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Abstract

An extension of the classical pandemic SIRD model is considered for the

regional spread of COVID-19 in France under lockdown strategies. This com-

partment model divides the infected and the recovered individuals into unde-

tected and detected compartments respectively. By fitting the extended model

to the real detected data during the lockdown, an optimization algorithm is used

to derive the optimal parameters, the initial condition and the epidemics start

date of regions in France. Considering all the age classes together, a network

model of the pandemic transport between regions in France is presented on the

basis of the regional extended model and is simulated to reveal the transport

effect of COVID-19 pandemic after lockdown. Using the the measured values

of displacement of people mobilizing between each city, the pandemic network

of all cities in France is simulated by using the same model and method as the

pandemic network of regions. Finally, a discussion on an integro-differential

equation is given and a new model for the network pandemic model of each age
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class is provided.
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1. Introduction

Up to now, COVID-19 has widely spread over the world and is much more

contagious than expected. The outbreak of COVID-19 has resulted in a huge

pressure of hospital capacity and a massive death of population in the world.

Quarantine and lockdown measures have been taken in many countries to con-5

trol the spread of the infection, and has proved the amazingly effectiveness of

these measures for the outbreak of COVID-19, in particular in China (see [1]).

Quarantine is a rather old technique to prevent the spread of diseases. It is

used at the individual level to constrain the movement of all the population and

encourage them stay at home. Lockdown measures reduce the pandemic trans-10

mission by increasing social distance and limiting the contacts and mobility of

people, e.g. with cancellation of public gatherings, the closure of public trans-

portation, the closure of borders. COVID-19 may yield a very large number

of asymptomatic infected individuals, as mentioned in [2] and [3]. Therefore,

most countries have implemented indiscriminate lockdown. But the long time15

of duration of lockdown can cause inestimable financial costs, many job losses,

and particularly psychological panic of people and social instability of some

countries.

As declared by some governments (see [4]), testing is crucial to exit lockdown,

mitigate the health harm and decrease the economic expensation. In this paper,20

we consider two classes of active detection. The first one is the short range test:

molecular or Polymerase Chain Reaction (PCR) test, that is used to detect

whether one person has been infected in the past. The second test is the long

range test: serology or immunity test, that allows to determine whether one

person is immune to COVID-19 now. This test is used to identify the individuals25

that cannot be infected again.

For our research on COVID-19, we aim to evaluate the effect of lockdown
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within a given geographical scale in France, such as the largest cities, or urban

agglomerations, or French departments, or one of the 13 Metropolitan Regions

(to go from the finest geographical scale to the largest one). The estimations30

of effect are also considered on different age-classes, such as early childhood,

scholar childhood, working class groups, or the elderly. Besides, we propose

to understand the effect of partial lockdown or other confinement strategies

depending on some geographical perimeters or some age groups (as the one that

Lyon experienced very recently, see [5])35

In the context of COVID-19, there have been many papers that focus on es-

timating the effect of lockdown strategies on the spread of the pandemic (e.g. [6]

and [7]). In [8], the lockdown effect is estimated using stochastic approximation,

expectation maximization and an estimation of basic reproductive numbers. In

this work, we aim at evaluating the dynamics of the pandemic after the lockdown40

by looking on the transport effect.

In this paper, one contribution is that an extension of the typical SIRD

pandemic model is presented for characterizing the regional spread of COVID-

19 in France before and after the lockdown strategies. Taking into account the

detection ratios of infected and immune persons, this extended compartment45

model integrates all the related features of the transmission of COVID-19 in

the regional level. In order to estimate the effect of lockdown strategies and

understand the evolution of the undetected compartments for each region in

France, an optimization algorithm is used to derive the optimal parameters for

regions by fitting the extended model to real reported data during the lockdown.50

Based on regional model analysis before and after the lockdown, we present

a network model to characterize the pandemic transmission between regions

in France after lockdown and evaluate the transport effect of COVID-19 pan-

demic, when considering all age classes together. The most interesting point

is the chosen exponential transmission rate function β(t), in order to incorpo-55

rate the complex effect of lockdown and unlockdown strategies and the delay of

incubation.

This paper is organized as follows. In Section 2, the extended model is de-
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rived from the classical pandemic SIRD model and the rationale behind the

model is explained. In Section 3, we present the parameters optimization prob-60

lem and estimate the effect of lockdown strategies. From the calibration of

parameters for each region in France, we derive the pandemic start date of re-

gions. Network model of pandemic transmission between regions is introduced

and the network simulation is implemented in Section 4. In Section 5, using

the same model as the pandemic network of regions in France, we simulate the65

pandemic network of all cities in France. In the ’Discussion’ section, considering

the age classification, an integro-differential model is presented for the pandemic

network transmission, at any geographical scale, and for any set of age classes.

2. Pandemic Model

In this paper, the scenario we consider is a large safe population into which70

a low level of infectious agent is introduced and a closed population with neither

birth, nor natural death, nor migration. There is one basic model of modelling

pandemic transmission which is well known as susceptible-infected-recovered-

dead (SIRD) model in [9]. This mathematical compartmental model is described

as follows,75

dS(t)

dt
= −βS(t)I(t), (1)

dI(t)

dt
= βS(t)I(t)− (α+ δ)I(t), (2)

dR(t)

dt
= δI(t), (3)

dD(t)

dt
= αI(t) (4)

where S(t) is the number of susceptible people at time t, I(t) is the number of

infected people at time t, R(t) is the number of recovered people at time t, D(t)

is the number of deaths due to pandemic until time t, with constant parameters:

β is transmission rate per infected, δ is the removal or recovery rate, α is the

disease mortality rate. The compartment variables S(t), I(t), R(t), D(t) satisfy80

S(t) + I(t) +R(t) +D(t) = N (5)
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at any time instant t, here N is the total number of population of the considered

area.

From the differential equations (1)-(4), it is obvious that at any time instant

t, the total rate βI(t) of transmission from entire susceptible compartment to

infected compartment is proportional to the infected I; the infected individuals85

recover at a constant rate δ; the infected go to death compartment at a constant

rate α.

In fact, with the exception of the detected well-known data, there are some

undetected data that cannot be measured but are significantly important for

the analysis of the evolution of COVID-19 in France under lockdown policy.90

Moreover they are useful to provide efficient social policies, such as optimal

management of limited healthcare resources, the ideal decision of the duration

and level of lockdown or re-lockdown, and so on.

Inspired by [10], the basic SIRD model is extended to a more sophisticated

compartmental model which includes several features of the recent COVID-1995

outbreak, with flexibility with respect to lockdown and test strategies. More

sophisticated models could be considered, however it is important that the model

we consider can be calibrated with the available data for French regions. On

the basis of SIDUHR+/− model in [10], this model additionally considers that

the infected undetected individuals I− and the infected detected individuals I+
100

get sicker and then go to intensive care U , and the hospitalized individuals H

die (D) before attaining intensive care U . In our model, the short term tests

transfer the positive individuals from compartment I− to compartment I+. The

detection using antibody tests allows to transfer individuals from compartment

R− to compartment R+. The presence of antibodies indicate that one person105

has recovered from the pandemic and is immune. The flow diagram of this

model is sketched out in Figure 1.
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Figure 1: Compartments and flow of the pandemic model (6)-(13).

The evolution of each compartments is modelled by the following equations,

dS(t)

dt
= −β(t)S(t)I−(t), (6)

dI−(t)

dt
= β(t)S(t)I−(t)− λ1I

−(t)− (γIR + γIH + γIU )I−(t), (7)

dI+(t)

dt
= λ1I

−(t)− (γIR + γIH + γIU )I+(t), (8)

dR−(t)

dt
= γIRI

−(t)− λ2R
−(t), (9)

dR+(t)

dt
= γIRI

+(t) + λ2R
−(t) + γHRH(t) + γURU(t), (10)

dH(t)

dt
= γIH(I−(t) + I+(t))− (γHR + γHU + γHD)H(t), (11)

dU(t)

dt
= γIU (I−(t) + I+(t)) + γHUH(t)− (γUR + γUD)U(t), (12)

dD(t)

dt
= γUDU(t) + γHDH(t), (13)

with

S(t) + I−(t) + I+(t) +R−(t) +R+(t) +H(t) + U(t) +D(t) = N, (14)
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and initial conditions110

S(t0) = N, (15)

I−(t0) = I−0 > 0, (16)

I+(t0) = R−(t0) = R+(t0) = H(t0) = U(t0) = D(t0) = 0, (17)

where S(t) is the number of susceptible individuals at time t, I−(t) is the number

of infected undetected individuals at time t, I+(t) is the number of infected

detected individuals at time t, R−(t) is the number of recovered undetected

individuals at time t, R+(t) is the number of recovered detected individuals at

time t, H(t) is the number of hospitalized individuals at time t, U(t) is the115

number of individuals hospitalized in an intensive care unit at time t, D(t) is

the cumulative number of dead individuals from hospital or intensive care at

time t. We do not consider here deaths from nursing homes for example, as in

[11, Chapter 6], where a slightly different is considered at the French national

scale. The main reason for that is the lack of data. Indeed, daily data on120

the total reported cases are unavailable in France at the regional scale. The

initial conditions (15)-(17) means that infected people I−0 are introduced into a

population consisting of susceptible individuals S(t0) at time instant t0. Both

I−0 and t0 are two unknown parameters that need to be identified.

Two types of tests are taken into account in this model, one is a class of125

virological tests like nasal ones that can detect new infectious cases from com-

partment I−. The rate of these tests is denoted by λ1; another method is a

class of serological tests that detect the individuals of infected and sequentially

recovered from compartment R− applying blood or saliva samples, the rate of

these tests (for example, blood test) is denoted by λ2. This second type of tests130

was not proposed in France until very recently, thus we consider in this work

that λ2 = 0.

The other parameters in equation (6)-(13) are defined as follows:

• γIR is the daily individual transition rate from I to R, and γIR = (1 −

pa)(1− pH)/Ns + pa/Na,135
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• γIH is the daily individual transition rate from I to H, and γIH = (1 −

pa)pH(1− pU )/NIH ,

• γIU is the daily individual transition rate from I to U , and γIU = (1 −

pa)pHpU/NIH ,

• γHR is the daily individual transition rate from H to R, and γHR =140

(1− pHD)/NHR,

• γHD is the daily individual transition rate from H to D, and γHD =

pHD/NHD,

• γHU is the daily individual transition rate from H to U , and γHU =

pHU/NHU ,145

• γUR is the daily individual transition rate from U to R, and γUR = (1 −

pUD)/NUR,

• γUD is the daily individual transition rate from U to D, and γUD =

pUD/NUD,

with150

• pa: the probability of having light symptoms or no symptoms for the

infected individuals; pH : the probability of needing hospitalization for

mild or severely ill people; pU : the probability of needing intensive care

for mild or severely ill people; pHU : the probability of needing intensive

care under hospitalization without intensive care; pHD: the probability of155

death under hospitalization without intensive care; pUD: the probability

of death under intensive care;

• Na: the number of days it takes for an asymptomatic case needs to recover;

Ns: the number of days it takes for a symptomatic case to recover without

hospitalization; NIH : the number of days a severely symptomatic case160

requires until hospitalization; NHD: the number of days before death in

the event of hospitalization; NHU : the number of days required for a
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hospitalized case until intensive care is provided; NUD: the number of

days before death in the event of intensive care; NHR: the number of days

it takes for a hospitalized case to recover; NUR: the number of days it165

takes for a case under intensive care to recover.

The infection transmission rate β(t) is the rate of the pandemic transmission

from an undetected infected person to susceptible individuals at time instant

t. As in [12], in order to combine the complex effects of lockdown strategy,

a time-dependent exponentially decreasing function can be used to model the170

transmission rate β(t),

β(t) = β0 exp(−µ(t− κ)+) =

β0 0 ≤ t ≤ κ,

β0 exp(−µ(t− κ)) t > κ,

(18)

with constant parameters β0, µ and κ. Note that β(t) is constant during the ini-

tial stage of implementing effective lockdown strategies such as social distance,

quarantine, healthcare, and mask worn. The transmission rate exponentially

decreases at rate µ after these lockdown strategies take effect. The transmission175

rate β(t) can be illustrated in Figure 2.

β0

κ

β(t)

t
0

Figure 2: Time-evolution of the transmission rate β before and during the lockdown.

As one of the most critical epidemiological parameters, the basic reproduc-

tive ratio R0 defines the average number of secondary cases an average primary

case produces in a totally susceptible population (see [13]). As for the model in

[10], for the considered model in this paper, only the I− individuals transmit180
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the disease to the susceptible individuals during the early phase of outbreak.

If R0 < 1 (i.e., dI−(t)
dt < 0), the infection ”dies out” over time; inversely, if

R0 > 1 (i.e., dI−(t)
dt > 0), the initial number of susceptible individuals exceeds

the critical threshold to allow the pandemic to spread. Thus the initial basic

reproductive rate is185

R0 =
β0S(t0)

λ1 + γIR + γIH + γIU
. (19)

When the transmission rate β(t) and S(t) evolve as time goes by, one dy-

namic reproductive rate that depends on time is introduced and known as ef-

fective reproduction number R(t) in [14]. In this model, it is defined as, for

t ≥ 0,

R(t) =
β(t)S(t)

λ1 + γIR + γIH + γIU
. (20)

Similarly, when R(t) < 1, the number of secondary cases infected by a190

primary undetected infected case on day t, dies out over time, leading to a

delay in the number of infected individuals. But when R(t) > 1, the number

of undetected infected individuals grows over time. Therefore, by the control of

the transmission rate β(t) that can constrain R(t) to be less than 1, the number

of infected individuals grows slowly to ease the pressure on medical resources.195

When S(t) is bellow a threshold, the epidemic goes to extinction (see e.g., [15]).

The required level of vaccination to eradicate the infection is also attained from

the effective reproduction number.

The compartmental model introduced in Figure 1 exhibits a large number

of unknown parameters (20 if we consider λ2 = 0). The uncertainty on these200

parameters can not be neglected. As an example, let us propagate uncertainty

at the scale of the region Auvergne-Rhône-Alpes. The vector of unknown pa-

rameters is:

p = (pa, pH , pU , pHD, pUD, Na, Ns, NIH , NHD,

NUD, NHR, NUR, R0, t0, µ, κ, λ1, pHU , NHU , I
−
0 )>. (21)

We take into account the uncertainties on these parameters by considering

that each parameter is uniformly distributed with bounds consistent with typical205
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reported values (see, e.g., [10] and references therein). Lower and upper bounds

for each parameter are reported in Table 1 hereafter.

parameters pa pH pU pHD pUD Na Ns NIH NHD NUD

lower bounds 0.5 0.15 0.15 0.15 0.2 5 8 8 15 8

upper bounds 0.9 0.2 0.2 0.25 0.3 12 15 12 20 12

parameters NHR NUR R0 t0 µ κ λ1 pHU NHU I−0

lower bounds 15 15 2.5 2020-02-06 0.03 20 1e-4 0.001 1 1

upper bounds 25 20 4.5 2020-02-12 0.1 50 1e-3 0.01 10 100

Table 1: Uncertainty bounds for all model parameters.

The parameter sampling approach is based on the generation of a low-

discrepancy sequence of 5000 points on the unit hypercube [0, 1]20. Low-discrepancy

sequences have the property of uniformly and regularly filling the unit hyper-210

cube, without the clustering issues encountered by Monte Carlo samples. Sobol’

sequences [16] are among the best low-discrepancy sequences with solid theo-

retical properties and good numerical performance when dimension increases.

Figure 3: Prior uncertainty quantification for compartments D (in red), H (in purple), R+

(in blue) and U (in orange) for the region Auvergne-Rhône-Alpes. The bold lines are the

pointwise medians of each functional output, whereas the colored surface is the range between

the pointwise first and third quartiles.
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Figure 3 shows that the prior uncertainty is pretty high, since for example

the difference between the 75 % and the 25 % quantiles for the number of people

in hospital is more than 50000 at the end of the lockdown period. On Figure 4

we propagate the parameter uncertainty on the maximum number of people in

intensive care units, on the date at which this maximum value is attained and

on the total number of reported cases. Note that the total number of reported

cases is obtained from the daily number of reported cases, DR, which is driven

by the following equation:

dDR(t)

dt
= (λ1 + γIH + γIU )I−(t)−DR(t).

The maximum number of people in intensive care is particularly important as

it provides information on the capacities the intensive care units should have215

to face the sanitary crisis. We show for each of these three scalar quantities

of interest the boxplot which visualises five summary statistics (the median,

two hinges and two whiskers) and all outlying points individually. The lower

and upper hinges correspond to the first and third quartiles (the 25th and 75th

percentiles). The upper whisker extends from the hinge to the largest value no220

further than 1.5 * IQR from the hinge (where IQR is the inter-quartile range, or

distance between the first and third quartiles). The lower whisker extends from

the hinge to the smallest value at most 1.5 * IQR of the hinge. Data beyond the

end of the whiskers are called ”outlying” points and are plotted individually.

We see fpr example on these boxplots that the median for the maximum number225

of people in intensive care is more than 8000 with the IQR greater than 20000.

In view of the importance of uncertainties propagated from the model pa-

rameters to the quantities of interest (e.g., number of infected people at hospi-

tals), it appears necessary to calibrate the model. Our calibration procedure is

described in the next section.230

3. Parameter identification

In this section, regional scales of France are considered and all age classes

are summed to calibrate the parameters of the pandemic model (6)-(13) during
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Figure 4: Prior uncertainty quantification for maximum value of U (top left, in log scale),

total number of reported cases (top right, in log scale) and day where maximum value of U is

reached for the region Auvergne-Rhône-Alpes.

confinement on the basis of data about the pandemic in France. Since all regions

are not connected during the lockdown, it is sufficient to identify separtely all235

unknown parameters for each region. From the calibration of the model, we can

observe the effects of lockdown strategies on the unknown variables, in partic-

ular for infected undetected population and recovered undetected population.

The following weighted least square cost function is minimized for parameters

optimization:240

J(p) =

n∑
i=1

(Z(p, ti)− Zmeas(ti))2

Zmeas(ti)

where p is a vector which consists of calibrated parameters; Zmeas(ti) is the

measured values of the corresponding observed state vector Z(p, ti) at time ti,

i = 1, . . . , n, with n the number of days considered for calibration. This op-

timization problem is solved using Levenberg-Marquardt algorithm (see [17]).

Since it is a local algorithm, we adopt, as in [11, Chapter 6], a multi-start ap-245

proach where the initial values are obtained from a Latin Hypercube Sampling

(LHS). LHS were introduced in [18] as space-filling designs on the unit hyper-
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cube. The LHS is built on the unit hypercube [0, 1]20 and then rescaled with

the upper and lower bounds given in Table 1. The unknown parameter vector

p = (pa, pH , pU , pHD, pUD, Na, Ns, NIH , NHD,

NUD, NHR, NUR, R0, t0, µ, κ, λ1, pHU , NHU , I
−
0 )>. (22)

is calibrated on daily data for H, U , D and R+ on the lockdown period 2020-250

03-18 to 2020-05-11 from two data sources: the first one is a public and gov-

ernmental data source [19] and the second one is a dedicated national platform

with a privileged access [20].

The time step is chosen as ten percentage of one day for the numerical

discretization. A general solver for ordinary differential equations is used to255

compute H, U , D or R+ for each region for all time until the end of lockdown.

The results of the calibration are given in Tables 2 to 5. The results of parameter

calibration for the 13 regions in France are shown in Figures 5 and 6.

Regions

Parameters
pa pH pU pHD pUD Na Ns

Île-de-France 0.9 0.15 0.2 0.20 0.3 12.0 13.104

Centre-Val de Loire 0.9 0.2 0.2 0.21 0.3 9.674 8.0

Bourgogne-Franche-Comté 0.83 0.18 0.2 0.25 0.3 6.423 8.576

Normandie 0.9 0.2 0.2 0.25 0.3 6.527 15.0

Hauts-de-France 0.9 0.15 0.2 0.244 0.3 12.0 15.0

Grand Est 0.9 0.2 0.2 0.25 0.3 12.0 14.551

Pays de la Loire 0.9 0.189 0.2 0.193 0.3 7.608 9.191

Bretagne 0.9 0.2 0.2 0.151 0.3 12.0 8.153

Nouvelle-Aquitaine 0.9 0.150 0.2 0.15 0.3 6.883 15.0

Occitanie 0.9 0.15 0.2 0.15 0.3 6.803 9.767

Auvergne-Rhône-Alpes 0.9 0.2 0.2 0.176 0.3 7.820 15.0

Provence-Alpes-Côte d’Azur 0.852 0.192 0.192 0.15 0.2 9.446 15.0

Corse 0.9 0.15 0.179 0.222 0.3 6.433 13.62

Table 2: Optimal values of parameters pa, pH , pU , pHD, pUD, Na, Ns for each region.

4. Network simulation

In order to characterize the dynamics of the pandemic transmission processes260

during the confinement, the epidemiological model (6)-(13) was described in the
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Figure 5: Minimap of regions in France, and result of the parameters calibration for the first

5 regions among 13 (blue dots: data, and red lines: model).
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Figure 6: Minimap of regions in France, and result of the parameters calibration for the last

8 regions among 13 (blue dots: data, and red lines: model).
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Regions

Parameters
NIH NHD NUD NHR NUR µ

Île-de-France 12.0 20.0 9.724 25.0 20.0 0.10

Centre-Val de Loire 12.0 20.0 12.0 25.0 15.0 0.1

Bourgogne-Franche-Comté 12.0 20.0 8.391 25.0 20.0 0.043

Normandie 12.0 20.0 12.0 23.027 20.0 0.1

Hauts-de-France 12.0 20.0 9.303 24.331 20.0 0.1

Grand Est 11.221 20.0 8.0 25.0 20.0 0.0997

Pays de la Loire 12.0 20.0 12.0 25.0 20.0 0.1

Bretagne 12.0 15.225 12.0 25.0 15.096 0.1

Nouvelle-Aquitaine 12.0 20.0 12.0 25.0 20.0 0.1

Occitanie 12.0 20.0 12.0 25.0 20.0 0.1

Auvergne-Rhône-Alpes 12.0 20.0 12.0 25.00 20.0 0.1

Provence-Alpes-Côte d’Azur 8.867 20.0 12.0 25.0 20.0 0.084

Corse 12.0 20.0 12.0 25.0 20.0 0.1

Table 3: Optimal values of parameters NIH , NHD, NUD, NHR, NUR, µ for each region.

previous section. We now consider the government action of unlockdown after

confinement, there is a pandemic transmission effect between each region in

France. Considering Na age groups, the following pandemic network model of

17



Regions

Parameters
κ λ1 pHU NHU

Île-de-France 35.759 0.0001 0.001 3.071

Centre-Val de Loire 40.141 0.0001 0.01 10.0

Bourgogne-Franche-Comté 25.360 0.001 0.00291 1.564

Normandie 37.718 0.000152 0.01 10.0

Hauts-de-France 40.928 0.000193 0.01 10.0

Grand Est 33.745 0.000261 0.0011 4.588

Pays de la Loire 43.524 0.000296 0.001 8.917

Bretagne 44.838 0.000259 0.01 10.0

Nouvelle-Aquitaine 36.702 0.000194 0.0064 2.277

Occitanie 36.056 0.000330 0.01 2.094

Auvergne-Rhône-Alpes 37.142 0.000247 0.001 3.238

Provence-Alpes-Côte d’Azur 42.813 0.001 0.01 10.0

Corse 29.198 0.000271 0.01 10.0

Table 4: Optimal values of parameters κ, λ1, pHU , NHU for each region.

N regions is introduced, for all j = 1, ..., Na and i = 1, ..., N265

dSi,j(t)

dt
= −

Na∑
k=1

βijk(t)I−i,k(t)Si,j(t)

+
∑
k∈Ci

σ(j, k, t){Lkij(t)Sk,j(t)− Likj(t)Si,j(t)}, (23)

dI−i,j(t)

dt
=

Na∑
k=1

βijk(t)I−i,k(t)Si,j(t)− λ1I
−
i,j(t)− (γIR + γIH + γIU )I−i,j(t)

+
∑
k∈Ci

σ(j, k, t){Lkij(t)I−k,j(t)− Likj(t)I
−
i,j(t)}, (24)

dI+
i,j(t)

dt
= λ1I

−
i,j(t)− (γIR + γIH + γIU )I+

i,j(t), (25)

dR−i,j(t)

dt
= γIRI

−
i,j(t)− λ2R

−
i,j(t)

+
∑
k∈Ci

σ(j, k, t){R−kij(t)I
+
k,j(t)−R

−
ikj(t)I

+
i,j(t)}, (26)

dR+
i,j(t)

dt
= γIRI

+
i,j(t) + λ2R

−
i,j(t) + γHRHi,j(t) + γURUi,j(t), (27)

dHi,j(t)

dt
= γIH(I−i,j(t) + I+

i,j(t))− (γHR + γHU + γHD)Hi,j(t), (28)

dUi,j(t)

dt
= γIU (I−i,j(t) + I+

i,j(t)) + γHUHi,j(t)− (γUR + γUD)Ui,j(t), (29)

dDi,j(t)

dt
= γUDUi,j(t) + γHDHi,j(t), (30)
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Regions

Parameters
I−0 t0 R0

Île-de-France 30.454 11/02/2020 4.120

Centre-Val de Loire 1.025 11/02/2020 3.347

Bourgogne-Franche-Comté 1.0 11/02/2020 3.008

Normandie 1.131 12/02/2020 2.774

Hauts-de-France 200.0 10/02/2020 2.883

Grand Est 3.508 08/02/2020 4.5

Pays de la Loire 1.022 06/02/2020 2.772

Bretagne 50.582 06/02/2020 2.5

Nouvelle-Aquitaine 1.282 11/02/2020 2.950

Occitanie 14.708 12/02/2020 2.548

Auvergne-Rhône-Alpes 15.620 11/02/2020 2.884

Provence-Alpes-Côte d’Azur 25.299 06/02/2020 2.583

Corse 1.0 12/02/2020 2.859

Table 5: Optimal values of initial conditions I−0 , start time of infection t0 and basic repro-

duction rate R0.

where transmission rate βijk(t) depends only on (i, j), and is piecewise contin-

uous depending on the scenario: lockdown or no-lockdown, for all t; for age

group j, Lkij(t) is the proportion of individuals moving from region k to region

i in the age class j; the other parameters depend on the location, and also on

the age group j; σ(j, k, t) is periodic (space dependent period Tj,k), satisfies270 ∫ Tj,k

0
σ(j, k, t)dt = 0, and takes value in the interval [−1, 1]; Ci is the set of all

regions that have pandemic transmission with region i.

As the fast periodic switching policy in [21], we consider the inverse of the

(same) exponential function of infection transmission rate β(t) in (18) to denote

βijk(t). Even though the end of confinement, the social strategies still go on, so a275

continuous function β(t) is used for the whole transmission process of COVID-19

from the start date of infection,

β(t) =

β0 exp(−µ(t− κ)+), during lockdown,

(β0 exp(−µ(tend − κ)+)− β0) exp(−µ(t− tend − κ)+) + β0, after lockdown,

(31)

with the end time of lockdown tend.

The transmission rate β(t) for the whole transmission process is illustrated in

Figure 7.280
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β0

κ

β(t)

t0
tend tend + κ

Figure 7: The transmission rate β(t) for the network model.

For the mobility analysis after lockdown, the mobility matrix L = {Lki}N×N
is computed using data of the displacement of population in France as measured

by the Institut national de la statistique et des études économiques (INSEE). To

be more specific, the professional displacements and the scholar displacements

are given for each French city in [22] for some age classes. These information285

allow us to compute the mobility matrix L. The components of the matrix L

are shown in Tables 6-8.

Region k

Region i
Île-de-France Centre-Val de Loire Bourgogne-Franche-Comté Normandie

Île-de-France 0.000e+00 3.662e-04 1.870e-04 3.828e-04

Centre-Val de Loire 5.485e-03 0.000e+00 8.279e-04 5.642e-04

Bourgogne-Franche-Comté 1.136e-03 4.346e-04 0.000e+00 5.651e-05

Normandie 2.803e-03 6.993e-04 5.574e-05 0.000e+00

Hauts-de-France 4.077e-03 6.803e-05 8.013e-05 5.169e-04

Grand Est 7.146e-04 5.116e-05 5.833e-04 6.038e-05

Pays de la Loire 7.411e-04 6.476e-04 5.488e-05 8.895e-04

Bretagne 6.099e-04 1.103e-04 4.689e-05 4.358e-04

Nouvelle-Aquitaine 6.153e-04 3.345e-04 6.910e-05 7.362e-05

Occitanie 4.616e-04 5.165e-05 7.992e-05 5.219e-05

Auvergne-Rhône-Alpes 4.855e-04 1.066e-04 8.104e-04 5.503e-05

Provence-Alpes-Côte d’Azur 5.062e-04 4.511e-05 8.287e-05 5.736e-05

Corse 8.718e-04 1.388e-04 1.388e-04 9.041e-05

Table 6: First part of components Lki in the mobility matrix L.

We choose the same time step as for the calibration step. The simulation

results of the considered network model for 13 regions in France are shown in

Figures 8 and 9, all parameters and the values of all states at the starting date290

of lockdown have been identified during lockdown, the end date of confinement
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Region k

Region i
Hauts-de-France Grand Est Pays de la Loire Bretagne Nouvelle-Aquitaine

Île-de-France 7.848e-04 3.485e-04 2.200e-04 1.412e-04 2.667e-04

Centre-Val de Loire 1.475e-04 1.452e-04 7.035e-04 1.668e-04 7.710e-04

Bourgogne-Franche-Comté 1.020e-04 1.203e-03 6.397e-05 5.295e-05 1.091e-04

Normandie 8.391e-04 1.043e-04 6.113e-04 4.062e-04 1.193e-04

Hauts-de-France 0.000e+00 6.536e-04 6.719e-05 7.274e-05 8.853e-05

Grand Est 3.738e-04 0.000e+00 7.719e-05 7.086e-05 8.116e-05

Pays de la Loire 1.112e-04 8.988e-05 0.000e+00 1.470e-03 1.013e-03

Bretagne 1.175e-04 9.190e-05 1.661e-03 0.000e+00 1.835e-04

Nouvelle-Aquitaine 1.229e-04 8.998e-05 6.295e-04 9.172e-05 0.000e+00

Occitanie 1.169e-04 9.261e-05 7.412e-05 6.760e-05 1.044e-03

Auvergne-Rhône-Alpes 1.262e-04 1.512e-04 6.770e-05 6.426e-05 2.210e-04

Provence-Alpes-Côte d’Azur 1.212e-04 1.117e-04 5.164e-05 6.124e-05 1.312e-04

Corse 1.970e-04 1.647e-04 6.781e-05 1.292e-04 4.036e-04

Table 7: Second part of components Lki in the mobility matrix L.

Region k

Region i
Occitanie Auvergne-Rhône-Alpes Provence-Alpes-Côte d’Azur Corse

Île-de-France 2.133e-04 3.019e-04 1.429e-04 1.001e-05

Centre-Val de Loire 1.209e-04 3.582e-04 6.160e-05 2.747e-06

Bourgogne-Franche-Comté 1.009e-04 1.918e-03 1.084e-04 3.198e-06

Normandie 8.647e-05 1.681e-04 6.719e-05 2.712e-06

Hauts-de-France 8.618e-05 1.409e-04 5.090e-05 1.008e-06

Grand Est 7.556e-05 1.791e-04 1.106e-04 1.808e-06

Pays de la Loire 9.884e-05 2.159e-04 5.404e-05 2.520e-06

Bretagne 1.097e-04 1.638e-04 6.189e-05 6.252e-06

Nouvelle-Aquitaine 9.997e-04 3.356e-04 9.190e-05 4.873e-06

Occitanie 0.000e+00 6.060e-04 1.626e-03 7.430e-06

Auvergne-Rhône-Alpes 3.787e-04 0.000e+00 4.293e-04 6.202e-06

Provence-Alpes-Côte d’Azur 1.115e-03 8.193e-04 0.000e+00 2.613e-05

Corse 5.199e-04 3.487e-04 1.698e-03 0.000e+00

Table 8: Third part of components Lki in the mobility matrix L.
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is 11th of May in France.

5. Network of cities

In this section, we use the parameter identification method developed in

Section 3 to simulate another network of areas. Instead of considering the295

network of metropolitan regions as in Section 4, we consider the network of all

French cities. There are around 36.000 cities in France, and INSEE measures

the displacement of people between each couple of cities [22]. To simulate the

transport effect on the pandemic dynamics, we follow the same approach as in

Section 4. To be more specific, we use the same model as (23)-(30) but instead300

of considering N = 13 regions, we consider N = 36.000 cities with only one age

class (j = 1):

dSi(t)

dt
= −βi(t)I−i (t)Si(t)

+
∑
k∈Ci

σ(k, t){Lki(t)Sk(t)− Lik(t)Si(t)}, (32)

dI−i (t)

dt
= βi(t)I

−
i (t)Si(t)− λ1I

−
i (t)− (γIR + γIH + γIU )I−i (t)

+
∑
k∈Ci

σ(k, t){Lki(t)I−k (t)− Lik(t)I−i (t)}, (33)

dI+
i (t)

dt
= λ1I

−
i (t)− (γIR + γIH + γIU )I+

i (t), (34)

dR−i (t)

dt
= γIRI

−
i (t)− λ2R

−
i (t)

+
∑
k∈Ci

σ(k, t){R−ki(t)I
+
k (t)−R−ik(t)I+

i (t)}, (35)

dR+
i (t)

dt
= γIRI

+
i (t) + λ2R

−
i (t) + γHRHi(t) + γURUi(t), (36)

dHi(t)

dt
= γIH(I−i (t) + I+

i (t))− (γHR + γHU + γHD)Hi(t), (37)

dUi(t)

dt
= γIU (I−i (t) + I+

i (t)) + γHUHi(t)− (γUR + γUD)Ui(t), (38)

dDi(t)

dt
= γUDUi(t) + γHDHi(t), i = 1, ..., N (39)

where Lki(t) is the proportion of individuals moving from city k to city i, and

is derived from the real data of INSEE, and Ci is the set of all cities that have
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Figure 8: Minimap of regions in France, and the simulation of the pandemic Network model

for the first 5 regions among 13.
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Figure 9: Minimap of regions in France, and the simulation of the pandemic Network model

for the last 8 regions among 13.
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pandemic transmission with city i. All the other parameters are chosen as the305

ones of the region to which each city belongs.

To simulate this system of 8 ∗ 36.000 differential equations, we now specify

initial conditions. To simplify, the epidemic start date of each city is taken as

the same as the epidemic start date of the region to which it belongs, and the

initial condition for the undetected infected individuals I−0 for the capital of310

each region is the one of the region, while it is set to 0 for all other cities in the

region. It is equivalent to say that the pandemic dynamics starts at the capital

of each region. The population of each French city is used as initial condition

for the susceptible individuals.

The transport effect between cities is seen on Figures 10-12.

Figure 10: The maps of the transport effect between cities in France (undetected infected plus

detected infected from 0% (blue) to 2% (magenta) of the population for each commune): the

date for the map on the left is 2020-03-17 (start date of the lockdown in France) and the one

for the map on the right is 2020-04-01.

315

On these Figures, we observe the spatial evolution of the pandemics between

2020-03-17 and 2020-08-01. At the early date, the results are impacted by the

initial conditions. Indeed the infected people are mainly concentrated in the

capital of each region. Then the pandemic spreads to the other cities. Note

that we did not model the wearing of cloth face coverings in public settings,320
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Figure 11: The maps of the transport effect between cities in France (undetected infected plus

detected infected from 0% (blue) to 2% (magenta) of the population for each commune): the

date for the map on the left is 2020-05-01 and the one for the map on the right is 2020-06-01.

Figure 12: The maps of the transport effect between cities in France(undetected infected plus

detected infected from 0% (blue) to 2% (magenta) of the population for each commune): the

date for the map on the left is 2020-07-01 and the one for the map on the right is 2020-08-01.
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which could be included in the modelling of the transmission rate β(t).

6. Discussion and a new integro-differential model

In this section, the general form of an integro-differential model capable of

integrating different age classes and areas is introduced to discuss the transport

effect of COVID-19 in France after lockdown. By ”areas” we mean a given325

geographical scale as the set of 13 Metropolitan regions (as considered in Section

4), or the set or all 101 French departments, or all cities (as considered in Section

5), or other geographical areas. For each age class a ∈ ages in area x ∈ areas,

we consider the following integro-differential equations, for any time t ≥ 0 after

confinement,330

∂tX(a, x, t) = fa(X(., x, t))

+

∫
areas

σ(a, x, y, t)(Λin(a, x, y, t)− Λout(a, x, y, t))X(a, y, t)dy

+Fext(a, x, t), (40)

with

• ages, Na ∈ N, the set of different age classes of population, depending on

the age scale under study. As an example, we can consider all scholar age

classes, or elderly ages, or a mix of such age classes as the set

ages = {−15, 15− 44, 44− 64, 65− 74, 75−} ;

• areas, the set of different areas of population under study, depending

on the considered geographical scale. As an example, considering all
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metropolitan regions, as considered in Section 4, yields the set

areas = {Î le− de− France, Centre− V al deLoire,

Bourgogne− Franche− Comté,Normandie,

Hauts− de− France,GrandEst,

Pays de laLoire,Bretagne,

Nouvelle−Aquitaine,Occitanie,

Auvergne−Rhône−Alpes, Corse,

Provence−Alpes− Côte dAzur},

As another example, considering all French departments gives a set of 101335

areas, or considering the geographical scale of French cities yield a set of

around 36.000 areas, as considered in Section 5 and so on... We can even

consider set of countries to model the international transport effect.

• X(a, x, t) ∈ R8 is the 8-vector consisting of compartments of the age class

a, in the area x, at time t;340

• For all age class a, fa(X(., x, t)) is the pandemic transmission dynamics

for age class a from all other age classes in the area x at time t. Without

considering the age effect, it is given by the right-hand side of systems

(6)-(13). Inspired by the contact matrix approach developed in e.g. [23,

Chapter 3, Page 76], by considering multiple age classes, the transmission

term is the following integral∫
ages

βa,b,x(t)I−(b, x, t)db S(a, x, t)

instead of

β(t)I−(t)S(t) ,

where βa,b,x(t) is the contact function between age classes a and b, in the
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area x, and at time t. Therefore the function fa is given by

fa(X(., x, t)) =

−
∫
ages

βa,b,x(t)I−(b, x, t)db S(a, x, t),∫
ages

βa,b,x(t)I−(b, x, t)db S(a, x, t)− λ1I
−(a, x, t)− (γIR + γIH + γIU )I−(a, x, t),

λ1I
−(a, x, t)− (γIR + γIH + γIU )I+(a, x, t),

γIRI
−(a, x, t)− λ2R

−(a, x, t),

γIRI
+(a, x, t) + λ2R

−(a, x, t) + γHRH(a, x, t) + γURU(a, x, t),

γIH(I−(a, x, t) + I+(a, x, t)− (γHR + γHU + γHD)H(a, x, t),

γIU (I−(a, x, t) + I+(a, x, t) + γHUH(a, x, t)− (γUR + γUD)U(a, x, t),

γUDU(a, x, t) + γHDH(a, x, t),


where all parameters depend on the age class a and the area x;

• Λin(a, x, y, t) ∈ R is the density of people coming (in) area x from area

y ∈ areas at time t, for age class a;

• Λout(a, x, y, t) ∈ R is the density of people going to (out) area y ∈ areas

from area x at time t, for age class a;345

• Fext(a, x, t) ∈ R8 is the external flux coming into location x at time t in

the age class a. As an example for the simulations of Section 4 (where the

metropolitan regions are considered) and of Section 5 (where all French

cities are considered), it is 0 because the boundary of France are close (at

the time of the simulation);350

• σ(a, x, y, t) is the lockdown function for the age class a, between the areas

x and y at time t. As an example, before the 11th of May, it was forbidden

to travel for more than 100km in France. Such a policy could depend on

the age classes and on the areas, e.g., to control so called ”clusters” of

COVID-19;355

•
∫
areas

σ(a, x, y, t)Λin(a, x, y, t)X(a, y, t)dy provides the total number of peo-

ple coming into area x from all the other areas.
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Equation (40) describes the network dynamics of COVID-19 pandemic af-

ter lockdown and the transport effect on different age class on the basis of

the regional pandemic transmission dynamics during lockdown. The proposed360

structure makes it easier to understand different forms of the kernel. The in-

terest of this model is that it could be adapated to any geographical scales,

and to all age classes. For a control point of view, the most important term is

σ(a, x, y, t) which defines the lockdown policy that defines the mobility between

areas x and y at time t for the age class a. Many control problems could be365

studied for this model, as optimal control to reduced the pandemic effect, or to

minimize the mortality in particular. It is of great importance for the mobility

dynamics of the pandemic.

Beyond that, inspired by advection-diffusion modelling of population dy-

namics (as considered in [24]), it is natural to model the displacement inside a370

given area by a diffusion term (see [25]). The corresponding model is formulated

as follows:

∂tX(a, x, t) = fa(X(., x, t)) + d(a, x, t)∂xxX(a, x, t)

+

∫
areas

(Λin(a, x, y, t)− Λout(a, x, y, t))X(b, y, t)dy

+Fext(a, x, t), (41)

where the diffusion coefficient d(a, x, t) is a function that depends on age class

a, areas x and time t.

This 2-order partial differential equation predicts that for age class a in the375

area x, how diffusion causes the number of individuals in the different com-

partments, especially undetected infectives and deaths, to change with respect

to time t after lockdown. As long as one susceptible person is infected after

directly or indirectly contacting disease carriers in the area x, diffusion takes

place. When the number of infectious individuals in a local area is low compared380

to the surrounding areas, the pandemic will diffuse in from the surroundings,

so the number of infectives in this area will increase. Conversely, the pandemic

will diffuse out and the number of infectives will increase in the surrounding

areas. The process of diffusion is influenced by distance, nearby individuals or
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areas have higher probability of contact than remote individuals or areas.385

Finally, gender differentiation or other properties may be taken into account

to characterize types of populations and to study the optimal lockdown control

of pandemic dynamics based on our previous work. It is worth stressing that, in

the long run, optimal lockdown strategies should consider the balance between

the lower number of deaths and minimum healthcare and social costs.390

7. Conclusion

In this paper, we investigated an extended model of the classical SIRD pan-

demic model to characterize the regional transmission of COVID-19 after lock-

down in France. Incorporating the time delays arising from incubation, testing

and the complex effects of government measures, an exponential function of395

the transmission rate β(t) was presented for the regional model. By fitting the

regional model to the real data, the optimal parameters of this regional model

for each region in France were derived. Based on the previous results of the

extended model, we introduced and simulated a network model of pandemic

transmission between regions after confinement in France while considering age400

classes. Regarding the transmission rate β(t) for the network model, we selected

the inverse function of the previous β(t) to contribute to the transport effect af-

ter lockdown. By using the same model and method, we simulated the pandemic

network for all cities in Franc to visualize the transport effects of the pandemic

between cities. Considering age classes, we discussed an integro-differential405

equation for modelling the network of infectious diseases in the discussion part.

Because of the large volumes of data and complicated calculations needed for

parameters calibration and simulation when considering many geographical ar-

eas and many age classes, the requirements in terms of computer hardware and

software are rather high. In order to achieve accurate results, appropriate and410

efficient data processing methods will be applied. Moreover appropriate dedi-

cated theoretical work is needed to study the integro-differential model derived

in Section 6.
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In future works, we will formulate and study optimal control problems in

order to balance the induced sanitary and economic costs. The lockdown strate-415

gies implemented in France should be evaluated and compared to the proposed

optimal strategies.
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