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TRAVELING FRONTS IN DISSIPATIVE GRANULAR CHAINS AND NONLINEAR
LATTICES

GUILLAUME JAMES1,2

ABSTRACT. We consider an infinite chain of particles with nonlinear elastic and dissipative nearest
neighbors interactions. Assuming the existence of a traveling front between uniformly compressed (or
stretched) states, we obtain jump conditions relating the wave speed and limiting particle velocities to the
relative displacements at infinity. Using this result, we characterize compression fronts in chains of touch-
ing beads, for viscoelastic contact laws that include a nonlinear elastic force (generalized Hertz contact)
and viscous dissipation. We compute compression fronts numerically for the generalized Kuwabara-
Kono model in which the viscous contact force is proportional to the derivative of the elastic force,
without precompression of the chain. Steady fronts are obtained both as the end result of the compression
of one end of the chain and using a shooting method which provides numerically exact traveling waves.
Depending on the magnitudes of contact damping and strain applied downstream, we obtain either over-
damped (monotonic) or underdamped (oscillatory) compression fronts. To explain this transition and
approximate the front profiles, we consider a continuum limit valid when the exponent of the contact
nonlinearity is close to (and above) unity. Using multiscale expansions, we formally derive two different
amplitude equations for long waves, a Burgers equation with logarithmic nonlinearity, and a logarithmic
Korteweg-de Vries (KdV)-Burgers equation for small contact damping. Both models possess traveling
front solutions that are in good agreement with the front profiles computed numerically in the granu-
lar chain. The analysis of the logarithmic KdV-Burgers equation allows one to approximate the critical
damping corresponding to the transition from underdamped to overdamped fronts.

1. INTRODUCTION

Modeling the response of granular media to dynamic loading is important for many engineering
applications, e.g. the dynamics of ballasted railway tracks [46], impact mitigation [41, 17, 8] and
acoustic lensing or filtering based on granular metamaterials [44, 53]. In order to understand the energy
redistribution induced by multiple impacts and to predict post-impact velocities, it is fundamental to
analyze wave effects [15, 24, 43] such as the propagation of solitary waves in chains of beads, see e.g.
[40, 49, 9, 31, 27, 30] and references therein. In this work, we examine another important class of
waves consisting of compression fronts propagating in an homogeneous granular chain. These waves
travel with a constant velocity and a constant shape, with the chain (asymptotically) at rest ahead of
the shock and uniformly compressed at the rear. They can be typically generated by compressing the
chain with a piston at constant velocity [39]. A correct modeling of this phenomenon requires to take
contact damping into account [19, 36]. Depending on the amount of dissipation induced by the material,
oscillatory (underdamped) or monotonic (overdamped) shock profiles can be observed experimentally
[40] (section 1.8.7 p.80).

In this work, we consider a chain of identical beads described by the dynamical equations :

mẍn = F (xn−1 − xn, ẋn−1 − ẋn)− F (xn − xn+1, ẋn − ẋn+1), (1)

where xn is the displacement of the center of the nth element from a reference position (correspond-
ing to an uncompressed chain of touching beads), m is the mass of beads, the overdots denote time
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derivatives and F is a general contact force accounting for nonlinear elasticity and viscous friction
[37]. Considering two adjacent beads compressed with a small relative displacement δ(t), we have

F (δ, δ̇) = k

(
δα+ + γ0

d

dt
δβ+

)
, (2)

where δ+ = max(δ, 0) (no force is present when beads are not in contact) and k, γ0 are positive
constants. The first term at the right side of (2) corresponds to the elastic component of the (generalized)
Hertz contact force. The case of contacting spheres (or smooth non-conforming surfaces) leads to a
strongly nonlinear contact force with α = 3/2, and the nonlinear stiffness k depends on the radii of
curvature and elastic coefficients of the balls [32]. Moreover, granular chains involving different orders
of nonlinearity α > 1 have recently attracted much attention, see [48, 52] and references therein. In
particular, experimental and numerical studies on solitary wave propagation have been performed with
chains of hollow spherical particles of different width [42] and chains of cylinders [34], leading to
different values α in the range 1.15 ≤ α ≤ 1.5 (see also [51] for other systems with α close to unity).
The second term at the right side of (2) accounts for viscoelastic damping at small impact velocities
(see [7] for a review of these contact laws).

In the works [19, 36], compression fronts are studied in the case β = 1 (Hertzian spring with linear
dashpot). With a precompression applied to the chain, classical multiscale expansions are performed to
capture the leading order nonlinear, dispersive and dissipative features of small amplitude long waves.
When a small contact damping is considered, the KdV-Burgers equation [33] is used to approximate
traveling fronts and explain the transition from overdamped to underdamped profiles [19, 36] (see also
[12, 23, 3] for an application of this technique to other interactions between particles). In particular,
the underdamped regime is observed when the impact velocity is large enough [36]. This approach is
extended in [19] to the case without precompression, where a formal continuum limit leads to a second
order differential equation with nonlinear damping for the front profile.

In the present paper, we study compression fronts for the generalized Kuwabara-Kono (KK) model
with β = α, and in particular for the standard KK model corresponding to β = α = 3/2 [35]. The
KK model has the advantage of being derived from continuum mechanics (see [6, 18] and references
therein) and γ0 is determined by the elastic and viscous coefficients of the material. Moreover, it was
shown in [30] that the KK model approximates the numerical dissipation of a class of first order Runge-
Kutta schemes (including the θ method) used to integrate nondissipative granular chains. Consequently,
the KK model can be also useful in the context of nondissipative Hertzian chains, in order to evaluate
the effect of numerical damping on the dynamics of nonstationary shock waves (a problem suggested
in [39]).

In section 2, we relate the asymptotic downstream bead compression and velocity to the speed of
the shock wave in an infinite granular chain. A difference with previous results [19, 36] is that we do
not resort to a continuum approximation at this stage. Moreover, we obtain a result for system (1) with
F deriving from a general elastic interaction potential and an arbitrary convex dissipation potential.
Under the assumption that a traveling front exists, we relate the wave speed and velocity jump between
±∞ to the compression (or dilation) of the chain at ±∞. Similar results were obtained in [3] when the
interaction force admits a nonlinear strictly convex elastic component and a linear dissipation, and in
[21] for conservative systems where the interaction force has a turning point. Note that traveling fronts
connecting uniformly compressed (or stretched) states do not exist in nondissipative chains with either
strictly concave or convex interaction force [3, 21], which is the case for the generalized Hertz potential
in the compressive domain when α 6= 1.

In section 3, we show numerically that fronts can be generated in the KK model by applying a
constant pressure at one end of a chain initially at rest. The front profile is underdamped or over-
damped depending whether the dissipation constant γ0 lies below or above a critical value proportional
to vp(1−α)/(1+α), where vp denotes the asymptotic particle velocity after the shock. Consequently, for
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a given granular chain with KK contact law, the underdamped regime occurs when the downstream
velocity vp is small, unlike for β = 1 and α > 1 [19, 36].

In order to gain analytical insights into the existence and qualitative properties of fronts in the ab-
sence of precompression of the chain, we introduce suitable continuum limits of the generalized KK
model. For this purpose, we perform a multiscale expansion of the slowly varying wave profiles when
α is close to (and above) unity. Indeed, in the strongly nonlinear system (1)-(2), the width of localized
traveling waves does not diverge in the small amplitude limit when α is fixed, but it diverges when
α goes to unity, as such waveforms do not persist in the linear chain [38, 3]. The limit α ≈ 1 was
introduced in [10] to study solitary waves in nondissipative granular chains without precompression,
and generalized in [27] to the nonstationary case. It yields a logarithmic nonlinearity δ+ (ln δ+) in the
first order expansion of (2), which leads to a logarithmic KdV equation [47] for the wave profile and
strongly localized (nearly Gaussian) solitary waves (see also [28, 29] for similar results for breather
solutions and their connection to the logarithmic NLS equation [4]). Here we formally derive two dif-
ferent amplitude equations for long waves depending on the parameter regime. In section 4, we derive
a logarithmic Burgers equation [47] that accounts for nonlinear and dissipative effects but neglects dis-
persion. We check numerically that this amplitude equation allows to approximate over long times the
evolution of some localized initial conditions in the compressive regions (this class of models does not
capture gap openings). When contact damping is small, dispersive effects must be taken into account,
which leads to a logarithmic KdV-Burgers equation (section 5). This limit allows one to approximate
the critical damping that corresponds to the transition from underdamped to overdamped fronts (this
critical value becomes small when α ≈ 1). Both models possess traveling front solutions that provide
good approximations to the steady wave profiles in the original lattice. The numerical computation of
traveling fronts in the granular chain is performed in section 6, using a shooting method combined with
the Gauss-Newton method.

2. TRAVELING FRONTS IN DISSIPATIVE LATTICES

In this section we study a general class of dissipative one-dimensional lattices (1) that incorporates
the granular chain with contact law (2). We consider general interaction forces between nearest neigh-
bors taking the form

F (δ, δ̇) = −V ′(−δ)− d

dt
W ′(−δ), (3)

where the functions V ,W are sufficiently smooth. The potentialW is assumed convex and corresponds
to dissipative forces, while the potential V accounts for conservative forces. For example, the contact
law (2) corresponds to fixing

V (r) =
k

α+ 1
(−r)α+1

+ , W (r) =
γ0 k

β + 1
(−r)β+1

+ . (4)

The conservative case W = 0 corresponds to a Fermi-Pasta-Ulam (FPU) lattice [16].
We shall derive jump conditions for traveling fronts relating the asymptotic states of the system at

±∞ and the wave velocity, in analogy with the Rankine-Hugoniot conditions for hyperbolic systems.
These jump conditions have been obtained in [3] for linear dissipative forces (i.e. considering a qua-
dratic potential W ) and assuming V (3) < 0 for conservative forces (see also [21] for the analysis of
the conservative case). Our computations follow the ideas of [3] although we consider more general
conservative and dissipative forces and proceed slightly differently.

Let us start by introducing some notations and the dynamical equations. Given sequences x =
(xn)n∈Z, y = (yn)n∈Z and a real function f , we denote by f(x) the sequence (f(xn))n∈Z and by x y
the sequence (xn yn)n∈Z. Moreover, (δ±x)n = ± (xn±1−xn) denote the usual forward and backward
differences. We consider an infinite chain of identical particles described by the model (1)-(3). The
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dynamical equations can be written in condensed form :

mẍ = δ−(V ′(δ+x) +
d

dt
W ′(δ+x)), (5)

where x(t) = (xn(t))n∈Z and we fix m = 1 for convenience.
The dissipative character of the model can be illustrated by considering solutions with finite energy

H =
∑

n∈Z en, where the energy density e(t) = (en(t))n∈Z is defined by

e =
ẋ2

2
+ V (δ+x).

We assume limn→±∞ ẋn(t) = 0, V (0) = 0 and limn→±∞ (xn+1(t)− xn(t)) = 0. Using (5), it is
lengthy but straightforward to check that

ė+ δ−q = −(δ−ẋ)2W ′′(δ−x), (6)

where
q = −V ′(δ+x)(1 + δ+)ẋ− ẋ d

dt
W ′(δ+x).

Since limn→±∞ qn(t) = 0, equation (6) yields the dissipation inequality

Ḣ = −‖(δ−ẋ)
√
W ′′(δ−x)‖22 ≤ 0,

where ‖ ‖2 denotes the usual `2 norm. In a similar manner, when considering infinite energy solutions
(such as fronts), the dissipativity of the model is linked with the negativity of the right side of (6).

In what follows, we consider traveling waves propagating at constant velocity c 6= 0 :

xn(t) = X(ξ), ξ = n− c t. (7)

We start by reformulating the above equations in the frame moving with the wave. Let us denote
en(t) = E(ξ), (δ±X)(ξ) = ± (X(ξ ± 1)−X(ξ)), and note that δ− = d

dξA, where A is the averaging

operator (AX)(ξ) =
∫ 1
0 X(ξ − ϕ) dϕ. Substituting Ansatz (7) in (5) and integrating once with respect

to ξ, we obtain the following nonlocal differential equation for the profile function X :

c2X ′ +A
(
− V ′(δ+X) + c

d

dξ
W ′(δ+X)

)
= C0, (8)

where C0 is an arbitrary constant (independent of ξ). Similarly, using Ansatz (7) in (6) and dividing by
−c2 yields

1

c

d

dξ

(
E +AQ

)
= (δ−X ′)2W ′′(δ−X) ≥ 0, (9)

where
Q = −V ′(δ+X)(1 + δ+)X ′ + cX ′

d

dξ
W ′(δ+X).

Now let us concentrate on front solutions satisfying

lim
ξ→±∞

X ′(ξ) = R±∞ (10)

with R+∞ 6= R−∞. This implies

lim
ξ→±∞

(X(ξ + 1)−X(ξ)) = R±∞ (11)

by the mean value equality. Consequently,R±∞ = limn→±∞ (xn+1(t)− xn(t)) correspond to relative
displacements at infinity. Particle velocities at infinity are given by

lim
n→±∞

ẋn(t) = −cR±∞. (12)

Using the first integral (8) and letting ξ → ±∞, one obtains the jump condition

JRK c2 = JV ′K, (13)
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where JRK = R+∞ − R−∞, JV ′K = V ′(R+∞)− V ′(R−∞). Consequently, a necessary condition for
the existence of a front connecting R±∞ is that JRK and JV ′K have the same sign.

Remark 1. The condition JV ′KJRK > 0 is satisfied for strictly convex potentials V and violated for
strictly concave potentials, indicating in that case the nonexistence of traveling fronts.

Condition (13) implies

c = σ

(
JV ′K
JRK

)1/2

, (14)

where σ = sign(c) = ±1. This value of the wave velocity was previously derived in [3] (see also [23]
for a derivation in a continuum limit). It is remarkable that the magnitude of the front velocity does not
depend on the dissipation potential W .

Remark 2. In the conservative case W ′′ = 0, condition (13) was obtained in [21]. It can be also
derived as a Rankine-Hugoniot jump condition from the p-system obtained in the hyperbolic limit of
the lattice model (see e.g. [3, 20]).

In what follows, we assume JV ′KJRK > 0 and determine the sign σ using the dissipativity of the
model. Let us denote by I the interval (R∓∞, R±∞) and assume W ′′ > 0 almost everywhere on I,
hence the inequality in (9) becomes strict almost everywhere. Integrating (9) from ξ = −∞ to ξ = +∞
yields then

1

c

(c2
2

(R2
+∞ −R2

−∞) + JV K + V ′(R−∞)R−∞ − V ′(R+∞)R+∞
)
> 0. (15)

Then the substitution of (13) in (15) leads to

1

c

(
JV K− JR K

V ′(R−∞) + V ′(R+∞)

2

)
> 0, (16)

which allows us to determine the sign of c :

σ = sign

(
JV K− JR K

V ′(R−∞) + V ′(R+∞)

2

)
. (17)

The sign condition (16) was previously derived in [3] for a quadratic dissipation potential W .
From inequality (16), a necessary condition for the existence of a dissipative front connecting R±∞

is that

JV K− JR K
V ′(R−∞) + V ′(R+∞)

2
6= 0. (18)

The coefficient that appears in (18) can be interpreted geometrically [21]. Indeed, defining the rescaled
force f(r) = JR KV ′(r) and the chord T (s) = sf(R+∞) + (1− s)f(R−∞), we note that

JV K− JR K
V ′(R−∞) + V ′(R+∞)

2
=

∫ 1

0
f(sR+∞ + (1− s)R−∞)− T (s) ds. (19)

Consequently, condition (18) indicates that the signed area between the graph of f on I and the chord
through R±∞ does not vanish. Moreover, if JR KV (3) < 0 on I then f is strictly concave and σ = +1.
On the contrary, if JR KV (3) > 0 on I then f is strictly convex and σ = −1.

Remark 3. If V is quadratic on I, there are no traveling front solutions because condition (18) is
violated (since f is an affine function, it coincides with the chord and the right side of (19) vanishes).

To our knowledge, the existence of dissipative front solutions under conditions (13)-(18) is an open
problem. Let us assume that these conditions are satisfied with V (3) 6= 0 on I and that a corresponding
traveling front exists. From the above computations, we have σ = −sign(JR KV (3)). Consequently, if
V (3) < 0 then σ = sign(JR K) and thus the front propagates from the most compressed region towards
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the less compressed region (as already noticed in [3]), and the opposite occurs if V (3) > 0. In both
cases, denoting Jẋn K = limn→+∞ ẋn(t)− limn→−∞ ẋn(t), we find Jẋn K = −c JRK using (12), which
leads to

Jẋn K =
(
JV ′KJRK

)1/2
sign(V (3)).

In addition, let us assume V convex and consider the strain-dependent sound velocity
√
V ′′. From the

above remark on the direction of propagation, we conclude that the front propagates from the region
of higher sound velocity towards the region of lower sound velocity, and the front velocity (14) lies
between the two limiting sound velocities by the mean value theorem.

Remark 4. In the conservative case W ′′ = 0, the right side of equation (9) vanishes identically and
condition (16) becomes

JV K− JR K
V ′(R−∞) + V ′(R+∞)

2
= 0. (20)

Identity (20) corresponds to a necessary condition for the existence of a front connecting R±∞ [3, 21].
In particular, if V (3) does not change sign on I then (20) is not satisfied (a consequence of identity (19))
and steady fronts do not exist. This applies in particular to the generalized Hertz potential defined in
(4) with α > 0 and α 6= 1. For existence results concerning traveling fronts in Fermi-Pasta-Ulam
lattices (i.e. without dissipation) with appropriate interaction potentials, see [26, 21, 22].

To illustrate the above results, consider the generalized Hertz potential V defined in (4) with α > 0
and α 6= 1. We consider compression fronts with R−∞ = −δ < 0 and R+∞ = 0 (i.e. the chain is
at rest at +∞). We have JR KV (3)(x) = δ k α (1− α) |x|α−2H(−x), where H denotes the Heaviside
function. Consequently, σ = sign(α− 1) and

c = sign(α− 1)

√
k

m
δ(α−1)/2. (21)

It follows that for α > 1, steady dissipative fronts propagate from the compressed region to the region
where the chain is at rest, and the opposite occurs if α < 1. Particle velocities vp at minus infinity
are given by vp = limn→−∞ ẋn(t) = c δ according to (12), hence we obtain the following relations
between vp, δ and c :

vp = sign(α− 1)

√
k

m
δ(α+1)/2, (22)

c = sign(α− 1)

(
k

m

)1/(α+1)

|vp|(α−1)/(α+1). (23)

This result agrees with the value obtained in [19, 39] using a formal continuum limit (see also [40, 15]).

3. DYNAMICAL PROPERTIES OF DISSIPATIVE GRANULAR CHAINS

In this section, we describe some properties of dissipative granular chains endowed with the vis-
coelastic contact models (2). Section 3.1 recalls some scaling properties of the models and their conse-
quences for the energy loss during contacts. These results have been previously obtained in [37] using
a slightly different method, and in [13] for Hertzian elastic interactions (case α = 3/2 in (2)). We
also apply the scaling properties to the normalization of front solutions. Section 3.2 recalls dynami-
cal variables introduced in [30] for the numerical simulation of the models, which are adapted to the
limited smoothness of the viscoelastic contact force. In section 3.3, we simulate the KK model (case
α = β = 3/2) with a constant pressure applied at one end of the chain, and show that underdamped or
overdamped fronts are generated depending on parameter values.
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3.1. Models and scaling properties. We consider a dissipative granular chain consisting of N identi-
cal elements and described by the model (1)-(2). The dynamical equations read

mẍn =k (xn−1 − xn)α+ + β γ0 k (xn−1 − xn)β−1+ (ẋn−1 − ẋn)

− k (xn − xn+1)
α
+ − β γ0 k (xn − xn+1)

β−1
+ (ẋn − ẋn+1) , 1 ≤ n ≤ N.

(24)

We shall consider different types of boundary conditions. Firstly, Neumann boundary conditions

x0 = x1 + δ, xN+1 = xN − δ̃, (25)

correspond to fixing a constant pressure at each end of the chain, the cases δ̃ = 0 or δ = 0 corresponding
to free end boundary conditions. We shall also consider periodic boundary conditions

x0 = xN − L, xN+1 = x1 + L, ẋ0 = ẋN , ẋN+1 = ẋ1, (26)

where xn can be interpreted as a rescaled angular coordinate. In that case, the relative displacements
un = xn − xn+1 satisfy u0 = uN and we have

N−1∑
n=0

un = x0 − xN = −L = x1 − xN+1 =
N∑
n=1

un.

The model (24) can be suitably renormalized given a reference velocity v0 > 0, which typically corre-
sponds to the velocity of an impacting bead or a piston. This leads us to introduce the time and length
scales

T0 =
(m
k

)1/(α+1)
v
(1−α)/(α+1)
0 , δ0 = v0 T0 =

(m
k

)1/(α+1)
v
2/(α+1)
0 . (27)

These scales indicate how collision time and maximal indentation scale with parameters for a two-bead
elastic collision [37]. Setting xn(t) = δ0 x̃n(t̃) with t̃ = t/T , and dropping the tilde for convenience,
equation (24) becomes

ẍn = (xn−1 − xn)α+ + β γ (xn−1 − xn)β−1+ (ẋn−1 − ẋn)

− (xn − xn+1)
α
+ − β γ (xn − xn+1)

β−1
+ (ẋn − ẋn+1) , 1 ≤ n ≤ N,

(28)

with the dimensionless damping parameter

γ = γ0 v
2β
α+1
−1

0

(
k

m

)1− β
α+1

. (29)

Remark 5. Alternatively, if δ > 0 in (25) so that a constant pressure is applied at one end of the chain,
one can set the length scale to δ0 = δ and determine the velocity scale v0 and time scale T0 with (27),
which leads to the rescaled equation (28).

The weak dissipation limit corresponds to γ ≈ 0 in (28). Interestingly, this case occurs either
for small or large enough impact velocities depending on the exponents α, β. More precisely, let
vc(γ0, k,m) denote the value of v0 such that γ = 1 in (29). When β > (α + 1)/2, weak dissipation
occurs for v0 � vc. This is the case in particular for α > 1 and β ≥ α, as in the generalized
KK model (β = α) and the Simon-Hunt-Crossley model with β = α + 1 [50, 25]. On the contrary,
when β < (α+1)/2, weak viscoelastic dissipation occurs for v0 � vc. This case occurs for example if
α > 1 and β = 1 (i.e. each contact consists of a nonlinear spring with linear dashpot), a class of models
studied in [19, 36] in the context of shock waves. Moreover, in the degenerate case β = (α+ 1)/2, the
dimensionless damping parameter γ becomes independent of the reference velocity v0.

Remark 6. A way to estimate γ is through the coefficient of restitution e, defined as minus the ratio
of the relative velocities of two beads before and after an impact. For example, consider two identical
impacting beads of massm, with a contact law corresponding to the KK model (β = α = 3/2, Hertzian
stiffness k, dissipation constant γ0). When e ≈ 1 (or equivalently γ ≈ 0) one has γ ≈ 0.438 (1− e)
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(see e.g. [45]). For example, from restitution coefficients obtained experimentally in [35] with different
types of beads and for an impact velocity v0 = 0.5 m s−1, one can infer that γ ≈ 0.008 for glass
spheres with radius R = 1.96 cm, γ ≈ 0.05 for steel spheres with R = 1.65 cm, and γ ≈ 0.13 for cork
spheres with a lead core (R = 1.66 cm, m = 31.7 g).

We end this section by connecting the results of section 2 to the above scaling properties. Let
us consider model (24) for α > 1 in the limit when the number N of particles tends towards infinity.
Assume the existence of a traveling front connecting the compressed state xn−xn+1 = δ > 0, ẋn = vp
when n→ −∞ to the chain at rest when n→ +∞. Choosing the velocity scale v0 = vp, one obtains
δ0 = δ by (22) and (27). Consequently, the rescaled front solution of (28) satisfies limn→−∞ ẋn = 1
and limn→−∞ (xn − xn+1) = 1, and thus the rescaled front velocity c is equal to unity thanks to (21).
Moreover, once α and β are fixed, the influence of the other parameters on the qualitative properties of
the front (shape, stability) can be examined by resorting to the dimensionless parameter γ defined in
(29). In particular, for β = α, this parameter takes the form

γ = γ0 v
α−1
α+1
p

(
k

m

) 1
α+1

= γ0 δ
(α−1)/2

√
k

m
= γ0 c. (30)

3.2. Choice of dynamical variables. Let us consider equation (28) for α > 1 and β ∈ [1, 2). In this
range of parameters, the model presents a lack of smoothness because the map defining the right-hand
side is discontinuous accross the hyperplanes xn−1 = xn for β = 1, and not Lipschitz continuous for
β ∈ (1, 2), in particular for the KK model. This lack of regularity can induce a rather severe decrease of
the order of convergence of some classical numerical time-integration schemes, as shown in [30], and
may as well deteriorate the computation of wave profiles based on Newton-type methods. However,
these difficulties can be circumvented to some extent by an appropriate choice of dynamical variables
[30]. Defining a generalized velocity wn through

ẋn = wn + γ
(

(xn−1 − xn)β+ − (xn − xn+1)
β
+

)
, (31)

the dynamical equation (24) becomes

ẇn = (xn−1 − xn)α+ − (xn − xn+1)
α
+ . (32)

Let us denote x = (x1, . . . , xN ), w = (w1, . . . , wN ) and consider Y = (x,w) as a new dynamical
variable. For all β ≥ 1, the right-hand side of (31)-(32) defines a locally Lipschitz continuous map
Y 7→ Fs(Y ) (Fs is even C1 for β > 1) and thus the corresponding initial value problem is well posed
according to the Cauchy-Lipschitz theorem. Moreover, as shown in [30] for several numerical time-
integration schemes, the improved regularity of the right-hand side brings better convergence properties
compared to the differential equation based on the usual dynamical variables (xn, ẋn).

Remark 7. The case α ∈ (0, 1) has been also investigated in recent studies, see [54] and references
therein. However, to our knowledge both the well-posedness of the initial value problem (uniqueness
of solutions) in the presence of gap openings and the properties of classical numerical time-integration
methods (convergence, stability) have not been analyzed yet.

The above framework extends to an infinite number of particles, with the boundary condition (25)
replaced by

lim
n→−∞

(xn(t)− xn+1(t)) = δ, lim
n→+∞

(xn(t)− xn+1(t)) = δ̃. (33)

A possible choice of functional setting can be made as follows. Let us fix δ̃ = 0 for simplicity and
consider the piecewise-linear sequence x̄n = max(−n δ, 0) which satisfies (33). We consider the
Banach space

Y = { y = (yn)n∈Z ⊂ R, lim
n→−∞

yn exist in R, lim
n→+∞

yn = 0 }
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endowed with the supremum norm ‖ ‖∞, and the associated affine metric space

X = {x = (xn)n∈Z, x− x̄ ∈ Y }.

System (31)-(32) is considered for Y (t) = (x(t), w(t)) ∈ X ×Y . The right-hand side Fs : X ×Y →
Y × Y is C1 for β > 1, and thus the initial value problem is locally well posed in X × Y . Moreover,
v = limn→−∞wn is a conserved quantity (v̇ = limn→−∞ ẇn = 0 using (32)) and (31) leads to

lim
n→−∞

ẋn(t) = v. (34)

3.3. Initiation of fronts in dissipative granular chains described by the KK model. In this section
we illustrate the initiation of fronts using numerical computations. We use formulation (31)-(32) for
time-integration, and restrict our study to the KK model with standard parameter values β = α = 3/2.
Computations are performed for a chain of N = 420 particles initially at rest. Boundary conditions
take the form (25), with a free end boundary condition at xN (i.e. δ̃ = 0) and a constant compression
δ at the first element for t ≥ 0. Time-integration is performed using the standard ODE solver of the
software package Scilab (www.scilab.org), with relative and absolute tolerances set to 10−13 and
10−15 respectively.

The response of the chain is described in figures 1, 2 and 3 for δ = 0.1. After a transient, a front
is established with velocity c = δ(α−1)/2 ≈ 0.56 determined by (21). This value does not depend on
γ, but dissipation strongly affects the front shape. When γ is small enough, oscillations appear behind
the shock, as shown in figure 1 (underdamped regime). These oscillations can induce a rather large
overstrike, i.e. a significant increase of precompression compared to δ and of bead velocities compared
to vp = δ c (in the simulation of figure 1, the maximal elastic force induced by the traveling front is
roughly 1.6 times the applied pressure). If γ is large enough, the asymptotic oscillations around the
compressed state disappear (overdamped regime) and the overstrike becomes very small (the fronts
look almost monotonic), see the left plot in figure 3. This transition occurs above a critical damping γc
proportional to δ(1−α)/2 or vp(1−α)/(1+α) equivalently, according to the scaling properties described in
section 3.1 (the normalization of front solutions yields the rescaled damping (30)).

Figure 2 illustrates the propagation and multiple reflections of the front solution excited in the sim-
ulation of figure 1 for γ = 0.06. One can notice the more diffusive (thickening) domain wall of the
backward propagating fronts, indicating that they do not correspond to traveling waves, in agreement
with the results of section 2. The velocities remain positive and tend to increase with time. Indeed, the
dynamical equations (28) yield d

dt

∑N
n=1 ẋn = δα due to the constant pressure at one end, therefore

the average velocity in the chain is δα t/N . As shown in the right plot in figure 3 for γ = 0.65, the
same phenomena occur in the overdamped regime.

In figure 2 for γ = 0.06, one can also notice that gap openings occur, as some beads are ejected
when the front initially reaches the end of the chain at t ≈ 750. For γ = 0.65 (overdamped regime),
gap openings do not occur, as shown in the right plot of figure 3. In both case, the renormalized chain
compression (or mean relative displacement) 1

N (x1(t)− xN (t)) = 1
N

∑N−1
n=1 un(t) oscillates around a

mean value relatively close to δ/2 as the shocks propagate back and forth.
In the next sections, we will introduce amplitude equations allowing to approximate the front shape.

Depending on the overdamped or underdamped character of the front, and size of the overstrike, it will
be more or less important to take into account dispersive effects. This will lead us to the logarithmic
Burgers equation if dispersion is neglected (section 4) and to the logarithmic KdV Burgers equation if
dispersion is taken into account (section 5).
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FIGURE 1. Front excited by applying a constant pressure (with δ = 0.1) at one end
of the chain, for α = 3/2 and γ = 0.06. The top plots describe the dynamics when a
steady regime is reached. In the top left plot, relative displacements are plotted versus
time for n = 50 (black), n = 80 (blue), n = 110 (green), n = 140 (light blue), and
n = 170 (magenta). In the top right plot, velocities are plotted versus n at t = 450 (the
front propagates rightwise). The bottom plot describes the transient regime where the
amplitude of the wave varies as it propagates through the first elements of the chain.
Relative displacements are plotted versus time for odd values of n between n = 1 and
n = 11, from left to right (black: n = 1, blue: n = 3, green: n = 5, light blue: n = 7,
magenta: n = 9, brown: n = 11).

4. LOGARITHMIC BURGERS LIMIT OF THE KUWABARA-KONO MODEL

4.1. Derivation of the logarithmic Burgers equation. The generalized KK model corresponds to the
case β = α of (28) :

ẍ = −δ−(1 + γ
d

dt
) (−δ+x)α+, (35)

where γ > 0 is the nondimensional dissipation constant. We consider an infinite chain with x(t) =
(xn(t))n∈Z and introduce the variable u = −δ+x corresponding to relative displacements. Its evolution
is described by the equation

ü = (1 + γ
d

dt
) ∆d u

α
+, (36)

where ∆d = δ+ δ− = δ+ − δ− is the usual discrete Laplacian.
We assume u ≥ 0 (absence of gaps between beads) and consider the Ansatz

un(t) = δ y(ξ, τ)1/α, (37)

where the new variable y can be interpreted as a rescaled force variable. The moving frame coordinate
ξ = ε (n−c t) with c = δ(α−1)/2 accounts for the propagation of disturbances at the velocity determined
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FIGURE 2. Space-time diagrams showing relative displacements xn(t)−xn+1(t) (left
plot) and velocities ẋn(t) (right plot) for the numerical simulations of figure 1 for
γ = 0.06. In the left plot, the red color corresponds to values less that −0.14. The
minimum relative displacements are around −9.83 at t ≈ 2326, when the second
forward-propagating shock reaches the end of the chain and new beads start to be
ejected.

FIGURE 3. Front excited by applying a constant pressure (with δ = 0.1) at one end of
the chain, for α = 3/2 and γ = 0.65. The left plot describe the transient regime where
the amplitude of the wave varies slightly as it propagates through the first elements of
the chain. Relative displacements are plotted versus time for odd values of n between
n = 1 and n = 11, from left to right (black: n = 1, blue: n = 3, green: n = 5, light
blue: n = 7, magenta: n = 9, brown: n = 11). The steady front which is formed
asymptotically does not display oscillations in that case. The right plot shows a space-
time diagram of relative displacements on a longer time scale. This reveals the steady
front propagation and multiple reflections.

by (21). The slow time variable τ = γ
2 ε

2 c2 t captures the time modulation induced by diffusive effects
originating from the contact damping. In the following computation, we shall consider α−1 as a small
parameter related to ε, in such a way that nonlinear effects act on the same time scale as diffusive terms.

From the chain rule and a Taylor expansion, we note that
d

dt
= c (

γ

2
ε2 c ∂τ − ε ∂ξ), ∆d = ε2 ∂2ξ +O(ε4) when ε→ 0.

Consequently, assuming ε � min(1, γ c), one can neglect the O(ε4) terms in equation (36) (in partic-
ular dispersive effects) and keep the O(ε3γ c) terms, which yields

(∂2ξ − γ c ε ∂2ξτ ) y1/α = ∂2ξ (1− γ cε∂ξ) y. (38)
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Integrating in ξ and rearranging terms, we get

∂τ (y1/α) +
1

γcε
∂ξ (y − y1/α) = ∂2ξ y. (39)

This leads us to set ε = α−1
αγ c , so that γcε = 1− 1

α and equation (39) reads

∂τ (y1/α) + ∂ξ fα(y) = ∂2ξ y (40)

with fα(y) = (y − y1/α)/(1− 1
α). Then letting α→ 1+ in (40) yields the limiting problem

∂τy + ∂ξ (y ln y) = ∂2ξ y, (41)

i.e. a logarithmic Burgers equation [47]. Note that to be consistent with the assumption ε� min(1, γ c),
we must have (1− 1

α)1/2 � γ c.
In order to recover bead velocities from y, we come back to equation (35) which can be rewritten

dẋ

dt
= −δ c2 (1 + γ

d

dt
) δ−y. (42)

Using a Taylor expansion, we have

−c δ− = −c (ε ∂ξ −
ε2

2
∂2ξ +O(ε3)) =

d

dt
(1− ε

2
∂ξ) +O(ε2).

This allows us to integrate both sides of (42) with respect to time, leading to

ẋ = δ c (1− γ c ε ∂ξ) (1− ε

2
∂ξ) y +O(ε2),

where an integration constant has been set to 0 by assuming the chain at rest at +∞. Neglecting O(ε2)
terms yields finally to the approximation

ẋ ≈ δ(α+1)/2 (y − ε(γc+
1

2
) ∂ξy). (43)

In the particular case of stationary solutions, integrating (40) once with respect to ξ allows one to
express y′(ξ) as function of y. Back substitution in (43) yields the approximation

ẋ ≈ δ(α+1)/2
(
y1/α − 1

2γc
(y − y1/α)

)
. (44)

It is interesting to visualize the approximation of nonlinear terms realized by passing from equation
(40) to (41), see the left panel of figure 4. For α rather close to unity (e.g. α = 1.1), the approximation is
quite precise (compare the green and black graphs). For the classical value α = 3/2, the approximation
is rather crude but remains meaningful, especially for y > 0.5 (blue and black graphs). Note that one
could derive in a similar manner a logarithmic Burgers equation for the rescaled relative displacements
y1/α, but for stationary solutions the formulation based on the force variable has the advantage of
approximating only the single nonlinear term fα instead of two α-dependent terms.

4.2. Front solutions. Equation (41) admits a stationary front solution y1 satisfying limξ→−∞ y1(ξ) =
1 and limξ→+∞ y1(ξ) = 0 with superexponential decay at +∞ [47]. This solution satisfies y′ = y ln y
and reads

y1(ξ) = 2−αe
ξ

(45)
where we have fixed the phase according to y1(0) = (1/2)α, so that the rescaled relative displacements
u(ξ) = y1(ξ)

1/α satisfy u(0) = 1/2.
Equation (40) admits a semicompact stationary front solution yα similar to the ones considered in

[47], which satisfies y′ = fα(y). With the same phase condition as above, this solution reads

yα(ξ) =
(

1− (1− 21−α) eξ
)α/(α−1)

for ξ ≤ ξ0 (46)
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FIGURE 4. Left : nonlinear terms fα(y) (full lines) and y1/α (dotted lines) of equation
(40), for α = 3/2 (blue), α = 1.1 (green) and α → 1+ (black). Right : profiles of
rescaled relative displacements y1/α corresponding to the stationary front solutions yα
of equation (40) for α = 3/2 (blue), α = 1.1 (green) and equation (41) corresponding
to α→ 1+ (black).

with ξ0 = − ln (1− 21−α) and yα(ξ) = 0 for ξ ≥ ξ0. One can readily check that yα(ξ) ∼ y1(ξ)
when ξ is fixed and α → 1+. Moreover, as shown in the right panel of figure 4, the rescaled relative
displacements y1/αα and y1/α1 are close for α ∈ (1, 3/2], so we shall resort to the analytical solution
(45) which has a simpler form.

Using (45) yields the approximate relative displacements

un(t) = δ u(ξ), (47)

with u(ξ) = y1(ξ)
1/α = 2−e

ξ
, ξ = α−1

αγ c (n − c t), c = δ(α−1)/2. Moreover, we deduce from (44) the
approximate velocities

ẋn(t) ≈ δ(α+1)/2
(
u− 1

2γc
(uα − u)

)
(ξ). (48)

4.3. Dynamical simulations. In what follows, we compare the dynamical evolution of a localized
perturbation for model (41) and the generalized KK model. The comparison of traveling front solutions
will be performed in section 6.3. In the following dynamical simulations, we fix γ = 0.24 and consider
two values of the exponent α = 1.1 and α = 3/2.

We consider the initial condition y(ξ, 0) = y(0)(ξ) in (41) defined by

y(0)(ξ) =

{
1 for |ξ| ≤ 10,

max(1− (|ξ| − 10)2, η) for 10 ≤ |ξ| ≤ `, (49)

with η = 10−7. The small parameter η is introduced to avoid the singularity of the logarithmic nonlin-
earity in (41). We consider periodic boundary conditions y(ξ + 2`, τ) = y(ξ, τ) with ` = ε (p − 1/2)
for some integer p, where we fix p = 80. The small parameter that determines the slow spatial and
temporal scales in the chain of beads is ε = α−1

αγ δ
(1−α)/2 and we fix δ = 5.

Similarly, the generalized KK model is equiped with periodic boundary conditions (26) with N =
2p− 1 elements. We consider the initial condition defined by un(0) = δ (y(0)(ε (n− p)))1/α,

xN (0) = 0, ∀n = 1, . . . , N − 1 : xn(0) =

N−1∑
k=n

uk(0),

ẋn(0) = δ(α+1)/2 y(0)(ε (n− p))
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and L = −
∑N

n=1 un(0) in (26). The velocity profile corresponds to the 0th order approximation in
(43). The initial condition is shown in figure 5. The generalized KK model is integrated using the
formulation (31)-(32) as in section 3.3.

FIGURE 5. Initial condition considered for the comparison of the logarithmic Burg-
ers equation to the original lattice model. Left : relative displacements, and right :
velocities. Top : α = 1.1, and bottom : α = 3/2.

To discretize equation (41), we first set y(ξ, τ) = Y (ξ̃, τ) with ξ̃ = ξ − τ . This maps (41) to the
equation

∂τY + lnY ∂ξ̃ Y = ∂2
ξ̃
Y, (50)

with advection velocity lnY ≤ 0 for Y ∈ (0, 1] and the initial condition Yτ=0 = y(0). Equation (50) is
discretized using the explicit upwind finite difference scheme [1] with the space step dξ̃ = 2 ` × 10−4.
The time step is fixed according to dτ = 4

5dτmax with dτmax = dξ̃2

2+cmax dξ̃
and cmax = | ln η| (Courant,

Friedrichs, Lewy condition [1]).
According to formulas (37) and (43) (keeping only the leading order term), the approximate relative

displacements and velocities resulting from the logarithmic Burgers approximation read

un(t) = δ Y (ξ̃, τ)1/α, ẋn(t) = δ(α+1)/2 Y (ξ̃, τ), (51)

with ξ̃ = ε (n− c̃ t), c̃ = δ(α−1)/2 + γ
2 ε δ

α−1 and τ = γ
2 ε

2 δα−1.
Figure 6 compares the approximate solution obtained by integrating the logarithmic Burgers equa-

tion with the solution of the generalized KK model for α = 1.1. The logarithmic Burgers approxima-
tion captures the velocity and shape of the resulting propagating shock quite accurately as it propagates
rightwise over about 100 sites. We note the presence of a small propagating bump in the exact solution
which propagates on top of the shock wave and is not captured by the approximation. It forms at the
front of the shock and propagates backwards, and may correspond to a solitary-like wave resulting from
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dispersive and nonlinear effects. Also, the creation of a gap and appearance of negative bead velocities
are not captured by the logarithmic Burgers equation.

The case α = 3/2 is considered in figure 7. The first stage of the evolution of the localized per-
turbation displays similar features as the ones previously described, but the decay of the perturbation
is faster because the initial condition is more localized (the plateau at which ∂τY ≈ 0 is less broad).
Despite ε ≈ 0.93 and 1− 1

α = 1
3 are not small, the approximation is still qualitatively correct, and even

quantitatively good for capturing the shock velocity and aftershock profile. After a propagation over
about 135 sites, the decay of the pulse is slightly underestimated by the logarithmic Burgers equation,
with an error around 15% for relative displacements and 14% for velocities.

5. LOGARITHMIC KDV-BURGERS LIMIT OF THE KUWABARA-KONO MODEL

5.1. Derivation of the logarithmic KdV - Burgers equation. In this section, we adapt the analysis
of section 4 in order to account for dispersive effects when the dissipation constant γ is small. As
previously we assume u ≥ 0 in (36) and we modify the Ansatz (37) as follows :

un(t) = δ y(s, τ)1/α, (52)

with s = 2
√

3 ε (n− c t), c = δ(α−1)/2, τ =
√

3 ε3 c t. The new choice of slow time scale describes the
modulation due to dispersion. In what follows, we will relate the magnitudes of ε and γ to the small
parameter α− 1 so that nonlinear and diffusive effects act on the same time scale as dispersion.

We obtain using the chain rule and a Taylor expansion
d

dt
= c
√

3 (ε3 ∂τ − 2ε ∂s), ∆d = 12(ε2 ∂2s + ε4 ∂4s ) +O(ε6).

We then substitute (52) in equation (36), assume γ c = O(ε) and neglectO(ε6) terms. After integration
with respect to s and some elementary algebra, one obtains

∂τ (y1/α) +
1

ε2
∂s (y − y1/α) + ∂3sy = c 2

√
3
γ

ε
∂2sy (53)

with the integration constant set to 0. This leads us to set ε = (1− 1
α)1/2 in (53) and to introduce

µ = c 2
√

3 γ(1− 1

α
)−1/2. (54)

Then we let α → 1+ in (53) under the assumption µ = O(1), which corresponds to assuming γ =

O((α− 1)1/2). This leads to a logarithmic KdV-Burgers equation

∂τy + ∂s (y ln y) + ∂3sy = µ∂2sy, (55)

in which the third spatial derivative accounts for dispersive effects.

5.2. Localized solutions of the logarithmic KdV - Burgers equation. Searching for stationary solu-
tions y(s) of (55) and integrating once with respect to s, we get

d2y

ds2
− µ dy

ds
+W ′(y) = 0, (56)

where the integration constant was set to 0. This system corresponds to the motion of a particle in
the double-well potential W (y) = y2

2 (ln |y| − 1
2), with a saddle point at y = 0 and two symmetric

equilibria at y = ±1 (see the top left panel in figure 8). Here we are only interested in nonnegative
solutions of (56) since equation (55) is defined for y ≥ 0. Note that a continuum limit similar to (56)
but with a different (polynomial) potential was also formally derived in [3].

The nontrivial equilibria are Lyapunov stable in the special case µ = 0 and unstable for µ > 0 since
the particle is subjected to a negative damping. In that case, there exists an heteroclinic solution yh of
(56) such that lims→−∞ yh(s) = 1 and lims→+∞ yh(s) = 0. This trajectory corresponds to one side
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FIGURE 6. Approximate solution obtained by integrating the logarithmic Burgers
equation (blue line) compared with the solution of the generalized KK model (dots).
Relative displacements (left) and velocities (right) are plotted at t ≈ 10.02, t ≈ 26.78,
t ≈ 42.37, t ≈ 89.95 from top to bottom. Computations are performed for α = 1.1,
which corresponds to ε ≈ 0.35 and L ≈ −306. We have fixed ` ≈ 27.78,
dξ̃ ≈ 5.5× 10−3, dτ ≈ 1.2× 10−5.

of the stable manifold of the origin (see figure 8, top right panel). To compute this solution we proceed
as follows. We reformulate (56) as the first order system

dy

ds
= z,

dz

ds
= µ z − y ln |y|. (57)
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FIGURE 7. Same as in figure 6 but for α = 3/2. Solutions are plotted at t ≈ 3.33,
t ≈ 41.12, t ≈ 90, from top to bottom. Computations are performed with ε ≈ 0.93
and L ≈ −114.7. We have fixed ` ≈ 73.84, dξ̃ ≈ 1.48× 10−2, dτ ≈ 7.8× 10−5.

To characterize the local stable manifold of the origin in the sector y ≥ 0 and z ≤ 0, we set z =
−
√
q(y) with q ≥ 0. Using the fact that

d

dy

z2

2
= z

dz

dy
=
dz

ds
= −µ√q − y ln y,

the function q = z2 satisfies
dq

dy
= 2(−µ√q − y ln y). (58)

Consequently, q is a nonnegative solution of the differential equation

dq

dy
= 2(−µ sign(q)

√
|q| − y ln |y|). (59)
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Equation (59) is maximal monotone, hence for all initial condition q(0) = q0 there exists a unique
solution q(y) defined for all y ≥ 0 [5]. We now consider the solution qs satisfying qs(0) = 0. This
solution is positive for all y ∈ (0, 1) (if not, there would be an interval where q(y) ≤ 0 and q′(y) ≤ 0,
which is impossible since the right side of (59) is positive for q ≤ 0 and y ∈ (0, 1)). Consequently, qs
defines a solution of (58) for y ∈ [0, 1]. Its graph corresponds to (one side of) the local stable manifold
of the origin for system (57).

We compute qs(y) numerically for y ∈ [0, 1] by integrating (59) with the initial condition qs(0) = 0
(for this purpose we use the standard Scilab ODE solver). Then we obtain the heteroclinic solution yh
by integrating (forward and backward in time) equation (57) with the initial condition (yh(0), zh(0)) =

(y0,−
√
qs(y0)) for some y0 ∈ (0, 1). The results are illustrated in figure 8 (we have used the value

y0 = 1/2). When µ ≥ 2, we find qs(1) = 0 up to machine precision, which indicates the existence
of a monotonic front with dyh

ds = zh ≤ 0 for all s ∈ R (see the bottom right panel in figure 8). This
corresponds to the case when the unstable equilibrium (y, z) = (1, 0) has real eigenvalues, leading
to an overdamped dynamics. For µ ∈ (0, 2), we have an underdamped regime where (y, z) = (1, 0)
has imaginary eigenvalues and the convergence of (yh(s), zh(s)) towards (1, 0) when s → −∞ is
oscillatory (bottom left panel in figure 8).

FIGURE 8. Top left : double-well potential W in (56). The arrow symbolizes the het-
eroclinic orbit connecting the equilibrium at y = 1 with the saddle at y = 0 under
the effect of negative damping. Top right : phase portrait of (57) for µ = 0.3 (un-
derdamped regime). The blue curve corresponds to the heteroclinic orbit. Bottom :
heteroclinic solutions for µ = 0.3 (left) and µ = 2 (right) which corresponds to the
onset of the overdamped regime.

Remark 8. In the nondissipative case µ = 0, (58) has the explicit solution qs(y) = −2W (y). This
solution corresponds to the Gaussian homoclinic solution of equation (56) with µ = 0, given by y(s) =

exp(12 −
s2

4 ) [4].
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From Ansatz (52) we get the approximate relative displacements

un(t) = δ y
1/α
h (ε(n− c t)), (60)

with ε = 2
√

3 (1− 1
α), c = δ(α−1)/2. The approximation (43) for velocities remains valid for this

definition of ε, leading to

ẋn(t) ≈ vp [yh − ε(γc+
1

2
) zh](ε(n− c t)), (61)

where vp = δ(α+1)/2 is the limiting particle velocity when n → −∞. The overdamped regime occurs
under the condition µ ≥ 2, that is

γ ≥
√

α− 1

3α δα−1
, (62)

or equivalently

γ ≥
√
α− 1

3α
v(1−α)/(α+1)
p . (63)

6. NUMERICAL COMPUTATION OF TRAVELING FRONTS

In this section we numerically compute traveling front solutions of the generalized KK model (35).
We compare numerical solutions computed iteratively to the analytical approximations derived in sec-
tions 4 and 5, and study some of their qualitative properties.

6.1. A Gauss-Newton method for traveling fronts. We look for solutions of (35) such that xn(t) =
X(n− c t), where the profile function X satisfies the boundary conditions (10) and (11) with R−∞ =

−δ < 0, R+∞ = 0. The wave velocity is c = δ(α−1)/2 according to identity (21), and we recall that
limn→−∞ ẋn(t) = vp = δ(α+1)/2.

Traveling fronts are obtained using a shooting method reminiscent of the one used in [3]. Let
us start by describing the method for an infinite chain before considering finite chains in numerical
computations. We use the dynamical formulation (31)-(32) in the case β = α, and consider initial
conditions Y (0) = (x(0), w(0)) in the affine space X × Y defined in section 3.2. We have then
limn→+∞ xn(0) = 0, limn→+∞wn(0) = 0, limn→−∞(xn(0) − xn+1(0)) = δ, and limn→−∞wn(0)
exists. We look for initial conditions such that the solution is defined for t ∈ [0, 1/c] and satisfies for
all n ∈ Z :

xn+1(1/c) = xn(0), wn+1(1/c) = wn(0). (64)

This condition enforces xn+1(t+ 1/c) = xn(t) by uniqueness of the solution to the initial value prob-
lem. Consequently, we get by induction xn(t) = X(n− c t) with X(ξ) = x0(−ξ/c), i.e. the solution
is a traveling wave with velocity c. Moreover, the boundary condition (33) implies the boundary condi-
tion (11) for X . Since limξ→−∞X

′(ξ) exists (see property (34)), the boundary condition (10) follows
from (11) and the mean value theorem.

For numerical computations, we consider a finite chain with N = 421 particles. We consider the
Neumann boundary condition (25), with a free end boundary condition at xN (i.e. δ̃ = 0) and constant
compression δ at the first element.

We restrict us to initial conditions at t = 0 taking the form

Y (0) = (x1(0), . . . , xn0−1(0), xn0+1(0) +
δ

2
, xn0+1(0), . . . , xN−1(0), 0, w1(0), . . . , wN (0)),

where n0 = (N + 1)/2 = 211. Indeed, imposing xn0(0)− xn0+1(0) = δ
2 allows one to fix the phase

of the front, and xN (0) = 0 fixes the translation of the chain. In order to solve the nonlinear system
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(64), we look for an initial condition that minimizes the function of 2N − 2 variables

S =
N∑
n=1

(xn+1(1/c)− xn(0))2 + (wn+1(1/c)− wn(0))2, (65)

in which we fix xN+1(1/c) := xN (1/c), wN+1(1/c) := wN (1/c). The minimization of S is realized
using the Gauss-Newton method [2] (in [3], a fixed point iteration was used to solve the nonlinear
system (64)).

The iterative method is initialized using a kink-type Ansatz which is scaled according to the KdV-
Burgers limit described in section 5. More precisely, we consider the initial relative displacements
un(0) = xn(0)− xn+1(0) = U(n− n0) with

U(ξ) =
δ

2

(
1− tanh(λ ξ)

)
, λ = 2

√
3 (1− 1

α
)1/2,

and the initial relative velocities u̇n(0) = −cU ′(n− n0) given by

u̇n(0) =
δ(α+1)/2

2
λ
(
1− tanh2(λ (n− n0))

)
.

This choice determines the initial displacements by induction through the formula

xN (0) = 0, xn(0) = xn+1(0) + un(0) for n = N − 1, . . . , 1,

and the initial velocities through

ẋN (0) = u̇N (0), ẋn(0) = ẋn+1(0) + u̇n(0) for n = N − 1, . . . , 1,

which in turn provides the generalized initial velocities wn(0) using formula (31).
The Gauss-Newton iterations are stopped when S drops below 10−14 and each components of two

successive iterates differ at most by 10−7. We have observed that the accuracy of the initial seed is
not very important for the convergence of the iteration, but the evaluation of the Jacobian matrix in the
Gauss-Newton method needs to be precise (for this purpose we use the numderivative function of the
software package Scilab).

Once the iteration has converged and the resulting initial condition Y (0) = (x(0), w(0)) is integrated
for t ∈ [0, 1/c), one obtains X(ξ) = xn(t) and X ′(ξ) = − ẋn(t)

c for ξ = n − c t ∈ (n − 1, n] and for
all n = 1, . . . , N .

To check the numerical method, we have integrated the computed initial conditions over long times
for different values of parameters α, δ, γ. We have observed a steady propagation of the traveling front
over long distances, as illustrated in figure 9.

6.2. Qualitative properties of fronts. When γ lies below a critical value γc, we observe that the
front is non-monotonic within the compressed region. More precisely, the limits limn→−∞ ẋn(t) =
limt→+∞ ẋn(t) = vp and limn→−∞(xn(t) − xn+1(t)) = limt→+∞(xn(t) − xn+1(t)) = δ occur
with oscillations around the limiting values, as illustrated in the left panel of figure 9. This case is
referred to as the underdamped regime. On the contrary, in the overdamped regime γ ≥ γc, we obtain
monotonic fronts as illustrated in the right panel of figure 9. More precisely, we observe some numerical
oscillations of velocities and relative displacements around the limiting values at n = −∞, but their
amplitude is negligible (it is close to 10−8 or below, i.e. smaller than the numerical precision of the
iterative method).

The critical damping takes the form

γc = δ(1−α)/2 Γ(α), (66)

where the multiplicative constant Γ(α) needs to be determined. The form (66) can be obtained by
rescaling (35) and the front solution as described in section 3.1, which yields (similarly to (30)) a
dimensionless damping parameter γ δ(α−1)/2 with critical value denoted by Γ(α).
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FIGURE 9. Graph of bead velocities versus t−n/c for n = 271 (black line), n = 331
(blue line), n = 391 (green line), for the initial condition computed with the Gauss-
Newton method. The three graphs coincide almost perfectly. Left plot : α = 3/2,
δ = 5, γ = 0.06. Right plot : α = 1.1, δ = 0.1, γ = 0.2.

One can notice that γc diverges when the compression δ at n = −∞ goes to 0. Consequently,
once α > 1 and γ are fixed, the underdamped regime γ < γc occurs when the compression δ is small
enough, or equivalently when the asymptotic bead velocity vp at n = −∞ is small. This feature of the
generalized KK model contrasts with the properties of generalized Hertzian chains with linear dashpots
(α > 1, β = 1) for which γc vanishes with δ [19]. For example, in the numerical simulations performed
in [36] for α = 3/2, the underdamped regime occurs when vp is large enough.

We observe numerically that the multiplicative constant Γ(α) in (66) becomes small when α ap-
proaches unity. This is consistent with the analytical approximation (62) which indicates that

Γ(α) ≈
√
α− 1

3α
for α ≈ 1+.

This phenomenon is illustrated for α = 1.02 and δ = 1 in figure 10, which compares the maximal bead
velocity ‖ẋ‖∞ to the downstream particle velocity vp. The transition between the underdamped and
overdamped regimes occurs at γc ≈ 0.079, a value well approximated by (63), which yields a critical
damping close to 0.081. Of course the approximation (62) derived for α → 1+ deteriorates when α
increases. For example, numerical computations indicate γc ≈ 0.26 for α = 3/2 and δ = 1 (see figure
11), whereas the analytical approximation (63) yields a higher critical damping equal to 1/3.

FIGURE 10. Graph of ‖ẋ‖∞ − vp versus γ for α = 1.02 and δ = 1. One observes a
transition between the underdamped and overdamped regimes at γc ≈ 0.079, close to
the analytical approximation (63) (red line).
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An important feature of the underdamped regime is that the relative difference (overstrike) between
the maximal bead velocity (or relative displacement) and the limit at n = −∞ imposed by the boundary
condition can be significant. This phenomenon is illustrated in figure 11 for α = 3/2 and δ = 1.
Below γ = γc, we observe that the overstrike increases with decreasing γ, and becomes close to 1.5 for
γ = 0.03. For smaller values of γ, the iterative method does not reach the error bounds given above,
so we cannot conclude on the limiting behavior of the front profile. These numerical difficulties are
consistent with the fact that traveling fronts (with a constant compression at n = −∞) do not exist in
the limit case γ = 0 (see remark 4).

FIGURE 11. Left : graph of ‖ẋ‖∞ versus γ for α = 3/2 and δ = 1. Right : graph of
‖u‖∞ versus γ, where un = xn − xn+1 corresponds to relative displacements. One
observes a transition between the underdamped and overdamped regimes at γc ≈ 0.26.

6.3. Comparison with the continuum limits. In sections 4 and 5, we have derived two different
continuum limits of the generalized KK model when α → 1+. The logarithmic Burgers equation
was derived for γ δ(α−1)/2 � (1 − 1

α)1/2, and admits explicit front solutions with monotonic relative
displacement profiles. The logarithmic KdV-Burgers equation was obtained for a weak dissipation with
γ δ(α−1)/2 = O(1− 1

α)1/2. Depending whether the rescaled dissipation constant µ defined in (54) lies
below or above 2, it leads to underdamped or overdamped fronts. The front profiles must be computed
numerically, but at a cost well below the complexity of the direct approach of section 6.1.

Figure 12 illustrates the convergence of the analytical approximations when α approaches unity, for
δ = 5 and α = 1.02. In the left panel, we fix γ = 0.2 (overdamped regime) and compare the numerical
front solution obtained with the Gauss-Newton method to the logarithmic Burgers approximation. In
the right panel we fix γ = 0.06 (underdamped regime, µ ≈ 1.51) and compare the numerical front
solution to the logarithmic KdV-Burgers approximation. The graphs of the analytical and numerical
solutions are almost identical in both case.

Next we study how the two analytical approximations compare with the numerical solution when we
depart from their asymptotical range of validity, i.e. when α is further increased. For this purpose we
fix δ = 5 and first consider the case α = 1.1. In figure 13, we fix γ = 0.2 (leading to the overdamped
regime) and compare the numerical solution with the logarithmic Burgers approximation. We find
an excellent agreement both for relative displacements and velocities. In figure 14, we set γ = 0.06
(leading to the underdamped regime) and compare the numerical solution with the logarithmic KdV-
Burgers approximation. The approximation is excellent for relative displacements (left panel) but small
discrepancies appear in the approximation of velocities, for which the overstrike is overestimated by
2.7% (green curve in the right panel). It is also interesting to observe the effect of the first order
correction in ε which is taken into account in (61) for the computation of the green curve. When this
term is neglected (red curve), the front width is overestimated by around 11.5% (but the overstrike is
closer to the value obtained with the numerical solution).
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FIGURE 12. Comparison of the traveling front computed with the Gauss-Newton
method (black line), the approximation (48) derived from the logarithmic Burgers
equation (left plot, blue line), and the approximation (61) obtained with the logarithmic
KdV-Burgers equations (right plot, green line). The numerical solutions and analyt-
ical approximations are almost identical. We only represent bead velocities (relative
displacements display similar features). We have fixed δ = 5 and α = 1.02. The left
panel corresponds to γ = 0.2 and the right panel to γ = 0.06.

FIGURE 13. Comparison of the traveling front computed with the Gauss-Newton
method (black line) and the approximations (47) and (48) derived from the logarithmic
Burgers equation (blue line). The left panel corresponds to relative displacements and
right panel to velocities. We have fixed δ = 5, α = 1.1, γ = 0.2.

We now further increase α to the classical value α = 1.5. Figure 15 compares the analytical approx-
imations derived from the logarithmic Burgers and KdV-Burgers equations with the traveling fronts
computed iteratively. For γ = 0.2 (overdamped regime), the velocity profile obtained with the loga-
rithmic Burgers approximation is quite close to the numerical solution (top right plot, blue curve). The
logarithmic Burgers approximation of relative displacements shows more discrepancies (top left plot,
blue curve) but the approximation remains meaningful. As noted in section 6.2, the critical value of
the damping is overestimated by the logarithmic KdV-Burgers approximation. As a consequence, the
associated approximation of the front is underdamped (µ ≈ 1.8), leading to a spurious overstrike in
the approximation of the velocity (top right plot, green curve). However, the overstrike is negligible
for relative displacements (top left plot, green curve). As a conclusion, the logarithmic KdV-Burgers
approximation displays clear discrepancies with the numerical solution but remains meaningful.

The bottom plots in figure 15 correspond to γ = 0.06 (underdamped regime). Here the logarithmic
Burgers approximation is not appropriate, since it does not capture the rather large oscillations of rela-
tive displacements around the compressed state (bottom left plot, blue curve). However, on can notice
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FIGURE 14. Comparison of the traveling front computed with the Gauss-Newton
method (black line) and the approximations (60) and (61) obtained with the logarith-
mic KdV-Burgers equations (green line). The red line corresponds to the O(ε0) order
terms in approximation (61). The left panel corresponds to relative displacements and
right panel to velocities. We have fixed δ = 5, α = 1.1, γ = 0.06.

that the correction term in the velocity approximation (48) accounts for an overstrike (bottom right
plot, blue curve). The logarithmic KdV-Burgers approximation (bottom plots, green curves) displays
reasonable agreement with the numerical solution. The approximation of the shock width is quite accu-
rate and the period of oscillations at the top of the front is reasonably approximated. The overstrike in
relative displacements is underestimated by around 5%, and the overstrike in velocity is overestimated
by around 14%. This error can be reduced to 2% by considering only the zeroth order term in ε in (61),
but then the relative error on the front width is multiplied by two (data not shown).

7. CONCLUSION AND PERSPECTIVES

In this work, we have analyzed the propagation of fronts in one-dimensional lattices including both
dissipative and nonlinear elastic nearest neighbors interactions. In section 2, we have determined in
the general case how the velocity of traveling fronts depends on the asymptotic states of the system
at ±∞. In section 3, we have considered a lattice model for viscoelastic granular chains that falls
within the above class, in particular the KK model with Hertzian elastic and dissipation potentials, and
a generalized KK model in which the exponent α in the contact force is an additional parameter. We
have studied some qualitative properties of the models, and we have shown numerically that fronts can
be generated in the KK model by applying a constant pressure at one end of a chain initially at rest. In
the limit when α is close to unity, we have formally derived two different amplitude equations for long
waves, namely a logarithmic Burgers equation (section 4) and a logarithmic KdV-Burgers equation
(section 5). The latter incorporates dispersive effects that must be taken into account when contact
damping is small. Both models possess traveling front solutions that have been compared to direct
numerical computations of fronts in the granular chain based on the Gauss-Newton method (section
6). We have observed the convergence of the analytical approximations towards numerical solutions
when α goes to unity, and we have checked that the analytical approximations still provide meaningful
results when α is increased up to the classical value 3/2. In addition, we have found a transition from
underdamped to overdamped fronts when a nondimensional damping parameter γ lies above some
threshold γc. Using the logarithmic KdV-Burgers approximation, we have obtained an approximation
of γc valid for α close to unity.

Several significant extensions of this work could be considered. From a theoretical point of view, it
would be interesting to justify the amplitude equations and analytical approximations derived in sec-
tions 4 and 5. In particular, we have observed in section 4.3 that the logarithmic Burgers equation is able
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FIGURE 15. Comparison of the traveling front computed with the Gauss-Newton
method (black line), the approximations (47) and (48) derived from the logarithmic
Burgers equation (blue line), and the approximations (60) and (61) obtained with the
logarithmic KdV-Burgers equations (green line). Left panels correspond to relative
displacements and right panels to velocities. We have fixed δ = 5, α = 1.5. Top
plots : γ = 0.2, and bottom plots : γ = 0.06.

to approximate the evolution over long times of well-prepared localized initial conditions when α is
close to unity. It would be interesting to derive error bounds on the logarithmic Burgers approximation
valid over such time scales, and to perform the same type of analysis for the logarithmic KdV-Burgers
equation, in the same spirit as previous justifications of modulation equations for precompressed granu-
lar chains (see [11] and references therein). Another interesting open problem is to prove the existence
and stability of exact traveling fronts in the granular chain, in particular with profiles close to the loga-
rithmic Burgers or KdV-Burgers approximations in appropriate parameter regimes. In this context, the
analytical approximations obtained in this work could provide a good starting point to construct exact
front solutions using a fixed point technique. From a numerical point of view, it would be worthwhile
to study the qualitative properties of fronts for more general values of the exponent β in (2) and to take
into account the energy dissipation due to plasticity.
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[14] Falcon E, Laroche C, Fauve S and Coste C 1998 Behavior of one inelastic ball bouncing repeatedly off the ground Eur.

Phys. J. B 3 45-57
[15] Falcon E, Laroche C, Fauve S and Coste C 1998 Collision of a 1-D column of beads with a wall Eur. Phys. J. B 5

111-131
[16] Fermi E, Pasta J and Ulam S 1955 Studies of nonlinear problems Technical Report LA-1940, Los Alamos National

Laboratory
[17] Fraternali F, Porter M A and Daraio C 2010 Optimal design of composite granular protectors Mech. Adv. Mat. Struct.

17 1-19
[18] Goldobin D S, Susloparov E A, Pimenova A V and Brilliantov N V 2015 Collision of viscoelastic bodies: Rigorous

derivation of dissipative force Eur. Phys. J. E 38 55
[19] Herbold E B and Nesterenko V F 2007 Shock wave structure in a strongly nonlinear lattice with viscous dissipation

Phys. Rev. E 75 021304
[20] Herrmann M and Rademacher J D M 2010 Riemann solvers and undercompressive shocks of convex FPU chains

Nonlinearity 23 277-304
[21] Herrmann M and Rademacher J D M 2010 Heteroclinic travelling waves in convex FPU-type chains SIAM J. Math.

Anal. 42 1483-1504
[22] Herrmann M 2011 Action minimizing fronts in general FPU-type chains J. Nonlinear Sci. 21 33-55
[23] Hietarinta J, Kuusela T and Malomed B A 1995 Shock waves in the dissipative Toda lattice J. Phys. A: Math. Gen. 28

3015-3024
[24] Hinch E J and Saint-Jean S 1999 The fragmentation of a line of balls by an impact. Proc. R. Soc. Lond. A 455, 3201-3220
[25] Hunt K H and Crossley F E 1975 Coefficient of restitution interpreted as damping in vibroimpact Journal of Applied

Mechanics 42 440-445
[26] Iooss G 2000 Travelling waves in the Fermi-Pasta-Ulam lattice Nonlinearity 13 849-866
[27] James G and Pelinovsky D 2014 Gaussian solitary waves and compactons in Fermi-Pasta-Ulam lattices with Hertzian

potentials Proc. R. Soc. A 470 (2165) 20130462
[28] James G and Starosvetsky Y 2014 Breather solutions of the discrete p-Schrödinger equation, in Localized Excitations in
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