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ON THE SUMMABILITY OF THE SOLUTIONS OF THE

INHOMOGENEOUS HEAT EQUATION WITH A POWER-LAW

NONLINEARITY AND VARIABLE COEFFICIENTS

PASCAL REMY

Abstract. In this article, we investigate the summability of the formal power
series solutions in time of the inhomogeneous heat equation with a power-law

nonlinearity of degree two, and with variable coefficients. In particular, we

give necessary and sufficient conditions for the 1-summability of the solutions
in a given direction. These conditions generalize the ones given for the linear

heat equation by W. Balser and M. Loday-Richaud in a 2009 article [5].

1. Introduction

For several years, various works have been done on the divergent solutions of some
classes of linear partial differential equations or integro-differential equations in two
variables or more, allowing thus to formulate many results on Gevrey properties,
summability or multisummability (e.g. [1,3,5,7–9,11–13,20,22,24,25,30–38,43,44,
48–50,59,60]).

In the case of the nonlinear partial differential equations, the situation is much
more complicated. The existing results concern mainly Gevrey properties, espe-
cially the convergence (e.g. [10, 14, 16, 17, 21, 26, 39–41, 47, 51–58]), and there are
very few results about the summation (see [15,23,27,42,45]).

In this article, we are interested in the summability of the formal solutions of
the inhomogeneous semilinear heat equation

(1.1)

#

Btu´ apxqB
2
xu´ bpxqu

2 “ rfpt, xq

up0, xq “ ϕpxq

in two variables pt, xq P C2, where the coefficients apxq and bpxq, and the initial
condition ϕpxq are analytic on a disc Dρ with center 0 P C and radius ρ ą 0,

and where the inhomogeneity rfpt, xq is a formal power series in t with analytic

coefficients in Dρ (denoted in the sequel by rfpt, xq P OpDρqrrtss) which may be
smooth, or not1. Observe that an important particular case of Eq. (1.1) is the
inhomogeneous linear heat equation

(1.2)

#

Btu´ apxqB
2
xu “

rfpt, xq

up0, xq “ ϕpxq

2000 Mathematics Subject Classification. 35C10, 35C20, 35K05,35K55, 40B05.
Key words and phrases. Summability,Heat equation,Inhomogeneous partial differential equa-

tion,Nonlinear partial differential equation,Formal power series,Divergent power series.
1We denote rf with a tilde to emphasize the possible divergence of the series rf .
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obtained for bpxq “ 0.
Equation (1.1) arises in many physical, chemical, biological, and ecological prob-

lems involving diffusion and nonlinear growth such as heat and mass transfer, com-
bustion theory, and spread theory of animal of plant populations. For example, if
a chemical reaction generates heat at a reat depending on the temperature u, then
u satisfies Eq. (1.1). In biological and ecological problems, the nonlinear term u2

represents the growth of animal or plant population.

Proposition 1.1. Equation (1.1) admits a unique solution rupt, xq P OpDρqrrtss.

Proof. Writing the inhomogeneity rfpt, xq in the form

rfpt, xq “
ÿ

jě0

fj,˚pxq
tj

j!
with fj,˚pxq P Dρ,

and looking for rupt, xq on the same type, one easily checks that the coefficients
uj,˚pxq P Dρ are uniquely determined for all j ě 0 by the initial condition u0,˚pxq “
ϕpxq and by the recurrence relations

uj`1,˚pxq “ fj,˚pxq ` apxqB
2
xuj,˚pxq ` bpxq

j
ÿ

k“0

ˆ

j

k

˙

uk,˚pxquj´k,˚pxq.

�

In 1999, D. A. Lutz, M. Miyake and R. Schäfke considered the case of Eq. (1.2)

with apxq “ 1 and rfpt, xq “ 0. Using an approach based on the definition of the 1-
summability in terms of the Borel transformation, they gave necessary and sufficient
conditions on ϕpxq for rupt, xq be 1-summable in a fixed direction argptq “ θ [20].
Afterwards, and using the same approach, various authors have extended this result

in the case where, either apxq “ a P C˚, or rfpt, xq “ 0 [1, 4, 9] (see also [6, 30, 31]
for an extension in higher spatial dimensions). The general case of Eq. (1.2) was
treated by W.Balser and M. Loday-Richaud in [5], but with a different approach
based on the definition of the 1-summability in terms of the successive derivatives.

In this article, we propose to extend the results of [5] to the general equation
(1.1). In Section 2, we recall some basic definitions and properties about the 1-
summable formal series and we state the main result of our article (Theorem 2.4).
This result is proved in Section 3.

2. 1-summability of rupt, xq

All along the article, we consider t as the variable and x as a parameter. Thereby,
to define the notion of 1-summability of formal power series in OpDρqrrtss, one
extends the classical notions of 1-summability of elements in Crrtss to families
parametrized by x in requiring similar conditions, the estimates being however
uniform with respect to x. Doing that, any formal power series in OpDρqrrtss can
be seen as a formal power series in t with coefficients in a convenient Banach space
defined as the space of functions that are holomorphic on a disc Dr (0 ă r ă ρ)
and continuous up to its boundary, equipped with the usual supremum norm. For
a general study of series with coefficients in a Banach space, we refer for instance
to [2].
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2.1. 1-summable formal series. Among the many equivalent definitions of 1-
summability in a given direction argptq “ θ at t “ 0, we choose in this article a
generalization of Ramis’ definition which states that a formal series rgpt, xq P Crrtss
is 1-summable in direction θ if there exists a holomorphic function g which is 1-
Gevrey asymptotic to rg in an open sector Σθ,ąπ bisected by θ and with opening
larger than π [46, Def. 3.1]. To express the 1-Gevrey asymptotic, there also exist
various equivalent ways. We choose here the one which sets conditions on the
successive derivatives of g (see [28, p. 171] or [46, Thm. 2.4] for instance).

Definition 2.1 (1-summability). A formal series rupt, xq P OpDρqrrtss is said to
be 1-summable in the direction argptq “ θ if there exist a sector Σθ,ąπ, a radius
0 ă r ď ρ and a function upt, xq called 1-sum of rupt, xq in direction θ such that

(1) u is defined and holomorphic on Σθ,ąπ ˆDr;

(2) For any x P Dr, the map t ÞÑ upt, xq has rupt, xq “
ÿ

jě0

uj,˚pxq
tj

j!
as Taylor

series at 0 on Σθ,ąπ;
(3) For any proper2 subsector Σ Ť Σθ,ąπ, there exist constants C ą 0 and

K ą 0 such that, for all ` ě 0, all t P Σ and all x P Dr,
ˇ

ˇB`tupt, xq
ˇ

ˇ ď CK`Γp1` 2`q.

We denote by OpDρqttu1;θ the subset of OpDρqrrtss made of all the 1-summable
formal series in the direction argptq “ θ.

Note that, for any fixed x P Dr, the 1-summability of rupt, xq coincides with the
classical 1-summability. Consequently, Watson’s lemma implies the unicity of its
1-sum, if any exists.

Note also that the 1-sum of a 1-summable formal series rupt, xq P OpDρqttu1;θ

may be analytic with respect to x on a disc Dr smaller than the common disc Dρ

of analyticity of the coefficients uj,˚pxq of rupt, xq.

Denote by B´1
t ru (resp. B´1

x ru) the anti-derivative of ru with respect to t (resp. x)
which vanishes at t “ 0 (resp. x “ 0). Proposition 2.2 below specifies the algebraic
structure of OpDρqttu1;θ.

Proposition 2.2. Let θ P R{2πZ. Then, pOpDρqttu1;θ, Bt, Bxq is a C-differential

algebra stable under the anti-derivatives B´1
t and B´1

x .

We refer for instance to [5, Prop. 3.2] for a proof of this result.

With respect to t, the 1-sum upt, xq of a 1-summable series rupt, xq P OpDρqttu1;θ

is analytic on an open sector for which there is no control on the angular opening
except that it must be larger than π (hence, it contains a closed sector Σθ,π bisected
by θ and with opening π) and no control on the radius except that it must be
positive. Thereby, the 1-sum upt, xq is well-defined as a section of the sheaf of
analytic functions in pt, xq on a germ of closed sector of opening π (that is, a closed
interval Iθ,π of length π on the circle S1 of directions issuing from 0; see [29, 1.1]
or [18, I.2]) times t0u (in the plane C of the variable x). We denote by OIθ,πˆt0u

the space of such sections.

2A subsector Σ of a sector Σ1 is said to be a proper subsector and one denotes Σ Ť Σ1 if its
closure in C is contained in Σ1 Y t0u.
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Corollary 2.3. The operator of 1-summation

S1;θ : OpDρqttu1;θ ÝÑ OIθ,πˆt0u

rupt, xq ÞÝÑ upt, xq

is a homomorphism of differential C-algebras for the derivations Bt and Bx. More-
over, it commutes with the anti-derivations B´1

t and B´1
x .

Let us now turn to the study of the 1-summability of the formal solution rupt, xq P
OpDρqrrtss of Eq. (1.1).

2.2. Main result. Before stating our main result, let us start with a preliminary
remark. Write the coefficients apxq and bpxq in the form

apxq “
ÿ

ně0

an
xn

n!
, bpxq “

ÿ

ně0

bn
xn

n!

and the formal series rupt, xq and rfpt, xq in the form

rupt, xq “
ÿ

ně0

ru˚,nptq
xn

n!
, rfpt, xq “

ÿ

ně0

rf˚,nptq
xn

n!
.

By identifying the terms in xn in Eq. (1.1), we get the identities

(2.1)

$

’

’

&

’

’

%

a0ru˚,2ptq “ Btru˚,0ptq ´ b0ru˚,0ptqru˚,0ptq ´ rf˚,0ptq

a0ru˚,3ptq ` a1ru˚,2ptq “ Btru˚,1ptq ´ 2b0ru˚,0ptqru˚,1ptq ´ b1ru˚,0ptqru˚,0ptq

´ rf˚,1ptq,

for n “ 0 and n “ 1, and the identities

a0ru˚,n`2ptq ` na1ru˚,n`1ptq “

Btru˚,nptq ´
ÿ

n1`n2`n3“n

n!

n1!n2!n3!
bn1

ru˚,n2ptqru˚,n3ptq ´
rf˚,nptq

for n ě 2. Consequently, each formal series ru˚,nptq is uniquely determined from

ru˚,0ptq, ru˚,1ptq and rfpt, xq.
In the case of the linear heat equation (1.2), W. Balser and M. Loday-Richaud

proved, under the assumption that pa0, a1q ‰ p0, 0q, that the terms ru˚,0ptq, ru˚,1ptq

and rfpt, xq allow to fully characterize the 1-summability of the formal solution
rupt, xq in a given direction [5].

In the case of our semilinear heat equation (1.1), Theorem (2.4) below tells us
that this characterization remains valid. More precisely, we have:

Theorem 2.4. Let argptq “ θ P R{2πZ be a direction issuing from 0. Assume that
either ap0q ‰ 0, or ap0q “ 0 and a1p0q ‰ 0. Then,

(1) The unique formal series solution rupt, xq P OpDρqrrtss of Eq. (1.1) is 1-

summable in the direction θ if and only if the inhomogeneity rfpt, xq and the
coefficients ru˚,0ptq and ru˚,1ptq are 1-summable in the direction θ.

(2) Moreover, the 1-sum upt, xq, if any exists, satisfies Eq. (1.1) in which
rfpt, xq is replaced by its 1-sum fpt, xq in the direction θ.
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When apxq “ Opx2q, Theorem (2.4) fails: the formal solution rupt, xq may not be

1-summable in a given direction, while ru˚,0ptq, ru˚,1ptq and rfpt, xq are 1-summable.

Such a situation occurs for example in the case where apxq “ x2, bpxq “ 0, rfpt, xq “
0 and ϕpxq “ 1

1´x . We refer to [5, Counter example 3.5] for the details of the
calculations.

Let us now turn to the proof of Theorem 2.4.

3. Proof of Theorem 2.4

3.1. Case ap0q ‰ 0.
Ÿ Point 1 (necessary condition). This is straightforward from Proposition 2.2. We
have indeed ru˚,0ptq “ rupt, 0q, ru˚,1ptq “ Bxrupt, xq|x“0, and

rfpt, xq “ Btupt, xq ´ apxqB
2
xupt, xq ´ bpxqupt, xq

2.

Ÿ Point 1 (sufficient condition). To prove that the condition is sufficient, we shall
proceed in a similar way as the proof of [5, Thm. 3.4] (see also [48–50]).

By assumption, we have ap0q ‰ 0. Hence, the functions Apxq “ 1{apxq and
Bpxq “ bpxq{apxq are both well-defined and holomorphic on a convenient disc Dρ1

with 0 ă ρ1 ă ρ.
Let us set rupt, xq “ rvpt, xq ` B´2

x rwpt, xq with rvpt, xq “ ru˚,0ptq ` ru˚,1ptqx. With
these notations, Eq. (1.1) becomes

(3.1) rw ´ApxqBtB
´2
x rw ` 2Bpxqrvpt, xqB´2

x rw `BpxqpB´2
x rwq2 “ rgpt, xq

with

rgpt, xq “ ApxqpBtrvpt, xq ´ bpxqrvpt, xq
2 ´ rfpt, xqq.

Let us now assume that ru˚,0ptq, ru˚,1ptq and rfpt, xq are 1-summable in a given
direction θ. Then, rvpt, xq and rgpt, xq are both 1-summable in the direction θ (see
Proposition 2.2) and identity (3.1) above tells us it suffices to prove that it is the
same for rwpt, xq. To this end, we shall proceed similarly as [5, 48–50] through a
fixed point method. Of course, as we shall see below, the nonlinear term pB´2

x rwq2

induces much more complicated calculations.

Let us set rwpt, xq “
ÿ

mě0

rwmpt, xq and let us choose the solution of Eq. (3.1)

recursively determined for all m ě 0 by the system

(3.2)

$

’

&

’

%

rw0 “ rg

rwm`1 “ ApxqBtB
´2
x rwm ´ 2BpxqrvB´2

x rwm ´Bpxq
m
ÿ

k“0

pB´2
x rwkqpB

´2
x rwm´kq

Observe that rwmpt, xq P OpDρ1qrrtss for all m ě 0. Observe also that the rwmpt, xq’s
are of order Opx2mq in x for all m ě 0, and, consequently, the series rwpt, xq itself
makes sense as a formal series in t and x.

Let us now respectively denote by w0pt, xq and vpt, xq the 1-sums of rw0 “ rg and
rv in direction θ and, for all m ě 0, let wmpt, xq be determined as the solution of
System (3.2) in which rv is replaced by v and all the rwm are replaced by wm. By
construction, all the functions wmpt, xq are defined and holomorphic on a common
domain Σθ,ąπ ˆDρ2 with a convenient radius 0 ă ρ2 ď ρ1.
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To end the proof, it remains to prove that the series
ÿ

mě0

wmpt, xq is convergent,

and that its sum wpt, xq is the 1-sum of rwpt, xq in direction θ.
According to Definition (2.1), the 1-summability of rw0 and rv implies that there

exists 0 ă r1 ă minp1, ρ2q such that, for any proper subsector Σ Ť Σθ,ąπ, there
exist two positive constants C ą 0 and K ě 1 such that, for all ` ě 0 and all
pt, xq P ΣˆDr1 , the functions w0 and v satisfy the inequalities

(3.3)
ˇ

ˇB`tw0pt, xq
ˇ

ˇ ď CK`Γp1` 2`q and
ˇ

ˇB`tvpt, xq
ˇ

ˇ ď CK`Γp1` 2`q.

Let us now fix a proper subsector Σ Ť Σθ,ąπ and let us denote by α (resp. β) the
maximum of |Apxq| (resp. |Bpxq|) on the closed disc |x| ď r1. Proposition (3.1)
below provides us some estimates on the derivatives B`twm.

Proposition 3.1. The following inequalities

(3.4)
ˇ

ˇB`twmpt, xq
ˇ

ˇ ď Cpα` 2π2CβqmK``mΓp1` 2p``mqq
|x|

2m

p2mq!

hold for all `,m ě 0 and all pt, xq P ΣˆDr1 .

Proof. The proof proceeds by recursion on m. The case m “ 0 is straightforward
from the first inequality of (3.3). Let us now suppose that the inequalities (3.4)
hold for all 0 ď k ď m for a certain m ě 0. According to the relations (3.2), we
deduce from the Leibniz Formula that

B`twm`1pt, xq “ ApxqB``1
t B´2

x wmpt, xq

´ 2Bpxq
ÿ̀

j“0

ˆ

`

j

˙

B
j
t vpt, xqB

`´j
t B´2

x wmpt, xq

´Bpxq
m
ÿ

k“0

ÿ̀

j“0

ˆ

`

j

˙

B
j
t B
´2
x wkpt, xqB

`´j
t B´2

x wm´kpt, xq

for all ` ě 0 and pt, xq P Σ ˆ Dr1 . Hence, applying the second inequality of (3.3)
and the inequalities (3.4) for all the wk’s with k “ 0, ...,m, and using the fact that
K ě 1 and r1 ă 1, we get the inequalities

ˇ

ˇB`twm`1pt, xq
ˇ

ˇ ď Cpα` 2π2CβqmK``m`1Γp1` 2p``m` 1qq
|x|

2m`2

p2m` 2q!

ˆ pα` 2CβSm,` ` CβS
1
m,`q

for all ` ě 0 and pt, xq P ΣˆDr1 , where Sm,` and S1m,` are respectively defined by

Sm,` “
ÿ̀

j“0

ˆ

`

j

˙

Γp1` 2jqΓp1` 2p`´ j `mqq

Γp1` 2p``m` 1qq
and

S1m,` “
m
ÿ

k“0

ÿ̀

j“0

ˆ

`

j

˙

p2m` 2q!Γp1` 2pj ` kqqΓp1` 2p`´ j `m´ kqq

p2k ` 2q!p2m´ 2k ` 2q!Γp1` 2p``m` 1qq
.

Inequalities (3.4) follow then from Lemmas (3.2) and (3.3) below and from the fact
that 2 ď π2. This ends the proof. �

Lemma 3.2. Sm,` ď 1 for all m, ` ě 0.
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Proof. Lemma (3.2) stems obvious from the identity

Sm,` “
1

p2`` 2m` 2qp2`` 2m` 1q

ÿ̀

j“0

ˆ

`

j

˙

ˆ

2`` 2m

2j

˙

and the combinatorial inequalities

ˆ

2`` 2m

2j

˙

ě

ˆ

`

j

˙ˆ

`` 2m

j

˙

ě

ˆ

`

j

˙

. �

Lemma 3.3. S1m,` ď π2 for all m, ` ě 0.

Proof. First of all, let us observe that

S1m,` ď
m
ÿ

k“0

ÿ̀

j“0

ˆ

`

j

˙

p2m` 2q!Γp1` 2pj ` kqqΓp1` 2p`´ j `m´ k ` 1qq

p2k ` 2q!p2m´ 2k ` 2q!Γp1` 2p``m` 1qq

“

m
ÿ

k“0

ÿ̀

j“0

ˆ

`

j

˙ˆ

2m` 2

2k

˙

p2k ` 2qp2k ` 1q

ˆ

2`` 2m` 2

2j ` 2k

˙

ď

m
ÿ

k“0

¨

˚

˚

˝

1

pk ` 1q2

ÿ̀

j“0

ˆ

`

j

˙ˆ

2m` 2

2k

˙

ˆ

2`` 2m` 2

2j ` 2k

˙

˛

‹

‹

‚

.

Applying then the combinatorial inequality

ˆ

2`` 2m` 2

2j ` 2k

˙

ě

ˆ

`

j

˙2ˆ
2m` 2

2k

˙

, we

finally get

S1m,` ď
m
ÿ

k“0

¨

˚

˚

˝

1

pk ` 1q2

ÿ̀

j“0

1
ˆ

`

j

˙

˛

‹

‹

‚

.

Let us now observe that
ÿ̀

j“0

1
ˆ

`

j

˙ ď 6

for all ` ě 0: the inequality is clear for ` P t0, 1, 2, 3u, and, for ` ě 4, we have

ÿ̀

j“0

1
ˆ

`

j

˙ “ 2`
2

`
`

`´2
ÿ

j“2

1
ˆ

`

j

˙ ď 2`
2

`
`

`´2
ÿ

j“2

1
ˆ

`

2

˙ “ 2`
2

`
`

2p`´ 3q

`p`´ 1q
ď 6.

Hence,

S1m,` ď 6
m
ÿ

k“0

1

pk ` 1q2
ď 6

`8
ÿ

k“1

1

k2
“ π2,

which proves Lemma (3.3). �

From Proposition (3.1), we next derive the inequalities

(3.5)
ˇ

ˇB`twmpt, xq
ˇ

ˇ ď CK 1`Γp1` 2`qpc |x|
2
qm
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for all `,m ě 0 and all pt, xq P Σ ˆ Dr1 , where K 1 and c are the two positive
constants defined by K 1 “ 4K and c “ 4Kpα ` 2π2Cβq. Indeed, applying the
inequalities (3.4), we easily have

ˇ

ˇB`twmpt, xq
ˇ

ˇ ď Cpα` 2π2CβqmK``mΓp1` 2`q |x|
2m
ˆ

ˆ

2`` 2m

2m

˙

ď C22``2mpα` 2π2CβqmK``mΓp1` 2`q |x|
2m

.

Let us now choose for Σ a sector containing a proper subsector Σ1 bisected
by the direction θ and opening larger than π (such a choice is already possible
by definition of a proper subsector, see Footnote 2). Let us also choose a radius

0 ă r ă minpr1, 1{
?
cq and let us set C 1 :“ C

ÿ

mě0

pcr2qm P R˚`.

Thanks to the inequalities (3.5), the series
ÿ

mě0

B`twmpt, xq are normally conver-

gent on ΣˆDr for all ` ě 0 and satisfy the inequalities
ÿ

mě0

ˇ

ˇB`twmpt, xq
ˇ

ˇ ď C 1K 1`Γp1` 2`q

for all pt, xq P Σ ˆDr. In particular, the sum wpt, xq of the series
ÿ

mě0

wmpt, xq is

well-defined, holomorphic on ΣˆDr and satisfies the inequalities
ˇ

ˇB`twpt, xq
ˇ

ˇ ď C 1K 1`Γp1` 2`q

for all ` ě 0 and all pt, xq P Σ ˆ Dr. Hence, Conditions 1 and 3 of Definition 2.1
hold.

To prove the second condition of Definition 2.1, we proceed as follows. The
removable singularities theorem implies the existence of lim

tÑ0
tPΣ1

B`twpt, xq for all x P Dr

and, thereby, the existence of the Taylor series of w at 0 on Σ1 for all x P Dr

(see for instance [28, Cor. 1.1.3.3]; see also [19, Prop. 1.1.11]). On the other
hand, considering recurrence relations (3.2) with wm and the 1-sums vpt, xq and
gpt, xq instead of rwm, rvpt, xq and rgpt, xq, it is clear that wpt, xq satisfies equation
(3.1) with vpt, xq in place of rvpt, xq and right-hand side gpt, xq in place of rgpt, xq
and, consequently, so does its Taylor series. Then, since equation (3.1) has a unique
formal series solution rwpt, xq, we then conclude that the Taylor expansion of wpt, xq
is rwpt, xq. Hence, Condition 2 of Definition 2.1 holds.

This achieves the proof of the 1-summability of rwpt, xq and, thereby, the fact
that the condition is sufficient.

Ÿ Point 2. The fact that the 1-sum upt, xq of rupt, xq in direction θ satisfies Eq. (1.1)

with right-hand side the 1-sum fpt, xq of rfpt, xq in direction θ in place of rfpt, xq is
a direct consequence of Corollary 2.3. This completes the proof of Theorem 2.4 in
the case ap0q ‰ 0.

3.2. Case ap0q “ 0 and a1p0q ‰ 0. The necessary condition of the first point and
the second point result as before from Proposition 2.2 and Corollary 2.3. We sketch
here below the proof of the sufficient condition of the first point.

Denote apxq “ xa1pxq. By assumption, a1p0q ‰ 0. Then, the functions A1pxq “
1{a1pxq and B1pxq “ bpxq{a1pxq are both well-defined and holomorphic on a con-
venient common disc centered at the origin 0 P C.
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Setting as before rupt, xq “ rvpt, xq ` B´2
x rwpt, xq with rvpt, xq “ ru˚,0ptq ` ru˚,1ptqx,

Eq. (1.1) becomes

(3.6) rw ´
A1pxq

x
BtB

´2
x rw ` 2

B1pxq

x
rvpt, xqB´2

x rw `
B1pxq

x
pB´2
x rwq2 “ rgpt, xq

with

rgpt, xq “ A1pxq
Btrvpt, xq ´ bpxqrvpt, xq

2 ´ rfpt, xq

x
.

By assumption, we have ap0q “ a0 “ 0; hence, due to the first equality of (2.1),

the constant term in x of Btrvpt, xq´ bpxqrvpt, xq
2´ rfpt, xq is zero, and, consequently,

rgpt, xq is again a formal power series in t and x. Assuming then rvpt, xq and rgpt, xq
to be 1-summable in the direction θ, we can prove as previously that rwpt, xq is also
1-summable in the direction θ.

Observe that the rwmpt, xq are now recursively determined for all m ě 0 by the
system
$

’

&

’

%

rw0 “ rg

rwm`1 “
A1pxq

x
BtB

´2
x rwm ´ 2

B1pxq

x
rvB´2
x rwm ´

B1pxq

x

m
ÿ

k“0

pB´2
x rwkqpB

´2
x rwm´kq

In particular, the operator
1

x
B´2
x in place of B´2

x implies that the rwmpt, xq’s are now

of order Opxmq in x for all m ě 0, instead of Opx2mq as in the previous case. Still,
rwpt, xq is again a formal power series in t and x.

The estimates on the derivatives B`twm given in Proposition (3.1) are modified
as follows: for all m, ` ě 0 and all pt, xq P ΣˆDr1 ,

ˇ

ˇB`twmpt, xq
ˇ

ˇ ď Cpα1 ` 2π2Cβ1q
mK``mΓp1` 2p``mqq

|x|
m

pm!q2
,

where α1 (resp. β1) stands for the maximum of |A1pxq| (resp. |B1pxq|) on the closed
disc |x| ď r1. Consequently, the inequalities (3.5) obtained in the case ap0q ‰ 0
become

ˇ

ˇB`twmpt, xq
ˇ

ˇ ď CK 1`Γp1` 2`qpc |x|qm

for all `,m ě 0 and all pt, xq P Σ ˆ Dr1 , where K 1 and c are the two positive
constants defined by K 1 “ 4K and c “ 16Kpα1 ` 2π2Cβ1q.

The end of the proof is similar to the one of the case ap0q ‰ 0 and is left to the
reader. This completes the proof of Theorem 2.4.
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[5] W. Balser and M. Loday-Richaud. Summability of solutions of the heat equation with in-

homogeneous thermal conductivity in two variables. Adv. Dyn. Syst. Appl., 4(2):159–177,

2009.



10 PASCAL REMY

[6] W. Balser and S. Malek. Formal solutions of the complex heat equation in higher spatial

dimensions. In Global and Asymptotic Analysis of Differential Equations in the Complex
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