and T2D are defined with respect to the basis BQ = EvQ(BD,max),
and B2D = BD,max ∪ Bc

D.

Proof. The value of µopti
s,0 (UD,Q,P) obtained with the basis BD,max follows di-

rectly from Proposition 3.1 and formulae (21). Note that since the algorithm

UF,n
D,Q,P is kernel-type then we have CT−1

2D = T−1
2D,n because Bc

D is a basis of the
kernel of EQ|L(2D).

Remark 3.1. Note that in Proposition 3.2, we can establish a similar result
for µopti

s,1 (UA
D,Q,P) (or even better resp. µopti

s (UA
D,Q,P)) by optimizing the quantity
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N1(TD) (resp. the quantity Nz(TD) +N1(TD)) instead of Nz(TD). In the same

way, in Proposition 3.3, we can establish a similar result for µopti
s,1 (UF,n

D,Q,P) (or

even better resp. µopti
s (UF,n

D,Q,P)) by optimizing the quantity 2N1(TD)+N1(T
−1
2D,n)

(resp. the quantity 2(Nz(TD) + N1(TD)) + Nz(T
−1
2D,n) + N1(T

−1
2D,n)) instead of

2Nz(TD) +Nz(T
−1
2D,n).

Now, from these two previous results, we can highlight several strategies to
improve the scalar complexity. The complexities of these strategies are clearly
different. Therefore, the use of this or that strategy may be useful depending
on the constraints to which we are subject. New setup algorithms can be ob-
tained directly from the analysis developed in Section 3.1.1. More precisely, the
following setup corresponds to the optimization of µs,0(UA

D,Q,P) described by
Proposition 3.2.

Algorithm 3 New setup algorithm of CCMA in Fqn from Proposition 3.2

INPUT: F/Fq, Q,D, P = {P1, . . . , P2n+g−1}.
OUTPUT: B2D, BQ, T2D and T−1

2D,n.

1. Check the function field F/Fq, the place Q, the divisors D are such that
Conditions (i) and (ii) in Theorem 2.2 can be satisfied.

2. Take an initial basis BD,0 for L(D) and construct a basis Bc
D :=

{fn+1, ..., f2n+g−1} of the supplementary space M := KerEQ|L(2D) of
L(D) in L(2D).

3. Go through the set (or subset) of bases BD of L(D) from BD,0 and linear
group GLq(n) in order to compute TD and Nz(TD).

4. Choose a basis BD := {f1, . . . , fn} such that the matrix TD owns the
largest number of zeros (i.e. such that BD := BD,max and TD :=
TD,max).

5. Set BQ := EvQ(BD,max) and B2D := BD,max ∪ Bc
D.

6. Compute the matrices T2D and T−1
2D,n in the basis B2D.

In the same way, from Proposition 3.3, we can obtain the following new
setup corresponding to the optimization of µs,0(UF,n

D,Q,P).

14



Algorithm 4 New setup algorithm of CCMA in Fqn from Proposition 3.3

INPUT: F/Fq, Q,D, P = {P1, . . . , P2n+g−1}.
OUTPUT: B2D, BQ, T2D and T−1

2D,n.

1. Check the function field F/Fq, the place Q, the divisors D are such that
Conditions (i) and (ii) in Theorem 2.2 can be satisfied.

2. Take an initial basis BD,0 for L(D) and construct a basis Bc
D :=

{fn+1, ..., f2n+g−1} of the supplementary space M := KerEQ|L(2D) of
L(D) in L(2D).

3. Go through the set (or subset) of bases BD of L(D) from BD,0 and linear
groupGLq(n) in order to compute TD (resp. T−1

2D,n with B2D = BD∪Bc
D)

and Nz(TD) (resp. Nz(T
−1
2D,n)).

4. Choose a basis BD := {f1, . . . , fn} such that 2Nz(TD) + Nz(T
−1
2D,n)

is the largest possible (i.e. such that BD := BD,max and 2Nz(TD) +
Nz(T

−1
2D,n) := Nz,max).

5. Set BQ := EvQ(BD,max) and B2D := BD,max ∪ Bc
D.

Remark 3.2. Note that in Algorithm 4, Step 6 of the Algorithm 3 was per-
formed in steps 3 and 4 since in order to construct T−1

2D,n, we required to con-
struct before the matrix T2D.

Remark 3.3. Note that in the setup algorithm 3, the steps 3 and 4 may be
substituted by : choose a basis BD := (f1, . . . , fn) such that the matrix TD owns
the largest number of 1 or the largest number of 0 or 1 taken together, in the
same spirit as Remark 3.1. So, in the setup algorithm 4, the number Nz in
the steps 3 and 4 may be substituted by the number N1 resp. Nz + N1 for
each matrice TD and T−1

2D,n. However, we have chosen in this paper to focus
particularly on the number of zeros because it is possible to give an upper bound
on this value, as we will see below.

Indeed, let F/Fq be an algebraic function field of genus g and let P =
{P1, ..., PN} be an ordered set of pairwise distinct places of degree one in F/Fq.
Let us adapt slightly the notation used in [12] to be homogeneous with the
notation used in the description of CCMA. So, we consider that the divisors
G = P1 + · · ·+ PN and D are divisors of F/Fq such that suppG ∩ suppD = ∅.
The algebraic geometry code (or Goppa code) CL(G,D) associated with the
divisors G and D is defined as

CL(G,D) := {(f(P1), ..., f(PN ))|f ∈ L(D)} ⊆ F
N
q .

Then CL(G,D) is an [N, k, d] code with parameters k = dimL(D)−dimL(D−
G) and minimum distance d ≥ N − degD by [12, Theorem 2.2.2]. If {f1, ..., fk}
is a basis of L(D), then by [12, Corollary 2.2.3] we have the following generator
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matrix for CL(G,D)

M :=











f1(P1) · · · f1(PN )
f2(P1) · · · f2(PN )

...
...

...
fk(P1) · · · fk(PN )











.

In the Chudnovsky2 multiplication algorithm (CCMA) defined in the context
of Theorem 2.2, we consider the bijective evaluation map

EvP : L(2D) → F
N
q .

f 7→
(

f (P1) , . . . , f (PN )
)

where degD = n + g − 1 and N = 2n + g − 1. Moreover, we recall that
our construction of CCMA is made with the assumptions of Proposition 3.1,
hence L(D) ⊆ L(2D) since D is an effective divisor. Then, the image of the
restriction EvP |L(D) of EvP on L(D) is a Fq-vector subspace of F

N
q of dimension

n which can be seen as an algebraic geometry code CL(G,D) = [N,n, d] where
G = P1 + · · ·+ PN . Therefore, we can prove the following results.

Proposition 3.4. Let UF,n
D,Q,P be a Chudnovsky2 multiplication algorithm in a

finite field Fqn , satisfying the assumptions of Proposition 3.2. Then we have:

Nz(TD) ≤ n(n+ g − 1).

Proof. The matrix TD is such that

Nz(TD) = n ·N −Nnz(TD), (23)

whereNnz(TD) denotes the number of non-zero entries of TD andN = 2n+g−1.
Moreover, as EvP (L(D)) is an algebraic geometry code CL(G,D) = [N,n, d]
where G = P1 + · · · + PN , then T t

D is a generator matrix of this code. So, we
have

Nnz(TD) ≥ n · d, (24)

by the definition of the minimal distance of a code. Moreover, we have

d ≥ N − degD (25)

by [12, Theorem 2.2.2]. So, we obtain by (23), (24) and (25):

Nz(TD) ≤ n · degD (26)

As degD = n+ g − 1, we obtain the result.

Theorem 3.1. Let UF,n
D,Q,P = (UA

D,Q,P ,UR
D,Q,P) be a Chudnovsky2 multiplication

algorithm in a finite field Fqn , satisfying the assumptions of Proposition 3.2.
Then we have:

µs,0(UA
D,Q,P) ≥ 2n2

and
µs,0(UF,n

D,Q,P) > 2n2.
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Proof. By Equalities (15) and (17), we have

µs,0(UA
D,Q,P) = 2(n(2n+ g − 1)−Nz(TD).

Then, since Nz(TD) ≤ n(n + g − 1) by Proposition 3.4, we deduce the first
inequality. Moreover, we have the trivial bound Nz(T

−1
2D,n) < n(2n + g − 1).

Thus, as µs,0(UF,n
D,Q,P) = 3n(2n + g − 1) − Nz = 3n(2n + g − 1) − 2Nz(TD) −

Nz(T
−1
2D,n) by Equality (21), we obtain µs,0(UF,n

D,Q,P) > 2n2.

Now, we can give an optimization using a criterium obtained from Proposi-
tion 3.4.

Algorithm 5 New setup algorithm of CCMA in Fqn from Proposition 3.4

INPUT: F/Fq, Q,D, P = {P1, . . . , P2n+g−1}.
OUTPUT: B2D, BQ, T2D and T−1

2D,n.

1. Check the function field F/Fq, the place Q, the divisors D are such that
Conditions (i) and (ii) in Theorem 2.2 can be satisfied.

2. Take an initial basis BD,0 for L(D) and construct a basis Bc
D :=

{fn+1, ..., f2n+g−1} of the supplementary space M := KerEQ|L(2D) of
L(D) in L(2D).

3. Go through the set (or subset) of bases BD of L(D) from BD,0 and
linear group GLq(n) in order to compute TD and to construct the set
mBD = {BD | Nz(TD) = n(n+ g − 1)}.

4. Choose a basis BD := {f1, . . . , fn} ∈ mBD such that Nz(T
−1
2D,n) is the

largest possible.

5. Set BQ := EvQ(BD,max) and B2D := BD,max ∪ Bc
D.

6. Compute the matrices T2D and T−1
2D,n in the basis B2D.

Remark 3.4. Note that in the setup algorithm 5, the step 4 may be substituted
by the best following criterium: choose a basis BD ∈ mBD such that 2N1(TD)+
Nz(T

−1
2D,n) +N1(T

−1
2D,n) is the largest possible.

Remark 3.5. As one can see, the algorithms proposed in this section are generic
and in this sense they are well automatized for any set (q, n, F/Fq, D,Q). Indeed
the complexity of the optimization increases with the cardinal of GLq(n). How-
ever, this complexity of optimization (although not having currently an accurate
estimate) is much lower than that of a brute force optimization where all the
bases of each of the vector spaces involved in the two linear applications must be
tested. In fact, the strong point of the analysis conducted in this section is that
it shows that the only relevant lever to optimize the CCMA algorithm concerns
the representation of the L(D) space and only this space. Therefore, most of
the complexity of this optimization lies in running over the linear group (or a
subset) underlying this space, as well as in related operations.
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3.1.2 Strategy of complete optimization

In the view of a complete optimization (with respect to scalar complexity
i.e. with fixed bilinear complexity) of the multiplication in a finite field Fqn

by a Chudnovsky2 multiplication algorithm, we have to vary the eligible sets
(F,D,Q,P). We can vary the couples (D,Q) satisfying the assumptions of
Proposition 3.1 and apply complete optimization Algorithm 4 (or Algorithm 4
with optimization criterium N1 resp. Nz+N1 as mentioned in Remark 3.3): for
instance, we can start by fixing the place Q and then vary the suitable divisors
D. Concerning the set P of rational places, we can show that two algorithms
which differ only by the order of the places on which we evaluate have the same
scalar complexity. That is to say, for any permutation π of the set P , we won-
der whether UF,n

D,Q,π(P) is different from UF,n
D,Q,P in order to answer to the open

problem mentioned in [4, Remark 3]. The action of π corresponds to a permu-
tation of the canonical basis Bc of F2n+g−1

q . It corresponds to a permutation
of the rows of the matrix T2D. In this case, Nz(TD) and N1(TD) are obviously
constant under the action of π. The following proposition also enables us to
claim that Nz(C.T

−1
2D ) and N1(C.T

−1
2D ) are constant under the action of π.

Proposition 3.5. Let us consider an algorithm UF,n
D,Q,P such that D is an effec-

tive divisor, D−Q a non-special divisor of degree g−1, and |P| = dimL(2D) =
N .

Then for any π in SN where SN is the symmetric group on the set {1, 2, ..., N},
we have

µs(UF,n
D,Q,P) = µs(UF,n

D,Q,π(P))

and
µs,0(UF,n

D,Q,P) = µs,0(UF,n

D,Q,π(P)).

In particular, the quantities Nz(TD) (resp. N1(TD)) and Nz(CT−1
2D ) (resp.

N1(CT−1
2D )) are constants under the action π.

Proof. Let P := {P1, P2, ..., PN} be the ordered set of N rational places used in

the algorithm UF,n
D,Q,P . We consider the action of the permutation π ∈ SN on

the set P by setting P ′ = π.P = {Pπ(1), Pπ(2), ..., Pπ(N)}.
Given a basis B2D of Riemann-Roch space L(2D), we consider two evaluation

maps:
EvP : L(2D) → F

N
q

f 7→
(

f(P1), ..., f(PN )
) (27)

and
EvP′ : L(2D) → F

N
q

f 7→
(

f(Pπ(1)), ..., f(Pπ(N))
) (28)

We denote Bc
FN
q

= (e1, ..., eN ) the canonical basis of F
N
q in (27) and Bπ

FN
q

=

(eπ(1), ..., eπ(N)) the basis of FN
q in (28).
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Let us define an isomorphism p : FN
q → F

N
q by p(ei) = eπ(i) for i = 1..N .

The matrix representation of this map is denoted by P . We see that P is a
permutation matrix and note that P−1 = P t. We have

EvP′ = p ◦ EvP .

Then
UA
D,Q,P′ = EP′ ◦ Ev−1

Q = p ◦ EP ◦ Ev−1
Q = p ◦ UA

D,Q,P (29)

and

UR
D,Q,P′ = EQ◦Ev−1

P′ |Im(Ev
P′ ) = EQ◦

(

p◦EvP |Im(EvP)

)−1
= UR

D,Q,P◦p−1. (30)

Observing the changement of the positions of rows of T2D and columns of
CT−1

2D affected by (29) and (30) respectively, we have Nz(TD) (resp. N1(TD))
and Nz(CT−1

2D ) (resp. N1(CT−1
2D )) are constants for any π ∈ SN .

By (12) we obtain

µs(UF,n
D,Q,P) = µs(UF,n

D,Q,π(P))

and
µs,0(UF,n

D,Q,P) = µs,0(UF,n

D,Q,π(P))

for any π ∈ SN .

Finally, we can then look for a fixed suitable algebraic function field of
genus g, up to isomorphism, and repeat all the previous steps. Moreover, it
is still possible to look at the trade-off between scalar complexity and bilinear
complexity by increasing the genus and then re-conducting all the previous
optimizations (i.e. we take algebraic function fields with a genus larger than
required for multiplying in Fqn).

3.2 Optimization of scalar complexity in the elliptic case

Now, we study a specialisation of the Chudnovsky2 multiplication algorithm of
type (3) in the case of the elliptic curves (cf. inequality (2)). In particular, we
improve the effective algorithm constructed in the article of U. Baum and M.A.
Shokrollahi [6] which presented an optimal algorithm from the point of view of
the bilinear complexity in the case of the multiplication in F256/F4 based on
Chudnovsky2 multiplication algorithm applied on the Fermat curve x3 + y3 = 1
defined over F4. Our method of construction leads to a multiplication algorithm
in F256/F4 having a lower scalar complexity with an optimal bilinear complexity.

3.2.1 Experiment of Baum-Shokrollahi

The article [6] presents Chudnovsky2 multiplication in F44 , for the case q = 4
and n = 4. The elements of F4 are denoted by 0, 1, ω and ω2. The algorithm
construction requires the use of an elliptic curve over F4 with at least 9 F4-
rational points (which is the maximum possible number by Hasse-Weil Bound).

19



Note that in this case, Conditions 1) and 2) of Theorem 2.2 are well satisfied.
It is well known that the Fermat curve u3 + v3 = 1 satisfies this condition.
By the substitutions x = 1/(u + v) and y = u/(u + v), we get the isomorphic
curve y2 + y = x3 + 1. From now on, F/Fq denotes the algebraic function field
associated to the elliptic curve C with plane model y2 + y = x3 + 1, of genus
one. The projective coordinates (x : y : z) of F4-rational points of this elliptic
curve are:

P∞ = (0 : 1 : 0), P1 = (0 : ω : 1), P2 = (0 : ω2 : 1), P3 = (1 : 0 : 1),

P4 = (1 : 1 : 1), P5 = (ω : 0 : 1), P6 = (ω : 1 : 1), P7 = (ω2 : 0 : 1), P8 = (ω2 : 1 : 1).

Now, we represent F256 as F4[x]/Q(x) with primitive root α, where Q(x) =
x4 + x3 + ωx2 + ωx+ ω.

• For the place Q of degree 4, the authors considered Q =
∑4

i=1 pi where p1
corresponds to the F44-rational point with projective coordinates (α16 :
α174 : 1) and p2, p3, p4 are its conjugates under the Frobenius map. We
see that α16 is a root of the irreducible polynomial Q(x) = x4 + x3 +
ωx2 + ωx+ ω. Thus, the place Q is a place lying over the place (Q(x)) of
F4(x)/F4. Note also that the place ((Q(x)) of F4(x)/F4 is totally splitted
in the algebraic function field F/F4, which means that there exist two
places of degree n in F/F4 lying over the place (Q(x)) of F4(x)/F4, since
the function field F/Fq is an extension of degree 2 of the rational function
field F4(x)/Fq. The place Q is one of the two places in F/F4 lying over
the place (Q(x)). Notice that the second place is given by the orbit of
the conjugated point (α16 : α174 + 1 : 1). Therefore, we can represent
F256 = F44 = F4[x]/Q(x) as the residue class field FQ of the place Q in
F/F4.

• For the divisor D, we choose the place described as
∑4

i=1 di where d1

corresponds to the F44-rational point (α
17 : α14 : 1) and d2, d3, d4 are its

conjugates under the Frobenius map. By computation we see that α17 is
a root of irreducible polynomial D(x) = x2+x+ω and degD = 4 because
d1, d2, d3, d4 are all distinct. Therefore, D is the only place in F/F4 lying
over the place (D(x)) of F4(x) since the residue class field FD of the place
D is a quadratic extension of the residue class field FD of the place D,
which is an inert place of F4(x) in F/F4.

The matrix T2D obtained in the basis of Riemann-Roch space L(2D):
B2D = {f1 = 1/f, f2 = x/f, f3 = y/f, f4 = x2/f, f5 = 1/f2, f6 = xy/f2, f7 =
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y/f2, f8 = x/f2}, with f = x2 + x+ ω is the following:

T2D =

























0 0 0 1 0 0 0 0
ω2 0 1 0 ω 0 ω2 0
ω2 0 ω 0 ω 0 1 0
ω2 ω2 0 ω2 ω 0 0 ω
ω2 ω2 ω2 ω2 ω ω ω ω
ω ω2 0 1 ω2 0 0 1
ω ω2 ω 1 ω2 1 ω2 1
ω 1 0 ω2 ω2 0 0 ω

























.

Then, computation gives:

C =









1 0 0 0 ω 0 ω2 ω
0 1 0 0 0 ω2 ω 0
0 0 1 0 1 0 0 1
0 0 0 1 1 ω 0 ω









and

CT−1
2D =









1 ω 1 ω 1 1 ω 0
1 0 ω2 ω 1 ω2 1 ω
1 ω ω ω2 1 ω2 ω ω
0 ω ω2 ω 1 ω2 0 0









.

Consequently, we obtain:

Nz(TD) = 10, Nz(CT−1
2D ) = 5.

and
N1(TD) = 5, N1(CT−1

2D ) = 10.

Thus, we have the following quantities: µs,0(UF,n
D,Q,P) = 71 by Formula (21),

µs,1(UF,n
D,Q,P) = 76 by Formula (22) and finally µs(UF,n

D,Q,P) = 51 by Formula
(12).

3.2.2 New designs of the Baum-Shokrollahi Construction (BSC)

In this section, we follow the approach described previously and we improve
the Chudnovsky2 multiplication algorithm in F44 constructed by Baum and
Shokrollahi in [6]. By using the same elliptic curve and the same set {D,Q,P}
(up to a permutation of the set P since it has no influence on scalar resp. bilinear
complexity by Section 3.1.2), we obtain an algorithm with the same bilinear
complexity and lower scalar complexity. The new construction of CCMA for
the multiplication in F256/F4 is based upon complexity analysis in Section 2.2
and the strategies highlighted in Section 3.1.1.

a) Optimization with Algorithm 4
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By using Algorithm 3 (taking into account uniquely the optimization of the
number of zeros) applied on the same set {F/Fq, D,Q,P} used in Section 3.2.1
(up to a permutation of the set P), we obtain the following basis

Bopt
2D = BD,max ∪ Bc

D

of L(2D), where BD,max = {f1, f2, f3, f4} and Bc
D = {f5, f6, f7, f8} with:

f1 = (ωx2 + x)/(x2 + x+ ω),

f2 = (ω2x2 + ω2x+ ω2)/(x2 + x+ ω),

f3 = ω2y/(x2 + x+ ω) + (ω2x+ 1)/(x2 + x+ ω),

f4 = ω2y/(x2 + x+ ω) + (ω2x+ ω)/(x2 + x+ ω),

f5 = (x2 + x)y/(x4 + x2 + ω2) + (x4 + ωx3 + ωx2 + ωx)/(x4 + x2 + ω2),

f6 = ω2xy/(x4 + x2 + ω2) + (ωx4 + x2 + ωx+ 1)/(x4 + x2 + ω2),

f7 = (ω2x+ 1)y/(x4 + x2 + ω2) + (ω2x4 + ω2x3 + ωx2 + ω)/(x4 + x2 + ω2),

f8 = (x2 + ωx+ 1)y/(x4 + x2 + ω2) + (x4 + ωx3 + x2 + ω2x+ ω2)/(x4 + x2 + ω2).

In this basis, we obtained the matrice T2D of the second evaluation map
EvP , where P := {P∞, P1, P2, P7, P8, P3, P4, P5} is the ordered set of rational
places used in CCMA:

T2D =

























ω ω2 0 0 1 ω ω2 1
0 ω 0 ω 0 ω 0 ω
0 ω ω 0 0 ω ω 0
1 0 0 1 1 1 ω2 ω2

1 0 1 0 ω ω ω2 0
0 0 1 0 ω ω 0 1
0 0 0 1 1 ω2 ω 0
ω ω 1 ω2 1 0 0 ω2

























and

T−1
2D,4 =









0 ω 1 0 0 1 1 ω2

0 0 0 0 1 ω ω ω2

ω2 ω ω2 ω2 ω ω 0 0
1 ω2 ω ω2 0 0 1 ω2









.

Therefore, Nz(TD) = 16 and Nz(T
−1
2D,4) = 11. Note that without taking

into account the optimization criterium mentioned in Remark 3.4, we have:
N1(TD) = 7 and N1(T

−1
2D,4) = 6. So, we obtain µs,0(UF,n

D,Q,P) = 53 (a gain
of 25% with respect to BSC). Finally, if we compute the other quantities, we

obtain µs,1(UF,n
D,Q,P) = 76 (equality with BSC) and µs(UF,n

D,Q,P) = 33 (a gain of
54,5% with respect to BSC).

b) Optimization with Algorithm 5
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By using Algorithm 5 (taking into account uniquely the optimization of the
number of zeros) applied on the same set {F/Fq, D,Q,P} used in Section 3.2.1
(up to a permutation of the set P), we obtain the following basis

Bopt
2D = BD,max ∪ Bc

D

of L(2D), where BD,max = {f1, f2, f3, f4} and Bc
D = {f5, f6, f7, f8} with:

f1 = (y + ωx+ ω2)/(x2 + x+ ω),

f2 = (y + ω2x+ ω)/(x2 + x+ ω,

f3 = (ωx2 + ω2x)/(x2 + x+ ω),

f4 = (ωy)/(x2 + x+ ω),

f5 = (ωx2 + ωx)y + ω2x4 + ωx3 + x2 + x+ ω)/(x4 + x2 + ω2),

f6 = (ω2x2y + ωx4 + ωx3 + x2 + ωx)/(x4 + x2 + ω2),

f7 = (x2 + ω2x)y + ωx4 + ωx2)/x4 + x2 + ω2),

f8 = (ωx+ ω)y + ωx4)/(x4 + x2 + ω2).

In this basis, we obtained the matrice T2D of the second evaluation map
EvP , where P := {P∞, P1, P2, P7, P8, P3, P4, P5} is the ordered set of rational
places used in CCMA:

T2D =

























0 0 ω 0 ω2 ω ω ω
ω2 0 0 ω ω2 0 0 1
0 ω2 0 ω2 ω2 0 0 ω
ω2 ω2 ω2 0 1 1 0 ω2

0 0 ω2 1 1 0 ω2 ω2

0 1 0 0 0 ω2 1 ω
ω ω2 0 ω2 1 ω 0 1
ω2 0 ω 0 ω 0 1 ω2

























and

T−1
2D,4 =









1 0 0 ω2 ω 0 ω2 ω2

1 1 ω2 0 0 ω2 0 1
0 1 ω 1 ω2 ω 0 0
ω2 ω ω2 0 ω 0 ω2 0









.

Therefore, Nz(TD) = 16 and Nz(T
−1
2D,4) = 12. Note that without taking

into account the optimization criterium mentioned in Remark 3.4, we have:
N1(TD) = 2 and N1(T

−1
2D,4) = 6. So, we obtain µs,0(UF,n

D,Q,P) = 52 (a gain of
27% over BSC). Note also that we improve the result obtained in [4] (+2%).

Finally, if we compute the other quantities, we obtain µs,1(UF,n
D,Q,P) = 86 ( a

loss of 13% with respect to BSC) and µs(UF,n
D,Q,P) = 42 (a gain of 21,5% with

respect to BSC).
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Remark 3.6. Regarding the total scalar complexity, we notice that a worse
result is obtained using Algorithm 5 than using Algorithm 4. However, this is
not significant because we did not take into account the optimization criterion for
the number of 1, wishing to focus on the optimization of the number of zeros.
It is therefore likely to obtain even better constructions, by using the criteria
mentioned in Remark 3.3.
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